
HAL Id: hal-02379116
https://hal.science/hal-02379116

Submitted on 25 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Boreal coniferous forest density leads to significant
variations in soil physical and geochemical properties

Carole Bastianelli, Adam Ali, Julien Beguin, Yves Bergeron, Pierre Grondin,
Christelle Hély, David Paré

To cite this version:
Carole Bastianelli, Adam Ali, Julien Beguin, Yves Bergeron, Pierre Grondin, et al.. Boreal coniferous
forest density leads to significant variations in soil physical and geochemical properties. Biogeosciences,
2017, 14 (14), pp.3445-3459. �10.5194/bg-14-3445-2017�. �hal-02379116�

https://hal.science/hal-02379116
https://hal.archives-ouvertes.fr


Biogeosciences, 14, 3445–3459, 2017
https://doi.org/10.5194/bg-14-3445-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Boreal coniferous forest density leads to significant variations in
soil physical and geochemical properties
Carole Bastianelli1,2,3,4, Adam A. Ali4,5, Julien Beguin2, Yves Bergeron4, Pierre Grondin6, Christelle Hély3,4,5, and
David Paré2

1AgroParisTech, 16 Rue Claude Bernard, 75005 Paris, France
2Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380,
Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
3EPHE, PSL Research University, 4-14 Rue Ferrus, 75014 Paris, France
4NSERC–UQAT–UQAM Industrial Chair in Sustainable Forest Management, Forest Research Institute, Université
du Québec en Abitibi-Témiscamingue, 445 Boulevard de l’Université, Rouyn-Noranda, QC, J9X 5E4, Canada
5Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
6Ministère des Forêts, de la Faune et des Parcs, Direction de la recherche forestière, 2700 Rue Einstein, Québec, QC,
G1P 3W8, Canada

Correspondence to: Carole Bastianelli (carole.bastianelli@agroparistech.fr)

Received: 12 January 2017 – Discussion started: 16 March 2017
Revised: 21 June 2017 – Accepted: 23 June 2017 – Published: 21 July 2017

Abstract. At the northernmost extent of the managed forest
in Quebec, Canada, the boreal forest is currently undergo-
ing an ecological transition between two forest ecosystems.
Open lichen woodlands (LW) are spreading southward at
the expense of more productive closed-canopy black spruce–
moss forests (MF). The objective of this study was to inves-
tigate whether soil properties could distinguish MF from LW
in the transition zone where both ecosystem types coexist.
This study brings out clear evidence that differences in vege-
tation cover can lead to significant variations in soil physical
and geochemical properties.

Here, we showed that soil carbon, exchangeable cations,
and iron and aluminium crystallinity vary between boreal
closed-canopy forests and open lichen woodlands, likely at-
tributed to variations in soil microclimatic conditions. All the
soils studied were typical podzolic soil profiles evolved from
glacial till deposits that shared a similar texture of the C layer.
However, soil humus and the B layer varied in thickness and
chemistry between the two forest ecosystems at the pedon
scale. Multivariate analyses of variance were used to evalu-
ate how soil properties could help distinguish the two types
at the site scale. MF humus (FH horizons horizons compos-
ing the O layer) showed significantly higher concentrations
of organic carbon and nitrogen and of the main exchangeable

base cations (Ca, Mg) than LW soils. The B horizon of LW
sites held higher concentrations of total Al and Fe oxides and
particularly greater concentrations of inorganic amorphous
Fe oxides than MF mineral soils, while showing a thinner
B layer. Overall, our results show that MF store three times
more organic carbon in their soils (B+FH horizons, roots
apart) than LW. We suggest that variations in soil properties
between MF and LW are linked to a cascade of events in-
volving the impacts of natural disturbances such as wildfires
on forest regeneration that determines the vegetation struc-
ture (stand density) and composition (ground cover type) and
their subsequent consequences on soil environmental param-
eters (moisture, radiation rate, redox conditions, etc.). Our
data underline significant differences in soil biogeochemistry
under different forest ecosystems and reveal the importance
of interactions in the soil–vegetation–climate system for the
determination of soil composition.

1 Introduction

Vegetation–soil interactions are complex and constitutive
processes of ecosystem dynamics, materialised by functional
feedback roles between plant communities and the soil sys-
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tem (Richter and Yaalon, 2012; Van der Putten et al., 2013).
Land-use changes or ecosystem shifts can have a wide range
of impacts on soil properties such as nutrient availability, or-
ganic matter content, soil structure, erosion or soil water re-
pellency (Li and Richter, 2012; Van der Putten et al., 2013;
Willis et al., 1997). Concurrently, soil properties are of great
importance for vegetation establishment and maintenance in
space and time (Kardol et al., 2006).

In the central portion of Quebec’s boreal zone, Canada,
a southward expansion of open black spruce–lichen wood-
lands (hereafter LW) is currently being observed at the ex-
pense of more closed black spruce–moss forests (hereafter
MF; Bernier et al., 2011; Girard et al., 2008, 2009; Rapanoela
et al., 2016). The current ecosystem shift could be due to a
change in the regional fire regime (Ali et al., 2012; Rapanoela
et al., 2016) that likely occurred several thousands of years
ago (Richard, 1979; Asselin and Payette, 2005) and consti-
tutes a hot stake raised by forest ecologists and forest man-
agers in so far as open black spruce–lichen woodlands are
less productive and, consequently, sequester less carbon than
closed moss forests (Rapanoela et al., 2016; Van Bogaert
et al., 2015). MF are characterised by dense stands mainly
composed of black spruce (Picea mariana) with a ground
layer dominated by feather mosses (Pleurozium schreberi
and others) and sphagnum (Sphagnum spp.). In LW, black
spruce also stands as the dominant and quasi-exclusive tree
species, yet tree density cover is a lot scarcer and the pre-
dominant ground cover vegetation is composed of lichens,
mostly Cladonia spp.

The main factors influencing soil formation, namely cli-
mate, organisms, topography, parent material and time, also
determine soil properties (Jenny, 1994; Lundström et al.,
2000; Mourier et al., 2010). Soil formation is polygenetic
and sensitive to ecosystem and vegetation changes (Richter
and Yaalon, 2012). Transformation can be perceptible within
a few years or decades, as it has already been observed fol-
lowing land-use changes (e.g. Li and Richter, 2012; Richter
and Yaalon, 2012). Some vegetation communities have com-
monly been observed in association with specific soil types
(Lundström et al., 2000, Mourier et al., 2010, Willis et al.,
1997). Podzols are typically found in boreal spruce forests
under well-drained conditions (Sanborn et al., 2011; Ugolini
et al., 1981). Yet it is still unclear (i) what part pre-existing
soil properties play in the establishment and maintenance of
the different ecosystems and (ii) how the persistence of a spe-
cific vegetation cover contributes to changing or maintaining
specific soil properties. It is likely that both mechanisms co-
exist by relying on many feedbacks.

