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DYNAMIC PHASE DIAGRAM OF THE REM

VÉRONIQUE GAYRARD AND LISA HARTUNG

ABSTRACT. By studying the two-time overlap correlation function, we give a compre-
hensive analysis of the phase diagram of the Random Hopping Dynamics of the Random
Energy Model (REM) on time-scales that are exponential in the volume. These results are
derived from the convergence properties of the clock process associated to the dynamics
and fine properties of the simple random walk in the n-dimensional discrete cube.

1. INTRODUCTION.

Sometimes called the simplest spin glass, the Random Energy Model (REM) played a
decisive rôle in the understanding of aging, a characteristic slowing down of the relax-
ation dynamics of spin glasses (see [?], [?], [?], [?], [?], [?], [?], [?], for mathematical
works, and [?], [?], [?] and the review [?] for those of theoretical physics). This phenom-
enon is quantified through two-time correlations functions. In this paper, we study the
two-time overlap correlation function of the REM evolving under the simplest Glauber
dynamics, the so-called Random Hopping Dynamics (hereafter, RHD), and give its com-
plete (dynamic) phase diagram as a function of the inverse temperature, β > 0, and of
the time-scale, cn, when the latter is exponential in the dimension n of the state space,
{−1, 1}n. The objectives of this paper are twofold: to give the complete picture for a key
mean-field spin glass model for which only part of the picture was known to date, and to
do it by means of an effective and unifying technique.

More specifically, the proof is based on a well-established universal aging scheme, first
put forward in [?], which links aging to the arcsine law for stable subordinators through
a partial sum process called clock-process. The latter is then analyzed through powerful
techniques drawn from Durrett and Resnick’s work on convergence of partial sum pro-
cesses of dependent random variables to subordinators [?]. These techniques were first
introduced in the context of aging dynamics in [?] and have since proved very effective in
more complex spin-glass models or dynamics [?], [?], [?], [?], for which the universality
of the REM-like aging (or arcsine-law aging) was confirmed. It should be noted here that
this paper is in large part based on the unpublished work [?] which is complemented by
new results (in particular, analysis of the overlap correlation function is new as well as
the study of the high temperature and short time-scale transition line between aging and
stationarity).

1.1. The setting. We now specify the model. Denote by Vn = {−1, 1}n the n-dimensional
discrete cube and by En its edges set. The Hamiltonian of the REM is a collection
of independent Gaussian random variables, (Hn(x), x ∈ Vn), with EHn(x) = 0 and
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EH2
n(x) = n. Assigning to each site x the Boltzman weight

τn(x) ≡ exp{−βHn(x)}, (1.1)

the Random Hopping Dynamics in the random landscape (τn(x), x ∈ Vn) is the Markov
jump process (Xn(t), t > 0) with rates

λn(x, y) = (nτn(x))−1, if (x, y) ∈ En, (1.2)

and λn(x, y) = 0 else. Clearly, it is reversible with respect to Gibbs measure. The se-
quence of random landscapes (τn(x), x ∈ Vn), n ≥ 1, or random environment, is defined
on a common probability space denoted (Ωτ ,F τ ,P). We refer to the σ-algebra generated
by the variables Xn as FX . We denote by µn the initial distribution of Xn and write Pµn
for the law of Xn started in µn, conditional on F τ , i.e. for fixed realizations of the random
environment.

To study the dynamic phase diagram of the processXn we must choose three quantities:
(1) the time-scale of observation,
(2) a two-time correlation function,
(3) and the initial distribution.

We are interested in time-scales that are exponential in n. We further must distinguish
two types of exponential time-scales called intermediate and extreme, defined as follows.
Given a time-scale cn, let an be defined through

anP(τn(x) ≥ cn) = 1. (1.3)

Definition 1.1. We say that a diverging sequence cn is (i) an intermediate time-scale if
there exists a constant 0 < ε ≤ 1 such that

lim
n→∞

log an
n log 2

= ε and lim
n→∞

an
2n

= 0. (1.4)

(ii) It is an extreme time-scale if (ε = 1 and) there exists a constant 0 < ε̄ <∞ such that

lim
n→∞

an
2n

= ε̄. (1.5)

The natural two-time correlation function of interest in mean-field spin glasses is the
overlap correlation function, C◦n(t, s): given two times t, s > 0 and a parameter 0 < ρ < 1,

C◦n(t, s) = Pµn
(
n−1
(
Xn(cnt), Xn(cn(t+ s)

)
≥ 1− ρ

)
(1.6)

where (·, ·) denotes the inner product in Rn. The central idea underlying the aging mech-
anism based on the arcsine law for stable subordinators is that, as stated in Theorem ??
below, C◦n(t, s) coincides asymptotically with the no-jump correlation function Cn(t, s)
used to quantify aging in the trap models of theoretical physics [?], [?], and defined as

Cn(t, s) = Pµn
(
n−1
(
Xn(cnt), Xn(cnu)

)
= 1, ∀t ≤ u < t+ s

)
. (1.7)

Theorem 1.2 (From the overlap to the no-jump correlation function). Let cn be either
an intermediate or an extreme time-scale and let µn be any initial distribution. For all
0 < ρ < 1 and for all 0 < ε ≤ 1 and all 0 < β <∞ such that 0 < α(ε) ≤ 1 we have that
P-almost surely on intermediate time-scale and in P-probability on extreme time-scales,
for all t ≥ 0 and all s > 0

lim
n→∞

C◦n(t, s) = lim
n→∞

Cn(t, s). (1.8)

and, for α(ε) = 1 on intermediate time-scale

lim
n→∞

√
nC◦n(t, s) = lim

n→∞

√
nCn(t, s). (1.9)
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From now on we focus on Cn(t, s). Unless otherwise specified, the initial distribution is
the uniform distribution

πn(x) = 2−n, x ∈ Vn. (1.10)
It models the experimental procedure of a deep quench which aims to draw a typical initial
state.

1.2. Main results. We are interested in the behavior of the correlation function Cn(t, s) in
the limit n→∞. Whereas in stationary dynamics Cn(t, s) is asymptotically time transla-
tional invariant, in out-of-equilibrium aging dynamics a history dependence appears. Our
first theorem characterizes this aging phase. For 0 < ε ≤ 1 and 0 < β <∞, we set

βc(ε) =
√
ε2 log 2,

α(ε) = βc(ε)/β,
(1.11)

and write βc ≡ βc(1), α ≡ α(1). Note that βc is the static critical temperature at which a
transition occurs between distinct high and low temperature limiting Gibbs measures (see
Section 9.3 of [?] for their description). Denote by Aslα(ε)(·) the probability distribution
function of the generalized arcsine law of parameter α(ε),

Aslα(ε)(u) =
sin (α(ε)π)

π

∫ u

0

(1− x)−α(ε)x−1+α(ε)dx, 0 < α(ε) < 1. (1.12)

Theorem 1.3 (Aging). Let cn be an intermediate time-scale. For all 0 < ε ≤ 1 and all
0 < β <∞ such that 0 < α(ε) < 1 the following holds P-almost surely if

∑
n an/2

n <∞
and in P-probability if

∑
n an/2

n =∞: for all t ≥ 0 and all s > 0,

lim
n→∞

Cn(t, s) = Aslα(ε)(t/t+ s). (1.13)

Eq. (??) was first proved in [?] (see Theorem 3.1) and later in [?] (see Theorem 2.1) in
subregions of the above P-almost sure convergence region.

CallD(ε, β) the domain of validity of Theorem ??. It is delimited in the (ε, β)-parameter
plane by three transition lines which are: the curve βc(ε) = β and 0 < ε ≤ 1, arising at in-
termediate time scales, the plateau ε = 1 and β > βc(1), appearing at extreme time scales,
and the axis ε = 0 and β > 0, corresponding to time-scales that are sub-exponential
in n. Notice that these three transition lines correspond, respectively, to α(ε) = 1,
0 < α ≡ α(1) < 1 and α(ε) = 0, whereas inside D(ε, β), 0 < α(ε) < 1. We will
see in Subsection ?? that to these different values of α(ε) correspond different behaviors
of the clock process.

The domain D(ε, β) is the optimal domain of validity of (??). On the one hand it is
easy to prove that on sub-exponential time-scales, i.e. when ε = ε(n) ↓ 0 as n diverges,
limn→∞ Cn(t, s) = 1 P-a.s.. A non-trivial limit can be obtained by considering a non-
linear rescaling of time [?] (see also [?], [?]) when ε(n) decays slowly enough. On the
other hand it is known that in the complement ofD(ε, β) in the upper half quadrant ε > 0,
β > 0, the process Xn started in the uniform measure πn is asymptotically stationary
[?]. Here two distinct stationary phases must be distinguished, mirroring the two distinct
static phases. As might be expected by virtue of the translational invariance of stationary
dynamics, correlations vanish in the high temperature stationary phase where the limiting
Gibbs measure resembles a uniform measure.

Theorem 1.4 (High temperature stationary phase). For β < βc(ε) with 0 < ε ≤ 1 and cn
an intermediate time-scale, P-almost surely

lim
n→∞

Cn(t, s) = 0. (1.14)
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In the complementary low temperature stationary phase, namely when β > βc, Cn(t, s)
converges for all t, s > 0 to a random function Csta∞ (s) that reflects the Poisson-Dirichlet
nature of the limiting Gibbs weights. We postpone the precise statement to Theorem ??.

Remark. Note that [?] only provides upper bounds (see (1.8) and (1.9) therein) on the time
needed for the process to be at a distance less than a constant from equilibrium. These
bounds correspond precisely to the two transition lines delimiting D(ε, β) on exponential
time-scales. It thus follows from Theorem ?? that they are accurate, i.e. that at shorter
times the process is not in equilibrium.

As shown in the remainder of this subsection, the two distinct (low and high temper-
ature) static phases give rise to two distinct dynamical phase transitions between aging
and stationarity. We begin by examining the high temperature critical line β = βc(ε) and
0 < ε ≤ 1, focusing on the subregion of intermediate time-scales defined by βc(ε) = β
and

lim
n→∞

β
√
n− log cn

β
√
n

= θ (1.15)

for some constant θ ∈ (−∞,∞). The reasons for this restriction, which are technical, are
discussed in the remark below (??).

Theorem 1.5 (High temperature critical line). Let β = βc(ε) with 0 < ε ≤ 1. Let cn be
an intermediate time-scale satisfying (??) for some constant θ ∈ (−∞,∞). Then, for all
t, s > 0, P-almost surely if

∑
n an/2

n <∞ and in P-probability else

lim
n→∞

√
nCn(t, s) =

e−θ
2/2

Φ(θ)
log

(
1 +

t

s

)
1

β
√

2π
, (1.16)

where Φ(θ) is the standard gaussian distribution function.

Remark. A main motivation behind Theorem ?? is the paper [?], where Bouchaud’s trap
model [?] is studied along its high temperature critical line, which predicts that the scaling
form of its correlation function presents dynamical ultrametricity in the sense of Cuglian-
dolo and Kurchan [?]. This result, that corresponds to the setting of i.i.d. random variables
in the domain of attraction of a one stable law, easily follows from [?]. Since the lim-
iting correlation functions of Bouchaud’s trap model and that of the REM (for both the
RHD and Metropolis dynamics[?]) are the same in their aging phases, it is natural to ask
whether the REM also exhibits dynamical ultrametricity along its high temperature critical
line. Since Cn(t, s) decays to zero as n diverges whatever the choices of t, s > 0, Theorem
?? answers in the negative.

We now turn to the low temperature critical line ε = 1 and β > βc(1) at extreme time-
scales. To describe the transition across this line we use two different double limiting
procedures: we first take the limit n→∞ and then, either take the further small time limit
t → 0, in which case the process falls back to aging (Theorem ??), or take the large time
limit t → ∞, in which case the process crosses over to stationarity (Theorem ??). We do
not have an expression for the single n→∞ limit.

Theorem 1.6. (Low temperature critical line: crossover to aging) Let cn be an extreme
time-scale. For all β > βc and all ρ > 0, in P-probability

lim
t→0

lim
n→∞

Cn(t, ρt) = Aslα(1/1 + ρ). (1.17)
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Theorem ?? was first proved in [?]. The proof based on clock process that we give here
is radically simpler than the metastability-based approach of [?], [?].

This result was proved again in [?] along a very different route, namely by first con-
structing the scaling limit of the process Xn at extreme time-scale, which is given by an
ergodic process called K-process, and then, constructing the clock processes from which
(??) can be derived.

To state the next theorem let PRM(µ) be the Poisson random measure on (0,∞) with
marks {γk} and mean measure µ satisfying µ(x,∞) = x−α, x > 0, and define the function

Csta∞ (s) =
∞∑
k=1

γk∑∞
k=1 γk

e−s/γk , s ≥ 0. (1.18)

Theorem 1.7 (Low temperature critical line: crossover to stationarity). Let cn be an ex-
treme time-scale. The following holds for all β > βc. Let d

= denote equality in distribution.
(i) If µn = Gn where Gn(x) = τn(x)/

∑
x∈Vn τn(x) is Gibbs measure, then for all s, t > 0

lim
n→∞

Cn(t, s)
d
= Csta∞ (s). (1.19)

(ii) If µn = πn then for all s ≥ 0

lim
t→∞

lim
n→∞

Cn(t, s)
d
= Csta∞ (s). (1.20)

1.3. Convergence of clock processes. This section gathers the clock-process conver-
gence results that are behind the proofs of the results of Subsection ??. An alternative
construction of the process Xn consists in writing it as a time-change of its jump chain,
Jn, by the clock process, S̃n,

Xn(t) = Jn(i) if S̃n(i) ≤ t < S̃n(i+ 1) for some i, (1.21)

where (Jn(k), k ∈ N) is the simple random walk on Vn and, given a family of independent
mean one exponential random variables, (en,i, n ∈ N, i ∈ N), independent of Jn, S̃n is the
partial sum process

S̃n(k) =
k∑
i=0

τn(Jn(i))en,i, k ∈ N. (1.22)

Given sequences cn and an define the rescaled clock process

Sn(t) = c−1
n S̃n(bantc), t ≥ 0. (1.23)

We now state our results on Sn. For this denote by

γn(x) = c−1
n τn(x), x ∈ Vn (1.24)

the rescaled landscape variables. Also denote by⇒ weak convergence in the càdlàg space
D([0,∞)) equipped with the Skorohod J1-topology.

Theorem 1.8 (Intermediate scales). Let cn be an intermediate time-scale.
(i) For all 0 < ε ≤ 1 and all 0 < β < ∞ such that 0 < α(ε) < 1 the following holds:
P-almost surely if

∑
n an/2

n <∞ and in P-probability if
∑

n an/2
n =∞

Sn ⇒ Sint, (1.25)

where Sint is a subordinator with zero drift with Lévy measure, νint, defined on (0,∞)
through

νint(u,∞) = u−α(ε)α(ε)Γ(α(ε)), u > 0. (1.26)
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(ii) For all 0 < ε ≤ 1 and all 0 < β < ∞ such that α(ε) = 1, the following holds:
P-almost surely if

∑
n an/2

n <∞ and in P-probability if
∑

n an/2
n =∞

Sn −Mn ⇒ Scrit, (1.27)

where Scrit is the Lévy process with Lévy triple (0, 0, νint) and

Mn(t) =

[ant]∑
i=1

∑
x∈Vn

pn (Jn(i− 1), x) γn(x)
(
1− e−1/γn(x)

)
. (1.28)

If moreover cn satisfies (??) for some θ ∈ (−∞,∞) then for all T > 0 and all ε > 0,
P-almost surely if

∑
n an/2

n <∞ and in P-probability if
∑

n an/2
n =∞

lim
n→∞

P
(

sup
t∈[0,T ]

∣∣∣Mn(t)− E(E(Mn(1)))t
∣∣∣ > ε

)
= 0. (1.29)

Remark. The behavior of centering term E (E (Mn(t))) when α(ε) = 1 is studied in
Appendix ??. In the regime of scaling (??) under which (??) is obtained, the centering
term E (E (Mn(t))) is of order

√
n and the fluctuations of Mn(t) are smaller than the

likelihood to observe a jump of Sn over a large interval. This in particular allows for
precise error controls in the analysis of the correlation function (when averaging with
respect to the jump chain), resulting in the precision of the statement of Theorem ??,
including the exact constant on the right-hand side of (??). When (??) is not satisfied,
E (E (Mn(t))) will not diverge like

√
n but exponentially fast in n. Obtaining a statement

as in (??) or Theorem ?? would require a precise error control on an exponential level,
which is made impossible by the rough concentration estimates used in the analysis of
Mn(t). That these estimates can be improved however is anything but clear.

Proposition 1.9. Let cn be an intermediate time-scale.
(i) For all 0 < ε ≤ 1 and all 0 < β < ∞ such that α(ε) = 1 the following holds: for
all T > 0 and for all ε > 0, P-almost surely if

∑
n an/2

n < ∞ and in P-probability if∑
n an/2

n =∞

lim
n→∞

P
(

sup
t∈[0,T ]

∣∣∣ Mn(t)

E(E(Mn(1)))
− t
∣∣∣ > ε

)
= 0, (1.30)

and

lim
n→∞

P

(
sup
t∈[0,T ]

∣∣∣∣ Sn(t)

E(E(Mn(1)))
− t
∣∣∣∣ > ε

)
= 0. (1.31)

(ii) For all 0 < ε ≤ 1 and all 0 < β < ∞ such that α(ε) > 1, then for all T > 0 and for
all ε > 0, P-almost surely

lim
n→∞

P
(

sup
t∈[0,T ]

∣∣∣ Sn(t)

anenβ
2/2/cn

− t
∣∣∣ > ε

)
= 0. (1.32)

Remark. Note that Proposition ?? holds without assuming (??) due to the (stronger) rescal-
ing by E(E(Mn(1))).

