Beyond 100 GHz: High frequency device characterization for THz applications

S. Fregonese¹, M. Deng², M. Potereau², M. De Matos², T. Zimmer^{2,3}

¹CNRS, ²University of Bordeaux, France ³XMOD Technologies

Where I am from?

T. Zimmer

Bordeaux

IMS-Lab

T. Zimmer

Strategy of IMS

Fields of expertise

Established

- Compact modelling and RF-characterization
- RFIC design
- IC reliability

- Bioelectronics
- Organic electronics

Biographical Summary Prof. Thomas Zimmer

Education

- 1983 1989 University Study, Physics, University Würzburg, Germany
- 1990 1992 Ph.D. Student at University Bordeaux 1

• Professional Life

- 1989-1990 Research employee, Fraunhofer Institute of Erlangen, Germany
- 1992-1993 Research employee Adera, France
- 1993 Assistant Professor (MdC), University of Bordeaux 1
- 2003 Professor, University of Bordeaux

• Degrees

- 1989 Master Degree in physics, University of Würzburg, Germany
- 1992 PhD: University of Bordeaux
- 2001 Habilitation: University of Bordeaux

• Further Professional Activities

- 2002 Cofounder of the company XMOD Technologies
- 2008 Senior Member of the IEEE
- 2008 2015 Head of the research group Nanoelectronics at the IMS Lab
- 2012 TPC chair of the ESSDERC conference
- 2013 Organizer of Open Bipolar Workshop at the BCTM
- 2014 Organizer of THz-Workshop at the ESSDERC/ESSCIRC
- 2015 Organizer of the Workshop "SiGe for mmWave and THz" at the European Microwave Week
- 2015 Organizer of the Seminar "SiGe-THz devices: Physics and reliability " in Bordeaux

Acknowledgement

- Bertrand Ardouin (XMOD Technologies)
- Christian Raya (PhD, PostDoc, now with XMOD Technologies)
- Peter Baureis (Professor, FH Würzburg, Germany)
- Arnaud Curutchet (Associate Professor, IMS Bordeaux)

Outline

I. Context: THz: applications

II. State of the Art of calibration and deembedding

III. On-wafer calibration improvements

IV. Beyond 100GHz

V. Conclusion

Where could we use silicon?

Source: U. Pfeiffer, DOT7 WS 2015

Why Silicon for terahertz?

- III/V dominated
 - High performance
 - Low volume production
 - Low integration level

http://www.teraview.com

- Silicon technologies
 - Low performance in comparison with III/V
 - Enable system-on-chip
 - Low power consumption
 - Reduced cost at high volumes

H. Sherry et. al, ISSCC 2012

Source: U. Pfeiffer, DOT7 WS 2015

The integration into silicon

BiCMOS Technology Evolution

Source: U. Pfeiffer, DOT7 WS 2015 University of Bordeaux / XMOD Technologies

Application: Automotive radar

Source: NYSTEIN

Source: eetimes

Impact of SiGe on Radar Sensors

T. Zimmer

University of Bordeausourde R Ladmen infineoin 2016

Impact of BiCMOS on Automotive Radar Market

What comes next?

- In Europe each year about 1.3 million traffic accidents cause:
 - More than 40.000 fatalities
 - Economic damage of more than 200 billion
 € per year
- Human error is involved in over 90% of accidents
- Automotive radar help drivers to
 - Maintain a safe speed
 - Keep a safe distance
 - Avoid overtaking in critical situations
 - Safely pass intersections
 - Avoid crashes with vulnerable road user
 - Reduce severity of an accident
 - Drive more efficiently

http://en.wikipedia.org/wiki/File:401_Gridlock.jpg en.wikipedia.org/wiki/Rear-end_collision#mediaviewer/File:Car_accident_-_NSE_Malaysia.jpg