We have several reasons to hypothesise that ecosystems
with different ground vegetation types, humus thicknesses
and stand densities such as MF and LW could induce dif-
ferent soil geochemistry and soil horizon development. Dif-
ferences in canopy openness and groundcover type may lead
to variations in soil formation processes. MF soils should
develop thicker accumulation (B) soil horizons as more or-

ganic matter inputs are provided by the denser vegetation,
leading to higher nutrient availability (Bonan and Shugart,
1989; Haughian and Burton, 2015). Conversely, the low-
density canopy in LW should provide a lower nutrient sup-
ply, along with higher light and heat (Haughian and Bur-
ton, 2015; Sulyma and Coxson, 2001), leading to differ-
ent soil microclimatic conditions. Variations in hydrologi-
cal processes are to be expected beneath both ground cov-
ers as moss layers, which have a high water holding ca-
pacity, create a saturated environment that is less favourable
to decomposition, whereas lichen layers may maintain soil
moisture at lower levels (Bonan and Shugart, 1989). Wa-
ter fluxes, insulation properties and soil acidity may have
a great influence on chemical reactions during pedogenesis,
particularly redox conditions, chemical element associations,
and exchangeable cation circulation and mobilisation (Schw-
ertmann, 1985; Brimhall and Dietrich, 1987). Lichens are
also reported to be strong physical and chemical weather-
ing agents of rock surfaces (Chen et al., 2000; Porada et al.,
2014), while moss layer thickness may lead to a diffuse and
weaker weathering. Differences in pedoclimate (Duchaufour,
1990) hydrological processes such as water fluxes, snowmelt
rate, and drainage conditions (Buurman and Jongmans, 2005;
Schaetzl and Isard, 1996), organic matter dynamics (Buur-
man and Jongmans, 2005) or weathering rate (Lundström et
al., 2000) could deeply impact the podzolisation process.

Our main research objective was therefore to determine
how soil biogeochemical properties and soil horizon devel-
opment differ between two forest ecosystems, which are de-
fined by different stand densities and ground vegetation com-
positions, but which both developed from glacial deposit in
the transition region where both open- and closed-canopy
forests occur as adjacent patches at the landscape scale. This
is the first attempt, to our knowledge, in trying to identify a
biogeochemical signature of boreal forest with open versus
closed-canopy conditions – two states that are common to
boreal forests of North America and Eurasia. In particular,
this pedological investigation constitutes a first step to un-
derstand the implications of changes in boreal forest canopy
openness that have happened and that will happen in the fu-
ture.

We hypothesised that soils would be richer under dense
forests with a moss cover that has higher C and N contents
and higher base cation concentrations than lichen cover. Be-
cause iron complexation with organic compounds is a domi-
nant process in podzolic B mineral horizons and is sensitive
to properties such as soil pH, organic matter content or soil
erosion (Holmgren, 1967; Li and Richter, 2012; McBride,
1987), we also hypothesised that the podzolisation process
and hence iron reactive chemical species would be differ-
ent depending on the local vegetation density. We assumed
that the conditions found in soils covered by a lichen mat
with low-density canopy would be more prone to iron and
aluminium oxide accumulations than MF soils. Schaetzl et
al. (2015) argued that water fluxes have a great influence on
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the intensity of podzolisation especially because they control
the mobility of soluble organic complexes onto the soil pro-
files. Snow, snowmelt and deep percolation may thus vary
between MF and LW because of tree density and lichen or
moss cover.

We therefore used an exploratory approach focusing on
soil horizon thickness, carbon and nitrogen contents, base
cation concentrations (Ca, Mg, K, Na), and species of iron
(Fe) and aluminium (Al; organically bound and oxides) as
elements of interest and investigated their relations with veg-
etation properties. Our study was first conducted at the pe-
don scale for a local approach (lichen vs. moss cover) on a
1 m2 basis, and analyses were secondly run at the site scale
(∼ 10 ha, LW vs. MF) to assess whether local observations
could be generalised to the ecosystem.

2 Materials and methods

2.1 Study sites

The study area was located in the Canadian northern region
of the Manicouagan crater in Quebec in the north portion
of the moss forest ecological domain (Fig. 1). Our study area
covered approximately 900 km2. Climatic data from the near-
est reported station in Wabush Lake (52◦55′ N, 66◦52′W;
551 m elevation, located 150–200 km northwest of our study
sites) show a mean annual temperature of −3.1± 3.3 ◦C and
mean annual precipitation of 840 mm, with 51 % falling as
snow, for the 1981–2010 period. The number of degree days
above 5 ◦C for the period 1981–2010 was 817 per year (Envi-
ronment Canada, 2013). Black spruce (Picea mariana (Mill.)
BSP) was the dominant tree species in the area, but bal-
sam fir (Abies balsamea (L.) Mill) was also scarcely found
in MF. Groundcover vegetation was mostly composed of
feather mosses (Pleurozium schreberi and others) with occa-
sional patches of Sphagnum spp. in MF, while it was mostly
composed of Cladonia spp. in LW. While vegetation in the
area was essentially composed of black spruce–lichen wood-
lands north of the 52nd parallel and of black spruce–moss
forests in the south, patches of both ecosystems could be
found in a patchy distribution throughout the area. The study
area was particularly relevant for our comparative study in
so far as it presented a patchy distribution of plots covered
by moss and lichen developed from glacial deposit, within
regional sites of LW and MF ecosystems. Types of deposit
were still slightly different from site to site (e.g. undiffer-
entiated till, dead-ice moraine). We selected six independent
sites (experimental units or EUs): three sites dominated by
an MF ecosystem and three other sites dominated by an LW
ecosystem (Table 1). Sites were preselected based on satel-
lite images and maps of the vegetation ecological domains
and of the surface deposit types to focus on ecological re-
gion 6P (côteaux du lac Caopacho) defined by the Ministère
des Forêts, de la Faune et des Parcs du Québec. Site selec-

