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Abstract

We derive scaling limit results for the Hierarchical Random Hopping Dynamics for the
cascading two-level GREM at low temperature at extreme time scales. It is known
that in the cascading regime there are two static critical temperatures. We show that
there exists a (narrow) set of fine tuning temperatures; when they lie below the static
lowest critical temperature, three distinct dynamical phases emerge below the lowest
critical temperature, with three different types of limiting dynamics depending on
whether the temperature is (well) above or below, or at a fine tuning temperature, all
of which are given in terms of K processes. We also derive scaling limit results for
temperatures between the lowest and he highest critical ones, as well as aging results
for all the limiting processes mentioned above, by taking a second small time limit.
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1 Introduction

It is believed that activated dynamics of spin glasses, which occur at time-scales on
which the process has time to escape deep valleys of a highly complex random energy
landscape, exhibit aging at low temperature, the nature of which should be closely linked
to the specific properties of this landscape [10], [9]. Over the past decades one type
of aging behavior was isolated and identified, first in the REM [3], [4], [5], [20] whose
complete dynamic phase diagram is now known [25], and later also in the p-spin SK
models [2, 13] but for restricted time-scales at which the dynamics does not have time
to discover the full correlation structure of the random environment and, not being
influenced by strong long-distance correlations, behaves essentially like a REM.
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Low temperature cascading 2-GREM close to equilibrium

A question arose as to whether this REM-like behavior was truly universal or de-
pended on the choice of dynamics. Indeed, all the papers quoted above study the same
dynamics, the Random Hopping dynamics, whose trajectories do not depend on the
random Hamiltonian, a choice that is clearly not satisfactory from the point of view
of physics. Would a physically more realistic choice of dynamics change the nature of
aging? The recent paper [24] answered in the negative for the key example of Metropolis
dynamics of the REM, for all time-scales away from extreme time-scales at which the
phase transition from aging to stationarity takes place. Nothing is known to date about
Metropolis dynamics of the REM at extreme time-scales, whether from a mathematical,
theoretical or numerical point of view [1], let alone Metropolis dynamics of p-spin SK
models.

The present paper initiates the study of the aging dynamics of the GREM, a model
with built-in hierarchical structure for which both the process of extremes and the low
temperature Gibbs measure are fully understood [15, 14]. We consider here only the
2-GREM, which already enables us to identify new aging behaviors and an unforeseen
mechanism, called fine tuning mechanism, while avoiding the heaviness inherent in the
model with finitely many hierarchies. Furthermore, we restrict our analysis to extreme
time-scales, where the process undergoes a transition from aging to equilibrium and, in
doing so, visits the configurations in the support of the Gibbs measure. The parameters
of the model and the temperature are chosen such that this support has a fully cascading
structure, a setting that would be qualified as “2-step replica symmetry breaking” in
physics. Shorter time-scales where the dynamics is aging will be considered in a follow-
up paper. Finally, our choice of the dynamics is dictated by that of the time-scales. As
already mentioned, Metropolis dynamics at extreme time-scales is out of reach. However,
we do not study the plain Random Hopping dynamics considered in earlier literature but
a hierarchical version, the Hierarchical Random Hopping dynamics, which is closer to
Metropolis dynamics. Based on our knowledge of the REM, it is reasonable to expect
that our choice of dynamics allows to correctly predict aging of Metropolis dynamics of
the GREM near the phase transition.

For the most part of this paper, we will be concerned with the scaling limit of the
dynamics for the time-scales and parameters specified above. Having obtained the
limiting dynamics – given by K-processes appropriate to each regime that emerges
in the analysis – (see Subsection 2.5), we then proceed to take a further small time
limit for which aging results follow (see Subsection 1.3). Not only do we obtain a new,
distinctive GREM-like aging behavior that goes beyond the known REM-like behavior,
but we also isolate a new, temperature dependent fine tuning mechanism, that gives rise
to three distinct aging regimes (corresponding to three distinct K-processes) which the
dynamics can be tuned in by adjusting the temperature. This completely new fine tuning
mechanism, and the rich aging picture that emerges were not predicted in the physics
literature on the GREM dynamics [10], [29], [9].