Source: H. Jäger, DOT7 WS 2015 University of Bordeaux / XMOD Technologies

T. Zimmer

Mobile data traffic growth until 2019

T. Zimmer

source: Cisco VNI study => Need of high data transfer rate University of Bordeaux / XMOD Technologies 17/82

Application: Toward 100GBit/s

- 56 Gbps Short Range Communication with FPGA and SiGetransceivers
 - Xilinx Virtex 7 FPGA has high speed transceivers that are capable of generating baseband signals with bitrates up to 28 Gbps
 - Use QPSK with IQ-mixer to double the bitrate to 56 Gbps with the same bandwidth

T. Zimmer

Application: THz Image scanner for material and product testing

- Wideband 240GHz imaging system with excellent spatial resolution
 - 3D-imaging system using coherent THz-TX and –RX for synthetic aperture radar imaging (reflection imaging)
 - Specific Imaging system setup and Image generation
 - Integration of 32 Rx +
 32 Tx Modules at 240 GHz
 - Aiming for horizontal and vertical imaging in reflection
- => Non Destructive Control

Application: THz image scanner for security

Millimeter-wave technology for security scanner (airport, railway station etc.)

The security scanner automatically detects potentially dangerous objects:

-under clothing -or on the body, whether they are rigid, flexible, fluid, metallic or non-metallic.

If the scanner reports an alarm, the location of the object is marked on an avatar, a symbolic graphic of the human body.

Application: THz image scanner for health

System demonstrator IC

 Single-chip 94 GHz up-conversion and receiver in 0.13 um Bi-CMOS, integrated in ST 9MW technology (230/280, f_t/f_{max}).

World record of SiGe HBT (IHP)

- SiGe heterojunction Bipolar Transistors operating at a maximum oscillation frequency of 700 GHz
- THz-Applications
 - Automotive radar
 - 100GBit/s data rate
 - Non-destructive control
 - Security scanner
 - THz imaging for health

Max oscillation freq f_{max} and transition freq of a SiGe HBT transistor fabricated at IHP. Measurements done at IMS Lab, Bordeaux.

Outline

I. Context

II. State of the Art of calibration and deembedding

III. On-wafer calibration improvements

IV. Beyond 100GHz

V. Conclusion

Motivation

• Where is the device?

Source: IEEE Spectrum

Outline

I. Context

II. State of the Art of calibration and deembedding

Off-wafer calibration and 4 steps deembedding

On-wafer calibration and deembedding

III. On-wafer calibration improvements

IV. Beyond 100GHz

V. Conclusion

T. Zimmer

Review of calibration techniques

SoA methods 1/1

Acronym	Number of Standards	Error model	Analytical solution	Electrical Hypothesis	Standards width	Wide band
SOLT	4	12 terms	Yes	6 (magnitude and phase of all standards)	Constant	Yes
LRRM	4	8 terms	No	0	Constant	Yes
SSST	4 or 7	8 terms	Yes	6 (magnitude and phase of all standards)	Constant	No
TRL	3	8-12 terms	Yes	1 (REFLECT symmetry+2 length)	Not constant	No
TRM	3	8 terms	Yes	2 (magnitude and phase of match)	Constant	No
LS1S2	3	8 terms	No	0 (+1 length)	Not constant	No

For off-wafer calibration

Direct analytical solution

- Constant width
- Wide band

- ightarrow faster, easily implementable, no optimization step
- \rightarrow no probe manipulation (higher accuracy)
- ightarrow measurement between 0,1GHz and 110GHZ

SOLT calibration: Results

T. Zimmer

Off-wafer calibration 2/8

Method PO/PS/CS/CO

Off-wafer calibration 4/8

T. Zimmer

Method PO/PS/CS/CO

Off-wafer calibration 6/8

Remove parasitic of metal stack

Method PO/PS/CS/CO

Off-wafer calibration 8/8

Outline

I. Context

II. State of the Art of calibration and deembedding

Off-wafer calibration and 4 steps deembedding

On-wafer calibration and deembedding

III. Issues and proposed improvements

IV. Beyond 100GHz

V. Conclusion
On wafer calibration

Why?