tion was then validated through a field prospection. Each site
was centred on a small headwater lake. Three transects were
delineated per site; they extended from the lake shore out of
the riparian zone up to 30 m. Sample plots were placed along
each transect at distances of 10, 20 and 30 m from the end of
the riparian area surrounding the lake, identified by the pres-
ence of Chamaedaphne calyculata. At each plot, soil samples
were collected as described below. Stand characteristics were
evaluated by measuring the basal area using a wedge prism
relascope (factor 2) and by listing the measured tree species.
Groundcover vegetation composition and abundance (in %)
was estimated on a 1 m2 area per plot prior to soil sampling;
visual estimates were summed to 100 %. Our design for a
given forest type was therefore composed of three EUs and
nine sampling plots per EU, for a total of 27 soil sampling
plots per ecosystem type (MF vs. LW, 54 altogether). This
experimental design was conceived for further investigations
linking soil and lake sediment composition at the watershed
scale. Indeed, it corresponds to the first step of a palaeoe-
cological investigation aiming to retrace the opening of the
landscape over time using geochemistry analysis from lacus-
trine deposits. Before proceeding further, it was fundamen-
tal to test and demonstrate that nowadays the two types of
ecosystem (LW and MF) display significant differences in
soil properties at the watershed scale. Although the ecosys-
tem type was determined at the lake watershed scale, plots
within a site could display non-typical cover vegetation. For
instance, local lichen patches could be found in some plots
belonging to the MF ecosystem and vice versa. For practi-
cal purposes, lower case letters were therefore used when
referring to vegetation type at the plot scale (lw and mf),
while upper case letters were used when referring to the lake
watershed/ecosystem (LW, MF). The most distant sites were
100 km apart. A general description of each site is given in
Table 1. For statistical analyses including lichen and moss
covers, binary values were attributed to plots depending on
the dominant vegetation cover type.

2.2 Soil sampling and treatment

Soils in the study area were typical podzols whose devel-
opment in northern Quebec dated back to the colonisation
of bare grounds by the boreal forest after glaciation 9000 to
13 000 years ago (Lundström et al., 2000). Podzolisation is
favoured by conifer stands and is formed by precipitation of
litter organic matter that engages the mobilisation of soil Al
and Fe (Buurman and Jongmans, 2005). The different meth-
ods used for sampling individual soil horizons are schema-
tised on Fig. S1 in the Supplement. A 20× 20 cm2 template
was used to sample the organic layer (FH horizon) after dis-
carding the live green moss or lichen portion. Mineral soil
fractions were sampled in each horizon. Soil samples of the
mineral B and C horizons were collected in every plot (to-
tal N= 54 for both forest types) in June and September 2015
and in one out of the three plots per transect (10 m from the
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Table 1. General information and description of the six sites of study. LW is lichen woodland, and MF is moss forest. Values of basal area,
ground cover composition and soil horizon thickness are given as means± standard deviations to illustrate intra-site variability. Means where
calculated from nine plots per site, regardless of the local ground cover type, but rather considering the regional ecosystem-type of the site
they belonged to. NA means not determined during field sampling because of a fire that burned the forest in 2007.

Site Average soil horizon Average ground Soil texture
Elevation ecosystem Basal area thickness cover composition (B horizon)

Site Coordinates (m) type (m2 ha−1) FH (cm) B (cm) % moss % lichen % sand % silt % clay

Lake Mundi 52◦15′6.293′′ N 573 LW 8.2± 3.4 13± 6 36± 4 NA NA 69.2± 7.1 21.4± 7.6 9.4± 2.6
67◦42′44.681′′W

Lake Prisca 52◦10’8.503′′ N 563 LW 10.0± 4.1 13± 9 33± 7 18± 20 82± 20 68.9± 5.7 22.8± 5.8 8.3± 1.1
67◦55’38.621′′W

Lake Adele 51◦50’10.72′′ N 457 LW 10.0± 4.3 14± 3 52± 8 3± 5 97± 5 72.6± 13.9 22.1± 13.1 5.3± 2.1
67◦55’45.962′′W

Lac des trotteurs 52◦53’24.9′′ N 555 MF 25.8± 4.9 29± 12 48± 12 99± 2 1± 2 76.5± 6.7 16.4± 5.4 7.1± 1.5
68◦12’6.999′′W

Lake Arthur 52◦13’45.965′′ N 661 MF 15.1± 4.6 19± 4 39± 15 83± 31 17± 31 76.1± 6.6 16.8± 5.9 7.1± 1.3
67◦44’46.98′′W

Lake Freeze 51◦49’44.513′′ N 580 MF 18.9± 6.9 39± 13 57± 10 100± 0 0± 0 80.1± 11 10.8± 7.5 9± 4.5
68◦0’45.545′′W

Figure 1. Overview of the study area and sites. (a) Geographical localisation of the study area and distribution of the study sites (experimental
units). The study area is located in Quebec, Canada, at a latitude of 52◦ N and a longitude of 67–68◦W. The right panel presents the sampling
design as undertaken in each EU around the watershed lake with three transects and three sampled distances (plots) by transect using a
basemap from google maps openlayers. (b) Open black spruce–lichen woodland. (c) Closed black spruce–moss forest.

lakeshore) for the FH horizon (N= 18). In addition, the top
15 cm of the B horizon was collected volumetrically using a
5 cm diameter metal corer. Samples of the C horizon were re-
trieved with a soil auger as soon as the B-to-C horizon limit
was reached. All soil samples were air dried, sieved at 2 mm
and weighed. This fraction was used for conventional anal-
ysis (pH, texture). Samples were ground at 500 µm for geo-
chemical analyses. C and N stocks as well as those of Al and
Fe species were estimated and reported for the FH layer and
the B top layer.

2.3 Geochemical analyses

2.3.1 Soil primary characteristics

Total C and N contents (%) were measured on all soil sam-
ples by combustion using an induction furnace (Leco® Tru-
Mac CNS Analyzer) following sieving at 2 mm, drying and
grinding at 0.5 mm. The combustion is performed at 1350 ◦C
under an oxygen gas atmosphere which turns C and N forms
to CO2, N2 and NOx . Gaz concentrations are then deter-
mined by thermal conductivity and infrared detection. pH
values and effervescence to HCl indicated the absence of
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carbonate. pH was determined by potentiometric titrations
in deionised water. Soil texture was determined by soil frac-
tionation and grain size sedimentation following instructions
from Carter (1993).

2.3.2 Exchangeable ions and extractable phosphorous

Soil samples were treated with an extracting Mehlich 3 so-
lution (CH3COOH 0.2M, NH4NO3 0.25M, NH4F 0.015M,
HNO3 0.013M, EDTA 0.001M) at a 1 : 10 ratio (Mehlich,
1984). Concentrations of exchangeable ions and extractable
phosphorous (P) were then analysed by inductively cou-
pled plasma atomic emission spectroscopy (ICP-AES). The
Melich 3 solution mainly extracts exchangeable and soluble
cations and phosphorus under aluminium, calcium and iron
phosphate forms. Cationic exchange capacity (CEC) was cal-
culated as the sum of exchangeable cation concentrations (K,
Ca, Mg, Mn, Al, Fe, Na). Base saturation was calculated as
the sum of main base cations (Ca+Mg+K+Na) divided
by the CEC.