Remark. In the high temperature regime of (??) (and Theorem ??), the behavior of the
clock is completely dominated by its small jumps. This is to be contrasted with (??) where
the clock is dominated by its extreme increments, and with (??) where both phenomena
are competing. Although such a result may not seem to be of primary interest in the REM
analysis, it is different in the GREM where several aging behaviors can coexist at different
levels of the underlying hierarchical structure [?].
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Note that Sint is a stable subordinators of index 0 < α(ε) < 1. In the case α(ε) = 1,
Scrit is not a subordinator but a compensated pure jump Lévy process. In the case of
extreme time-scales the limiting process is neither a stable process nor a deterministic
process but a doubly stochastic subordinator.

As before let PRM(µ) be the Poisson random measure on (0,∞) with marks {γk} and
mean measure µ defined through

µ(x,∞) = x−α, x > 0. (1.33)

Theorem 1.10 (Extreme scales). If cn is an extreme time-scale then both the sequence
of re-scaled landscapes (γn(x), x ∈ Vn), n ≥ 1, and the marks of PRM(µ) can be
represented on a common probability space (Ω,F ,P ) such that, in this representation,
denoting by σn the corresponding re-scaled clock process (??), the following holds: for
all βc < β <∞, P -almost surely,

σn ⇒ Sext, (1.34)

where Sext is the subordinator whose Lévy measure, νext, is the random measure on (0,∞)
defined on (Ω,F ,P ) through

νext(u,∞) = ε̄

∞∑
k=1

e−u/γk , u > 0, (1.35)

ε̄ being defined in (??).

A similar process was first obtained in [?] in the simpler setting of trap models (see
Proposition 4.9 and Section 7 therein).

Although the limiting subordinator is not stable, the tail of the random Lévy measure
νext is regularly varying at 0+. This is a key ingredient the proof of Theorem ??.

Lemma 1.11. If β > βc, then P -almost surely, νext(u,∞) ∼ ε̄u−ααΓ(α) as u→ 0+.

For future reference, the σ-algebra generated by the variables Jn is denoted by F . We
write Pµn for the law of the jump chain Jn started in µn, conditional on the σ-algebra
F τ , i.e. for fixed realizations of the random environment. As already mentioned, we
likewise call Pµn the law of Xn started in µn, conditional on F τ (see paragraph below
(??)). Observe that πn is the invariant measure of the jump chain.

The remainder of the paper is organized as follows. In the next section we give suf-
ficient conditions for the convergence of the clock process to a pure jump Lévy process.
Moreover we give sufficient conditions for (??) to hold. In Sections ?? and ?? we establish
preparatory results on the random landscape and the jump chain. In Section ??, ?? and ??
the conditions given in Section ?? are verified. Section ?? contains in particular the proof
of Theorem ?? and Proposition ??. A detailed survey how these sections are organized
will be given at the end of Section ??. Section ?? is then devoted to the study of correlation
functions on intermediate time scales and contains the proofs of Theorem ?? and Theorem
??. Section ?? is a self-contained section dealing with the case of extreme times-scales.
Finally, the proof of Theorem ?? is given in Section ??. Three short appendices complete
the paper.

2. KEY TOOLS AND STRATEGY.

Recall that the initial distribution is πn (see (??)). We now formulate conditions for the
sequence Sn to converge. The idea of proof is taken from Theorem 1.1 of [?]. We state
these conditions for given sequences cn and an, and for a fixed realization of the random
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landscape, i.e. for fixed ω ∈ Ωτ , and do not make this explicit in the notation. For y ∈ Vn
and u > 0 set

hun(y) =
∑
x∈Vn

pn(y, x) exp{−u/γn(x)}, (2.1)

and, writing kn(t) := bantc, define

νJ,tn (u,∞) =

kn(t)∑
j=1

hun(Jn(j − 1)), (2.2)

σJ,tn (u,∞) =

kn(t)∑
j=1

[hun(Jn(j − 1))]2 . (2.3)

Further set, for u ∈ (0,∞) and δ > 0

gδ(u) = u
(
1− e−δ/u

)
, (2.4)

fδ(u) = u2(1− e−δ/u)− δue−δ/u. (2.5)

Condition (A0). For all u > 0

2−n
∑
x∈Vn

e−u/γn(x) = o(1). (2.6)

Condition (A1). There exists a σ-finite measure ν on (0,∞) such that ν(u,∞) is contin-
uous, and such that, for all t > 0 and all u > 0,

P
(∣∣νJ,tn (u,∞)− tν(u,∞)

∣∣ < ε
)

= 1− o(1), ∀ε > 0. (2.7)

Condition (A2). For all u > 0 and all t > 0,

P
(
σJ,tn (u,∞) < ε

)
= 1− o(1), ∀ε > 0. (2.8)

Condition (A3). For all u > 0 and all t > 0,

lim
δ→0

lim
n→∞

[ant]

2n

∑
x∈Vn

gδ(γn(x)) = 0. (2.9)

Condition (A3’). For all u > 0 and all t > 0,

lim
δ→0

lim
n→∞

[ant]

2n

∑
x∈Vn

fδ(γn(x)) = 0. (2.10)

Theorem 2.1.
(i) Let ν in Condition (A1) be such that

∫
(0,∞)

(1 ∧ u)ν(du) <∞. Then, for all sequences
an and cn for which Conditions (A0), (A1), (A2) and (A3) are satisfied P-almost surely,
respectively in P-probability, we have that with respect to the same convergence mode

Sn ⇒ S (2.11)

as n→∞, where S is a subordinator with Lévy measure ν and zero drift.
(ii) Let ν(du) = u−2du in Condition (A1). Then, for all sequences an and cn for which
Conditions (A0), (A1), (A2) and (A3’) are satisfied P-almost surely, respectively in P-
probability, we have that with respect to the same convergence mode

Sn −Mn ⇒ Scrit (2.12)

as n→∞, where Scrit is a Lévy process with Lévy triple (0, 0, ν).
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Proof. Let us first prove the statements of Theorem ?? for a fixed realization of the envi-
ronment. As in the proof of Theorem 1.1 of [?], we will do this by showing that the condi-
tions of Theorem ?? imply those of Theorem 4.1 of [?]. We begin with assertion (i). Under
the assumption that the measure ν in Condition (A1) satisfies

∫
(0,∞)

(1 ∧ u)ν(du) < ∞,
Conditions (A1) and (A2) are those of Theorem 1.1 of [?] when the initial distribution is
the invariant measure πn and imply, respectively, Conditions (a) and (b) of Theorem 4.1 of
[?]. Moreover in this case Condition (A0) is Condition (A0) of Theorem 1.1 of [?] (with
F = 1 for all v > 0). It thus remains to show that Condition (A3) implies Condition (c)
of [?], namely, implies that

limδ→0 limn→∞P
(∑[ant]

i=1 Zn,i1{Zn,i≤δ} > ε
)

= 0 (2.13)

where Zn,i = γn(Jn(i))en,i (see (??) and (??)). Now by a first order Tchebychev inequal-
ity,

P
(∑[ant]

i=1 Zn,i1{Zn,i≤δ} > ε
)
≤ ε−1E

(∑[ant]
i=1 Zn,i1{Zn,i≤δ}

)
= [ant]

2n

∑
x∈Vn gδ(γn(x)).

Thus Condition (A3) yields Condition (c) of [?]. This completes the proof of Assertion
(i) for fixed realization of the environment. The proof of Assertion (ii) follows the same
pattern with Condition (A3’) substituted for Condition (A3). Let us establish that, under
the assumption that ν(du) = u−2du, Condition (A3’) implies Condition (d) of Theorem
4.1 of [?], which then implies Condition (c). To this end we must establish that, setting

Z
δ

n,i = Zn,i1{Zn,i≤δ} − E
(
Zn,i1{Zn,i≤δ} | Fn,i−1

)
(2.14)

where Fn,i−1 = σ (en,1, . . . , en,i−1, Jn(1), . . . , Jn(i− 1)), we have

limδ→0 limn→∞P
(∑[ant]

i=1 E
((
Z
δ

n,i

)2
∣∣∣Fn,i−1

)
> ε
)

= 0. (2.15)

By a first order Tchebychev inequality the probability in (??) is bounded above by

ε−1
∑[ant]

i=1 E
(
Zn,i1{Zn,i≤δ}

)2
= 2−n

∑
x∈Vn fδ(γn(x)). (2.16)

To make use of Theorem 4.1 of [?] we lastly have to check that (A1) implies that as n→∞
[ant]∑
i=1

Eπn
(
Zn,i1{δ<Zn,i<γ} |Fn,i−1

)
→ t

∫ 1

δ

xν(dx) in P-probability. (2.17)

This can be shown as proposed in the proof of Theorem 4.1 in [?] using a Riemann sum
argument. Let k ∈ N. Taking an equidistant partition t0, . . . , tk of [δ, 1] one can bound
Zn,i in the following way:

k−1∑
j=0

tj1{tj≤Zn,i<tj+1} ≤ Zn,i ≤
k−1∑
j=0

tj+11{tj≤Zn,i<tj+1}. (2.18)

We now take conditional expectations w.r.t.Fn,i−1 and use Condition (A1). This completes
the proof of Assertion (ii) for fixed realization of the environment. Arguing as in the
proof of Theorem 1.1 in [?] we conclude that Assertion (i), respectively Assertion (ii),
is valid P-almost surely (respectively, in P-probability) whenever Conditions (A0), (A1),
(A2) and (A3), respectively Condition (A3’), are valid P-almost surely (respectively, in
P-probability). This completes the proof of Theorem ??. �
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Sections ??, ?? and ?? to come are devoted to the verification of the Conditions given
in Theorem ?? for intermediate time-scales. They are structured as follows. Conditions
(A1) and (A2) which are of a similar nature are grouped together. To verify them a two
step argument is needed. Firstly, we establish ergodic theorems to substitute chain depen-
dent quantities by chain independent ones. This is done in Section ??. In Section ?? we
then show concentration of the chain independent quantities with respect to the random
environment and, finally, verify Conditions (A1) and (A2). All remaining Conditions are
verified in Section ??. Extreme scales are treated separately in Section 9.

3. PROPERTIES OF THE LANDSCAPE.

In this section we establish the needed properties of the re-scaled landscape variables
(γn(x), x ∈ Vn) of (??). We assume that 0 < β < ∞ is fixed, and as before, drop all
dependence on β in the notation. For u ≥ 0 set Gn(u) = P(τn(x) > u). Since this
is a continuous monotone decreasing function, it has a well defined inverse G−1

n (u) :=
inf{y ≥ 0 : Gn(y) ≤ u}. For v ≥ 0 set

hn(v) = anGn(cnv). (3.1)

Lemma 3.1. Let cn be any of the time-scales of Definition ??.
(i) For each fixed ζ > 0 and all n sufficiently large so that ζ > c−1

n , the following holds:
for all v such that ζ ≤ v <∞,

hn(v) = v−αn(1 + o(1)), (3.2)

where 0 ≤ αn = α(ε) + o(1).
(ii) Let 0 < δ < 1. Then, for all v such that c−δn ≤ v ≤ 1 and all large enough n,

v−αn(1 + o(1)) ≤ hn(v) ≤ 1
1−δv

−αn(1− δ
2

)(1 + o(1)), (3.3)

where αn is as before.

Next, for u ≥ 0 set
gn(u) = c−1

n G−1
n (u/an). (3.4)

Clearly gn(v) = h−1
n (v). Clearly also both gn and hn are continuous monotone decreasing

functions. The following lemma is tailored to deal with the case of extreme time-scales.
Recall that α ≡ α(1).

Lemma 3.2. Let cn be an extreme time-scale.
(i) For each fixed u > 0, for any sequence un such that |un − u| → 0 as n→∞,

gn(un)→ u−(1/α), n→∞. (3.5)

(ii) There exists a constant 0 < C <∞ such that, for all n large enough,

gn(u) ≤ u−1/αC, 1 ≤ u ≤ an(1− Φ(1/(β
√
n))), (3.6)

where Φ denotes the standard Gaussian distribution function .

The proofs of these two lemmata rely on Lemma ?? below. Denote by Φ and φ the stan-
dard Gaussian distribution function and density, respectively. Let Bn be defined through

an
φ(Bn)

Bn

= 1, (3.7)

and set An = B−1
n
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Lemma 3.3. Let cn be any time-scale. Let B̃n be a sequence such that, as n→∞,

δn := (B̃n −Bn)/An → 0. (3.8)

Then, for all x such that Anx+ B̃n > 0 for large enough n,

an(1−Φ(Anx+ B̃n)) =
exp

(
−x
[
1 + 1

2
A2
nx
])

1 + A2
nx

{
1 +O

(
δn[1 + A2

n + A2
nx]
)

+O(A2
n)
}
.

Proof. The lemma is a direct consequence of the following expressions, valid for all x > 0,

1− Φ(x) = x−1φ(x)− r(x) = x−1(1− x−2)φ(x)− s(x), (3.9)

where 0 < r(x) < x−3φ(x) and 0 < s(x) < x−5φ(x) (see e.g. [?], p. 932). �

We now prove Lemmata ?? and ??, beginning with Lemma ??.

Proof of Lemma ??. By definition of Gn we may write

hn(v) = an

(
1− Φ

(
An log(vαn) +Bn

))
, (3.10)

where
Bn = (β

√
n)−1 log cn, αn = (β

√
n)−1Bn. (3.11)

We first claim that for v ≥ c−1
n , which guarantees that An log(vαn) + Bn > 0, the

sequence Bn satisfies the assumptions of Lemma ??. For this we use the know fact that
the sequence B̂n defined by

B̂n = (2 log an)
1
2 − 1

2
(log log an + log 4π)/(2 log an)

1
2 , (3.12)

satisfies
(B̂n −Bn)/An = O

(
1/
√

log an

)
(3.13)

(see [?], p. 434, paragraph containing Eq. (4)). By (??) we easily get that

an
(
1− Φ(B̂n)

)
= 1− (log log an)2(16 log an)−1(1 + o(1)), (3.14)

whereas, by definition of an (see (??)),

an
(
1− Φ(Bn)

)
= 1. (3.15)

Since Φ is monotone and increasing, (??) and (??) imply that B̂n > Bn. Thus(
1− Φ(Bn)

)
−
(
1− Φ(B̂n)

)
= Φ(B̂n)− Φ(Bn) ≥ φ(B̂n)(B̂n −Bn) ≥ 0. (3.16)

This, together with (??) and (??), yields

0 < B̂n −Bn <
[
anφ(B̂n)

]−1
(log log an)2(16 log an)−1(1 + o(1)). (3.17)

Now, by (??),

anφ(B̂n) = Bn

[
φ(B̂n)/φ(Bn)

]
= Bn exp

{
−1

2
(B̂n −Bn)(B̂n +Bn)

}
≤ Bn(1 + o(1)),

(3.18)
where the final inequality follows from (??). Finally, combining (??) and (??) yields
0 < (B̂n − Bn)/An = O ((log log an)2(16 log an)−1), and using again (??), we obtain
δn = (Bn−Bn)/An = O

(
(log log an)2(16 log an)−1 + 1/

√
log an

)
, which was the claim.

To control the behavior of the sequences An, αn, and cn, we will need an expression for
the (of course well known) solution Bn of (??). Here is one ([?], p. 374):

Bn = (2 log an)
1
2 − 1

2
(log log an + log 4π)/(2 log an)

1
2 +O((log an)−1). (3.19)
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Note that so far we did not make use of the assumption on cn: using (??), (??), the fact
that 2 log an = (2 log 2)(log an/n log 2) = β2

c (log an/n log 2)n, and the just established
fact that (Bn −Bn)/An → 0, we obtain, for intermediate time-scales,

log an = 1
2
β2
c (ε)n(1 + o(1)), (3.20)

log cn
β
√
n

= (2 log an)
1
2 − 1

2
(log log an + log 4π)/(2 log an)

1
2 +O((log an)−1), (3.21)

αn = (
√
nβ)−1Bn = α(ε)(1 + o(1)).

Finally for extreme time-scales, writing βc(1) ≡ βc, we have that 2 log an = β2
cn(1−C/n)

for some constant 0 < C <∞. Thus, instead of (??), we get:

log an = 1
2
β2
cn(1− C/n),

log cn = ββcn(1− o(1)), (3.22)
αn ≤ α and αn = α(1− o(1)).

We are now equipped to prove Lemma ??. By Lemma ??, for all v ≥ c−1
n , setting Rn =

O(A2
n) +O (δn[1 + A2

n + A2
nαn log v]),

hn(v) =
exp

(
−αn log v

[
1 + 1

2
A2
nαn log v

])
1 + A2

nαn log v
{1 +Rn} , (3.23)

where δn ↓ 0 as n ↑ ∞. Plugging in the explicit form of αn, An and δn we get

hn(v) =

(
1 +

Bαn−1
n

β
√
n

log v

)−1

v−B
αn
n /β

√
nelog v/2nβ2 {1 +O (δn)} . (3.24)

Therefore, for each fixed 0 < v <∞, and all large enough n so that v > c−1
n ,

hn(v) = v−αn(1 + o(1)). (3.25)

This together with (??) proves assertion (i) of the lemma. To prove assertion (ii) note that
by (??), since An = B−1

n , A2
nαn = 1

log cn
Bn
Bn

where Bn
Bn

= 1 + o(1) (see the paragraph
following (??)). Thus, for all v satisfying c−δn ≤ v ≤ 1, we have

− δBn
Bn
≤ A2

nαn log v ≤ 0. (3.26)

Combining this and (??) immediately yields the bounds (??). The proof of Lemma ?? is
now done. �

Proof of Lemma ??. Up until (??) we proceed exactly as in the proof of Lemma ??. Now,
by (??), for each fixed 0 ≤ v <∞, any sequence vn such that |vn − v| → 0, and all large
enough n (so that v > c−1

n ),

hn(vn) = v−αnn (1 + o(1)) = v−α(1−o(1))(1 + o(1)). (3.27)

This and the relation gn(v) = h−1
n (v) imply that for each fixed 0 < u <∞, any sequence

un such that |un − u| → 0, and all large enough n (so that u < hn(c−1
n )),

gn(un) = u−(1/αn)
n (1 + o(1)) = u−(1/α)(1+o(1))(1 + o(1)), (3.28)

which is tantamount to assertion (i) of the lemma.
To prove assertion (ii) assume that c−1

n ≤ v ≤ 1. Recall that hn is a monotonous
function so that if hn(v) = g−1

n (v) for all c−1
n ≤ v ≤ 1, then gn(u) = h−1

n (u) for all
hn(1) ≤ u ≤ hn(c−1

n ). Now hn(1) = anGn(cn) = 1, as follows from (??), and hn(c−1
n ) =
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anGn(1) = an(1 − Φ(1/(β
√
n))). Observe next that c−1

n ≤ v ≤ 1 is equivalent to
−1 ≤ A2

n log vαn ≤ 0. Therefore, by (??), for large enough n,

hn(v) ≥ (1− 2δn)v−αn , c−1
n ≤ v ≤ 1. (3.29)

By monotonicity of hn,

gn(u) = h−1
n (u) ≤ (1− 2δn)1/αnu−1/αn , 1 ≤ u ≤ an(1− Φ(1/(β

√
n))). (3.30)

From this and the fact that αn ≤ α (see (??)), (??) is readily obtained. This concludes the
proof of the lemma. �

Remark. We see from the proof of Lemma ?? that the lemma holds true not only for ex-
treme scales, but for intermediate scales also provided one replaces α by α(ε) everywhere.