1.1 The model

We now specify our setting. Let VN = {−1, 1}N , VNi = {−1, 1}Ni , σ = σ1σ2, σi ∈ VNi ,
i = 1, 2, and make N1 = bpNc for some p ∈ (0, 1) and N2 = N −N1; we view σi as the i-th
hierarchy or level of σ. Given a ∈ (0, 1), set

HN (σ) = H
(1)
N (σ) +H

(2)
N (σ), σ ∈ VN , (1.1)

where, for σ ∈ VN

H
(1)
N (σ) = H

(1)
N (σ1) = −

√
aNΞ(1)

σ1
, H

(2)
N (σ) = −

√
(1− a)NΞ(2)

σ1σ2
, (1.2)
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Low temperature cascading 2-GREM close to equilibrium

and Ξ := {Ξ(1)
σ1 ,Ξ

(2)
σ ; σ ∈ VN} is a family of i.i.d. standard Gaussian random variables.

We call random environment and denote by (Ω,F ,P) the probability space on which
the sequence of processes (HN (σ), σ ∈ VN ), N > 1, is defined. As usual, we call HN (σ)

the Hamiltonian or energy of σ. We refer to the minima of HN (·) as low energy or
ground state configurations. We will also refer to them, for being minima of HN (·),
as top configurations. Likewise for H(i)

N (·), i = 1, 2. The associated Gibbs measure at
inverse the temperature β > 0 is the (random) measure Gβ,N defined on VN through
Gβ,N (σ) = e−βHN (σ)/Zβ,N where Zβ,N is a normalization.

Let us briefly recall the key features of the statics of the 2-GREM (see [8] for a detailed
account). As regard the Hamiltonian, two scenarios may be distinguished, related to
the composition of the ground state energies in terms of their first and second level
constituents: the cascading phase, when a > p, and where those energies are achieved
by adding up the minimal energies of the two levels, so that to each first level ground
state configuration, there corresponds many second level ground state configurations; in
the complementary non-cascading phase, the composition of the ground state energies
is different, and for each first level constituent there corresponds a single second level
constituent.

Consider now the case where a > p. The free energy exhibits two discontinuities at
the critical temperatures

βcr1 ≡ β∗
√
p

a
< βcr2 ≡ β∗

√
1− p
1− a

, β∗ =
√

2 ln 2, (1.3)

and the Gibbs measure behaves as follows. In the high-temperature region β < βcr1 , no
single configuration carries a positive mass in the limit N ↑ ∞, P-a.s.; here the measure
resembles the high temperature Gibbs measure of the REM. On the contrary, in the low
temperature region β > βcr2 , the Gibbs measure becomes fully concentrated on the set of
ground state configurations, yielding Ruelle’s two-level probability cascade. In between,
when βcr1 < β < βcr2 , an intermediate situation occurs in which the first level Hamiltonian
variables “freeze” close to their ground state values, but not the second level ones, so
that, once again, no single configuration carries a positive mass in the limit N ↑ ∞. To
obtain a macroscopic mass, one must lump together an exponentially large number of
second level configurations. In this paper we focus on the cascading phase (a > p) of
the model at low temperature (β > βcr2 ). We will also treat the case βcr1 < β < βcr2 in a
sub-domain of the parameters where we can prove a scaling limit for the dynamics at
the extreme time-scale. In the complementary sub-domain the process is in an aging
phase and will thus be treated in the follow-up paper.