2.3.3 Reactive Fe and Al chemical species

Podzols are characterised by a B horizon predominantly
made up of amorphous material constituted of organic matter
bounded at different degrees to Al and Fe oxides and hydrox-
ides (Canadian Soil Survey Committee, 1978; Lundström et
al., 2000). Chemically bound species of Fe and Al were ex-
tracted from mineral soil samples by means of three chemi-
cal methods that rely on different reduction reagents: sodium
pyrophosphate (Na4P2O7), ammonium oxalate (C2H8N2O4)

and dithionite–citrate–bicarbonate (Na2S2O4, Na3C6H5O7,
NaHCO3; Pagé and Kimpe, 1989). We followed the ex-
traction protocols of Mehra and Jackson (1960) and McK-
eague (1978). Concentrations of extracted ions were then
analysed by ICP-AES. Species extracted by pyrophosphate,
oxalate and dithionite–citrate reagents will be respectively
referred to as “pyro”, “oxa” and “dit” hereafter. Pyrophos-
phate is the weakest extractor, known to specifically isolate
organically bound iron (Fepyro). Oxalate removes Fepyro as
well as the inorganic amorphous iron (Feoxa). Dithionite–
citrate removes Fepyro, Feoxa and crystalline iron (Fedit),
i.e. most Fe species (Mehra and Jackson, 1960; Blume and
Schwertmann, 1969; McKeague et al., 1971). Al species ex-
tracted by all three methods are reported to be of similar na-
ture as Fe species, although extractions may be less specific
and result in some overlaps (McKeague et al., 1971). In par-
ticular, quantities of Al extracted by oxalate (Aloxa) may be
higher than quantities extracted by dithionite–citrate (Aldit)

in some cases such as in acid soils or podzols (Johnson and
Todd, 1983; Pagé and Kimpe, 1989). McKeague et al. (1971)
showed that these two extractants are less useful for distin-
guishing species of Al in soils than for Fe species. Relying
on iron extraction specificity, relative quantities of crystalline
iron (e.g. goethite, hematite) can be obtained by subtracting

the quantities of iron extracted with oxalate from those ex-
tracted with dithionite–citrate (FeCRI =Fedit−Feoxa). Amor-
phous inorganic iron, also designed as short-range order
(SRO) mineral phases, is calculated by FeSRO =Feoxa−

Fepyro (Johnson and Todd, 1983; Pagé and Kimpe, 1989).
Finally, we computed the commonly used iron crystallinity
index (CI=Fedit: Feoxa) in order to asses soil development
rate (Arduino et al., 1984; Blume and Schwertmann, 1969).
Amorphous iron species gradually aggregate into crystalline
forms during the pedogenesis process, which makes them
good indicators of soil age (Arduino et al., 1984; Johnson
and Todd, 1983).

2.4 Statistical analyses

To test the influence of spatial scale on associations of soil
properties and belowground geochemistry between forest
types, we performed statistical analyses at two different spa-
tial scales: one at the soil pedon scale (plot scale) and another
at the lacustrine watershed scale (site scale). At the plot scale,
we tested for differences in each soil property between lw
and mf using a mixed analysis of variance (ANOVA) with the
variables “site” as random intercept, “transect” nested into
“site” as random intercept, and the dominance of moss vs.
lichen as the fixed effect. All mixed models were fitted using
the nlme R package (Pinheiro et al., 2016) in the R envi-
ronment (R Core Team, 2013). We then assessed covariances
among aboveground attributes of vegetation (stand basal area
and percent cover of moss and lichen) and chemical vari-
ables using partial least squares canonical analysis (PLSCA)
and cross-correlation tests. PLSCA identifies latent variables
(“orthogonal canonical component”) that maximise correla-
tions between two sets of variables given symmetric roles.
PLSCA also makes it possible to calculate the proportion
of variance explained by each orthogonal canonical compo-
nent of one set into the other and to determine the “intra-
group community index” (Tenenhaus, 1998) that represents
the weight of one variable in a set in explaining variations
of variables in the other set. To this effect, we grouped the
vegetation variables estimated at the plot scale (e.g. basal
area, moss and lichen cover) into one set of variables and
the soil geochemical variables into another set. PLSCA was
performed using the plsdepot R package (Sanchez, 2012).

Then, to determine whether association patterns between
vegetation attributes and geochemical soil properties at the
soil profile level could be scaled up at the site scale, we
performed a permutational multivariate analysis of variance
(PERMANOVA) to test whether geochemical soil properties
differed among ecosystem types (LW vs. MF). Following the
parsimony principle, we restricted the number of soil chem-
ical variables in our analyses to the five elements (Aloxa,
FeSRO, AlSRO, Ca and Fe) that had the highest intragroup
community indexes relative to vegetation components in the
PLSCA. The justification for this choice is that variables that
have a low intragroup community index are loosely linked to
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Table 2. Characteristics of FH and B horizons in mf and lw plots. The lw plots are plots covered by lichen woodlands, and the mf plots are
plots covered by moss forests. Values are given as means ± standard deviations. “SRO” stand for short-range order species and “CRI” for
crystalline species. Asterisks indicate statistical significance using mixed models (see Materials and methods), with ∗ p value < 0.05, ∗∗ p

value < 0.01 and ∗∗∗ p value < 0.001.

FH horizon B horizon

lw plots mf plots p values lw plots mf plots p values
(n= 7) (n= 11) (n= 22) (n= 32)

Horizon thickness (cm) 9.64± 4.44 22.25± 10.3 0.050∗ 39.38± 12.77 47.07± 12.07 0.048∗

%C 34.99± 8.07 45.41± 3.16 0.003∗∗ 2.04± 1.36 2± 1.11 0.418
C:N 69.62± 5.9 61.97± 12.38 0.158 34.9± 4.38 32.64± 4.86 0.211
CEC (cmol kg−1) 11.64± 1.56 16.8± 6.04 0.051 14.29± 5.78 15.33± 8.45 0.691
Base saturation 0.47± 0.1 0.64± 0.13 0.015∗ 0.01± 0 0.05± 0.06 0.006∗∗

pH 3.93± 0.13 3.86± 0.27 0.496 5.24± 0.21 5.02± 0.31 0.014∗

FeSRO (g kg−1) 5.03± 2.35 2.07± 1.5 0.003∗∗

AlSRO (g kg−1) 8.75± 4.6 1.39± 2.72 0.000∗∗∗

FeCRI (g kg−1) 1.55± 1.27 0.86± 1.30 0.089

variables of the other set (Tenenhaus, 1998). PERMANOVA
performs a permutational MANOVA procedure (Anderson,
2001; McArdle and Anderson, 2001) on similarity matrices
(here obtained using Euclidean distances) taking the hierar-
chical structure of the experimental design into account in
order to test whether the locations of centroids differ among
the groups of interest in multivariate space. The three tested
factors were (1) ecosystem type (LW vs. MF) as the fixed ef-
fect, (2) site as the random effect (N= 6) and (3) transect
as the random effect nested within site (N= 18, or 3 per
site). Most importantly, we avoided any pseudo-replication
issue by testing the effect of ecosystem type (LW vs. MF)
with the random variable “site” as the error term (ddl of
error term= 4; see Table 5). Moreover, to ensure valid re-
sults, we normalised our data prior to analysis and used the
Monte Carlo method to maximise the number of permuta-
tion combinations when estimating the p value (Anderson,
2001; McArdle and Anderson, 2001). PERMANOVA was
performed using Primer 6 software (Anderson, 2001; McAr-
dle and Anderson, 2001). We also tested whether multivariate
dispersions around each group’s centroid were homogeneous
between the LW and MF ecosystem types using the vegan R
package (Oksanen et al., 2016).