The calibration kit environment is very different from the silicon one (DUT).

Calibration kit	Silicon wafer
Alumina substrate	Silicon substrate
Rectangular pad	Hexagonal pad
Gold metallization	Aluminum metallization

The environment is different, error is introduced in measurement

The solution is on-wafer calibration !

State Of the Art methods

Review of calibration technics

SoA methods 2/2

Acronym	Number of	Error model	Analytical	Electrical Hypothesis	Standards	Wide band
	Standards		solution		width	
SOLT	4	12 terms	Yes	6 (magnitude and phase of all standards)	Constant	Yes
LRRM	4	8 terms	No	0	Constant	Yes
SSST	4 or 7	8 terms	Yes	6 (magnitude and phase of all standards)	Constant	No
TRL	3	8-12 terms	Yes	1 (REFLECT symmetry+2 length)	Not constant	No
TRM	3	8 terms	Yes	2 (magnitude and phase of match)	Constant	No
LS1S2	3	8 terms	No	0 (+1 length)	Not constant	No

For on-wafer calibration

- Analytical solution
- Few Electrical Hypothesis
- Standard 50Ω Match

- \rightarrow Faster, easily implementable
- \rightarrow Less sensitive to variation process
- ightarrow Few constraints on the standards accuracy
- ightarrow Very hard to make in mmwave and THz range

on-wafer TRL calibration : results

On-wafer calibration 2/4

T. Zimmer

CS/CO deembedding

On-wafer calibration 3/4

Deembedding Complete-open and Complete-short correction (CS/CO)

- Remove parasitic of metal stack
- Reference plane \rightarrow DUT contact

CS/CO deembedding : results

On-wafer calibration 4/4

State Of the Art methods

Off wafer SOLT calibration and 4 steps deembedding

Pro	Cons
Wide Band	Many standards \rightarrow Complex procedure
Same width standards → No probes manipulation required	Off wafer \rightarrow Deembedding necessary

On wafer TRL calibration and 2 steps standards

Pro	Cons
Less standards \rightarrow less contact error	Use more silicon area
On wafer → Same environment as measurement	Line length is longer \rightarrow Environment alteration

Outline

I. Context

II. State of the Art of calibration and deembedding

III. On-wafer calibration improvements

Meander Line

3D-TRL

IV. Beyond 100GHz

V. Conclusion

Probe movement during calibration

Probe movement 1/3

The Line is longer than the other standard

- At least one probe needs to be moved
- The RF signal path may be altered

Probe movement during calibration

Error quantification methodology

Probe movement 2/3

1 Measurement of the "probe in air" (distance between probes : 130μm)

2 Movement of the left probes

3 Measurement of the "probe in air" (distance between probes : 380µm)

4 Comparison of the probe impedance before and after the probe movement

<u>M Potéreau</u>, C Raya, "Limitations of on-wafer calibration and deembedding methods in the sub-THz range", JCC, vol1, n°6, p25-29, nov13

Probe movement during calibration

Experimentation results : Probes capacitance

Probe movement 3/3

Probe not moved between the two measurements. No significant modification under 110GHz Above 190GHz, not clear so far

Probe moved between the two measurements. Higher modification under 110GHz (10%) Above 190GHz, not clear so far

TRL with meander lines method

Based on "on-wafer" TRL calibration.

- LINE and THRU standards are made from patterns lined-up. 0
- REFLECT standard is remained unchanged. $\mathbf{\Sigma}$

HFSS modelling

Patented method

T. Zimmer

A)

University of Bordeaux / XMOD Technologies

0

r

t

2

Implementation

Layout for B11HFC (Infineon)

T. Zimmer

Setup

Experimentation 1/3

Comparison between three methods :

- SOLT+PO/PS
- TRL with straight lines
- TRL with meander lines
- The reference plane is defined at top metal for all methods

Measurement of a HBT from Infineon B11HFC (emitter window : 5x0.16µm²)

- Transit frequency f_T
- Base emitter capacitance C_{BE}
- Base Collector capacitance C_{BC}

Structures used in the deembedding PO/PS

Experimentation 2/3

T. Zimmer

Results : f_T

Experimentation 3/3

The three methods give very close results.

