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Abstract. Surrogate modelling has become an important topic in the field of uncertainty
quantification as it allows for the solution of otherwise computationally intractable problems.
The basic idea in surrogate modelling consists in replacing an expensive-to-evaluate black-box
function by a cheap proxy. Various surrogate modelling techniques have been developed in the
past decade. They always assume accommodating properties of the underlying model such as
regularity and smoothness. However such assumptions may not hold for some models in civil
or mechanical engineering applications, e.g., due to the presence of snap-through instability
patterns or bifurcations in the physical behavior of the system under interest. In such cases,
building a single surrogate that accounts for all possible model scenarios leads to poor pre-
diction capability. To overcome such a hurdle, this paper investigates an approach where the
surrogate model is built in two stages. In the first stage, the different behaviors of the system
are identified using either expert knowledge or unsupervised learning, i.e. clustering. Then
a classifier of such behaviors is built, using support vector machines. In the second stage, a
regression-based surrogate model is built for each of the identified classes of behaviors. For
any new point, the prediction is therefore made in two stages: first predicting the class and
then estimating the response using an appropriate recombination of the surrogate models. The
approach is validated on two examples, showing its effectiveness with respect to using a single
surrogate model in the entire space.
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1 INTRODUCTION

The surrogate modelling of computer simulations has become paramount in many engineer-
ing applications that rely heavily on high-fidelity models. Surrogate models indeed allow for an
inexpensive approximation of the model input-output relationship, thus making computation-
ally intensive analyses, such as design optimization or uncertainty quantification, affordable.
In the common setting, the underlying surrogated model is assumed to exhibit accommodat-
ing properties such as smoothness and continuity. However, numerous engineering problems
involve non-smooth functions, e.g. crash simulation in the automotive industry. Indeed the
original model may exhibit some sharp localized features and discontinuities may occur when
a bifurcation or an instability appears in the solution path. In general, the functions of interest
in this work exhibit different behaviors which can be mapped to certain combinations of the
input parameters. The transitions between these domains may be non-smooth, often featuring
discontinuities. In mechanical engineering, typical examples are buckling and snap-through
characterized by sudden behavior changes (See [3] for instance). Approximating such models
with a traditional smooth surrogate model leads to large errors. In this work, we consider a two-
stage approach where the different behaviors are first localized and classified and then locally
approximated. A similar approach was investigated in [1] and [8], albeit without approximation
of the model responses as the latter were used as constraints in an optimization setting where
only feasibility of a given design is of interest. In this paper, the general workflow of the pro-
posed methodology is first introduced. This is followed by a brief description of the different
blocks of the algorithm. Finally, two application examples are used to show the effectiveness of
the proposed approach.

2 PROPOSED APPROACH

2.1 Workflow of the method

The proposed approach for handling non-smooth functions consists of multiple steps as de-
scribed in the flowchart of Figure 1. Let us consider an experimental design which consists
of N uniformly sampled points

{
x(1), . . . ,x(N)

}
and their corresponding model evaluations{

y(1) =M
(
x(1)

)
, . . . , y(N) =M

(
x(N)

)}
. To build the predictor, the following steps are un-

dertaken:

1. Clustering: This is the first step of the approach when the analyst attributes to each ob-
servation y(i), i = {1, . . . , N} a class which corresponds to an identified behavior of
the system. In the ideal case, this can be done manually using expert knowledge. In the
general case though, it is more convenient to rely on an automated approach where the
classes are directly learned from the data using unsupervised learning.

2. Classification: Once the classes are clearly identified, they are mapped to the input space
which is then partitioned accordingly. This step is carried out using support vector ma-
chines for classification as detailed in the next section.

3. Regression/Interpolation: Eventually, the dataset is split into the different groups identi-
fied in the previous two steps. For each group, a local surrogate model

{
M̂k, k = 1, . . . , K

}

is built.

Once the local models are built, it is necessary to recombine them when evaluating a new point.
As shown on the right side of Figure 1, this is achieved in three steps:
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LEARNING

1. Clustering

2. Classification

3. Regression

PREDICTING

1. Identification

2. Evaluation

3. Recombination

Figure 1: Illustration of the surrogate modelling approach.