4. THE JUMP CHAIN: SOME ESTIMATES.

In this section we gather the specific properties of the jump chain Jn (i.e. the simple
random walk) that will be needed later to reduce Condition (A1) and Condition (A2) of
Theorem ?? to conditions that are independent from Jn. Proposition ?? below and its
Corollary ?? are central to this scheme. They will allow us to substitute the measures
π±n (x) of (??) for the jump chain after θn ∼ n2 steps have been taken.

The fact that the chain Jn is periodic with period two introduces a number of small
complications. Let us fix the notation. Denote by 1 the vertex of Vn whose coordinates
are identically 1. Write Vn ≡ V−n ∪ V+

n where V−n and V+
n are, respectively, the subsets

of vertices that are at odd and even distance of the vertex 1. To each of these subsets
we associate a chain, J−n and J+

n , obtained by observing Jn at its visits to V−n and V+
n ,

respectively. Specifically, denoting by ± either of the symbols − or +, (J±n (k) , k ∈ N) is
the chain on V±n with transition probabilities

p±n (x, y) = P (Jn(i+ 2) = y | Jn(i) = x) if x ∈ V±n , y ∈ V±n , (4.1)

and p±n (x, y) = 0 else. Clearly J±n is aperiodic, reversible, and has a unique reversible
invariant measure π±n given by

π±n (x) = 2−n+1, x ∈ V±n . (4.2)

Denote by P±x the law of J±n started in x and set

θn = 2
⌈

3
2
(n− 1) log 2/

∣∣log
(
1− 2

n

)∣∣⌉ . (4.3)

Proposition 4.1. There exists a positive decreasing sequence δn, satisfying |δn| ≤ 2−n,
such that for all x ∈ V±n and y ∈ Vn, all l ≥ l + θn/2, and large enough n,

P±x
(
J±n (l) = y

)
= (1 + δn)π±n (y). (4.4)

As an immediate consequence of Proposition ??, we have the

Corollary 4.2. Let θn and δn be as in Proposition ??. Then, for all x ∈ Vn and y ∈ Vn,
all i ≥ 0, and large enough n, the following holds:

1∑
k=0

Px (Jn(i+ θn + k) = y) = 2(1 + δn)πn(y). (4.5)
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The next two propositions bound, respectively, the expected number of returns and visits
to a given vertex. Let pln(·, ·) denote the l steps transition probabilities of Jn and let
dist(·, ·) denote Hamming’s distance

dist(x, x′) ≡ 1

2

n∑
i=1

|xi − x′i|. (4.6)

Proposition 4.3. There exists a numerical constant 0 < c <∞ such that for all m ≤ n2,
2m∑
l=1

pl+2
n (z, z) ≤ c

n2
, ∀z ∈ Vn, (4.7)

Proposition 4.4. There exists a numerical constant 0 < c <∞ such that for all m ≤ n2,
for all pairs of distinct vertices y, z ∈ Vn satisfying dist(y, z) = n

2
(1− o(1)),

2m∑
l=1

pl+2
n (y, z) ≤ e−cn , (4.8)

We now prove the above results in the order in which they appear.

Proof of Proposition ??. The proof relies on a well know bound by Diaconis et al [?] that
relates the rate of convergence to stationarity of J±n to the eigenvalues of the transition
matrixQ± = (p±n (x, y))V±n ×V±n . First notice that (i) the eigenvalues of the transition matrix
Q = (pn(x, y))Vn×Vn of Jn are 1 − 2j/n, 0 ≤ j ≤ n, (see, for example, [?] example 2.2
p. 45); (ii) that by (??), with obvious notation, Q2 = Q+ +Q− and Q+Q− = Q−Q+ = 0;
(iii) and that Q+ and Q− can be obtained from one another by permutation of their rows
and columns. Now it follows from (iii) that Q+ and Q− must have the same eigenvalues.
This fact combined with (i) and (ii) imply that these eigenvalues coincide with those of
Q2, so that using (i) we conclude that both Q+ and Q− have eigenvalues

(
1− 2 j

n

)2
, 0 ≤

j ≤ bn
2
c.

Since Q± is irreducible we may apply (1.9) of Proposition 3 in [?] to the chain J±n with
β∗ =

(
1− 2

n

)2 and time (denoted n therein) θn/2 =
⌈

3
2
(n− 1) log 2/

∣∣log
(
1− 2

n

)∣∣⌉. This
yields P±x (J±n (l) = y) = (1 + δn)π±n (y) where δ2

n ≤ 1
4
23(n−1)

(
1− 2

n

)2θn ≤ 2−3n+1 for all
n large enough, and thus |δn| ≤ 2−n. The proposition is proven. �

Proof of Corollary ?? . We prove (??) first. Assume, without loss of generality, that i+θn
is even and set i+ θn = 2l. Then,

∆ ≡
∑1

k=0 Px (Jn(2l + k) = y) = Px (Jn(2l) = y) + 1
n

∑
z∼x Pz (Jn(2l) = y) (4.9)

where the sum is over all nearest neighbourgs z of x. Thus, by Proposition ??,

∆ = (1 + δn)
[
π+
n (y)1{x∈V+

n } + π−n (y)1{x∈V−n } + π−n (y)1{x∈V+
n } + π+

n (y)1{x∈V−n }

]
.

Now, only one of the two indicator functions in the right hand side above is non zero so
that by (??), ∆ = (1 + δn)2πn(y), yielding (??). �

We now prove Proposition ?? and Proposition ??.

Proof of Proposition ??. Consider the Ehrenfest chain on state space {0, . . . , 2n}with one
step transition probabilities rn(i, i+ 1) = i

2n
and rn(i, i− 1) = 1− i

2n
. Denote by rln(·, ·)

its l steps transition probabilities. It is well known (see e.g. [?]) that pln(z, z) = rln(0, 0)
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for all l ≥ 0 and all z ∈ Vn. Hence
∑2m

l=1 p
l+2
n (z, z) =

∑2m
l=1 r

l+2
n (0, 0). It is in turn well

known (see [?], p. 25, formula (4.18)) that

rln(0, 0) = 2−2n

2n∑
k=0

(
2n

k

)(
1− k

n

)l
, l ≥ 1 . (4.10)

Note that by symmetry, r2l+1
n (0, 0) = 0. Simple calculations yield r4

n(0, 0) = c2
n2 , r6

n(0, 0) =
c3
n3 , and r8

n(0, 0) = c4
n4 , for some constants 0 < ci < ∞, 2 ≤ i ≤ 4. Thus, if m ≤ 3,∑2m

l=1 r
l+2
n (0, 0) ≤ c

n2 for some numerical constant 0 < c < ∞. If now m > 3, write∑2m
l=1 r

l+2
n (0, 0) = r4

n(0, 0) + r6
n(0, 0) +

∑2m
l=6 r

l+2
n (0, 0), and use that by (??),

2m∑
l=6

rl+2
n (0, 0) = 2−2n

2n∑
k=0

(
2n

k

) 2m∑
l=6

(
1− k

n

)l+2 ≤ 2−2n

2n∑
k=0

(
2n

k

)(
1− k

n

)8
m−1∑
j=0

(
1− k

n

)j
.

Since |1 − k
n
| ≤ 1,

∑2m
l=6 r

l+2
n (0, 0) ≤ 2−2n

∑2n
k=0

(
2n
k

) (
1− k

n

)8
m = mr8

n(0, 0) ≤ n2 c4
n4 ,

so that
∑2m

l=1 r
l+2
n (0, 0) ≤ c2

n2 + c3
n3 + n2 c4

n4 ≤ c
n2 for some numerical constant 0 < c <∞.

The lemma is proven. �

Proof of Proposition ??. This estimate is proved using a d-dimensional version of the
Ehrenfest scheme known as the lumping procedure, and studied e.g. in [?]. In what fol-
lows we mostly stick to the notations of [?], hoping that this will create no confusion.
Without loss of generality we may take y ≡ 1 to be the vertex whose coordinates all take
the value 1. Let γΛ be the map (1.7) of [?] derived from the partition of Λ ≡ {1, . . . , n}
into d = 2 classes, Λ = Λ1 ∪ Λ2, defined through the relation: i ∈ Λ1 if the ith co-
ordinate of z is 1, and i ∈ Λ2 otherwise. The resulting lumped chain XΛ

n ≡ γΛ(Jn)
has range Γn,2 = γΛ(Vn) ⊂ [−1, 1]2. Note that the vertices 1 and y of Vn are mapped
respectively on the corners 1 ≡ (1, 1) and x ≡ (1,−1) of [−1, 1]2. Without loss of gen-
erality we may assume that 0 ∈ Γn,2. Now, denoting by P◦ the law of XΛ

n , we have,
pl+2
n (y, z) = P◦(XΛ

n (l + 2) = x | XΛ
n (0) = 1). Let τx′x = inf{k > 0 | XΛ

n (0) =
x′, XΛ

n (k) = x}. Starting from 1, the lumped chain may visit 0 before it visits x or not.
Thus pl+2

n (1, z) = P◦(XΛ
n (l+2) = x, τ 1

0 < τ 1
x)+P◦(XΛ

n (l+2) = x, τ 1
0 ≥ τ 1

x). On the one
hand, using Theorem 3.2 of [?], P◦(XΛ

n (l + 2) = x, τ 1
0 ≥ τ 1

x) ≤ P◦(τ 1
x ≤ τ 1

0 ) ≤ e−c1n for
some constant 0 < c1 <∞. On the other hand, conditioning on the time of the last return
to 0 before time l+ 2, and bounding the probability of the latter event by 1, we readily get

P◦(XΛ
n (l + 2) = x, τ 1

0 < τ 1
x) ≤ (l + 2)P◦(τ 0

x < τ 0
0 ) = (l + 2)Qn(x)

Qn(0)
P◦(τx0 < τxx ) , (4.11)

where the last line follows from reversibility, and where Qn, defined in Lemma 2.2 of [?],
denotes the invariant measure of XΛ

n . Since P◦(τx0 < τxx ) ≤ 1 we are left to estimate the
ratio of invariant masses in (??). From the assumption that dist(y, z) = n

2
(1 − o(1)), it

follows that Λ1 = n−Λ2 = n
2
(1−o(1)). Therefore, by (2.4) of [?], Qn(x)

Qn(0)
≤ e−c2n for some

constant 0 < c2 <∞. Gathering our bounds we arrive at pl+2
n (1, z) ≤ e−c1n+(l+2)e−c2n,

which proves the claim of the lemma. �

5. ERGODIC THEOREMS

We now capitalize on the estimates of Section 3 and, as a first step towards the verifi-
cation of Conditions (A1), (A2) and the control of the centering term Mn(t), prove that
these conditions can be replaced by simple ones, where all quantities depending on the
jump chain have been averaged out. We will deal with with the centering term Mn(t)
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and with the quantities νJ,tn (u,∞) and σJ,tn (u,∞) entering the statements of Conditions
(A1)-(A2) separately.

5.1. An ergodic theorem for νJ,tn (u,∞). Setting

πJ,tn (x) = k−1
n (t)

kn(t)−1∑
j=0

1{Jn(j)=x} , x ∈ Vn, (5.1)

(??) and (??) can be rewritten as

νJ,tn (u,∞) ≡ kn(t)
∑
y∈Vn

πJ,tn (y)hun(y), (5.2)

σJ,tn (u,∞) ≡ kn(t)
∑
y∈Vn

πJ,tn (y) (hun(y))2 . (5.3)

and by (??) of Lemma ?? (stated below),

Eπn
[
νJ,tn (u,∞)

]
= kn(t)

∑
x∈Vn

πn(x)hun(x) ≡ (kn(t)/an)νn(u,∞), (5.4)

Eπn
[
σJ,tn (u,∞)

]
= kn(t)

∑
x∈Vn

πn(x) (hun(x))2 ≡ (kn(t)/an)σn(u,∞). (5.5)

Proposition 5.1. Let ρn > 0 be a decreasing sequence satisfying ρn ↓ 0 as n ↑ ∞. There
exists a sequence of subsets Ωτ

n,0 ⊂ Ωτ with P
(
(Ωτ

n,0)c
)
< θn

ρnan
and such that on Ωτ

n,0, the
following holds for all large enough n: for all t > 0, all u > 0, and all ε > 0,

Pπ±n
(∣∣νJ,tn (u,∞)− (kn(t)/an)νn(u,∞)

∣∣ ≥ ε
)
≤ ε−2[tΘ1

n(u) + t2Θ2
n(u)] (5.6)

where, for some constant 0 < c <∞,

Θ1
n(u) = σn(u,∞) + 2

ν2
n(u,∞)

an
+ c

νn(2u,∞)

n2
+ ρn [Eνn(u,∞)]2 , (5.7)

Θ2
n(u) =

ν2
n(u,∞)

2n−1
. (5.8)

In addition, for all t > 0 and all u > 0,

Pπ±n
(
σJ,tn (u,∞) ≥ ε′

)
≤ 2kn(t)

ε′ an
σn(u,∞) , ∀ε′ > 0 . (5.9)

We first state and prove the following simple lemma.

Lemma 5.2. For any function f on Vn,

Eπ±n

k−1∑
i=0

f(Jn(i)) = Eπn

k−1∑
i=0

f(Jn(i)) + r±(k) (5.10)

where r±(k) = 1
2

[
Eπ±n f(Jn(0))− Eπ∓n f(Jn(0))

]
if k is odd and r±(k) = 0 else, and

Eπn

k−1∑
i=0

f(Jn(i)) = kEπnf(Jn(0)). (5.11)
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Proof of Lemma ??. Clearly, by (??)-(??), for all x ∈ Vn and j ∈ N,

Pπ±n (J(2j) = x) = π±n (x), (5.12)

Pπ±n (J(2j + 1) = x) = π∓n (x) = 2πn(x)− π±n (x). (5.13)

where the last equality is πn = 1
2
(π+

n + π−n ). Now, if k = 2m+ 1 for some m ≥ 1,∑k−1
i=0 f(Jn(i)) =

∑m
j=0 f(Jn(2j)) +

∑m−1
j=0 f(Jn(2j + 1))

=
∑m−1

j=0 [f(Jn(2j)) + f(Jn(2j + 1))] + f(2m), (5.14)

and by (??)-(??)