T. Zimmer

Contribution à la caractérisation de composants sub-terahertz

Outline

I. Context

II. State of the Art of calibration and deembedding

III. Issues and proposed improvements

Meander Lines

3D-TRL

IV. Beyond 100GHz

V. Conclusion

3D-TRL method

3D-TRL method 1/3

- Based on "on-wafer" TRL calibration
- LINE and THRU standards are altered to take into account the metal stack

Reference plane defined at DUT access in **1** step

T. Zimmer

Based on the component structure

- Component is removed
- Port 1 and port 2 are connected on bottom metal layer

LINE modification

3D-TRL method 3/3

LINE standard is based on THRU standard

Access lines (red and yellow) are stretched along blue arrows

Setup

Experimentation 1/3

- Comparison between the three methods exposed
 - SOLT+PO/PS/CS/CO
 - TRL+CS/CO
 - 3D-TRL

- Measurement of a HBT from Infineon B11HFC (emitter window : 5x0.16μm)
 - Transit frequency f_T

Experimentation 2/3

T. Zimmer

Results : f_T

Experimentation 3/3

PO/PS/CS/CO and TRL+CS/CO give same results

- 3D-TRL slightly lower
 - Remaining parasitic ?

T. Zimmer

Results : C_{BE}

 C_{BE} value close to 10fF \rightarrow above the 1fF limit

- 3 methods gives same results
- Solution 3D-TRL less noisy above 40GHz
 - Iess standards → less contact errors

Results : C_{BC}

Experimentation 3/3

▶ Remaining error (C_{12}) → deembedding needed

 $\mathbf{\Sigma}$

Deembedding procedure : CO*

CO* deembedding 1/3

Residual parasitic of the 3D-TRL method

Parasitic of the complete open

- Emitter capacitance is correctly evaluated
 - The port admittance parasitics are removed
- Collector Capacitance is not correctly evaluated
 - Residual capacitance between the port
- Using CO, C₁₂ is removed from the DUT

Results : C_{BC}

CO* deembedding 2/3

With C₁₂ removed, the three methods give similar results

T. Zimmer

Results : f_T

CO* deembedding 3/3

Same results for the f_T

T. Zimmer

Contribution à la caractérisation de composants sub-terahertz

Outline

I. Context

II. State of the Art of calibration and deembedding

- III. On-wafer calibration improvements
- IV. Beyond 100GHz

V. Conclusion

And what about beyond 100GHz ?

Test-structures Back-End-Of-Line

Schematic view of the BEOL of INFINEON's B7HF200 process

Beyond 100GHz: Bench-marking of EM-simulation

Double check TRL calibration: method -> EM simulation

Beyond 100GHz: Bench-marking of EM-simulation

Double check TRL calibration: results
Beyond 100GHz: EM-simulation vs measurement

Characterization of Passive elements and comparison to EM simulation

Beyond 100GHz: Characterization of devices up to 500 GHz

Transistor measurements: f_T and f_{max}

Beyond 100GHz: Characterization of devices up to 500 GHz

Transistor measurements: S-Parameter

What about contacts?

What about Probe tip positioning?

What about Probe tip positioning?

What about Probe coupling with underlying surface ?

What about SOLT Calibration on ISS compared to on wafer TRL calibration?