1. Identification: The very first step is to predict to which class belongs the new point. The
previously built support vector classifier can be used in that respect.

2. Evaluation: The new point is then evaluated using the different surrogate models.

3. Recombination: The final approximation is obtained by combining the different predic-
tions as follows:

M̂ (x) =
K∑

k=1

wk (x)M̂k (x) , (1)

wk (x) are weight functions defined such that
∑K

k=1wk (x) = 1. Two different types
of weight functions are considered in this work as explained in the next section. In the
sequel, we first describe briefly the two surrogate model types used here, namely support
vector machines and Kriging.

2.2 Support vector machines for classification basics

Support vector machines are a powerful learning technique developed by Vapnik ([11]) for
classification (SVC) and regression (SVR) problems. Let us consider a dataset
C =

{(
x(i), `(i)

)
, i = 1, . . . , N

}
, wherex(i) areM -dimensional input points and `(i) = {−1, 1}

are the corresponding labels, in the particular case of binary classification considered here.
The support vector classifier is a function of the following form ([9]):

MSVC (x) =
N∑

i=1

αi `
(i) k

(
x(i),x

)
+ b, (2)

where αi and b are coefficients to calibrate and k () is the so-called kernel function. The coeffi-
cients of the expansion are actually found by solving the following optimization problem ([9]):

min
α

1

2
αT
(
K̃Y Y T

)
α+ cTα

subject to: αTY = 0, αi ≥ 0, i = {1, . . . , N} ,
(3)

where c = {−1, . . . ,−1} is a column vector of size N and K̃ = K + 1/CIN . In the latter
equation, K is the so-called Gram matrix whose components read Kij = k

(
x(i),x(j)

)
for

i, j ∈ {1, . . . , N}, IN is the identity matrix of size N and C is a penalty coefficient which acts
as a regularization term against overfitting.

In this work, we consider the Matérn 5/2 kernel which reads:

k (x,x′) =

(
1 +
√

5
‖x− x′‖

γ
+

5

3

‖x− x′‖2
γ2

)
exp

(
−
√

5
‖x− x′‖

γ

)
, (4)
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where γ > 0 is a parameter that needs to be calibrated. Together with the penalty term C, they
constitute the set of hyperparameters θ = {C, γ} whose proper calibration is crucial for the
accuracy of the trained SVC model. Here they are calibrated by minimizing the span estimate
of the leave-one-out error ([10]).

After setting up the model, the predicted boundary between the two classes is defined by{
x ∈ X :MSVC (x) = 0

}
while the class of a prediction is given by sign

(
MSVC (x)

)
.

2.3 Kriging basics

Kriging a.k.a. Gaussian process modelling is a surrogate modelling technique where the
function to approximate is considered to be the realization of a stochastic Gaussian process
which reads ([6, 7]):

M (x) =

p∑

j=1

βjfj (x) + Z (x) , (5)

where fj and βj are a set of p regressors and their corresponding coefficients and Z (x) is
a second-order zero-mean stationary Gaussian process whose covariance reads Cov [x,x′] =
σ2R (x,x′;γ). In the latter equation, σ2 is a constant variance of the process and R is an
auto-correlation function with parameters γ.

The auto-correlation function encodes assumptions made about the function to approximate,
e.g. smoothness, derivability, etc. In this work, we consider the Matérn 5/2 auto-correlation as
in Eq. (4). The training of the Kriging model is a two-step process. First, the coefficients of the
regression together with the process variance are estimates using least-square or equivalently
maximum likelihood minimization. Second, the optimal parameters of the auto-correlation
function are estimated using cross-validation or maximum likelihood. Once the estimates of
the hyperparameters

{
β̂, σ̂2, γ̂

}
are set, the prediction for a new point is assumed to follow a

Gaussian distribution whose mean is the actual Kriging predictor and reads:

µM (x) = fT (x) β̂ + rT (x)R−1
(
y − F T β̂

)
, (6)

whereR is the Gram matrix defined such thatRij = R
(
x(i),x(j); γ̂

)
, r (x) =

{
R
(
x,x(i); γ̂

)
,

i = 1, . . . , N} is a cross-correlation vector,F =
{
Fij = fj

(
x(i)
)
, i = 1, . . . , N, j = 1, . . . , p

}

and y =
{
yi =M

(
x(i)
)
, i = 1, . . . , N

}
are the observations in the experimental design.