Eπ±n
∑k−1

i=0 f(Jn(i)) = (k − 1)Eπnf(Jn(0)) + Eπ±n f(Jn(0))

= kEπnf(Jn(0)) + 1
2
[Eπ±n f(Jn(0))− Eπ∓n f(Jn(0))] (5.15)

Similarly, we get that if k = 2m for some m ≥ 1,

Eπ±n
∑k−1

i=0 f(Jn(i)) = kEπnf(Jn(0)). (5.16)

Now, since πn = 1
2
(π+

n + π−n ),

Eπn
∑k−1

i=0 f(Jn(i)) = 1
2

(
Eπ+

n

∑k−1
i=0 f(Jn(i)) + Eπ−n

∑k−1
i=0 f(Jn(i))

)
, (5.17)

and inserting (??), respectively (??), in the r.h.s. of (??) yields (??). Plugging (??), in turn,
in (??) and (??) yields (??). �

Proof of Proposition ??. By (??) of Lemma ??,

Eπ±n
[
σJ,tn (u,∞)

]
= (kn(t)/an)σn(u,∞)(1 + r̄(kn(t))) (5.18)

where |r̄(k)| ≤ k−1 for all k ≥ 1. The upper bound (??) now simply follows from
(??) by a first order Tchebychev inequality. The proof of (??) is a little more involved.
Using a second order Tchebychev inequality together with the expressions (??) and (??)
of νJ,tn (u,∞) and νn(u,∞) the probability in left hand side of (??) is bounded above by

ε−2Eπ±n

[
kn(t)

∑
y∈Vn

(
πJ,tn (y)− πn(y)

)
hun(y)

]2

. (5.19)

= ε−2
∑
x∈Vn

∑
y∈Vn

hun(x)hun(y)
[
k2
n(t)Eπ±n

(
πJ,tn (x)− πn(x)

) (
πJ,tn (y)− πn(y)

)]
. (5.20)

By (??) of Lemma ??, Eπ±n
[
πJ,tn (y)

]
= πn(y)(1 + r̄y(kn(t))) where |r̄y(k)| ≤ k−1 for all

y ∈ Vn, k ≥ 1. Thus, setting ∆ij(x, y) = Pπ±n (Jn(i) = x, Jn(j) = y) − πn(x)πn(y) the
quantity appearing in square brackets in (??) may be expressed as

kn(t)−1∑
i=0

kn(t)−1∑
j=0

∆ij(x, y) + k2
n(t)πn(x)πn(y)(r̄x(kn(t)) + r̄y(kn(t))). (5.21)

For θn defined in (??), we now break the sum in the r.h.s. of (??) into three terms:

(I) = 2
∑

0≤i≤kn(t)−1

∑
i+θn≤j≤kn(t)−1

∆ij(x, y), (5.22)

(II) =
∑

0≤i≤kn(t)−1

1{i=j}∆ij(x, y), (5.23)

(III) = 2
∑

0≤i≤kn(t)−1

∑
i<j<i+θn

∆ij(x, y). (5.24)
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Consider first (I). For r ≥ 0 and s ≥ 0 define

∆̃rs(x, y) =
∣∣∆(2s)(2r)(x, y) + ∆(2s)(2r+1)(x, y) + ∆(2s+1)(2r)(x, y) + ∆(2s+1)(2r+1)(x, y)

∣∣ ,
and note that by (??) of Corollary ?? and (??)-(??), ∆̃rs(x, y) ≤ 4|δn|πn(x)πn(y). Hence

(I) ≤ 2
∑

0≤s≤d(kn(t)−1)/2e

∑
b(i+θn)/2c≤l≤d(kn(t)−1)/2e

∆̃rs(x, y) (5.25)

≤ 2|δn|(kn(t) + 1)2πn(x)πn(y), (5.26)

where |δn| ≤ 2−n. Turning to the term (II), we have,

(II) =
∑

0≤i≤kn(t)−1

∆ii(x, x)1{x=y} (5.27)

=
∑

0≤i≤kn(t)−1

[
Pπ±n (Jn(i) = x)− π2

n(x)
]
1{x=y} (5.28)

≤ (kn(t) + 1)πn(x)(1− πn(x))1{x=y}, (5.29)

where the last line follows from (??)-(??). In the same way,

(III) ≤ 2

kn(t)−1∑
i=0

θn−1∑
l=1

Pπn (Jn(i) = x, Jn(i+ l) = y) (5.30)

≤ 2

kn(t)−1∑
i=0

θn−1∑
l=1

Pπ±n (Jn(i) = x)Pπ±n (Jn(i+ l) = y | Jn(i) = x) (5.31)

= 2(kn(t) + 1)πn(x)
θn−1∑
l=1

pln(x, y), (5.32)

where pln(·, ·) denote the l-steps transition matrix of Jn. Inserting our bounds on (I), (II),
and (III) in (??), and combining with (??) we get that, for all ε > 0,

Pπ±n
(∣∣νJ,tn (u,∞)− (kn(t)/an)νn(u,∞)

∣∣ ≥ ε
)
≤ ε−2[(I) + (II) + (III)], (5.33)

where

(I) = 2
(
|δn|(kn(t) + 1)2 + r̄1k

2
n(t)

) ∑
x∈Vn

∑
y∈Vn

hun(x)hun(y)πn(x)πn(y), (5.34)

(II) = (kn(t) + 1)
∑
x∈Vn

∑
y∈Vn

hun(x)hun(y)πn(x)(1− πn(x))1{x=y}, (5.35)

(III) = 2(kn(t) + 1)
∑
x∈Vn

∑
y∈Vn

hun(x)hun(y)πn(x)
θn−1∑
l=1

pln(x, y). (5.36)

By (??) and (??),

(I) ≤ 22−n
(
kn(t)+1
an

)2

ν2
n(u,∞) + 2a−1

n
kn(t)+1
an

ν2
n(u,∞) (5.37)

(II) ≤ kn(t)+1
an

σn(u,∞). (5.38)
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To further express the term (??) note that, by (??),∑
y∈Vn

pln(x, y)hun(y) =
∑
y∈Vn

pln(x, y)
∑
z∈Vn

pn(y, z)e−ucnλn(z) ≤
∑
z∈Vn

pl+1
n (x, z)e−ucnλn(z),

(5.39)
and ∑

x∈Vn

πn(x)hun(x)pl+1
n (x, z) =

∑
y∈Vn

e−ucnλn(y)
∑
x∈Vn

πn(x)pn(x, y)pl+1
n (x, z) (5.40)

≤
∑
y∈Vn

e−ucnλn(y)πn(y)pl+2
n (y, z), (5.41)

where the last inequality follows by reversibility. Hence,

(III) ≤ 2(kn(t) + 1)
θn−1∑
l=1

∑
z∈Vn

[∑
x∈Vn

πn(x)hun(x)pl+1
n (x, z)

]
e−ucnλn(z), (5.42)

≤ 2
θn−1∑
l=1

(kn(t) + 1)
∑
z∈Vn

∑
y∈Vn

πn(y)e−ucn(λn(y)+λn(z))pl+2
n (y, z) (5.43)

= 2
(kn(t) + 1)

an

θn−1∑
l=1

[(III)1,l + (III)2,l]. (5.44)

where, distinguishing the cases z = y and z 6= y,

(III)1,l =
∑
z∈Vn

anπn(z)e−2ucnλn(z)pl+2
n (z, z), (5.45)

(III)2,l =
∑
z∈Vn

∑
y∈Vn:y 6=z

anπn(y)e−ucn(λn(y)+λn(z))pl+2
n (y, z). (5.46)

One easily checks that θn ≤ 2m with m ≤ n2. Thus, by Proposition ??,
θn−1∑
l=1

(III)1,l =
∑
z∈Vn

anπn(z)e−2ucnλn(z)

θn−1∑
l=1

pl+2
n (z, z) ≤ cn−2νn(2u,∞) . (5.47)

for some constant 0 < c <∞.
The next lemma is designed to deal with the second sum in the last line of (??).

Lemma 5.3. Let ρn > 0 be a decreasing sequence satisfying ρn ↓ 0 as n ↑ ∞. There
exists a sequence of subsets Ωτ

n,0 ⊂ Ωτ with P
(
(Ωτ

n,0)c
)
< θn

ρnan
, and such that, on Ωτ

n,0,

θn−1∑
l=1

(III)2,l < ρn [Eνn(u,∞)]2 . (5.48)

Proof of Lemma ??. P
(∑θn−1

l=1 (III)2,l ≥ η
)
≤ η−1

∑θn−1
l=1 E(III)2,l. Next, for all y 6=

z ∈ Vn × Vn, by independence, E
[
e−ucn(λn(y)+λn(z))

]
= [a−1

n Eνn(u,∞)]
2. Thus,

θn−1∑
l=1

E(III)2,l ≤
1

an
[Eνn(u,∞)]2

θn−1∑
l=1

∑
z∈Vn

pl+2
n (y, z) ≤ θn

an
[Eνn(u,∞)]2 , (5.49)

yielding P
(∑θn−1

l=1 (III)2,l ≥ η
)
≤ θn

ηan
[Eνn(u,∞)]2. The lemma now easily follows.

�
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Collecting the bounds (??), (??), (??), and (??), and combining them with (??), we
obtain that under the assumptions and with the notations of Lemma ??, on Ωτ

n,0, for all
t > 0 and all u > 0,

Pπ±n
(∣∣νJ,tn (u,∞)− (kn(t)/an)νn(u,∞)

∣∣ ≥ ε
)

≤ ε−2

{
2
(
kn(t)+1
an

)2

Θ2
n(u) + kn(t)+1

an
Θ1
n(u)

}
. (5.50)

for some constant 0 < c < ∞, where Θ2
n(u) and Θ2

n(u) are defined in (??) and (??),
respectively. Since kn(t) = bantc this yields (??). The proof of Proposition ?? is done.

�

5.2. An ergodic theorem for Mn(t). We turn to the concentration of Mn(t) around
Eπn [Mn(t)]. By (??), (??) and (??), writing g1 ≡ g and setting

Gn(y) =
∑
x∈Vn

pn(x, y)g(γn(x)), (5.51)

we have

Mn(t) = kn(t)
∑
x∈Vn

πJ,tn (x)Gn(x), (5.52)

Eπn [Mn(t)] = kn(t)
∑
x∈Vn

πn(x)g(γn(x)) ≡ (kn(t)/an)mn, (5.53)

where we used (??) of Lemma ?? in the last line and where the last equality defines mn.
Further set

vn =
an
2n

∑
z∈Vn

[g(γn(z))]2, (5.54)

wn =
an
2n

∑
x∈Vn

∑
x′∈Vn

p2
n(x, x′)g(γn(x))g(γn(x′)). (5.55)

The next Proposition is the analogue for Mn(t) of Proposition ??.

Proposition 5.4. Let ρn > 0 be a decreasing sequence satisfying ρn ↓ 0 as n ↑ ∞. There
exists a sequence of subsets Ωτ

n,5 ⊂ Ωτ with P
(
(Ωτ

n,5)c
)
< θn

ρnan
, and such that on Ωτ

n,0,
the following holds for all large enough n: for all t > 0 and all ε > 0,

Pπ±n (|Mn(t)− (kn(t)/an)mn| ≥ ε) ≤ 2ε−2
[
tΘ

1

n + t2Θ
2

n

]
(5.56)

where, for some constant 0 < c <∞,

Θ
1

n = wn + 2
m2
n

an
+ c

vn
n2

+ ρn[E(mn)]2, Θ
2

n =
m2
n

2n
. (5.57)

Proof. This is a simple re-run of the proof of Proposition ??, substituting Gn for hun. �

6. LAWS OF LARGE NUMBERS AND CONCENTRATION

In this section we collect the laws of large numbers and concentration results that, once
combined with Proposition ?? and Proposition ?? respectively, will enable us to establish
the validity of Conditions (A1), (A2), (A3) and (A3’). (Note that Condition (A0) reads

νn(u,∞)/an = o(1), (6.1)

which will trivially hold true as a by-product of our convergence results for νn(u,∞).)
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6.1. Laws of large numbers for νn and σn. In this subection we study the terms νn and
σn defined through (??) and (??) that enter the statement of Proposition ??. In view of
(??) they read

νn(u,∞) =
an
2n

∑
x∈Vn

e−u/γn(x), (6.2)

σn(u,∞) =
an
2n

∑
x,∈Vn

∑
x′∈Vn

p2
n(x, x′)e−u/γn(x)e−u/γn(x′). (6.3)

where p2
n(·, ·) are the two steps transition probabilities of Jn. The following laws of large

numbers form the core of this subection.

Proposition 6.1 (Intermediate time-scales). Given 0 < ε ≤ 1 let cn be an intermediate
scale. Let νint be defined in (??) and assume that β ≥ βc(ε).
i) If

∑
n an/2

n <∞ then there exists a subset Ωτ
2 ⊂ Ωτ with P(Ωτ

2) = 1 such that, on Ωτ
2 ,

the following holds: for all u > 0

lim
n→∞

νn(u,∞) = νint(u,∞),

lim
n→∞

nσn(u,∞) = νint(2u,∞). (6.4)

ii) If
∑

n an/2
n = ∞ then there exists a sequence of subsets Ωτ

n,3 ⊂ Ωτ with P(Ωτ
n,3) ≥

1− o(1) and such that for all n large enough, on Ωτ
n,3, the following holds: for all u > 0

|νn(u,∞)− νint(u,∞)| = o(1), (6.5)
|nσn(u,∞)− νint(2u,∞)| = o(1). (6.6)

The proofs of Proposition ??, which is given at the end of this subsection, rely on the
following three lemmata.

Lemma 6.2. Under the assumptions and with the notation of Proposition ??,

lim
n→∞

E[νn(u,∞)] = νint(u,∞), ∀u > 0. (6.7)

Furthermore,

E[σn(u,∞)] =
E[νn(2u,∞)]

n
+

(E[νn(u,∞)])2

an

n− 1

n
. (6.8)

Lemma 6.3. For all κ ≥ 0 such that anκ/2n = o(1),

P
(
|νn(u,∞)− E[νn(u,∞)]| ≥ 2

√
anκ/2n

√
E[νn(2u,∞)]

)
≤ e−κ. (6.9)

Lemma 6.4. Under the assumptions of Proposition ??, for all κ > 0,

P
(
|σn(u,∞)− E[σn(u,∞)]| ≥ n−1

√
anκ/2n

√
E [νn(u,∞)]

)
≤ κ−1. (6.10)

Proof of Lemma ??. We first prove (??). For fixed u > 0 set f(y) = e−u/y. By (??),
integrating by part and using (??),

E[νn(u,∞)] = an
|An|
2n

∫ ∞
0

f ′(y)P (γn(0) ≥ y) dy = (1 + o(1))

∫ ∞
0

f ′(y)hn(y)dy,

since by assumption 2−n|An| ↑ 1 as n ↑ ∞. Set In(a, b) =
∫ b
a
f ′(y)hn(y)dy, a ≤ b, and,

given 0 < ζ̂ < 1 and ζ > 1 break the last integral above into

In
(
0, c−1/2

n

)
+ In

(
c−1/2
n , ζ̂

)
+ In

(
ζ̂ , ζ
)

+ In(ζ,∞). (6.11)
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Let us now establish that, as n ↑ ∞, for small enough ζ̂ and large enough ζ , the leading
contribution to (??) comes from In

(
ζ̂ , ζ
)
. By (??) and the rough upper bound hn(y) ≤

an, In
(
0, c
−1/2
n

)
≤ an

∫ 1/
√
cn

0
f ′(y)dy = e−u

√
cn/P(τn(x) ≥ cn), and, together with the

gaussian tail estimates of (??), this yields

lim
n→∞

In
(
0, c−1/2

n

)
= 0. (6.12)

Next, by Lemma ??, (ii), with δ = 1/2, In
(
c
−1/2
n , ζ̂

)
≤ 2(1+o(1))

∫ ζ̂
0
f ′(y)y−(3/4)αndy for

all 0 < ζ̂ < 1, where 0 ≤ αn = α(ε) + o(1). Now, there exists ζ∗ ≡ ζ∗(u) > 0 such that,
for all ζ̂ < ζ∗, f ′(y)y−(3/4)αn is strictly increasing on [0, ζ̂]. Hence, for all ζ̂ < min(1, ζ∗),
In
(
c
−1/2
n , ζ̂

)
≤ 2(1 + o(1))uζ̂−1+(3/4)[α(ε)+o(1)]e−u/ζ̂ , implying that

lim
n→∞

In
(
c−1/2
n , ζ̂

)
≤ 2uζ̂−1+(3/4)α(ε)e−u/ζ̂ , ζ̂ < min(1, ζ∗). (6.13)

To deal with In
(
ζ̂ , ζ
)

note that by Lemma ??, (i), hn(y) → y−α(ε), n → ∞, where the
convergence is uniform in ζ̂ ≤ y ≤ ζ since, for each n, hn(y) is a monotone function, and
since the limit, y−α(ε), is continuous. Hence,

lim
n→∞

In
(
ζ̂ , ζ
)

= lim
n→∞

∫ ζ

ζ̂

f ′(y)hn(y)dy =

∫ ζ

ζ̂

f ′(y)y−α(ε)dy. (6.14)

It remains to bound In(ζ,∞). By (??) of Lemma ??, In(ζ,∞) =
∫∞
ζ
f ′(y)hn(y)dy = (1+

o(1))
∫∞
ζ
f ′(y)y−αndy, where again 0 ≤ αn = α(ε) + o(1). Thus, for 0 < δ < 1 arbitrary

we have, for large enough n, that for all y ≥ ζ > 1, f ′(y)y−αn ≤ f ′(y)y−α(ε)+δ ≤ u/y2−δ.
Therefore In(ζ,∞) ≤ (1 + o(1)) 1

1−δζ
−(1−δ), and, choosing e.g. δ = 1/2,

lim
n→∞

In(ζ,∞) ≤ 2uζ−1/2. (6.15)

Collecting (??)-(??) and passing to the limit ζ̂ → 0 and ζ →∞, we finally get

lim
n→∞

E[νn(u,∞)] =

∫ ∞
0

f ′(y)y−α(ε)dy = u−α(ε)α(ε)Γ(α(ε)), (6.16)

where we used that α(ε) > 0 since by assumption ε > 0. This proves (??). We skip the
elementary proof of (??). �

Proof of Lemma ??. The proof relies on Bennett’s bound [?] for the tail behavior of sums
of random variables, which states that if (X(x), x ∈ A) is a family of i.i.d. centered
random variables that satisfies maxx∈A |X(x)| ≤ ā then, setting b̃2 =

∑
x∈A EX2(x), for

all b̄2 ≥ b̃2, P
(∣∣∑

x∈AX(x)
∣∣ > t

)
≤ exp

{
t
ā
−
(
t
ā

+ b̄2

ā2

)
log
(
1 + āt

b̄2

)}
, t ≥ 0. This implies

in particular that for t < b̄2/(2ā),

P
(∣∣∑

x∈AX(x)
∣∣ ≥ t

)
≤ exp

{
−t2/4b̄2

}
. (6.17)

Now take X(x) = e−u/γn(x) − Ee−u/γn(x), x ∈ An, so that for all θ > 0,

P (|νn(u,∞)− E[νn(u,∞)]| ≥ θ) = P
(∣∣∑

x∈An X(x)
∣∣ ≥ 2na−1

n θ
)
. (6.18)

Since |X(x)| ≤ 1 and
∑

x∈An EX
2(x) ≤ |An|Ee−2u/γn(x) = 2na−1

n E[νn(2u,∞)], we can
apply Bennett’s bound with ā = 1 and b̄2 = 2na−1

n E[νn(2u,∞)], and by (??), choosing
θ2 = anκ2−n+2E[νn(2u,∞)] in (??),

P
(
|νn(u,∞)− E[νn(u,∞)]| ≥ 2

√
anκ/2n

√
E[νn(2u,∞)]