Contribution à la caractérisation de composants sub-terahertz

Outline

I. Context

II. State of the Art of calibration and deembedding

- III. On-wafer calibration improvements
- IV. Beyond 100GHz
- V. Conclusion

Conclusion

State of the Art of calibration and deembedding techniques

- Presentation of both off-wafer and on-wafer techniques
- Highlights of advantages and drawbacks of both of them

Presentation of new meander lines structures

- News structures give results close to the SoA
- No manipulation required during calibration \rightarrow easier calibration, automative probe station

Presentation of new 3D-TRL structures

- New structures \rightarrow less noisy results, less test structures are needed
- More straightforward

Measurement beyond 100GHz

- Reliable measurements: to be benchmarked through EM-simulation
- On-wafer TRL calibration: method of choice beyond 100GHz
- Investigation of probe positioning and probe coupling

Contribution à la caractérisation de composants sub-terahertz

Outline

VI. Thanks

T. Zimmer

University of Bordeaux / XMOD Technologies

References (1/3)

• Journal publications

- S. Fregonese, D. Celi, T. Zimmer, C. Maneux, P. Y. Sulima "A Scalable Substrate Network for HBT Compact Modeling", Solid-State Electronics, Vol 49/10, pp 1623-1631, 2005
- N. Augustine, K. Kumar, A. Bhattacharyya, T. Zimmer, A. Chakravorty, "Modeling Non-Quasi-Static Effects in SiGe HBTs Using Improved Charge Partitioning Scheme", IEEE Transactions on Electron Devices, pp. 2542 2545, 2012
- M. Potereau, C. Raya, M. De Matos, S. Fregonese, A. Curutchet, M. Zhang, B. Ardouin, T. Zimmer "Limitations of on-wafer calibration and de-embedding methods in the sub-THz range", – Journal of Computer and Communications (JCC), pp 25-29, 2013
- Arnaud Curutchet, Anthony Ghiotto, Manuel Potéreau, Magali De Matos, Sébastien Fregonese, Eric Kerhervé, and Thomas Zimmer, "On the Development of a Novel High VSWR Programmable Impedance Tuner", spécial issue du journal d'EUMA, International Journal of Microwave and Wireless Technologies, Volume 8, Issue 4-5, June 2016, pp. 723-730

• Conferences (invited)

- M Potéreau, S Fregonese, A Curutchet, T Zimmer, « Accuracy investigations of calibration and deembedding technics », Esscirc-Essderc 2014, THz-Workshop: Millimeter- and Sub-Millimeter-Wave circuit design and characterization, September 2014
- Sebastien Fregonese, Rosario D'Esposito, Cristell Maneux, Thomas Zimmer, « Substrate coupling effect in BiCMOS technology for millimeter wave application », Special Session NEWCAS 2015 "Onchip measurements for characterization, testing, and calibration of analog front-ends and mmW devices ", June 7-10, 2015, Grenoble, France

References (2/3)