3 Results and discussion

3.1 Soil profile analysis

Soil profiles from the two vegetation cover types showed vi-
sually prima facie pedological differences at the plot scale.
All horizons were thicker under the mf cover than under lw
cover (Fig. 2a, Table 2). Colours, although not defined with
a soil handbook, also differed among soil profiles: while we
observed a reddish to light yellow B horizon in lw plots, they
were darker and browner in mf plots (Fig. 2b and c). Colour

hues of mineral horizons have been reported to reflect var-
ious species and concentrations of Fe(III) oxides (Arduino
et al., 1984; Schwertmann, 1985), known as indicators of
soil age and soil weathering rate. The more important the
pedogenic process of Fe reduction and subsequent removal
are, the less colourful the soils are, displaying mostly the
grey colours of the silicate matrix (Schwertmann, 1985). It
is thus likely that pedogenic processes differ between lw and
mf plots. Because all sites developed from a similar geomor-
phological base (glacial deposit), we thought that the differ-
ences observed could portend different developmental or for-
mation processes depending on the vegetation cover. Regard-
ing texture prospection, we found no significant differences
(p value > 0.1) in the mean percentages of sand, clay and silt
between mf and lw samples of the C horizon nor in the mean
percentage of sand and clay of the B horizon (Table 1).

3.2 Soil chemical properties

Regarding the FH humus layer, C and N concentrations were
30 to 50 % higher in mf plots than in lw plots (Fig. 3, Ta-
ble 2). Concentrations of the two dominant exchangeable
base cations (Ca, Mg) were respectively 2.5 and 1.5 times
higher in mf humus than in lw humus (Fig. 3). This trans-
lated into direct consequences on humus cation exchange ca-
pacity, which was ∼ 50 % higher in mf than in lw. However,
no difference in humus pH was observed between mf and lw
(Table 2).

With regard to the B horizon, contrary to the FH horizon,
we detected no difference in C or N concentrations between
mf and lw plots (Fig. 4, Table 2). As previously reported in
acid soils of North American boreal coniferous forests (Bo-
nan, 1990), the N concentration in mineral soil was very low
(0.5–0.8 %). The B horizon appeared to have higher Ca and
Mg concentrations in mf than in lw, while other ion concen-
trations were similar between plot types (Fig. 4). Regarding
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Figure 2. Soil profiles in mf and lw plots. (a) Average thicknesses of the litter, FH, Ae and B horizons. Labels inside stacked bars refer to
each horizon’s thickness average. (b) Picture taken in the field of a soil profile representative of lw. (c) Picture taken in the field of a soil
profile representative of mf. Soil profiles were composed of a thin eluvial pale grey horizon (Ae), a mineral B horizon whose colour varied
between sites from light, reddish to dark brown and faded to paler colours with depth, and a grey mineral C horizon.
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Figure 3. Distributions of chemical compounds in the FH hori-
zon in lichen woodland and moss forest plots (lw and mf, respec-
tively). (a) Concentrations of exchangeable base cations and ex-
tractable P, (b) organic C and N. Boxplots represent the distribu-
tion around the median values. “(e)” indicates exchangeable or ex-
tractable elements. Asterisks indicate a significant difference using
mixed models (see Materials and methods), with ∗ p value < 0.05,
∗∗ p value < 0.01 and ∗∗∗ p value < 0.001.

the pH, mf B horizons were ∼ 5 % more acidic than lw B
horizons (Table 2).

Concerning the C horizon, as expected, C percentage was
lower in this deep horizon than in the FH and B horizons
(Table S1 in the Supplement). However, the percentage of C
was ∼ 2 times higher in the C horizons of mf plots than in
that of lw plots (Table S1). This organic enrichment can only
have a biological origin coming from the upper layers as no
C is provided by the mineral parent material in these acidic
soils evolved from a granitic bedrock. Similarly, extractable
phosphorous (P) was 2.5 times higher in the lw C horizon
than in that of mf. The accumulation of products of mineral
weathering as well as the migration of organic P compounds
could explain this difference.

3.3 Fe and Al reactive species in mineral horizons

Our results for the different Fe and Al species in the B hori-
zon show that ranges of organically bound metal concentra-
tions (Fepyro, Alpyro) were similar in lw and mf plots (Fig. 5).
However, lw B horizon exhibited 1.5 to 2.5 times higher con-
centrations of Fe and Al extracted by oxalate and dithionite–
citrate than mf B horizon. In compliance with other studies
performed in acid forest soils (Johnson and Todd, 1983), we
observed higher concentrations of Aloxa than Aldit (Fig. 5).
The main difference between lw and mf B horizons lay in the
proportion of inorganic amorphous Fe and Al (FeSRO, AlSRO;
Fig. 5, Table 2) while crystalline iron concentrations (FeCRI)

were similar (Table 2).
In the C horizon, no major variations in Al and Fe species

concentrations could be observed between lw and mf plots
(Table S1). This deeper horizon was also less concentrated
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Figure 4. Distribution of chemical compounds in the B horizon
in lichen woodland and moss forest plots (lw and mf, respec-
tively). (a) Concentrations of exchangeable base cations and ex-
tractable P, (b) organic C and N. Boxplots represent the distribu-
tion around the median values. “(e)” indicates exchangeable or ex-
tractable elements. Asterisks indicate a significant difference using
mixed models (see Materials and methods), with ∗ p value < 0.05,
∗∗ p value < 0.01 and ∗∗∗ p value < 0.001.
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Figure 5. Distribution of Fe and Al species concentrations in
the B horizon of lw and mf plots. Boxplots represent the distri-
bution around the median values. “Pyro”, “oxa” and “dit” sub-
scripts mention the type of extractions used for isolating Fe and
Al species (respectively pyrophosphate, oxalate and dithionite–
citrate). “SRO” stand for short-range order species (AlSRO =Aloxa-
Alpyro, FeSRO =Feoxa-Fepyro). Asterisks indicate a significant dif-
ference using mixed models (see Materials and methods), with ∗ p

value < 0.05, ∗∗ p value < 0.01 and ∗∗∗ p value < 0.001.