)
≤ e−κ, (6.19)
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for all κ > 0. This choice of θ is permissible provided that θ ≤ E[νn(2u,∞)]/2. In view
of (??) this will be verified for all n large enough whenever θ ↓ 0 as n ↑ ∞, i.e. whenever
anκ/2

n = o(1). This concludes the proof of (??), and of the lemma. �

Proof of Lemma ??. For u > 0 and l ≥ 1 set

σ̄ln(u,∞) = an
∑
y∈An

πn(y) (hun(y))l . (6.20)

Thus νn(u,∞) = σ̄1
n(u,∞) and σn(u,∞) = σ̄2

n(u,∞). If for l = 1, σ̄ln(u,∞) is a sum of
independent random variables, this is no longer true when l = 2. In this case we simply
use a second order Tchebychev inequality to write

P
(∣∣σ̄ln(u,∞)− E[σ̄ln(u,∞)]

∣∣ ≥ t
)
≤ t−2[θ1 + θ2], (6.21)

where

θ1 =
(an

2n

)2 ∑
y∈An

E
[
(hun(y))l − E(hun(y))l

]2
, (6.22)

θ2 =
(an

2n

)2 ∑
y,y′∈An×An

y 6=y′

E
{[

(hun(y))l − E(hun(y))l
] [

(hun(y′))l − E(hun(y′))l
]}
. (6.23)

On the one hand
θ1 ≤

an
2n

E[σ̄2l
n (u,∞)]. (6.24)

On the other hand, after some lengthy but simple calculations, we obtain that

θ2 ≤ n(n−1)
2n+1

[
an
n2lE [νn(u,∞)] + 2 (E[νn(u,∞)])2

nl

(
E[νn(u,∞)]

an
+ 2

n

)l−1

+ 1
an

(E[νn(u,∞)])3
(

E[νn(u,∞)]
an

+ 1
n

)2(l−1)]
. (6.25)

Since on intermediate scales n2l/an = o(1) for any l < ∞, it follows from (??) and (??)
that for all n large enough

θ1 + θ2 ≤
E [νn(u,∞)]

n2(l−1)

an
2n
. (6.26)

Inserting (??) in (??) and choosing t = n−(l−1)
√

(anκ/2n)E [νn(u,∞)] yields

P
(∣∣σ̄ln(u,∞)− E[σ̄ln(u,∞)]

∣∣ ≥ n−(l−1)
√
anκ/2n

√
E [νn(u,∞)]

)
≤ κ−1, (6.27)

and taking l = 2 in (??) gives (??). The proof of Lemma ?? is complete. �

Proof of Proposition ??. By definition of an intermediate time-scale, any sequence an
must satisfy an/2n = o(1). Let us first assume that

∑
n an/2

n < ∞. This implies in
particular that (an log n)/2n = o(1) and n/an = o(1). Thus, using Lemma ?? with
κ = 2 log n, it follows from Borel-Cantelli Lemma that

lim
n→∞

νn(u,∞) = νint(u,∞) P-almost surely. (6.28)

Together with the monotonicity of νn and the continuity of the limiting function νint, (??)
entails the existence of a subset Ωτ

2,1 ⊂ Ωτ with the property that P(Ωτ
2,1) = 1, and such

that, on Ωτ
2,1,

lim
n→∞

νn(u,∞) = νint(u,∞), ∀u > 0. (6.29)
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Similarly, using (??) of Lemma ?? with κ = 2n/an, it follows from (??) and Borel-Cantelli
Lemma that

lim
n→∞

nσn(u,∞) = νint(2u,∞) P-almost surely. (6.30)

This and the monotonicity of σn allows us to conclude that there exist a subset Ωτ
2,2 ⊂ Ωτ

of full measure such that, on Ωτ
2,2,

lim
n→∞

nσn(u,∞) = νint(2u,∞), ∀u > 0. (6.31)

Assertion i) of the proposition now follows by taking Ωτ
2 = Ωτ

2,1 ∩ Ωτ
2,2.

If now
∑

n an/2
n = ∞ our estimates do not guarantee almost sure convergence of

νn(u,∞) and nσn(u,∞) but still yield almost sure convergence along sub-sequences. Us-
ing the characterisation of convergence of probability in terms of almost sure convergence
of sub-sequences (see e.g. [?], Sect. II. 19). This allows us to reduce the proof in this case
to the case of almost sure convergence treated in the proof of Assertion i). �

6.2. Concentration of mn and of terms appearing in the ergodic theorem for Mn(t).
As we will later make use of Lemma ?? under the condition that limn→∞

√
nβ− log cn√

nβ
= θ,

which by (??) of Lemma ?? implies that E(mn) = C
√
n for some constant C, we need

to control all quantities appearing in (??) of Proposition ?? with an extra multiplicative
factor

√
n.

Lemma 6.5. (i) If
∑

n an/2
n < ∞ then there exists a subset Ωτ

6 ⊂ Ωτ with P(Ωτ
6) = 1

such that, on Ωτ
6

lim
n→∞

√
nmax

{
m2
n

2n
,
m2
n

an
, cn−2vn

}
= 0,

lim
n→∞

max
{
|mn − Emn| ,

√
n |wn − Ewn|

}
= 0. (6.32)

(ii) If
∑

n an/2
n = ∞ there exists Ωτ

n,6 ⊂ Ωτ with P
(
Ωτ
n,6

)
≥ 1 − o(1) such that for n

large enough, on Ωτ
n,6

√
nmax

{
m2
n

2n
,
m2
n

an
, cn−2vn

}
≤ (an/2

n)1/4,

√
nmax {|mn − Emn| , |wn − Ewn|} ≤ (an/2

n)1/4. (6.33)

(iii) Moreover, for all sequences ρn such that ρn
(
anenβ

2/2

cn

)2

= o(1) we have

lim
n→∞

max

{
E
m2
n

2n
,E
m2
n

an
, cn−2Evn,Ewn, ρn[E(mn)]2

}
= 0. (6.34)

Proof. Let us first compute the expected values of each of the terms appearing in (??).
Consider first wn.

Ewn =
an
n
E
(
g(γn(x))2

)
+
an
2n

∑
x∈Vn

∑
x′∈Vn,
x 6=x′

p2
n(x, x′)E (g(γn(x))g(γn(x′))) . (6.35)

By (??) the first summand in (??) is equal to C 1
n
(1 + o(1)) for some constant C > 0. By

(??) the second summand in (??) is equal to
n− 1

n
an (E (g(γn(x))))2 ≤ n− 1

n
an

(
c−1
n eβ

2n/2
)2

. (6.36)
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Thus

Ewn ≤ C
1

n
(1 + o(1)) +

n− 1

n
an

(
c−1
n eβ

2n/2
)2

. (6.37)

Similarly, recalling from (??) that mn = (an/2
n)
∑

x∈Vn g(γn(x)), we have by (??) that

ρn[E(mn)]2 ≤ ρn

(
anc
−1
n enβ

2/2
)2

and

E
(
m2
n

2n

)
≤ C

an
22n

+
a2
ne
β2n

2nc2
n

, E
(
m2
n

an

)
≤ C

1

2n
+
ane

β2n

c2
n

, E
(
c
vn
n2

)
≤ C

1

n2
. (6.38)

Collecting the above bounds readily proves part (iii) of Lemma ??. Throughout the rest of
the proof let C > 0 be a generic constant that is large enough to fulfill all desired inequal-
ities. The proofs of the first two parts follow from part (iii) and Markov inequalities. To
prove concentration of mn around its mean value we use that by a second order Tcheby-
chev inequality, for all ε > 0, P (|mn − Emn| > ε) ≤ ε−2

(
E (m2

n)− (Emn)2). By (??),
E (m2

n) = (an/2
n)(vn + wn). Now it follows from the calculations in (??) that vn < c2

whereas (an/2
n)wn − (Emn)2 = −(a2

n/2
n) (Eg(γn(x)))2 < 0. Thus

P (|mn − Emn| > ε) ≤ ε−2c2(an/2
n). (6.39)

We next prove concentration of wn. Using again a second order Tchebychev inequality
we have, for all ε > 0 P (|wn − E (wn)| > ε) ≤ ε−2 (θ1 + θ2), where

θ1 =
(an

2n

)2 ∑
y∈Vn

E
(
Gn(y)2 − E (Gn(y))2)2

, (6.40)

θ2 =
(an

2n

)2 ∑
y,y′∈Vn,
y 6=y′

E
(
Gn(y)2 − E (Gn(y))2) (Gn(y′)2 − E (Gn(y′))

2 )
. (6.41)

Hence we observe that the expectation with respect to the random environment of all terms
appearing converges to 0 as n→∞. First, we bound θ1 from above by

θ1 ≤
(an

2n

)2 ∑
y∈Vn

E
(
Gn(y)4

)
−
(
E (Gn(y))2)2

. (6.42)

Expanding (an/2
n)2∑

y∈Vn E (Gn(y)4), we bound θ1 from above by (an/2
n)2 times∑

y,x∈Vn

pn(y, x)4E
(
g(γn(x))4

)
+ C

∑
y,x,x′∈Vn,
x 6=x′

pn(y, x)pn(y, x′)3E
(
g(γn(x))g(γn(x′)3)

)
+C

∑
y∈Vn

∑
x∈Vn

∑
x′∈Vn,
x 6=x′

pn(y, x)2pn(y, x′)2E
(
g(γn(x))2g(γn(x′))2

)
+C

∑
y,x,x′∈Vn,
x 6=x′

∑
x′′∈Vn,

x′′ 6=x′,x′′ 6=x

pn(y, x)2pn(y, x′)pn(y, x′′)E
(
(g(γn(x))2g(γn(x′))g(γn(x′′))

)

+
∑

y,x0,x1,x2,x3∈Vn,
x0,x1,x2,x3

pairwise distinct

3∏
i=0

pn(y, xi)E (g(γn(x))g(γn(x′))g(γn(x′′))g(γn(x′′′))) (6.43)
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Using the calculations in Lemma ?? on the behavior of g(γn(x)) and the independence of
γn(x) and γn(y) when x 6= y, we arrive at

θ1 ≤
an
2n

(
1

n3
+ C

enβ
2/2

n2cn
+

C

n22nan
+ C

enβ
2

nc2
n

+
e2nβ2

an
c4
n

)
. (6.44)

Expanding the expression θ2, we obtain

θ2 =
(an

2n

)2 ∑
y∈Vn

∑
y′∈Vn,
y 6=y′

E
(
Gn(y)2Gn(y′)2

)
− E

(
Gn(y)2

)
E
(
Gn(y′)2

)
. (6.45)

We observe that when expanding the terms of (??), some of the resulting terms cancel
each other so that θ2 is bounded from above by C (an/2

n)2 times∑
y,y′,x∈Vn,
y 6=y′

pn(y, x)2pn(y′, x)2E
(
g(γn(x))4

)
+
∑

y,y′∈Vn,
y 6=y′

∑
x,x′∈Vn,
x′ 6=x

pn(y, x)pn(y, x′)pn(y′, x)2E
(
g(γn(x))3g(γn(x′))

)
+

∑
y,y′∈Vn,
y 6=y′

∑
x,x′∈Vn,
x′ 6=x

∑
z′∈Vn,

z′ 6=x,z′ 6=x′

pn(y, x)pn(y, x′)pn(y′, x)pn(y′, z′)

× E
(
g(γn(x))2g(γn(x′))g(γn(z′)

))
. (6.46)

Using once more Lemma ?? we get that

θ2 ≤
an
2n

(
1

n2
+ C

enβ
2/2

ncn
+ C

enβ
2

c2
n

)
. (6.47)

Collecting the bounds of (??) and (??) gives

P (|wn − E (wn)| > ε) ≤ C
an
2n

(
e2nβ2

an
c4
n

+
1

n2
+
enβ

2/2

ncn
+
enβ

2

c2
n

)
. (6.48)

Choosing ε = ε0/
√
n for some ε0 > 0, the claim of Part (i) of Lemma ?? follows

from Borel-Cantelli Lemma as the bounds of (??) are summable if
∑
an/2

n < ∞. If∑
an/2

n =∞, Part (ii) of Lemma ?? follows. �

6.3. Verification of Conditions (A3) and (A3’). Recall the definition of gδ(u) and fδ(u)
from (??) and (??), respectively, and define the key quantities

λδ,n =
an
2n

∑
x∈Vn

gδ(γn(x)), λ̄δ,n ≡
an
2n

∑
x∈Vn

fδ(γn(x)). (6.49)

Observe that the quantity appearing in (??) in Condition (A3) is equal to (kn(t)/an)λδ,n.
Similarly, the quantity in (??) in Condition (A3’) is equal to (kn(t)/an)λ̄δ,n.

Lemma 6.6.
(a) Let cn be an intermediate time-scale and assume that 0 < ε ≤ 1 and 0 < β < ∞ are
such that 0 < α(ε) < 1.
(a-1) If

∑
n an/2

n <∞ then there exists Ωτ
8 ⊂ Ωτ with P (Ωτ

8) = 1 such that, on Ωτ
8

lim
δ→0

lim
n→∞

λδ,n = 0. (6.50)
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(a-2) If
∑

n an/2
n = ∞ then there exists Ωτ

n,8 ⊂ Ωτ with P
(
Ωτ
n,8

)
≥ 1 − o(1) such that

for n large enough, on Ωτ
n,8

|λδ,n − E (λδ,n)| ≤
(an

2n

)1/4

, (6.51)

and limδ→0 limn→∞ E (λδ,n) = 0.
(b) Let cn be an intermediate time-scale and take β = βc(ε) with 0 < ε ≤ 1. Then the
statement of assertion (a) above holds with λδ,n replaced by λ̄δ,n.

Proof. To prove Part (a) note first that by (??), E (λδ,n) ≤ c3δ
1−α for all large enough

n, so that limδ→0 limn→∞ E (λδ,n) = 0, and use next that by a second order Tchebychev
inequality and Lemma ??,

P (|λδ,n − E (λδ,n)| > ε) ≤ ε−2
(an

2n

)2 ∑
x∈Vn

E
(
gδ(γδ(x))2

)
< ε−2c4

an
2n
. (6.52)

Part (b) is proved in a similar way. By (??), for all large enough n, E
(
λ̄δ,n
)
≤ c0δ, imply-

ing that limδ→0 limn→∞ E
(
λ̄δ,n
)

= 0, while by a second order Tchebychev inequality, for
all ε > 0

P
(∣∣λ̄δ,n − E

(
λ̄δ,n
)∣∣ > ε

)
≤ ε−2an

2n
anE

(
fδ(γn(x))2

)
≤ ε−2c1

an
2n
, (6.53)

where by independence of fδ(γn(x)) and fδ(γn(x′)) if x 6= x′ and (??). Based on (??) and
(??) the proof of Lemma ?? is concluded by arguing as in the proof of Proposition ??. �

7. PROOF OF THEOREM ?? AND PROPOSITION ??

Using the results of the two previous sections, we are now finally in the position to
prove Theorem ??.

Proof of Theorem ??. We first prove Assertion (i). Choose ν = νint as in (??) in Condi-
tions (A1) (see (??)). By Proposition ?? and the estimates of Proposition ??, Conditions
(A1), (A2) and (A0) are satisfied P-almost surely if

∑
n an/2

n < ∞ and in P-probability
if
∑

n an/2
n = ∞. By Assertion (a) of Lemma ??, when β > βc(ε), Condition (A3) is

satisfied P-almost surely if
∑

n an/2
n <∞ and in P-probability if

∑
n an/2

n =∞. Thus
Assertion (i) of Theorem ?? implies that, under the same conditions and w.r.t. the same
convergence mode as above, Sn ⇒ Sint as n → ∞, where Sint is the subordinator with
Lévy measure νint. This proves Assertion (i) of Theorem ??.

We now turn to Assertion (ii). If β = βc(ε), reasoning as in the proof of Assertion
(i), Conditions (A1) and (A2) are satisfied P-almost surely if

∑
n an/2

n < ∞ and in P-
probability if

∑
n an/2

n = ∞. Furthermore, by Assertion (b) of Lemma ?? Condition
(A3’) is satisfied P-almost surely if

∑
n an/2

n < ∞ and in P-probability if
∑

n an/2
n =

∞. Thus Assertion (ii) of Theorem ?? implies that, under the same conditions and w.r.t. the
same convergence mode as above, Sn − Mn

cn
⇒ Scrit, proving (??).

We now assume that limn→∞
√
nβ − log cn√

nβ
= θ for some θ ∈ (−∞,∞). To prove (??)

we proceed as follows. First, observe that Mn(t) is an increasing process and that, by (??)
of Lemma ??, (kn(·)cn/an)e−nβ

2/2E(mn) converges to a continuous limit. Hence, K ≡
L(an/cn)enβ

2/2 for any L > 0 control points suffice to establish the desired convergence.
To make this more precise let t1, . . . , tK be an equidistant partition of [0, T ]. Then for any
t ∈ [0, t] there exists 1 ≤ i ≤ K such that ti ≤ t ≤ ti+1,

Mn(ti) ≤Mn(t) ≤Mn(ti+1) and |(kn(ti)/an)Emn − (kn(ti+1)/an)Emn| ≤ T
L
.
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Hence it suffices to prove that

P (∃i ∈ {1, . . . , K} : |Mn(ti)− (kn(ti)/an)Emn| ≥ ε) (7.1)

converges to zero as n→∞ P-a.s. (resp. in P-probability). By the linearity of (kn(ti)/an)mn

and (kn(ti)/an)Emn (see (??)), and Lemma ?? it suffices to consider

P (∃i ∈ {1, . . . , K} : |Mn(ti)− (kn(ti)/an)mn| ≥ ε) . (7.2)

Using a union bound the probability in (??) is bounded from above by
K∑
i=1

P (|Mn(ti)− (kn(ti)/an)mn| ≥ ε) (7.3)

Under the assumption limn→∞
√
nβ − log cn√

nβ
= θ, by Lemma ??, K = CL

√
n(1 + o(1)).