The dynamics we consider is a Markov jump process (σN (t), t > 0) that evolves along
the edges of VN with transition rates given by, for spin configurations σ, σ′ ∈ VN ,

NwN (σ, σ′) = eβHN (σ)1
σ

1∼σ′
+ eβH

(2)
N (σ)1

σ
2∼σ′

(1.4)

and wN (σ, σ′) = 0 else, where σ
i∼σ′ iff σ ∼ σ′ and σi ∼ σ′i. Let us briefly discuss this

choice of rates. With the exception of [24], the only dynamics of mean-field spin glasses
for which REM-like aging could be proved so far, and also the only one for which scaling
limits at extreme time scales could be obtained is the Random Hopping dynamics [3, 4]
which, when it jumps, chooses its next state uniformly from its n nearest neighbors,
regardless of the random environment. This choice is also legitimate in the GREM, but it
could lead to an aging behavior different from that of a more “realistic” Glauber dynamic.
Indeed, a moment’s thought reveals that the hierarchical structure of the Hamiltonian
of the GREM is reflected in the dynamics, for typical choices of Glauber dynamics such
as Metropolis dynamics, but that this property is lost in the above Random Hopping
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Low temperature cascading 2-GREM close to equilibrium

dynamics. The rates (1.4) retain this hierarchical property of Metropolis dynamics, but
simplifies Metropolis rates within each given level by replacing them by the rates of the
Random Hopping dynamics. We naturally call the resulting dynamics the Hierarchical
Random Hopping dynamics (hereafter HRHD).

Following a standard notation σ ∼ σ′ indicates that d(σ, σ′) = 1, where d(·) stands for
the usual Hamming distance in VN – we will below denote by di such distance in VNi ,
i = 1, 2. In other words, σ ∼ σ′ indicates that σ, σ′ differ in exactly one coordinate; we
say in this context that σ, σ′ are (nearest) neighbors (in VN ). We recognize the graph
whose vertices are VN and whose edges are the neighboring pairs of configurations
of VN , abusively denoted also by VN , as the N -dimensional hypercube. Clearly, σN is
reversible w.r.t. Gβ,N .

It now remains to specify the time-scale in which we observe this process. As
mentioned earlier, we are interested in extreme time-scales, where the dynamics is close
to equilibrium. What we mean here by the dynamics being close to equilibrium at a given
extreme time-scale is that the dynamics with time rescaled by that time-scale converges
in distribution to a nontrivial Markov process which is ergodic in the sense of having an
irreducible (countable) state space and a unique equilibrium distribution. The limiting
dynamics is thus close to equilibrium, since it converges to equilibrium as time diverges,
and it is in this sense that we say that the original dynamics is close to equilibrium at
the extreme time-scale – see Remark 2.10 for a more precise discussion. They also are
the time-scales that determine the phase separation line between aging and stationarity
in the sense that taking time to zero, the process enters an aging regime.

For future reference we call P the law of σN conditional on the σ-algebra F , i.e. for
fixed realizations of the random environment, or Pη, when the initial configuration η is
specified. We will denote by P ⊗ Pη the probability measure obtained by integrating Pη
with respect to P. Expectation with respect to P, P and P ⊗ Pµ are denoted by E, E and
E ⊗ Eµ, respectively, where µ is the uniform probability measure on VN .

1.2 Dynamical phase transitions

The distinct static phases of the cascading 2-GREM, determined by β = βcri , i = 1, 2,
are expected to exhibit different dynamical behaviors under the HRHD at extreme (and
conceivably other) time scales. This will be seen when comparing the results of our
analysis of the HRHD below the lowest critical temperature (β > βcr2 ) on the one hand,
and those for intermediate temperatures (β ∈ (βcr1 , β

cr
2 )), on the other hand. Another

source of dynamical phase transition in the HRHD at extreme time scales is the fine
tuning phenomenon discussed next.

1.2.1 Fine tuning; heuristics

There are two competing factors governing the behavior of the RHD at extreme time-
scales. One is the number of jumps it takes for the dynamics to leave a first level
ground state configuration σ1. This is a geometric random variable with mean 1 +
N2

N1
exp{β

√
aNΞ

(1)
σ1 } ≈ exp{ββ∗

√
paN}. The other factor is the number of jumps the

process makes until it finds a second level low energy configuration. This is ≈ 2(1−p)N .
The relative size of these numbers determines three temperature regimes.