than the B horizon in all reactive Fe and Al species, which
is consistent with the findings that, in podzolic soils, metal-
lic elements are more concentrated in the upper centimetres
of the B horizon (Lundström et al., 2000). Because no dif-
ferences in Al and Fe species concentrations were found in
the C horizon as opposed to our observations in the B hori-
zon, our result suggest that the B horizon’s chemical struc-
ture and metal oxides composition may have been influenced
by different pedogenetic development under mf and lw cover
rather than by the mineralogical origin of their parent mate-
rials. In particular, the absence of any noticeable difference
in the iron crystallinity index of B horizon between all stud-
ied sites indicated that they had identical ages (Table S2).
Structural and composition variations are thus derived from
other drivers than soil origin and instead depend on factors
influencing horizon formation processes.

Our results diverge from the observations made by Ugolini
et al. (1981), who found no morphological variations nor
geochemical differences in the soil profiles of lichen tundra
and spruce forest in a boreal zone of Alaska. In particular,
they found no difference in reactive Fe species concentra-
tions (Fepyro, Fedit) between the two ecosystems. They con-
cluded that time and climate were stronger drivers of soil for-
mation in their study area than the vegetation type. We sug-
gest that because of the proximity of our study sites and the
patchy plot distribution within sites, climate could be consid-
ered homogeneous in the present study. Our results are rather
in line with those of Li and Richter (2012), who showed
that land-use changes between old hardwood forests, culti-
vated agricultural fields and old-field pine forests can induce
transformation and redistribution of soil iron oxides over rel-
atively short timeframes (Feoxa, Fedit). They inferred that
some differences could be due to the different erosion lev-
els and biological activities impacting soil iron oxides and
organometallic compound transformation (Li and Richter,
2012).

3.4 Phosphorus distribution

We observed low concentrations of extractable phosphorous
in the B horizon, in contrast to the FH and C horizons (Figs. 3
and 4, Table S1). These results could be explained by P
sorption properties of FeSRO and AlSRO species. As a mat-
ter of fact, in the B horizon, most P is bound within Fe–P
and Al–P complexes (Grand and Lavkulich, 2015; Li and
Richter, 2012). Grand and Lavkulich (2015) showed that P
sorption to short-range order Al and Fe mineral phases de-
creased the availability of labile P. In the C horizon, in ad-
dition to its enrichment in organic C, the smaller amounts of
Fe and Al oxides may be the reason why more labile P is
available (Table S1). Reactive Fe and Al species are known
to play an important geochemical role in acidic forest soils
due to their sorption properties that influence carbon and
nutrients bioavailability through coupling reactions, which
makes them good predictors of nutrient availability (Grand
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Figure 6. Comparison of horizons B : C ratios in lw and mf plots.
Ratios were calculated by dividing for each soil type concentra-
tion measured in the B horizon by that measured in the C hori-
zon. “(e)” indicates exchangeable or extractable elements. “Pyro”,
“oxa” and “dit” subscripts mention the type of extractions used
for isolating Fe and Al species (respectively pyrophosphate, ox-
alate and dithionite–citrate). “SRO” stand for short-range order
species (AlSRO =Aloxa-Alpyro, FeSRO =Feoxa-Fepyro). Asterisks
indicate statistical significance using mixed models (see Materials
and methods), with ∗ p value < 0.05, ∗∗ p value < 0.01 and ∗∗∗ p

value < 0.001.

and Lavkulich, 2015; Li and Richter, 2012). Here, P sorp-
tion to short-range order Al and Fe mineral phases in the B
horizon may reduce nutrient availability for plants, resulting
in limited P supply. P limitation is commonly observed in
acidic soils of boreal forests (Giesler et al., 2002).

3.5 Relations between B and C horizons

Soil properties were analysed by considering the local vari-
ability of the parent material and, therefore, by studying the
ratio of B to C horizons for various properties. We found
that B : C ratios were different between mf and lw soils for
many chemical properties (e.g. Ca, Aloxa, Aldit, AlSRO, Fedit,
FeSRO; cf. Fig. 6), which suggests that dissimilar biogeo-
chemical processes and vertical transfers occur locally in the
soil of the two vegetation types. These differences in B : C
ratios between mf and lw soils also confirm that C horizon
composition is unlikely to drive most of the variation ob-
served between lw and mf B horizons and that it is the in-
fluence of vegetation that impacts most of the soil biogeo-
chemistry. Furthermore, the low concentration of chemical

Table 3. Intragroup community indexes of soil physico-
geochemical variables relative to orthogonal canonical components
of vegetation variables. Values with the highest scores are indicated
in bold.

t1 t2 t3

Aloxa 0.38 0.43 0.73
Feoxa 0.17 0.24 0.35
Fedit 0.16 0.24 0.41
Aldit 0.18 0.29 0.70
FeSRO 0.37 0.37 0.71
AlSRO 0.38 0.38 0.56
Ca 0.28 0.35 0.46
Mg 0.23 0.28 0.97
Fe 0.51 0.52 0.28
B horizon thickness 0.13 0.14 0.22
pH 0.06 0.13 0.35

elements in the C horizon compared with B and FH hori-
zons also invalidates the hypothesis of a deeper mineralogi-
cal influence explaining the main differences in geochemical
composition between lw and mf plots. Finally, variations in
soil conditions such as temperature, pH and soil hydrology
could play a role in differentiating horizon composition. The
thickness of the organic layer and its higher water retention
capacity in mf forests could greatly affect soil processes, and
this is also reflected in the thickness of the B horizon.

3.6 Covariance between vegetation and soil
geochemical variables

Results of the multivariate PLS canonical analysis conducted
using the five most significant compounds (according to
Figs. 4 and 5, Table 2) support the hypothesis of a different
biological influence of vegetation on soil chemical composi-
tion and structure that discriminates between the two forest
types.