2.4 Models recombination using SVC

In the second step of the approach, an SVC model is used to partition the space. In this paper,
only cases with two possible behavior scenarios are considered. Let us assume now that the two
sub-regions of the space corresponding to the negative and positive labels of the classifiers are
respectively denoted by R1 and R2. As explained above, the experimental design D is split in
two subsets Dk =

{(
x(i), y(i)

)
∈ D : x(i) ∈ Rk

}
, k = {1, 2}. Using the subset D1 (resp. D2),

a Kriging model denoted by M̂1 (resp. M̂2) is built.
Let us now consider a new point x to evaluate. As described above, we first predict its class,

sign
(
MSVC (x)

)
, using the classifier. This point is then evaluated using the local surrogate

models which are eventually recombined following Eq. (1). Two recombination schemes are
considered here:
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Binary approach
In this case, only the model built over the region in which x is predicted to belong to is used

([2, 4]). The weight function is therefore a simple indicator function, i.e. :

wk (x) = 1Rk
(x) =

{
1 if x ∈ Rk,
0 otherwise, (7)

For the case with only two possible scenarios considered here, Eq. (1) can then be simplified
into:

M̂ (x) = 1R1 (x)M̂1 (x) + 1R2 (x)M̂2 (x) . (8)

This is a simple approach but it may yield large errors when the classification of the new point
is wrong. The next approach tackles this issue by considering the uncertainty related to the
support vector machine classifier.

Weighting approach
In this case, weights associated to each model are computed using the SVC prediction. The

more likely a point is to belong to a class, the higher the corresponding weight and vice-versa.
To compute the weight, the output of the classifier is post-processed into posterior probabilities
using the following parametric sigmoid ([5]):

P
(
` (x) = 1|MSVC (x)

)
=

1

1 + exp (AMSVC (x) +B)
, (9)

where A and B are parameters that are fit using maximum likelihood estimation on the exper-
imental design. The final prediction is then obtained by setting these probabilities as weights,
i.e. :

w1 (x) = 1− P
(
` (x) = 1|MSVC (x)

)
and w2 (x) = P

(
` (x) = 1|MSVC (x)

)
. (10)

3 APPLICATIONS

We consider two applications to illustrate the proposed methodology, namely a two-dimensional
mathematical function and a snap-though mechanical problem.

3.1 Two-dimensional mathematical function

Let us consider the two-dimensional mathematical function defined by:

M (x) =

{
sin(x1) + 7 sin(x2)

2 if (x1 − π)2 + (x2 − π)2 − 2π2 ≥ 0,
x1 − 2x2 − 10; otherwise, (11)

where x ∈ [−π, π]2.
Figure 2a illustrates the function which consists of two distinct regions over which different

behaviors of the model can be observed. On one side, the function is highly non-linear whereas
on the other, the function is linear and nearly flat. To approximate this function, we use an
experimental design of size 100. The two classes are identified using K-means clustering and
the input space is partitioned as illustrated in Figure 3 by support vector machines. In this figure,
the training points that belong to the flat and highly non-linear regions are shown in blue circles
and red squares respectively. With a 100-point training set, the classifier, shown by the black
curve, is close enough to the true one, shown by the magenta curve. After building surrogates in
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(d) Approximation: Weighted recombination

Figure 2: Two-dimensional mathematical problem: original vs. surrogate models

each region, the two recombination schemes are applied. Figures 2c and 2d show the resulting
approximations. The binary case produces a very accurate representation of the model, the only
error being the position of the discontinuity. The weighted recombination scheme produces a
smooth transition in the margin between the two regions. Finally, using one single surrogate
model leads to the approximation shown in Figure 2b where spurious curvatures are added in
the vicinity of the discontinuity.