At relatively high temperatures, the second number dominates, and so after leaving a
ground state configuration σ, which it does at times of order

exp{β
√

(1− a)NΞ(2)
σ } ≈ exp{ββ∗

√
(1− p)(1− a)N},

σN will visit many first level ground state configurations before it finds a second level
ground state configuration. When it first finds such a second level configuration, say σ′2,
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Low temperature cascading 2-GREM close to equilibrium

while in a first level ground state configuration σ′1 (meaning that it first returned to an
overall ground state configuration σ′1σ

′
2), σ′1 will be effectively distributed proportionally

to exp{β
√
aNΞ

(1)
σ′1
}; this can be explained by a size-bias mechanism that operates in the

selection of σ′1. There is no such mechanism for the choice of σ′2, and it is distributed
uniformly.

On the other hand, at low enough temperatures, the first factor dominates, and
while staying at a first level low energy configuration, the process has time to reach
equilibrium at the second level, so at the time scale where we see (uniform) transitions
between first level low energy configurations, the second level is in equilibrium. This is
a longer time scale, composed of the many jump times at second level till exiting first
level.

In a narrow strip of borderline temperatures, we see nontrivial dynamics at both
levels going on at the same time scale (corresponding to jump times out of second level
ground state configurations, roughly of magnitude exp{ββ∗

√
(1− p)(1− a)N}, as at high

temperatures).
In order for the above picture to represent the dynamics, we need the temperature

to be below the static lowest phase transition temperature 1/βcr2 , so that the time spent
off the ground state configurations is negligible. Moreover, this three-phase dynamical
picture will take place if (and only if) the borderline temperatures alluded to above – and
to be called fine tuning temperatures below – are (well) below the static lowest phase
transition temperature; otherwise, we will see only one dynamical phase below that
lowest critical temperature, namely the low temperature phase alluded to above.

1.2.2 Intermediate temperatures

For values of β between β = βcr1 and β = βcr2 , we investigate the behavior of the
dynamics at a time scale when we see transitions between the first level ground state
configurations at times of order 1. In order that this time scale corresponds to an
extreme time scale (as stipulated above – see the one but last paragraph of Subsection
1.1), we need a further a restriction in the temperature, to be seen below. The behavior
of the dynamics of the first level configuration for intermediate temperatures in those
conditions is similar to the one below the minimum between the lowest critical and the
fine tuning temperature.

1.3 Aging results

Let us briefly anticipate our main aging results, holding in the case described at the
last paragraph of Subsection 1.2.1, where fine tuning temperatures are below the lowest
static critical temperature. In this case, as mentioned above, we have three phases for
the dynamics at extreme time scales below the lowest static critical temperature. As
already explained briefly above, our aging results in this paper are obtained by first
taking the scaling limit of the dynamics at extreme time scales, thus obtaining ergodic
processes, and next taking a small time limit in those processes, thus obtaining aging
results. Let us suppose we have already taken the first, extreme time scale limit. We
obtain three distinct dynamics in each of the temperature ranges: above fine tuning, at
fine tuning, and below fine tuning (see Theorems 2.4, 2.5, and 2.7 in Subsection 2.5).
For i = 1, 2, let us consider the events

Ni = Ni(tw, t) = {Yi does not jump between times tw and tw + t}, (1.5)

where Yi represents the i-th level marginal of the process, and tw, t > 0, and define

Π(tw, tw + t) = P (N1 ∩N2) + pP (N1 ∩Nc
2) + (1− p)P (Nc

1 ∩N2). (1.6)
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Low temperature cascading 2-GREM close to equilibrium

Π is an analogue of a (limiting) two-time overlap function of the HRHD. In the regime
considered in this subsection, we have the following (vanishing time limit) aging result:
writing FT as shorthand for fine tuning,

lim
tw,t→0
t/tw→θ

Π(tw, tw + t) =


Aslα2

(
1

1+θ

)
, above FT,

pAslα1α2

(
1

1+θ

)
+ (1− p)Aslα2

(
1

1+θ

)
, at FT,

pAslα1

(
1

1+θ

)
, below FT,

with proper choices of α1, α2 ∈ (0, 1), where Asl· is the arcsine distribution function. See
Section 10 and also the last paragraph of Section 11 for details and other regimes.