Indeed, our results revealed that the five soil geochemi-
cal variables with the greatest intragroup community indexes
were Aloxa, FeSRO, AlSRO, Ca and Fe (Fig. 7, Tables 3 and 4),
meaning that they were highly linked to variables in the veg-
etation set. Vegetation variables, on the other hand, all had an
important weight in explaining the variability of soil physico-
geochemical variables (Table 4). This result was consistent
with stand basal area (representative of forest production)
and cover type vegetation being tightly correlated (Fig. 7). Fe
and Al complex species were positively correlated with each
other, positively correlated with lichen cover, and negatively
correlated with moss cover and basal area (Fig. 7). This result
was consistent with our aforementioned quantitative obser-
vations at the plot scale. Exchangeable Fe, Ca and Mg were
positively correlated with each other as well as with the veg-
etation characteristics of dense moss-covered stands (Fig. 7).
Exchangeable Fe, Ca and Mg behaviours were very much
alike, displaying negative correlations with Fe and Al oxides
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Figure 7. Graphical projection of partial least squares canonical
analysis (PLSCA) results in the B horizon at the plot scale. Vari-
ables for stand tree cover characteristics are drawn in dark blue,
chemical compounds in light blue and soil characteristics in grey.
Axes correspond to principal orthogonal canonical components.
Positive, null or negative correlations between variables are indi-
cated by acute, right or obtuse angles, respectively, between the cor-
responding vectors. “(e)” indicates exchangeable or extractable ele-
ments. Regarding the chemical elements, only variables that showed
the greatest differences in mean values between lw and mf plots in
the B horizon were included in the PLSCA.

(Figs. 5, S2 and S3). The different behaviours of exchange-
able Fe and bound Fe could be explained by their different
mobility properties and abilities, in particular since fluxes
could vary under different soil environmental conditions and
soil thicknesses between lw and mf plots. The conversion re-
actions of iron oxides depend to a large extent on pedoen-
vironmental factors (pH, water activity, temperature, etc.;
Schwtermann, 1988). These factors vary with depth and de-
pend on the groundcover. Furthermore, organic matter seems
to have an influence on iron oxides by inhibiting their crys-
tallinity (Borggaard et al., 1990): in mf plots, the thicker and
denser organic matter layer could explain the lower concen-
trations of Fe and Al oxides in B horizons. Fe and Al oxides
species could also differ between mf and lw plots because
soil temperature and moisture are also responsible for differ-
ent goethite : hematite ratios (Schwtermann, 1988). Hematic
soils develop in warmer conditions and are characterised by
reddish brown colours, while goethitic soils develop under
colder environment and turn yellowish-brown. This is con-
sistent with our observations of clearer red to yellow soils
under lw cover where little organic matter accumulates as

Table 4. Intragroup community indexes of vegetation variables
relative to orthogonal canonical components of soil physico-
geochemical variables.

u1 u2 u3

Basal area 0.55 0.55 0.59
Moss cover 0.43 0.49 0.53
Lichen cover 0.43 0.49 0.53

LWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLWLW
MFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMFMF

−5

0

5

10

−20 −10 0 10 20
PCoA 1 (90.0 %)

P
C

oA
 2

 (
7.

9 
%

)

Figure 8. Graphical projection of homogeneity of multivariate dis-
persions of data around ecosystem-type centroids (principal coordi-
nates analysis). Average distance to centroids was 6.084 and 5.912
for LW and MF, respectively. Small open circles represent plots lo-
cated in LW sites; small black filled circles correspond to plots lo-
cated in MF sites. The two big circles represent the group centroids
for each forest type (LW vs. MF).

opposed to mf soils overlaid by a thick dark brown organic
layer which could lead to warmer temperatures.

We also found positive correlations between C and N con-
centrations, moss coverage, and Mg and Ca concentrations
in the FH organic horizon (Fig. S3). The higher base cation
bioavailability in mf plots could be explained by greater in-
puts of organic matter to the soil surface and by a higher
coniferous basal area cover. Decomposing organic matter
and litter are known to be important sources of base cation
supply such as Ca and Mg (Finzi et al., 1998; Grand and
Lavkulich, 2015).

3.7 Differences in soil geochemistry at the site scale

We scaled up the effect of ground cover type (lw vs. mf) on
Aloxa, FeSRO, AlSRO, Ca and Fe at the site scale (lake water-
shed scale) to test explicitly whether the same chemical ele-
ments differed between ecosystem type (LW vs. MF) using
PERMANOVA. Our results showed significant differences
between MF and LW ecosystem types (P(MC)= 0.0005,
pseudo-F= 12.939). The type of ecosystem alone explained
47.6 % of the total variance in the studied set of geochem-
ical variables (Table 5). In addition, our test of multivariate
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dispersion revealed that the level of heterogeneity regarding
Aloxa, FeSRO, AlSRO, Ca and Fe did not differ between MF
and LW (p value= 0.895, F= 0.0203, Table S3), which re-
inforces the conclusion that the difference observed between
MF and LW originates from differences in mean values of
Aloxa, FeSRO, AlSRO, Ca and Fe rather than differences in
variance (Fig. 8). This finally highlights interactions between
ecosystem structure and geochemical composition of the soil
at the site scale.

3.8 Total element stocks in the soil

Because LW and MF displayed variations in soil composition
and thickness, we hypothesised that they should hold differ-
ent total amounts of chemical species. Total net stocks of C
and N were scaled up from the plot to the site scale (layer
thickness× organic matter concentration) in FH and B hori-
zons (top 15 cm). On average, the FH horizon in MF held
3.5 times higher amounts of C and 4 times more N than that
in LW (Table 6). Similarly, in the B horizon, both C and N
stocks were 2 times higher in MF than in LW. These results
suggest that, in addition to C sequestration in a greater aerial
biomass, closed moss forests also hold more C in their soil.
However, regarding Fe and Al species, total net stocks were
higher in LW than in MF, despite their thinner B horizons
(Table S4).

3.9 Biological influence

Overall, because we did not find any difference in the geo-
chemistry and texture of the C horizon between ecosystem
types and because our sites developed from surficial de-
posits (undifferentiated till, dead-ice moraine) of similar ori-
gin (glacial), our results, which are in line with those of other
studies, suggest a biological influence of vegetation on soil
profile development and soil chemistry (Finzi et al., 1998;
Haughian and Burton, 2015; Wood et al., 1984). Haughian
and Burton (2015) showed that more variability in soil com-
position could be explained by vegetation functional groups
(e.g. mosses vs. lichens) than by abiotic characteristics (soil
texture, topography). They found that variations in nutrient
availability were the result of differences in vegetation types
(lichens, feather mosses and vascular plants) rather than the
opposite (i.e. nutrient availability as a cause of vegetation
patterns). In their study of podzol biogeochemical vertical
stratification in hardwood forests of New Hampshire, Wood
et al. (1984) concluded that the B horizon is subject to strong
geochemical control that is under biological influence rather
than of mineralogical origin. Finzi et al. (1998) observed
different distributions of Ca, Mg, Fe and Al exchangeable
cations in 0–7.5 cm mineral soils under various tree species.
They found an association between tree species and soil-
specific chemical properties at the tree scale and suggested
that vegetation influenced soil acidity and cation cycling in
the forests studied (Finzi et al., 1998). Here, we suggest
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Figure 9. Schematic illustration of feedback processes between
stand biomass (basal area and/or density) and soil biogeochemistry
as a consequence of climatic conditions based on the present study
interpretations.