For a quantitative comparison of the different approaches, the following two errors metrics
are considered:

NMSE =

Nval∑

i=1

(
Yi − Ŷi

)2
/

Nval∑

i=1

(
Yi − Ȳ

)2
,

MAE =

Nval∑

i=1

∣∣∣Yi − Ŷi

∣∣∣ /N,
(12)

where NMSE and MAE respectively stand for normalized mean square error and mean ab-
solute error. In these equations, Y and Ŷ are responses of the original and surrogate models on
a validation set of size Nval = 10, 000. Table 1 shows the resulting errors where cases #1, #2
and #3 respectively stand for single surrogate, binary recombination and weighted recombina-
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Figure 3: Two-dimensional mathematical problem: classification of the input points using sup-
port vector machines

tion. The proposed approach improves the prediction considering any of the two metrics. It is
not clear though which of the two recombination schemes is more effective.

Case #1 Case #2 Case #3
NMSE 0.0911 0.0530 0.0346
MAE 1.0124 0.2048 0.2436

Table 1: Two-dimensional mathematical problem: comparison of the resulting errors

3.2 Truss structure subject to snap-through

The second example addresses the problem of a geometrically non-linear two-bar truss struc-
ture with a snap-through behavior as illustrated in Figure 4. When loaded, such a structure often
behaves linearly with small displacements. However, when a critical limit is reached, the struc-
ture becomes unstable and undergoes a sudden large displacement by snapping through another
equilibrium point. In this example, we approximate the displacements w of the tip of such a
structure considering the random parameters shown in Table 2.

Figure 4: Illustration of the truss structure subject to snap-through

It can be shown that the load at a deformed position follows a relationship given by:

P = −2EA tan (α) (cos (α0)− cos (α)) (13)

7
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Parameter Distribution Mean C.o.V.
Load (P in N) Gumbel 430 0.20

Young’s modulus (E in GPa) Lognormal 210 0.10
Cross sectional area (A in cm2) Gaussian 10 0.05

Table 2: Truss snap-through problem: probabilistic input model

where α0 and α are the inclination angles of the bars at the initial and deformed positions. The
corresponding displacement of the tip of the truss then reads:

w = l0 cos (α0) (tan (α0)− tan (α)) . (14)

In this example, we set l0 = 5 m and α0 = 10◦. Using an experimental design of 100 points
drawn following the distribution in Table 2, the displacements are computed and shown in
Figure 5. We can clearly observe the two behaviors that lead to entirely different displacements.

0 20 40 60 80 100

0

0.5

1

1.5

2

Figure 5: Truss snap-through problem: experimental design model responses

The proposed approach is applied to this experimental design. Figure 6 and Table 3 show the
results for comparison. When using a single surrogate model, the instability is not captured and
displacements are predicted continuously over the two extreme cases. The proposed approach
allows to accurately locate and isolate the input sub-regions that lead to each of the scenarios.
The binary approach produces extremely accurate results as long as the class is correctly pre-
dicted by the SVM model. The weighted recombination scheme yields locally less accurate
results but behaves better than the binary one close to the discontinuity.

Case #1 Case #2 Case #3
NMSE 0.2478 0.0803 0.0670
MAE 0.2714 0.0390 0.0399

Table 3: Truss snap-through problem: comparison of the resulting errors

8



Maliki Moustapha, Bruno Sudret

0 1 2

-0.5

0

0.5

1

1.5

2

2.5

(a) One single model

0 1 2

-0.5

0

0.5

1

1.5

2

2.5

(b) Multiple models recombined

Figure 6: Truss snap-through problem: original vs. predicted responses

4 CONCLUSION

This paper presents a two-stage approach for the approximation of functions with non-
smooth outputs. Focus is given to the particular case when multiple behaviors of the function
can be observed. The proposed approach consists in first identifying such behaviors and then
classifying them using support vector machines. The resulting prediction is obtained by build-
ing local surrogates in each region and then recombining them using two different schemes.
Two application examples show the efficiency of the approach with respect to using a unique
global surrogate model. The accuracy of the resulting predictions however relies on the accu-
racy of the classification step. The latter can be increased by using adaptive sampling scheme
in order to more accurately define the boundaries between the two regions. Furthermore, the
proposed scheme is limited to binary problems and will be extended to the more general case
when more than two behaviors of the system can be observed.
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