- International Conferences
- S. Fregonese, D. Celi, T. Zimmer, C. Maneux, P. Y. Sulima "Scalable Substrate Modeling based on 3D Physical Simulation Substrat" XIX Conference on Design of Circuits and Integrated Systems - DCIS, , November 24-26, 2004, Bordeaux, France
- J. Bazzi, C. Raya, A. Curutchet, T. Zimmer. "Investigation of High Frequency coupling between Probe tips and Wafer surface.", IEEE BiCMOS Technology Meeting 2009, BCTM, Capri, Italy
- N. Augustine, K. Kumar, A. Chakravorty, A. Bhattacharyya, T. Zimmer, "Efficient Models for Non-Quasi-Static Effects and Correlated Noise in SiGe HBTs", EDSSC 2012 IEEE International Conference on electron devices and solid state circuits, 3-5 December 2012, Bangkok, Thailand
- M. Potereau, C. Raya, M. De Matos, S. Fregonese, A. Curutchet, M. Zhang, B. Ardouin, T. Zimmer "Limitations of on-wafer calibration and de-embedding methods in the sub-THz range", ECC 2013 conference, 29.11-1.12 2013, Sanya, China
- M. Potéreau, S. Fregonese, A. Curutchet, P. Baureis, T. Zimmer, « New 3D-TRL structures for on-wafer calibration for high frequency S-parameter measurement », European Microwave Integrated Circuits Conference (EuMIC), September 7-8, 2015, Paris, France
- A.Curutchet, A. Ghiotto, M. Potéreau, M. De Matos, S. Fregonese, E. Kerhervé, T. Zimmer, « Early Demonstration of a High VSWR Microwave Coaxial Programmable Impedance Tuner with Coaxial Slugs », European Microwave Integrated Circuits Conference (EuMIC), September 7-8, 2015, Paris, France
- Manuel Potéreau, Arnaud Curutchet, Rosario D'Esposito, Sebastien Fregonese, Thomas Zimmer, A Test Structure Set for on-wafer 3D-TRL calibration, International Conference on Microelectronic Test Structures (ICMTS), 28th-31st March 2016, Yokohama, Japan
- Manuel Potéreau, Marina Deng, Christian Raya, Bertrand Ardouin, Klaus Aufinger, Cédric Ayela, Magali De Matos, Arnaud Curutchet, Sébastien Frégonèse, Thomas Zimmer, "Meander Type Transmission Line Design for On-Wafer TRL Calibration", EuMW, 3-7 October 2016, London, UK

References (3/3)

Workshop

- C. Raya, N. Kaufmann, D. Celi, T. Zimmer, "A new transit time extraction algorithm based on matrix deembedding techniques", 7th European HICUM Workshop, June 18-19, 2007, Dresden, Germany
- P. M. Mans, S. Jouan, A. Pakfar, S. Fregonese, F. Brossard, A. Perrotin, C. Maneux, T. Zimmer, "Investigation of Ge content in the BC transition region with respect to transit frequency", 20th BipAk, October 18-19, 2007, München, Germany
- C. Raya, T. Zimmer, D. Céli, "A new transit time extraction algorithm based on matrix deembedding techniques", 3 rd Workshop on Modeling and Design for RF Technologies and Applications, June 27, 2007, Crolles, France
- C. Raya, D. Celi, T. Zimmer, « Investigation of De-embedding Methods up to 110GHz », 8th European HICUM Workshop, May 20/21, 2008, Böblingen, Germany
- T. Zimmer, "EM simulation of HF test structures", Workshop Labo Commun ST/IMS, 01/07/2008, Crolles, France
- J. Bazzi, C. Raya A. Curutchet, F. Pourchon, N. Derrier, D. Celi, T. Zimmer, "Investigation of de-embedding procedure up to 110GHz", MOS Modeling and Parameter Extraction Working group, MOS-AK/GSA Workshop, 7-8 April 2011, Paris, France
- A. Bhattacharyya, C. Maneux, S. Frégonèse, T. Zimmer, "NQS effect and implementation in compact transistor model", MOS Modeling and Parameter Extraction Working group, MOS-AK/GSA Workshop, 7-8 April 2011, Paris, France
- J. Bazzi, A. Curutchet, P. Baureis, T. Zimmer, "On-Si calibration vs ISS calibration" 24th BipAk, May 6, 2011, Munich, Germany
- A. Bhattacharyya, C. Maneux, S. Frégonèse, T. Zimmer, "NQS modelling with HiCuM: What works, what doesn't", 24th BipAk, May 6, 2011, Munich, Germany
- M. Weiß, S. Fregonese, M. Santorelli, A. K. Sahoo, C. Maneux, T. Zimmer, "On pulsed RF measurements", 25th BipAk, 14 November 2012, Munich, Germany
- M Potéreau, S Fregonese, A Curutchet, P Baureis, T Zimmer, "Nouvelles structures 3D pour calibrage TRL sur puces adaptées à la mesure de paramètres S très hautes fréquences », Journées Nationales du Réseau Doctoral en Micro-nanoélectronique (JNRDM 2015)