that the differences we observed in soil geochemical struc-
ture and composition between MF and LW had a biological
origin that resulted in repercussions of the local vegetation
on soil environmental conditions, which in turn influenced
soil biogeochemical processes. We suggest the following po-
tential causes for the difference observed in soil between
LW and MF ecosystems: (i) the abundance of tree cover
could influence soil formation through its direct consequence
of canopy openness on soil micro-environmental conditions
and drainage; (ii) snowfall rate and snowmelt duration in
turn may influence reductive conditions and cause differen-
tial dissolution of iron oxides that accumulate in the B hori-
zon (Giesler et al., 2002); (iii) thickness of organic soil lay-
ers could create differential insulating properties (Lawrence
and Slater, 2007); (iv) because water flow also affects the
distribution of chemical elements such as labile P, Fe and
Al (Giesler et al., 2002), differences in drainage conditions,
slope, moisture and hydrochemical processes under moss and
lichen covers (Brown et al., 2010; Haughian and Burton,
2015; Price et al., 1997) could also explain the observed vari-
ations in lw and mf soil chemical properties; and, finally, v)
lichen surface weathering capacity (Chen et al., 2000; Porada
et al., 2014) may be responsible for the higher concentrations
of Fe and Al species in LW upper mineral horizons, while a
dense moss cover may be less aggressive in mineral weather-
ing; however, because this environment is more productive, it
could generate more organic acid and favour a deeper profile
development.
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Table 5. Results of PERMANOVA on the ecosystem types and geochemical variables (MF vs. LW). Significant effects are indicated in bold.
P(MC): p values obtained through Monte Carlo methods.

Source df MS Pseudo-F P(perm) P(MC) Number of % of variance
perm. units explained

Ecosystem type (MF vs. LW)= (ty) 1 92.103 12.939 0.0001 0.0005 10 47.6
Site (ty)= si(ty) 4 7.1183 1.3902 0.2339 0.2115 9928 3.4
Transect (tr)= tr(si(ty)) 12 5.1203 2.2214 0.0006 0.0017 9887 14.2
Residuals 36 2.305 34.8
Total 53 100

Table 6. Carbon and nitrogen stocks contained in FH and B hori-
zons. Values are given as means ± standard deviations.

Total stock at the site scale (t ha−1)

LW sites MF sites

FH horizon

C 36.68± 4.29 126.44± 67.86
N 0.53± 0.05 2.06± 1.00

B horizon

C 22.23± 8.55 44.68± 6.61
N 0.67± 0.31 1.39± 0.32

3.10 Soil, climate and vegetation dynamics

It has previously been suggested that the two vegetation types
considered could be two ecological states and that LW could
be an alternative stable state resulting from regional dis-
turbance history (Jasinski and Payette, 2005). We propose
here a diagram (Fig. 9) that synthesises our interpretations
of the possible feedback processes between climate, vegeta-
tion and soil biogeochemistry that can be considered to re-
sult from successive fires. Indeed, the progression of open-
canopy forests could be due to a greater fire frequency re-
sulting from the changing climate (Rapanoela et al., 2016).
Differences in fire events may lead to direct and indirect
consequences at the soil level arising from fire impacts on
vegetation structure and soil properties (Certini, 2005). Fire
effects on soil properties have been shown to range from
negative short-term effects (removal of organic matter, ero-
sion, loss of nutrients through volatilisation, alteration of mi-
crobial communities, etc.) to long-term consequences (en-
hanced productivity, impact on forest successions, etc.; Cer-
tini, 2005). While negative effects on soil properties seem
to be short lived (detectable some years post-fire, at most
a decade) and restricted to a few top centimetres of super-
ficial layers (Certini, 2005), we suggest that indirect effects
may be wider and could have longer-term consequences. Fre-
quent fires may hinder the accumulation of a thick top layer
of organic matter, thus leading to direct aftereffects on soil

physical and microclimatic conditions. The low stem basal
area (likely associated with lower tree density) inherited from
frequent fires results in both higher radiative insolation and
precipitation reaching the soil surface, thus setting an envi-
ronment more suitable to the establishment of light-tolerant
lichen rather than colonisation by moss species. Repeated
fires may spearhead lichen dominance in LW by maintain-
ing preferential environmental conditions for its colonisation
and establishment (Girard et al., 2009). In return, lichen es-
tablishment could also maintain a specific soil composition
that is low in nutrients because of its low primary produc-
tivity (Moore, 1980). Altogether, the disturbance regime in
boreal forests could determine the ground cover vegetation
type and impact soil development through both direct and in-
direct effects, by generating poorer soils and sustaining the
establishment of less productive forests.

4 Conclusions

We identified clear relationships between soil and vegeta-
tion structures that are reflective of a whole integrative sys-
tem relying on feedback interactions. Although the correla-
tion patterns between the ecosystem’s biological components
and the soil variables seem complex, our results suggest that
in comparison to closed-canopy forests, open forests with a
lichen ground cover are associated with a soil impoverished
in C and available nutrients that develops a thinner B horizon
characterised by high concentrations in amorphous species
of Fe and Al. Ecosystem productivity and carbon sequestra-
tion are affected twice in LW compared with MF: through
a lower density of trees (lower basal area and fewer stems)
and through nutrient- and organically limited soils. This em-
phasises the current economic and climatic stakes that forest
opening represents in so far as it could have important conse-
quences in terms of carbon sequestration capacity. Our study
of soil compartments confirms that the current opening of
black spruce forests is an ecological, economic and climatic
stake with underlying long-term consequences, notably in the
terrestrial carbon budget.

A good understanding of the processes governing soil bio-
geochemistry and feedback interactions between soil and
vegetation remains fundamental for forest management, es-
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pecially in areas of ecological transitions representing ma-
jor challenges, such as the northern boundary between pro-
ductive boreal forests and open lichen woodlands. Our study
highlights that natural disturbances may influence landscape
remodelling and ecosystem heterogeneity in much more
ways than through their direct impacts on seedling regen-
eration and soil nutrient short-term depletion. Repeated dis-
turbance events could have long-term consequences on soil
formation and development. Disturbance history and inher-
itance could promote the establishment and maintenance of
specific vegetation–soil systems (or ecological states). If so,
soil science and biogeochemistry could become interesting
proxies in disturbance ecology, notably for palaeoecologi-
cal investigations aiming to reconstruct changes in vegeta-
tion. Further investigations should explore vegetation struc-
ture (basal area and tree density) and soil relations in other
ecosystems and focus on microclimatic and drainage condi-
tions as well as disturbance history as explanatory drivers of
variability.
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