The claim now follows from Proposition ?? and Lemma ??. As before, this convergence
holds either P-a.s. or in P-probability depending on whether

∑
n an/2

n if finite or not.
This completes the proof of Theorem ??. �

Proof of Proposition ??. We start with proving Part (i) of Proposition ??. Proceeding as
in the proof of (??) in Assertion (ii) of Theorem ??, we observe that the expectation
with respect to the random environment of kn(·)

an

mn(·)
Emn(·) converges to t as n ↑ ∞, which

is obviously continuous in t, and that Mn(t)
E(mn)

is increasing in t. Hence, to establish (??) it
suffices to prove convergence of the finite dimensional distributions. This follows from
Proposition ?? and Lemma ??. As E(E(Mn(t)) diverges as n ↑ ∞, by Lemma ??, the
second part of Proposition ?? follows from Assertion (ii) of Theorem ??.

Next, we turn to Part (ii) of Proposition ??. We rewrite Sn(t) as
[ant]∑
i=1

γn(Jn(i))en,i1{γn(Jn(i))en,i≤1} +

[ant]∑
i=1

γn(Jn(i))en,i1{γn(Jn(i))en,i>1} ≡ Sn,1(t) + Sn,2(t)

(7.4)
Using Markovs inequality we bound the probability that the second summand in (??) is
larger than ε by

ε−1E (Sn,2(t)) . (7.5)
Using again Markovs inequality (this time with respect to P we bound the probability that
the expectation in (??) is larer than ε2 by

ε−2EE (Sn,2(t)) = ε−2(1 + o(1))
enβ

2/2

cn
√

2π

∫ ∞
logn√
nβ
− log cn

β
√
n

+
√
nβ

e−y
2/2dy, (7.6)

see the computations preceding (??). As β < βc it follows from (??) and Gaussian tail-
bounds that Sn,2(t)cne

nβ2/2an converges to zero P a.s. as n ↑ ∞.
Turning to Sn,1(t) we observe that

E

[ant]∑
i=1

γn(Jn(i))en,i1{γn(Jn(i))en,i≤1}

 = E(Mn(t)) (7.7)

and log aneβ
2

cn
= n(β−βc)2/2(1 + o(1)). The analogous statement to Proposition ?? holds

for α > 1 with ε replaced by ε

anenβ
2/cn

. Noting that the bounds used in the first moment

computation in the proof of Lemma ?? (iii) still hold, we see that S1
n(t) concentrates P -

almost surely around its expectation with respect to P . The almost sure concentration of



DYNAMIC PHASE DIAGRAM OF THE REM 30

mn with respect to the random environment P follows from a second moment computation
as in the proof of Lemma ?? (i) as long as 2β > βc (as (??) is used which requires
this condition). For 2β < βc a similar computation works as one can use the truncation
1γn(Jn(i))en,i≤e(β+δ)βn for some δ > 0 instead of 1{γn(Jn(i))en,i≤1} in (??). We omit details
as the computations are a rerun of the first and second moment computation done for the
other truncation. The claim of Proposition ?? (ii) now follows from the above estimates
as Sn(t) is increasing in t and the limit t is obviously continuous in t. �

8. PROOFS OF THEOREM ?? AND THEOREM ?? ON CORRELATION FUNCTIONS.

In this section we give the proofs of the results of Section ?? that are obtained on
intermediate scales. Those obtained on extreme scales are given in Subsection ??.

Proof of Theorem ??. This is a direct consequence of (??) of ?? and Dynkin-Lamperti
Theorem in continuous time (see e.g. Theorem 1.8 in [?]) since under the assumptions of
Theorem ??, Sint is a stable subordinator of index 0 < α(ε) < 1. �

Proof of Theorem ??. This is a direct consequence of the control of Sn,2 in the proof of
Proposition ??. In particular of (??) and (??) which show that the contribution of the
jumps larger than cn to the clock process Sn converges to zero. �

Let us outline the proof of Theorem ??. The main idea is to compute for each k the
probability that the size of the (k+ 1)-th jump is large enough to straddle over the desired
interval. If k is too large, the sum of the small jumps up to the k-th one is already larger
than cnt, hence we can exclude this possibility. For the other jumps, we use that Proposi-
tion (??) provides a precise control on the clock process up to the (k + 1)-th jump (in the
supremum norm) together with the fact, which essentially follows from Condition (A1),
that we know how likely such a big jump is.

Proof of Theorem ??. We define an auxiliary time-scale ãn by

ãne
nβ2/2Φ(θ) = cn, (8.1)

A crucial quantity is the ratio ãn/an which is by Lemma ?? given by

ãn
an

=
e−θ

2/2

Φ(θ)β
√

2πn
(1 + o(1)). (8.2)

Set

An(t) ≡ P

(
sup

k∈{1,...,bãntc}

∣∣∣∣S̃n(k)− cnk

ãn

∣∣∣∣ > cnε

)
. (8.3)

Fix a realization of the random environment such that for all t, T > 0, for all x > s
uniformly in x and for all ε > 0

lim
n→∞

An(t) = 0, (8.4)

lim
n→∞

sup
k≥θn

∣∣∣∣bantcP (τn(Jn(k + 1))en,k+1 > cnx)− t

x

∣∣∣∣ = 0, (8.5)

and to take care of the first θn jumps

lim
n→∞

an
ãn

θn∑
l=1

P (τn(Jn(k + 1)en,k+1 > cnx) = 0 (8.6)
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and

lim
n→∞

√
nP

∣∣∣∣∣∣
bãntc∑
k=1

P(τn(Jn(k + 1))en,k+1 > cns|Jn(k))− ãnt

ans

∣∣∣∣∣∣ > ãnε

an
√
An(t)

 = 0,

(8.7)
lim
n→∞

√
nP (Mn(bãnt(1 + ε′)/anc) < cn) = 0. (8.8)

The terms (??), (??) and (??), which resemble terms studied earlier but depend on the
auxiliary time-scale, are studied in Appendix ??. Rewriting the correlation function gives

Cn(t, s) = P

(⋃
k>0

S̃n(k) < cnt, S̃n(k + 1) > cn(t+ s)

)
. (8.9)

Let Qk be the event that the k-th jump has the desired height, namely

Qk = {τn(Jn(k + 1))en,k+1 > cn(t+ s)− S̃n(k)}. (8.10)

Then we can rewrite (??) as

P

 ⋃
k≤ãnt(1+ε′)

{
S̃n(k) < cnt

}
∩Qk

+P

 ⋃
k>ãnt(1+ε′)

{
S̃n(k) < cnt

}
∩Qk

 . (8.11)

Using that S̃n(k) is an increasing process we have for all ε > 0

P

 ⋃
k>ãnt(1+ε′)

{
S̃n(k) ≤ cnt

} ≤ P ( S̃n(bãnt(1 + ε′)c)
cn

< t

)
. (8.12)

By only counting summands smaller than δ we bound (??) from above by

P (Mn(bãnt(1 + ε′)/anc) ≤ t) , (8.13)

which is of order o(1/
√
n) by (??). Using this together with a union bound we can rewrite

(??) as ∑
k∈T

P
({
S̃n(k) < cnt

}
∩Qk

)
+ o(1/

√
n). (8.14)

We rewrite the first summand in (??) as∑
k∈T

{
E
(
1{S̃n(k)<cnt}∩Qk1{|S̃n(k)− cnk

ãn
|>cnε}

)
+ E

(
1{S̃n(k)<cnt}∩Qk1{|S̃n(k)− cnk

ãn
|≤cnε}

)}
(8.15)

where T = {0, . . . , bãn(1 + ε)c}. We want to show the first summand in (??) are of
order o(1/

√
n). By using the worst bound on S̃n(k) to bound Qk and then dropping the

condition S̃n(k) ≤ cnt we bound the first part of (??) by∑
k∈T

E
(
1{|S̃n(k)− cnk

ãn
|>cnε}1{τn(Jn(k+1))en,k+1>cn(t+s)−S̃n(k)}

)
(8.16)

≤ E

(
1{supk∈[0,ãn(1+ε)]∩N|S̃n(k)− cnk

ãn
|>cnε}

∑
k∈T

P (τn(Jn(k + 1))en,k+1 > cns|Jn(k))

)
,
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where we conditioned on the process up to time k and used that Jn is a Markov chain.
Using (??) to bound the conditional probability given Jn(k), (??) is bounded above by

ãn
an

(
t

s
+

1√
An(t)

ε

)
P

(
sup

k∈[0,...,ãnt(1+ε)]

∣∣∣∣S̃n(k)− cnk

ãn

∣∣∣∣ > cnε

)
+ o(1/

√
n)

=
ãn
an

t

s
An(t(1 + ε)) +

ãn
an

√
An(t(1 + ε))ε+ o(1/

√
n), (8.17)

where An(t(1 + ε)) is exactly defined to be the probability appearing in the first line of
(??). By (??) we have that (??) is of order o(ãn/an) = o(1/

√
n). We can bound the

second summand in (??) from above by∑
k∈[0,...,bãnt(1−ε)c]

P
(
τn(Jn(k + 1)en,k+1 > cn(t+ s)− cn

(
k

ãn
+ ε

))
+2εãnP (τn(Jn(k + 1))en,k+1 > cns) . (8.18)

Define the functions

F±(k) =
1

t+ s− (k ± ε)
. (8.19)

Using (??) for the first θn summands and (??) for k ≥ θn we can rewrite (??) as∑
k∈[θn,...,bãnt(1−ε)c]

1

an
F+

(
k

ãn

)
+ 2ε

ãn
an

+
ãn
an
o(1). (8.20)

In the same way we obtain the following lower bound on (??),∑
k∈[θn,...,bãnt(1+ε)c]

1

an
F−

(
k

ãn

)
− 2ε

ãn
an
− ãn
an
o(1). (8.21)

By a Riemann sum argument we have
bãnt(1−ε)c}∑

k=0

1

ãn
F+

(
k

ãn

)
− 1

ãn

1

t+ s
≥
∫ t(1−ε)

0

F+(u)du = log

(
s+ t(1− ε)

s

)
, (8.22)

respectively,
bãnt(1+ε)c∑

k=0

1

ãn
F−

(
k

ãn

)
− 1

ãn

1

s
≤
∫ t(1+ε)

0

F−(u)du = log

(
s+ t(1 + ε)

s

)
. (8.23)

Noting that
θn∑
k=0

1

ãn
F±

(
k

ãn

)
≤ θn
ãn
F±

(
θ

ãn

)
≤ θn
ãn

1

s
, (8.24)

and θn
ãn
� ãn

an
, we can bound (??) from above by

ãn
an

log

(
s+ t(1− ε)

s

)
− 1

ãn

1

1 + s
+ 2ε

ãn
an

+
ãn
an
o(1), (8.25)

and (??) from below by

ãn
an

log

(
t+ s+ ε

s

)
− 1

ãn

1

s
− 2ε

ãn
an
− ãn
an
o(1). (8.26)
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Putting those estimates together we obtain

Cn(t, s) =
ãn
an

log

(
1 +

t

s

)
+
ãn
an
o(1). (8.27)

By (??) we have

Cn(t, s) =
e−θ

2/2

Φ(θ)
log

(
1 +

1

s

)
1

β
√

2πn
(1 + o(1)). (8.28)

So far we worked on a fixed realization of the random environment. Observe that the
probability in (??) is equal to νn(x,∞) and hence, by Proposition ??, for all k ≥ θn and
large enough n we have, for νn(u,∞) defined in (??),

bantcP (τn(Jn(k + 1))en,k+1 > cnx) = (1 + δn)νn(x,∞), (8.29)

which is a monotone function in x and its limit 1/x is continuous for x > 0, which
implies that (??) holds P-a.s. if

∑
an/2

n <∞ and in P-probability if
∑
an/2

n <∞. By
Proposition ?? and Lemma ??, (??) and (??) hold either P-a.s. or in P-probability. Eq. (??)
holds P-a.s. by Lemma ?? and (??) holds either P-a.s. or in P-probability by Lemma ??.
Arguing as in the proof of Theorem 1.3 in [?], we have that if (??),(??), (??) and (??)
and (??) hold P-a.s., respectively in P-probability, (??) holds with respect to the same
convergence mode with respect to the random environment. This concludes the proof of
Theorem ??. �

9. EXTREME SCALES.

This section closely follows Section 6 of [?] where an approach known as “the method
of common probability space” was first implemented to bypass the fact that on extreme
time-scales, when an ∼ 2n, the convergence properties of sums such as (??) or (??) can
no longer follow from classical laws of large numbers; instead, one aims at replacing the
sequence of re-scaled landscapes (γn(x), x ∈ Vn), n ≥ 1, by a new sequence with iden-
tical distribution and almost sure convergence properties. In Subsection ??, we give an
explicit representation of such a re-scaled landscape which is valid for all extreme scales
(Lemma ??) and show that, in this representation, all random variables of interest have
an almost sure limit (Proposition ??). In Subsection ?? we consider the model obtained
by substituting the representation for the original landscape. For this model we state and
prove the analogue of the ergodic theorem of Section ?? (Proposition ??) and the associ-
ated chain independent estimates of Section ?? (Proposition ??). Thus equipped we are
ready, in Subsection ??, to prove the results of Section ?? obtained on extreme scales.

9.1. A representation of the landscape. The representation we now introduce is due
to Lepage et al. [?] and relies on an elementary property of order statistics. We use
the following notations. Set N = 2n. Let τ̄n(x̄(1)) ≥ · · · ≥ τ̄n(x̄(N)) and γ̄n(x̄(1)) ≥
· · · ≥ γ̄n(x̄(N)) denote, respectively, the landscape and re-scaled landscape variables
γn(x) = c−1

n τn(x), x ∈ Vn, arranged in decreasing order of magnitude. As in Section
2, set Gn(v) = P(τn(x) > v), v ≥ 0, and denote by G−1

n (u) := inf{v ≥ 0 : Gn(v) ≤ u},
u ≥ 0, its inverse. Also recall that α = βc/β and assume that β > βc.
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Let (Ei, i ≥ 1) be a sequence of i.i.d. mean one exponential random variables defined
on a common probability space (Ω,F ,P ). For k ≥ 1 set

Γk =
k∑
i=1

Ei,

γk = Γ
−1/α
k , (9.1)

and, for 1 ≤ k ≤ N , n ≥ 1, define

γn(x(k)) = c−1
n G−1

n (Γk/ΓN+1), (9.2)

where {x(1), . . . , x(N)} is a randomly chosen labelling of the N elements of Vn, all la-
bellings being equally likely.

Lemma 9.1. For each n ≥ 1, (γ̄n(x̄(1)), . . . , γ̄n(x̄(N)))
d
= (γn(x(1)), . . . , γn(x(N))).

Proof. Note that Gn is non-increasing and right-continuous so that G−1
n is non-increasing

and right-continuous. It is well known that if the random variable U is a uniformly dis-
tributed on [0, 1] we may write τn(0)

d
= G−1

n (U) (see e.g. [?], page 4). In turn it is well
known (see [?], Section III.3) that if (U(k), 1 ≤ k ≤ N) are independent random vari-
ables uniformly distributed on [0, 1] then, denoting by Ūn(1) ≤ · · · ≤ Ūn(N) their ordered
statistics, (Ūn(1), . . . , Ūn(N))

d
= (Γ1/ΓN+1, . . . ,ΓN/ΓN+1). Combining these two facts

readily yields the claim of the lemma since, by independence of the landscape variables
τn(x), all arrangements of the N variables Γk/ΓN+1 on the N vertices of Vn are equally
likely. �

Next, let Υ be the point process in MP (R+) which has counting function

Υ([a, b]) =
∞∑
i=1

1{γk∈[a,b]}. (9.3)

Lemma 9.2. Υ is a Poisson random measure on (0,∞) with mean measure µ given by
(??).

Proof. The point process Γ =
∑∞

i=1 1{Γk} defines a homogeneous Poisson random mea-
sure on [0,∞) and thus, by the mapping theorem ([?], Proposition 3.7), setting T (x) =
x−1/α for x > 0, Υ =

∑∞
i=1 1{T (Γk)} is Poisson random measure on (0,∞) with mean

measure µ(x,∞) = T−1(x). �

We thus established that both the ordered landscape variables and the point process Υ
can be expressed in terms of the common sequence (Ei, i ≥ 1) and thus, on the common
probability space (Ω,F ,P ). As shown by the next proposition, on that space, the random
variables of interest will have an almost sure limit.

Proposition 9.3. Assume that α < 1. Let cn be an extreme time-scale. Let f : (0,∞) →
[0,∞) be a continuous function that obeys∫

(0,∞)

min(f(u), 1)dµ(u) <∞. (9.4)

Then, P -almost surely,

lim
n→∞

N∑
k=1

f(γn(x(k))) =
∞∑
k=1

f(γk) <∞. (9.5)
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Proof of Proposition ??. The proof of Proposition ?? closely follows that of Proposition
7.3 of [?], which itself is strongly inspired from the proof of Proposition 3.1 of [?]. We
omit the details. �

9.2. Preparations to the verification of Conditions (A1), (A2) and (A3). Consider the
model obtained by substituting the representation (γn(x(i)), 1 ≤ i ≤ N) for the original re-
scaled landscape (γn(x), x ∈ Vn). The aim of this subsection is to prove the homologue,
for this model, of the ergodic theorem (Proposition ??) and chain independent estimates
(Proposition ??) of Section ?? and Section ??.

In order to distinguish the quantities νJ,tn (u,∞), σJ,tn (u,∞), νn(u,∞) and σn(u,∞), ex-
pressed in (??)–(??) in the original landscape variables, from their expressions in the new
ones , we call the latter νJ,tn (u,∞), (σJ,tn )(u,∞), νn(u,∞) and σn(u,∞) respectively.
Their definition is otherwise unchanged.