1.4 A 2-GREM-like trap model

The idea behind the construction of trap models for low temperature glassy dynamics
is as follows: the traps represent the ground state configurations and, assuming that at
low temperature the dynamics spends virtually all of the time on those configurations –
here an extreme time-scale is assumed –, higher energy configurations are simply not
represented, and all one needs to do is specify the times spent by the dynamics at each
visit to a ground state configurations, and the transitions among those configurations, in
such a way that the resulting process be Markovian.

The simplest such model to be proposed in the study of aging was put forth in [10],
with {1, . . . ,M} as configuration space, mean waiting time at i given by Xi, with
X1, X2, . . . iid random variables in the domain of attraction of of an α-stable law, α ∈ (0, 1),
and uniform transitions among the configurations. This is the so called REM-like trap
model or trap model on the complete graph. Models of a similar nature for the GREM
were proposed in [10] and also in [29]. The scaling limit of the latter model for a fine
tuning choice of level volumes was computed in [18] and its aging behavior away from
fine tuning was studied in [23].

Out of our analysis of the HRHD in the cascading phase at low temperatures comes up
the following GREM-like trap model on the ground state configurations of the GREM. The
configuration space is represented by M1 first level ground state configurations, labeled
in decreasing order, and for each of those configurations, we have M2 second level
ground state configurations, labeled in decreasing order. The transition probabilities
p(x, y) between x = (x1, x2) and y = (y1, y2), 1 ≤ xi, yi ≤Mi, i = 1, 2, are given by

p(x, y) =

{
[(1− λy1) + λy1 ν1(y1)] 1

M2
, if x1 = y1,

ν1(y1)λy1 1
M2
, otherwise,

(1.7)

where

λy1 =
1

1 +M2ψγ1(y1)
and ν1(y1) =

γ1(y1)λy1∑M1

z=1 γ1(z)λz
. (1.8)

The factor ψ ∈ [0,∞] in (1.8) interpolates between higher temperatures, above fine
tuning (ψ = 0) and low temperatures, below fine tuning (ψ =∞); ψ ∈ (0,∞) corresponds
to borderline, fine tuning temperatures in the picture outlined above, and to be described
more precisely below. The factors γ1(·) correspond to the scaled M1 maxima first-level

Boltzmann factors exp{β
√
aNΞ

(1)
· }.

The time spent at each visit to x in the appropriate time scale is an exponential
random variable with mean γ2(x), where for each x1, γ2(x1, ·) corresponds to the scaled

M2 maxima second-level Boltzmann factors exp{β
√

(1− a)NΞ
(2)
σ1·}, with σ1 the first level

configuration labeled x1, as explained above. It must be said that this time scale is
of the order of magnitude of the time needed for the dynamics to jump out of ground
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Low temperature cascading 2-GREM close to equilibrium

state configurations, and it is indeed extreme in the above sense only for fine tuning
temperatures and above. In these cases, (1.7) indeed represents the transitions among
ground states (in the extreme time scale). At lower temperatures, as explained in the
discussion on dynamical phase transition above, the extreme time scale is longer, with
uniform transitions on first level, with exponential waiting times, and on second level
the dynamics is a trivial product of equilibria at different times.

The results indicated above do not seem to be in or be predicted by the physics
literature, which has focused on short time scales, where all levels age simultaneously,
and thus no effect of the longer time dynamical phase transition is present. This matches
our short extreme times aging results only at fine tuning, where that simultaneity takes
place. Also, our GREM-like trap model differs from those considered in the literature
(in [10, 29]).

1.5 Organization

In Section 2 we make precise the notions introduced in this introduction, and formu-
late our scaling limit results for σN on extreme time scales for β > βcr2 . In Sections 3-6
we formulate and argue entrance law results leading in particular to the transition
probabilities between ground state configurations described in 1.7. These results are
key ingredients to the proofs of the above mentioned scaling limit results, which are
undertaken in Sections 7-9. Section 10 is devoted to a brief discussion about aging
results that we obtain for the limit processes, as already mentioned. In Section 11 we
briefly discuss results for the intermediate temperature phase (βcr1 , β

cr
2 ). An appendix

contains definitions of the limit processes entering our scaling limit results, as well as
auxiliary results.