Proposition 9.4. There exists a subset Ω0 ⊂ Ω such that P (Ω0) = 1 and such that, on Ω0,
for all large enough n, the following holds: for all t > 0 and all u > 0,

Pπn
(∣∣νJ,tn (u,∞)− Eπn

[
νJ,tn (u,∞)

]∣∣ ≥ ε
)
≤ ε−2Θn(t, u), ∀ε > 0, (9.6)

where

Θn(t, u) =

(
kn(t)

an

)2
ν2
n(u,∞)

2n
+
kn(t)

an

(
σn(u,∞) + c1

νn(2u,∞)

n2

)
+

kn(t)

an

(
3θne

−u/δnνn(u,∞) +
2n

an
ν2
n(u,∞)e−c2u

)
, (9.7)

for some constants 0 < c1, c2 <∞, where δn ≤ n−α(1+o(1)), and where θn is defined as in
??. In addition, for all t > 0 and all u > 0,

Pπn
(
(σJ,tn )(u,∞) ≥ ε′

)
≤ kn(t)

ε′ an
σn(u,∞), ∀ε′ > 0. (9.8)

Proposition 9.5. Let cn be an extreme time-scale. Assume that β ≥ βc and let νext be
defined in (??). There exists a subset Ω1 ⊂ Ω such that P (Ω1) = 1 and such that, on Ω1,
the following holds: for all u > 0,

lim
n→∞

νn(u,∞) = νext(u,∞) <∞, (9.9)

lim
n→∞

σn(u,∞) = 0, (9.10)

lim
δ→0

lim
n→∞

an
2n

N∑
k=1

gδ(γn(x(k))) = 0. (9.11)

Proposition ?? is a straightforward application of Proposition ?? and Lemma ?? whose
proof we skip (see also [?], (6.32)-(6.35) for a pattern of proof).

Proof of Proposition ??. This is a rerun of the proof Proposition ??. The only difference
is in the treatment of the term (??). In the new landscape variables, Lemma (??) is not
true, and its method of proof is unadapted. To bound (??) we proceed as follows. Let
Tn := {x(k), 1 ≤ k ≤ n} ⊂ Vn be the set of the n vertices with largest γn(x). The next
two lemmata collect elementary properties of Tn.

Lemma 9.6. There exists a subset Ω0,1 ⊂ Ω with P (Ω0,1) = 1 such that, for all ω ∈ Ω0,1,
for all large enough n, the following holds: for all x, x′ ∈ Tn, x 6= x′, dist(x, x′) =
n
2
(1− ρn) where ρn =

√
8 logn
n

.



DYNAMIC PHASE DIAGRAM OF THE REM 36

Proof. Given t > 0 consider the event Ω0,1(n) =
{
∃1≤k 6=k′≤n :

∣∣dist
(
x(k), x(k′)

)
− n

2

∣∣ ≥ t
}

.
By construction, the elements of Tn are drawn at random from Vn, independently and with-
out replacement. Hence

P (Ω0,1(n)) ≤ n2P
(∣∣dist

(
x(1), x(2)

)
− n

2

∣∣ ≥ t
)
∼ n2P

(∣∣∑n
i=1 εi −

n
2

∣∣ ≥ t
)
, (9.12)

where (εi, 1 ≤ i ≤ n) are i.i.d. r.v.’s taking value 0 and 1 with probability 1/2. A classical

exponential Tchebychev inequality yields P
(∣∣∑n

i=1 εi −
n
2

∣∣ ≥ t
)
≤ e−

t2

2n . Choosing t =√
8n log n, and plugging into (??), P (Ω0,1(n)) ≤ n−2. Setting Ω0,1 = ∪n0 ∩n>n0 Ω0,1(n),

the claim of the lemma follows from an application of Borel-Cantelli Lemma. �

Lemma 9.7. There exists a subset Ω0,2 ⊂ Ω with P (Ω0,2) = 1 such that, for all ω ∈ Ω0,2,
for all large enough n, sup{γn(x), x ∈ Vn \ Tn} ≤ δn where δn = (1 + o(1))n−α(1+o(1)).

Proof. Clearly sup{γn(x), x ∈ Vn \ Tn} = sup{γn(x(k)), k > n} = γn(xn+1), and by
(??), γn(xn+1) = c−1

n G−1
n

(
Γn+1

ΓN+1

)
. By the strong law of large numbers applied to both

Γn+1 and ΓN+1, we deduce that there exists a subset Ω0,2 ⊂ Ω of full measure such
that, for all n large enough and all ω ∈ Ω0,2, γn(xn+1) = c−1

n G−1
n

(
(n/bn)(1 + λn)

)
.

By definition of hn(v) (see (??)), c−1
n G−1

n (hn(v)) = v, and by Lemma ??, γn(xn+1) =
(1 + o(1))n−α(1+o(1)). �

We are now equipped to bound (III)2,l. Set Ω0 = Ω0,1 ∩ Ω0,2. Writing T cn ≡ Vn \ Tn,
and setting f(y, z) = kn(t)πn(y)e−u[γ−1

n (y)+γ−1
n (z)]pl+2

n (y, z), we may decompose (III)2,l

it into four terms,∑
z∈T cn,y∈T cn:y 6=z

f(y, z)+
∑

z∈T cn,y∈Tn

f(y, z)+
∑

z∈Tn,y∈T cn

f(y, z)+
∑

z∈Tn,y∈Tn:y 6=z

f(y, z). (9.13)

To bound the first sum above we use that, by Lemma ??, for y ∈ T cn, e−u[γ−1
n (z)+γ−1

n (y)] ≤
e−u/γn(z)e−u/δn . Thus,∑

z∈T cn,y∈T cn:y 6=z

f(y, z) ≤ e−u/δn
∑
z∈T cn

anπn(z)e−u/γn(z)
∑

y∈T cn:y 6=z

pl+2
n (y, z)

≤ e−u/δn
∑
z∈T cn

anπn(z)e−u/γn(z) (9.14)

≤ e−u/δnνn(u,∞).

The second and third sums of (??) are bounded just in the same way. To deal with the
last sum we use that in view of Lemma ?? the assumptions of Proposition ?? are satisfies.
Consequently

θn−1∑
l=1

∑
z∈Tn,y∈Tn:y 6=z

f(y, z) ≤ 2n

an

[
an
∑
z∈Tn

πn(z)e−u/γn(z)
]2

θn−1∑
l=1

pl+2
n (y, z),

≤ e−cn
2n

an
(νn(u,∞))2, (9.15)

for some constant 0 < c < ∞. Collecting (??), (??) and (??), and summing over l, we
finally get,

θn−1∑
l=1

(III)2,l ≤ 3θne
−u/δnνn(u,∞) + e−cn

2n

an
(νn(u,∞))2. (9.16)
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Proposition ?? is now proved just as Proposition ??, using the bound (??) instead of the
bound (??) of Lemma (??). �

9.3. Proofs of the results of Section 1: the case of extreme scales. We now prove the
results of Section 1 that are concerned with extreme scales, namely, Theorem ??, Theorem
?? and Lemma ??. Again our key tool will be Theorem ?? of Subsection 1.4.

We assume throughout this section that cn is an extreme time-scale and that β > βc.

Proof of Theorem ??. Consider the model obtained by substituting the representation
(γn(x(i)), 1 ≤ i ≤ N) for the original landscape (γn(x), x ∈ Vn). Let S̃n, σn, and Cn(t, s)
denote, respectively, the clock process (??), the re-scaled clock process (??), and the time
correlation function (??) expressed in the new landscape variables. Choose ν = νext in
Conditions (A1), (A2) and (A3) (that is, in (??), (??) and (??), expressed of course in
the new landscape variables). By Proposition ?? and Proposition ??, there exists a subset
Ω2 ⊂ Ω with P (Ω2) = 1, such that, on Ω2, Conditions (A1), (A2), (A3), and (A0’) are
satisfied. By (??) of Theorem ?? we thus have that, on Ω2, σn ⇒ Sext where Sext is the
(random) subordinator of Lévy measure νext. This proves Theorem ??. �

It now remains to prove Lemma ??.

Proof of Lemma ??. To ease the notation set ε̄ = 1. Set u−α = M and f(x) = e−1/x. By
(??) we may write

uανext(u,∞) = 1
M

∑∞
k=1 f(M1/αγk). (9.17)

An easy re-run of the proof of Lemma 3.10 in [?] then yields that

limM→∞
1
M

∑∞
k=1 f(M1/αγk) = αΓ(α) P -almost surely, (9.18)

�

9.4. Proof of Theorem ?? and Theorem ??. We are now ready to give the proofs of the
results of Section ?? that are obtained on extreme time-scales.

Proof of Theorem ??. To prove Theorem ?? first note that by Lemma ??,

Cn(t, s)
d
= Cn(t, s) for all n ≥ 1 and all t, s > 0. (9.19)

Next, by (??) of Theorem ?? we have that, on Ω2,

lim
n→∞

Cn(t, s) = Cext∞ (t, s) ∀ t, s > 0, (9.20)

where Cext∞ (t, s) = P ({Sext(u), u > 0} ∩ (t, t+ s) = ∅). By Lemma ?? there exists a
subset Ω3 ⊂ Ω with P (Ω3) = 1, such that, on Ω3, νext is regularly varying at infinity
with index −α. Thus, by Dynkin-Lamperti Theorem in continuous time applied for fixed
ω ∈ Ω3 (see e.g. Theorem 1.8 in [?]) we get that,

lim
t→0+

Cext(t, ρt) = Aslα(1/1 + ρ) ∀ ρ > 0. (9.21)

By (??) with s = ρt, using in turn (??) and (??) to pass to the limit n → ∞ and t →
0+, we obtain that for all ρ > 0, limt→0+ limn→∞ Cextn (t, ρt)

d
= Aslα(1/1 + ρ). Since

convergence in distribution to a constant implies convergence in probability, the claim of
Theorem ??, (iii) follows. �
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Proof of Theorem ??. This is a re-run of the proof of Theorem 3.5 of [?] (setting a = 0).
Note indeed that for all β > βc, 0 < α < 1, which implies that

∫∞
0
νext(u,∞)du =∑∞

k=1 γk < ∞ P -almost surely. We are thus in the realm of “classical” renewal theory,
in the so-called “finite mean life time” case. The second and first assertions of Theo-
rem ?? then follow, respectively, from Assertion (ii) of Theorem 1.8 of [?] and Assertion
(ii) of Theorem 7.3 of [?] on delayed subordinator. Their proofs use the following two
elementary facts: firstly ∫∞

s
νext(u,∞)du∫∞

0
νext(u,∞)du

= Csta∞ (s), u > 0, (9.22)

where Csta∞ is defined in (??); secondly, setting

1− Fn(v) :=
∑
x∈Vn

Gα,n(x)e−vcnλn(x) =
∑
k

γn(x(k))∑
l γn(x(l))

e−s/γn(x(l)), (9.23)

a simple application of Proposition ?? yields, limn→∞(1 − Fn(v)) = (1 − F sta(v)) :=
Csta∞ (s) P -almost surely. We skip the details. �

10. PROOF OF THEOREM ??

Proof of Theorem ??. Given ρ ∈ (0, 1), let Aρn(t, s) be the event

Aρn(t, s) =
{
n−1
(
Xn(cnt), Xn(cn(t+ s)

)
≥ 1− ρ

}
. (10.1)

Observe that since n−1(x, x′) = 1− 2n−1 dist(x, x′) (see (??))

Aρn(t, s) = {dist(Xn(cnt), Xn(cn(t+ s))) < ρn/2} . (10.2)

Denote byRn the range of the rescaled clock process Sn of (??) and write

Pπn (Aρn(s, t)) = Pπn (Aρn(s, t) ∩ {Rn ∩ (s, t) = ∅}) (10.3)
+ Pπn (Aρn(s, t) ∩ {Rn ∩ (s, t) 6= ∅}) . (10.4)

Because Aρn(s, t) ⊃ {Rn ∩ (s, t) = ∅}, the probability in the right-hand side of (??)
is Cn(t, s). Thus, in order to prove (??) (respectively, (??)), we are left to establish that
the probability appearing in (??) vanishes (respectively, vanishes faster than 1/

√
n) as n

diverges. We distinguish the cases α(ε) < 1 and α(ε) = 1.
The case α(ε) < 1. Consider the set

Tn(δ) ≡ {x ∈ Vn | τn(x) > δcn}, δ > 0. (10.5)

It follows from Theorem ?? on intermediate time-scales and from Theorem ?? on extreme
time-scales that if Rn ∩ (t, t + s) 6= ∅ then, with a probability that tends to one as n ↑ ∞
and δ ↓ 0, the points t and t+ s lie in disjoint constancy intervals of the clock process, and
such intervals are produced, asymptotically, by visits to Tn(δ). That is to say that there
exists u− < u+ such that c−1

n S̃n(kn(u−)) < t < c−1
n S̃n(kn(u−)+1) and c−1

n S̃n(kn(u+)) <

t + s < c−1
n S̃n(kn(u+) + 1) and these two (disjoint for large enough n) clock process

increments correspond to visits of the jump chain Jn to vertices in Tn(δ), which we denote
by z− and z+, respectively. We thus must establish that for all 0 < ρ < 1

lim
δ→0

lim
n→∞

P (z+ ∈ Bρ(z−) ∩ Tn(δ)) = 0 (10.6)

either P-a.s. or in P-probability, where Bρ(z) = {x ∈ Vn | dist(z, x) ≤ ρn/2} is the ball
of radius ρn/2 centered at z. We treat the intermediate and extreme time-scales separately.
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Intermediate time-scales. Denote by Hn(A) = inf {i ≥ 0 : Jn(i) ∈ A} the hitting time of
A ⊂ Vn. To prove (??) it suffices to establish that after leaving z−, the chain Jn does not
visit any vertex in Bρ(z−) ∩ Tn(δ) in the following kn(u+) steps, which happens if

H(Bρ(z−) ∩ Tn(δ))� an. (10.7)

The next lemma enables us to prove that (??) holds true. Let

mn ≡ 2n/
[
a−1
n

(
n

ρn/2

)]
. (10.8)

Lemma 10.1. Fix z ∈ Vn. There exists a constant c > 0 such that if a−1
n

(
n

ρn/2

)
> c log n

then there exists a subset Ωτ
9 ⊂ Ωτ with P (Ωτ

9) = 1 such that on Ωτ
9 , for n large enough,

for all u > 0

max
x∈Vn

∣∣Px [Hn((Bρ(z) ∩ Tn(δ)) \ {x}) ≥ umn]− e−u
∣∣ < C(δ, ε, ρ)

1

n
(10.9)

for some 0 < C(δ, ε, ρ) <∞ independent of n.

Proof. The proof uses Theorem 1.3 of [?]. Proceeding as in the proof of (4.1) of [?] we
get that there exists a constant c > 0 such that if a−1

n

(
n

ρn/2

)
> c log n then there exists

Ωτ
10 ⊂ Ωτ with P (Ωτ

10) = 1 such that on Ωτ
10, for all large enough n, both

|Bρ(z)∩Tn(δ)| = a−1
n

(
n

ρn/2

)
δ−α(ε)(1+o(1)), |Tn(δ)| = a−1

n 2nδ−α(ε)(1+o(1)). (10.10)

A simple rerun of the proof of Theorem 1.1 of [?] then yields the claim of the lemma. �

Note that the probability in (??) being an increasing function of ρ, it suffices to prove
(??) for all large enough ρ ∈ (0, 1). Also note that when cn is an intermediate time-scale
with 0 < ε < 1, one may always find ρ′ ∈ (0, 1) such that for all ρ ∈ [ρ′, 1), a−1

n

(
n

ρn/2

)
�

log n. Furthermore, for all 0 < ρ < 1 there exists ζ > 0 such that
(

n
ρn/2

)
/2n < 2−ζn. Thus

in particular mn � an. Hence by Lemma ??, for all 0 < ε < 1 and 0 < ρ < 1, (??) holds
true P-a.s.

When on the contrary cn is an intermediate time-scale with ε = 1 then, for all 0 < ρ < 1

and large enough n, a−1
n

(
n

ρn/2

)
≡ r2

n ≤ c 2n

an
e−n{ln 2+ ρ

2
ln ρ

2
+(1− ρ

2
) ln(1− ρ

2
)} ≤ e−c(ρ)n where

by (??) c(ρ) > 0, and by a first order Tchebychev inequality

P [|(Bρ(z) ∩ Tn(δ)) \ z| > rn] ≤ δ−α(ε)rn. (10.11)

In that case Bρ(z−)∩Tn(δ) reduces to the singleton {z−}. By Theorem 7.5 of [?], Hn(z−)
is asymptotically exponentially distributed with mean value 2n, and since 2n � an we
get that for ε = 1 and all 0 < ρ < 1, (??) holds true P-a.s.. This concludes the case of
intermediate time-scales.
Extreme time-scales. In that case |Tn(δ)| is asymptotically finite. Indeed, replacing the
variables (γn(x), x ∈ Vn) by the representation (??), it follows from Lemma ??, Lemma
?? and Proposition ?? that limn→∞ |Tn(δ)| = Υ([δ,∞]) where Υ([δ,∞]) is a Poisson
random variable whose mean value M(δ) obeys M(δ) ∼ δ−α as δ → 0 P -a.s. by Lemma
??. Here againBρ(z−)∩Tn(δ) = {z−}P -a.s. (see Lemma 2.12 of [?]) and by Theorem 7.5
of [?], Hn(z−) is asymptotically exponentially distributed with mean value 2n(1+o(1)) ∼
an. Thus, in contrast to (??), the jump chain has a positive probability to revisit any
element of Tn(δ) many times during its first kn(u+) steps. However, by Corollary 1.5 of
[?], at each re-entrance in Tn(δ) starting from Vn \ Tn(δ), the jump chain enters Tn(δ)
with a uniform distribution, uniformly in its starting point. Combining these observations
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yields limn→∞P (z+ ∈ Bρ(z−) ∩ Tn(δ)) = Υ−1([δ,∞]) ∼ δα as δ → 0. Thus (??) holds
true P -a.s. (that is to say, in P-probability).
The case α(ε) = 1. It follows from Theorem ??, (ii), and Proposition ?? that the leading
contributions to Sn(t) no longer come from visits to extremes, as in the case α(ε) < 1, but
from visits to the set of “typical” increments,

Mn(δ) ≡ {x ∈ Vn | δEτn(x) < τn(x) < δ−1Eτn(x)}, δ > 0. (10.12)

Clearly, this set is much more dense than Tn(δ). As in the case α(ε) < 1 with 0 < ε < 1,
there exists a constant c > 0 such that if a−1/4

n

(
n

ρn/2

)
> c log n then there exists Ωτ

11 ⊂ Ωτ

with P (Ωτ
11) = 1 such that on Ωτ

11, for all large enough n, both

|Bρ(z)∩Mn(δ)| = 1√
n

(
n

ρn/2

)
a
−1/4
n (1+o(1)), |Mn(δ)| = 1√

n
2na

−1/4
n (1+o(1)), (10.13)

where we used that 0 < β = β(ε) ≤ βc(1). By Theorem 1.1 of [?], H(Bρ(z−)) is
asymptotically exponentially distributed with mean value m−n ≡

√
na

1/4
n � an. Thus,

along trajectories of length ∼ an, the jump chain typically revisits the element ofMn(δ)
very many times. However, proceeding again as in the case α(ε) < 1 with 0 < ε < 1,
we see that for all 0 < ε ≤ 1, one may choose ρ′ ∈ (0, 1) such that for all ρ ∈ [ρ′, 1),
by Lemma ??, H(Bρ(z−)∩Mn(δ)) also is asymptotically exponentially distributed, with
mean value

2n(1−ζ) � m+
n ≡ 2n/

[
a
−1/4
n

(
n

ρn/2

)]
� 2n(log n)−1. (10.14)

From these two results we deduce that for all large enough n and all x ∈ Vn \Mn(δ),

Px [Hn((Bρ(z) ∩Mn(δ))) ≤ Hn(Mn(δ))] ≤ c(δ)
m−n
m+
n

+O(1/n)�
√
n
−1 (10.15)

for some constant c(δ) > 0. Since this holds true uniformly for all starting point in
Vn \Mn(δ), one readily gets that for all 0 < ρ < 1 and 0 < ε ≤ 1, P-a.s.

lim
δ→0

lim
n→∞

√
nP (z+ ∈ Bρ(z−) ∩Mn(δ)) = 0 (10.16)

where z+ and z− have the same meaning as in (??). This proves (??) and concludes the
proof of Theorem ??. �

APPENDIX A. CALCULATIONS

This appendix contains calculatory results on the moments of fδ(γn(x)) and gδ(γn(x))
that are needed in several places in the proofs. Our first lemma provides asymptotic bounds
on anE (fδ(γn(x))) and anE (fδ(γn(x))2) needed in the verification of Condition (A3’).

Lemma A.1. For all t > 0 and δ > 0 and for n large enough there exist constants
0 < c0, c1 <∞ such that

anE (fδ(γn(x))) ≤ c0δ (A.1)

anE
(
fδ(γn(x))2

)
≤ δ4 + c1. (A.2)

Proof. We observe that
fδ(u) ≤ δ2 ∀u ∈ (0,∞). (A.3)

We decompose anE (fδ(γn(x))) in the following way

anE (fδ(γn(x))) = anE
(
fδ(γn(x))1{γn(x)>δ}

)
+ anE

(
fδ(γn(x))1{γn(x)≤δ}

)
≡ (1) + (2)

(A.4)
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We start by controlling the behavior of (1).

(1) ≤ δ2anP (γn(x) > 1) ∼ δ, (A.5)

where we used the definition of an and cn. Turning to (2) we have

(2) ≤ anE
(
γn(x)2

1{γn(x)≤δ}
)

=
ane

2nβ2

c2
n

∫ log(cnδ)√
nβ
−2
√
nβ

−∞

e−u
2/2

√
2π

du

∼ ane
2nβ2

c2
n

(√
2π

(
− log(cnδ)√

nβ
+ 2
√
nβ

))−1

e
− 1

2

(
log(cnδ)√

nβ
−2
√
nβ
)2
, (A.6)

where we used that by (??) log(cnδ)√
nβ
− 2
√
nβ → −∞ as n → ∞. Now we start to expand

the exponent of the exponential function and plug in (??).

(??) = an

(√
2π

(
− log(cnδ)√

nβ
+ 2
√
nβ

))−1

δ2e
− 1

2

(
log cnδ√

nβ

)2
= c′0δ(1 + o(1)), (A.7)

where 0 < c′0 < ∞. Putting our estimates together we have that for n large enough there
exists a constant 0 < c0 <∞ such that

anE (fδ(γn(x))) ≤ c0δ. (A.8)

In a similar way we treat anE (fδ(γn(x))2). This time we truncate at one, namely

anE
(
fδ(γn(x))2

)
= anE

(
fδ(γn(x))2

1{γn(x)>1}
)

+ anE
(
fδ(γn(x))2

1{γn(x)≤1}
)
. (A.9)

For the first summand we use again the bound on f and the definition of the time-scale to
bound it by δ4. And for the second summand we use the same method as for (2): applying
Gaussian estimates, expanding the resulting term and plugging in the exact representation
of cn. The bound we obtain is a constant. Putting these estimates together we have for n
large enough

anE (fδ(γn(x))2) ≤ δ4 + c1. (A.10)
�

In the verification of Condition (A3) a slightly different function gδ appeared. In the
forthcoming lemma we control the first and second moment of gδ(γn(x)) when 0 <
α(ε) < 1.

Lemma A.2. Let cn be an intermediate time-scale and 0 < β < ∞ and 0 < α(ε) < 1.
Then there exists constants c3 and c4 such that the following holds for n large enough

anE (gδ(γn(x))) ≤ c3δ
1−α(ε), (A.11)

anE
(
gδ(γn(x))2

)
≤ c4. (A.12)

Proof. We observe that
gδ(u) ≤ δ ∀u > 0. (A.13)

As in the proof of the previous lemma we write

anE (gδ(γn(x))) = anE
(
gδ(γn(x))1{γn(x)>δ}

)
+ anE

(
gδ(γn(x))1{γn(x)≤δ}

)
≡ (1) + (2).

The first summand (1) we control by

(1) ≤ δanP (γn(x) > δ) ∼ δ1−α(ε). (A.14)
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For (2) we use Gaussian estimates.

(2) ≤ anE
(
γn(x)1γn(x)≤δ

)
=
ane

nβ2/2

cn

∫ log(cnδ)√
nβ
−
√
nβ

−∞

e−u
2/2

√
2π

du

∼ ane
nβ2/2

cn

(√
2π

(√
nβ − log(cnδ)√

nβ

))−1

e
− 1

2

(
log(cnδ)√

nβ
−
√
nβ
)2
, (A.15)

where we used that since β > βc(ε) we have by (??) log(cnδ)√
nβ
−
√
nβ → −∞ as n → ∞.

Now, expanding the terms and inserting the exact representation of cn, (??) is equal to

δan

(√
2π

(√
nβ − log(cnδ)√

nβ

))−1

e
− 1

2

(
log(cnδ)√

nβ

)2
≤ c′3δ

1−α(ε), (A.16)

for some constant 0 < c′3 < ∞. Putting the estimates on (1) and (2) together we get that
there exists a constant 0 < c3 <∞ such that

anE (gδ(γn(x))) ≤ c3δ
1−α(ε). (A.17)

To control anE (gδ(γn(x))2) one proceeds in exactly the same way. �

To study the behavior of Mn(t), and in particular to check Condition (B1), we needed a
control on the moments of g1(γn(x)) when β = βc(ε) which is done in the next lemma.

Lemma A.3. Let cn be an intermediate scale.
(i) Let β = βc(ε). Then

E (g1(γn(x))) ≤ enβ
2/2

cn
(1 + o(1)). (A.18)

Moreover, if limn→∞
√
nβ − log cn

β
√
n

= θ for some θ ∈ (−∞,∞). Then,

anE (g1(γn(x))) = Φ(θ)
ane

nβ2/2

cn
(1 + o(1)) = Φ(θ)β

√
2nπeθ

2/2(1 + o(1)). (A.19)

(ii) Let β = βc(ε). For n large enough there exists a constant 0 < c2 <∞ such that

anE
(
g1(γn(x))l

)
≤ c2, 2 ≤ l ≤ 4. (A.20)

(iii) Let β < βc. Then

E (g1(γn(x))) =
enβ

2/2

cn
(1 + o(1)). (A.21)

If β > βc/2, then
anE

(
g1(γn(x))2

)
≤ c2. (A.22)

Otherwise anE (g1(γn(x))2) ≤ ane
2nβ2

/c2
n and

log
anE (g1(γn(x))2)

a2
ne
nβ2/c2

n

= n(2β − βc)/2. (A.23)

Proof. Recall that g1(u) ≤ 1, ∀u > 0. To prove assertion (i) we rewrite E (g1(γn(x))) as

enβ
2/2

√
2πcn

∫ ∞
−∞

e
√
nβz
(

1− e−cne−
√
nβz
)
e−z

2/2dz

=
enβ

2/2

cn
− enβ

2/2

cnβ
√

2πn

∫ ∞
−∞

ey+log cne
−
(

y
β
√
n

+ log cn
β
√
n

)2
−e−ydy. (A.24)
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Now one can cut the domain of integration into different pieces. Observe that in the region
y > log n the integral is equal to

(1 + o(1))
enβ

2/2

cnβ
√

2πn

∫ ∞
logn

ey+log cne
−
(

y
β
√
n

+ log cn
β
√
n

)2
/2dy

= (1 + o(1))
enβ

2/2

cn
√

2π

∫ ∞
logn√
nβ
− log cn

β
√
n

+
√
nβ

e−y
2/2dy. (A.25)

If
√
nβ − log cn

β
√
n
→ θ for some constant θ as n → ∞ we have that (??) is equal to (1 +

o(1)) e
nβ2/2

cn
(1 − Φ(θ)). Proceeding as in (??) one can bound the integral in (??) on the

domain of integration |y| < log n by o(1) e
nβ2/2

cn
. For y < − log n, e−y > n which implies

that the on that part of the domain of integration the integral in (??) is equal to o(1) e
nβ2/2

cn
.

This yields the first equality in (??), and as the Gaussian integral is always between zero
and one, this also implies (??). The second inequality in (??) follows from the first by (??)
of Lemma ??. We now turn to assertion (ii) and consider E (g1(γn(x))2). We will split
this term into two terms:

anE
(
g1(γn(x))2

)
= anE

(
g1(γn(x))2

1{γn(x)>1}
)
+anE

(
g1(γn(x))2

1{γn(x)≤1}
)
≡ (1)+(2).

For (1) we use the definition of the scaling an and cn and the bound (??)

(1) ≤ anP (γn(x) > 1) = 1. (A.26)

For Term (2) we use exact Gaussian estimates to bound

(2) ≤ an
c2
n

∫ log cn√
nβ

−∞
e2β
√
nu
(

1− e−cne−
√
nβu
)2 e−u

2/2

√
2π

du

≤ ane
2nβ2

c2
n

∫ log cn√
nβ
−2
√
nβ

−∞

e−r
2/2

√
2π

dr

∼ ane
2nβ2

c2
n

(√
2π

(
− log cn√

nβ
+ 2
√
nβ

))−1

e
−
(

log cn√
nβ
−2
√
nβ
)2
/2
, (A.27)

where we use that by (??), log cn√
nβ
− 2
√
nβ → −∞ as n→∞. Plugging in (??) yields

(??) = an

(√
2π

(
− log cn√

nβ
+ 2
√
nβ

))−1

e
−
(

log cn√
nβ

)2
/2

= c′2(1 + o(1)), (A.28)

where 0 < c′2 < ∞. Putting both estimates together we get that for n large there exists a
constant 0 < c2 <∞ such that

anE
(
g1(γn(x))2

)
≤ c2. (A.29)

Proceeding in exactly the same way with anE (g1(γn(x))3) and anE (g1(γn(x))4), one
readily obtains (??) for l = 3 and l = 4.

Part (iii) follows from computations similar to those of (i) and (ii). (??) follows from
(??). �
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APPENDIX B. THE CENTERING TERM Mn(t) AT CRITICALITY

In this appendix we collect the fine asymptotics needed to control the centering term
Mn(t) on the critical line β = βc(ε), 0 < ε ≤ 1. Computing E (E (Mn(t))) at β = βc(ε)
gives

E (E (Mn(t))) = E

[ant]∑
i=1

E
(
c−1
n τn(Jn(i))en,i1{0<c−1

n τn(Jn(i))en,i<1}
)

= bantcE (g1(γn(x))) = ct
ane

nβ2/2

cn
(1 + o(1)), (B.1)

where by the first equality in (??) c is some constant > 0. The following lemma proves
the general diverging behavior of E(E(Mn(1)). Recall the notation (??)-(??) of Definition
??.

Lemma B.1. Given 0 < ε ≤ 1, let an and cn be sequences satisfying (??) and (??) and
let β = βc(ε). Then

lim
n→∞

ane
nβ2/2

cn
=∞. (B.2)

Proof. By (??) with β = βc(ε), log an = 1
2
(nβ2 + f(n)) for some sequence f(n) such

that f(n)
nβ2 = o(1). Furthermore, by (??), log(log an) = log(nβ

2+f(n)
2

) and
√

2 log an =√
nβ2 + f(n). Note that due to the asymptotic behavior of f(n), log(log an) is positive

for n large enough. Hence it suffices to show that

log(ane
nβ2/2)√
nβ

≥
√

2 log an. (B.3)

Plugging in the expressions for log an, (??) reads

√
nβ +

f(n)

2
√
nβ
≥
√
nβ2 + f(n), (B.4)

which is always satisfied and equality holds if and only if f(n) = 0. �

Lemma B.2. If in addition to the assumptions of Lemma ??, limn→∞
log cn√
nβ
−
√
nβ = θ

for some θ ∈ (−∞,∞), then

lim
n→∞

√
n

cn
anenβ

2/2
=

1

β
√

2π
e−θ

2/2. (B.5)

Proof. Using the notation of the proof of Lemma ??, (??) follows from (??) with limn→∞
f(n)

2
√
nβ

=

θ. Namely, under the assumption of the lemma, (??) may be written as

cn =
1

β
√

2πn
e
nβ2+

f(n)
2
− 1

8

(
f(n)

β
√
n

)2
+o(1) (B.6)

by Taylor expansion of the square root. Eq. (??) also implies that limn→∞
log cn√
nβ
−
√
nβ = θ

if and only if limn→∞
f(n)

2
√
nβ

= θ. �
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APPENDIX C. AUXILIARY LEMMAS NEEDED IN THE PROOF OF THEOREM ??

Recall that ãn and An(t) are defined in (??) and (??), respectively.

Lemma C.1. Let cn be an intermediate scale with limn→∞
log cn√
nβ
−
√
nβ = θ for some

θ ∈ (−∞,∞) and β = βc(ε) with 0 < ε ≤ 1. If
∑
an/2

n < ∞ we have for all t, s > 0
and for all ε > 0, P-a.s.

lim
n→∞

√
nP

∣∣∣∣∣∣
bãntc∑
k=1

P
(
τn(Jn(k + 1))en,k+1 > cns|Jn(k)

)
− ãnt

ans

∣∣∣∣∣∣ > ãnε

an
√
An(t)

 = 0

(C.1)
If
∑
an/2

n =∞ the same holds in P-probability.

Proof. Proceeding as in the the proof of Proposition ?? one readily establishes that

P

∣∣∣∣∣∣
bãntc∑
k=1

P
(
τn(Jn(k + 1))en,k+1 > cns|Jn(k)

)
− bãntc

an
νn(s,∞)

∣∣∣∣∣∣ > ãnε

an
√
An(t)


≤

(
an
√
An(t)

ãnε

)2((
bãntc
an

)2
ν2
n(u,∞)

2n−1
+
bãntc
an

Θ1
n(u)

)
. (C.2)

where Θ1
n(u) is defined in (??). Using Proposition ?? and (??) yields the claim of Lemma

??. �

Lemma C.2. Let cn be an intermediate scale with limn→∞
log cn√
nβ
−
√
nβ = θ for some

θ ∈ (−∞,∞) and β = βc(ε) with 0 < ε ≤ 1. Then we have for all x > 0 that P-a.s.

lim
n→∞

an
ãn

θn∑
l=1

P (τn(Jn(k + 1)en,k+1 > cnx) = 0. (C.3)

Proof. Using a first order Tchebychev inequality we have

P

(
an
ãn

θn∑
l=1

P (τn(Jn(k + 1)en,k+1 > cnx) > ε

)
≤ ε−1an

ãn

θn
an

Eνn(x,∞). (C.4)

In view of Lemma ?? and since
∑

θn
ãn
<∞, the claim of Lemma ?? follows. �

Lemma C.3. Let cn be an intermediate scale with limn→∞
log cn√
nβ
−
√
nβ = θ for some

θ ∈ (−∞,∞) and β = βc(ε) with 0 < ε ≤ 1. If
∑
an/2

n < ∞ we have for all t, s > 0
and for all ε′ > 0 that P-a.s.

lim
n→∞

√
nP (Mn(bãnt(1 + ε′)/anc) < t) = 0. (C.5)

If
∑
an/2

n =∞ the same holds in P-probability.

Proof. Observe first that Mn(bãnt(1 + ε′)/anc) = Mn(ct/
√
n) for some constant c. We

know from Proposition (??) and Lemma ?? that it concentrates around EMn(bãnt(1 +
ε′)/anc) either P-a.s. or in P-probability and the bounds are in the worst case linear in t.
Moreover by linearity of EMn(bãnt(1 + ε′)/anc) and Lemma ?? the claim of Lemma ??
follows. �
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