2 Scaling limit of σN . Main Results

2.1 Choice of parameters

As mentioned above, we will study the cascading phase, which, we recall, corresponds
to

a > p. (2.1)

As regards temperatures, we want to take volume dependent ones (this is needed in
order to capture the fine tuning phase transition). We also want low temperatures, which
in the cascading phase corresponds to

lim inf
N→∞

β > β∗

√
1− p
1− a

, (2.2)

where the dependence of β on N is implicit. In order to describe that dependence, let us
start by setting β∗ =

√
2 ln 2, κ = 1

2 (ln ln 2 + ln 4π),

αN1 =
β∗
β

√
N1

Na
, cN1 = exp

{
− 1

αN1

(
β2
∗N1 −

1

2
lnN1 + κ

)}
. (2.3)

Given a sequence ζN < N2β
2
∗/2 of real numbers, let β(a, p,N, ζN ) be the solution in β of

the equation
cN1 2N2 = eζN+κ/αN1 . (2.4)

In explicit form

β(a, p,N, ζN ) =
β∗
2

N2

N1

√
N1

Na

1− 2ζN
N2β2

∗

1− lnN1

2β2
∗N1

= βFT
(

1− 2ζN
N2β2

∗

)
(1 + o(1)) (2.5)
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Low temperature cascading 2-GREM close to equilibrium

where βFT := 1−p
2
√
apβ∗ is the inverse of the fine tuning temperature. Depending on the

behavior of ζN we distinguish three types of temperature regimes. (Given two sequence
sN and s̄N we write sN ∼ s̄N iff limN→∞ sN/s̄N = 1. We also write sN = O(1), resp.
sN = o(1), iff |sN | ≤ C ′ <∞, for some C ′ and all N > 0, resp. limN→∞ sN = 0.)

Definition 2.1 (At/above/below fine tuning). We say that a sequence β−1 ≡ β−1
N > 0 of

temperatures is in the fine tuning (FT) regime if there exists a finite real constant ζ and
a convergent sequence ζN ∼ ζ such that β = β(a, p,N, ζN ). We say that β−1 is below
fine tuning if there exists a sequence ζ−N satisfying ζ−N → −∞ as N →∞, and such that
β = β(a, p,N, ζ−N ). Finally, we say that β−1 is above fine tuning if there exists a sequence

ζ+
N such that ζ+

N → +∞ and limsup
ζ+
N

N2
<

β2
∗
2 as N → ∞, and β = β(a, p,N, ζ+

N ). (Note
that for β = β(a, p,N, ζN ) to be a convergent sequence, ζN/N2 must be convergent.)

In order to precisely describe our results, we start with some technical preliminar-
ies. As described above, the way the ground state configurations are arranged in the
cascading phase suggests the following relabeling of the state space VN .

2.2 Change of representation

Let Di = {1 . . . 2Ni}, i = 1, 2. Call ξx1
1 , x1 ∈ D1, the vertices of VN1

that carry the
ranked variables

Ξ
(1)

ξ1
1
≥ Ξ

(1)

ξ2
1
≥ . . .Ξ(1)

ξ
x1
1

≥ . . . (2.6)

and, similarly, for each x1 ∈ D1 call ξx1x2
2 , x2 ∈ D2, the vertices of VN2

such that

Ξ
(2)

ξ
x1
1 ξ

x11
2

≥ Ξ
(2)

ξ
x1
1 ξ

x12
2

≥ . . .Ξ(2)

ξ
x1
1 ξ

x1x2
2

≥ . . . (2.7)

Let ξ : D → VN be such that ξ(x) = ξx := ξx1
1 ξx1x2

2 . This is a one to one mapping
for almost every realization of Ξ. Let now XN = XN

1 X
N
2 be the mapping of σN on

D by the inverse of ξ. This is the process we will state scaling limit results for. This
alternative representation suits our purpose of taking scaling limits, mainly due to the
convenience of working with a state space which naturally extends to set of the natural
numbers, which will be the state space of the limiting processes. The class to which
these processes belong, namely K processes, is described in the appendix. In the build
up for those scaling limit results, let us introduce next scaling factors, and then the
scaling limit of the environment.

2.3 Scalings

Set

αN2 =
β∗
β

√
N2

N(1− a)
, cN2 = exp

{
− 1

αN2

(
β2
∗N2 −

1

2
lnN2 + κ

)}
, (2.8)

and define the scaled variables

γN1 (σ1) ≡ cN1 e
β
√
a1NΞ(1)

σ1 = eu
−1
N1

(Ξ(1)
σ1

)/αN1 (2.9)

γN2 (σ1σ2) ≡ cN2 e
β
√
a2NΞ(2)

σ1σ2 = eu
−1
N2

(Ξ(2)
σ1σ2

)/αN2 (2.10)

where for i = 1, 2, uNi is the scaling function for the maximum of 2Ni i.i.d. standard
Gaussians,

uNi(x) = β∗
√
Ni +

1

β∗
√
Ni
{x− (ln(Ni ln 2) + ln 4π)/2} , x ∈ R. (2.11)

For later use set
ψ−1
N = N1

N2
eζN+κ/αN1 . (2.12)
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Low temperature cascading 2-GREM close to equilibrium

Clearly, in the fine tuning regime, β → βFT , αN1 → α1 ≡ 2 p
1−p ,

αN2 → α2 ≡ 2
√

a
1−a

p
1−p and ψ−1

N → ψ−1 ≡ p
1−pe

ζ+κ 1−p
2p . (2.13)

2.4 Scaling limit of the environment

For the remainder of this section, we assume that limN→∞ ζN/N2 exists. It follows
that so does

lim
N→∞

β =: β̄. (2.14)

Let γN1 = {γN1 (x1), x1 ∈ D1}, and for x1 ∈ D1, set γN,x1

2 := {γN2 (x1x2), x2 ∈ D2},
where γN1 (x1) and γN2 (x1x2) stand for γN1 (ξx1

1 ) and γN2 (ξx1x2
2 ), respectively. Then

γN1 → γ1, γ
N,x1

2 → γ1
2 , (2.15)

x1 ∈ N, in distribution as N →∞, as point processes on R+, and random measures on
N, where γ1 := {γ1(x1), x1 ∈ N}, γ1

2 := {γ2(1x2), x2 ∈ N} are independent Poisson point
processes in R+, enumerated in decreasing order, with respective intensity functions
given by αi/x1+αi , i = 1, 2, with

α1 =
βcr1
β̄
, α2 =

βcr2
β̄
. (2.16)

Notice that, as follows from our assumptions, 0 < α1 < α2 < 1. We also have that

γN := {γN1 (x1)γN2 (x1x2), x1x2 ∈ D} → γ := {γ1(x1)γ2(x1x2), x1x2 ∈ N2} (2.17)

in distribution as N →∞ as point processes on R+, and (a.s. finite) random measures
on N2, where γx1

2 := {γ2(x1x2), x2 ∈ N}, x1 ≥ 2, are independent copies of γ1
2 . We will

sometimes below let γ2 stand for the family {γ2(x1x2), x1x2 ∈ N2}.
Remark 2.2. All of the convergence claims made in the above paragraph follow readily
from convergence results of [14]. Indeed, we may apply Theorems 1.3 and 1.7 therein
as follows. We preliminarily point out that in the cascading two-level system we are
dealing with in the present paper, we have the following in terms of the notation of [14]:
n = m = 2; J1 = 1, J2 = 2; X̄σ1 = Ξ

(1)
σ1 , X̄σ1

σ2
= Ξ

(2)
σ1σ2 ; a1 = ā1 = a, a2 = ā2 = 1 − a;

α1 = ᾱ1 = 2p, α2 = ᾱ2 = 21−p1. We then have that for σ1σ2 ∈ VN

γN1 (σ1) = exp{βu−1
p log 2,N (

√
aΞ(1)

σ1
)},

γN2 (σ1σ2) = exp{βu−1
(1−p) log 2,N (

√
1− aΞ(2)

σ1σ2
)},

where u·,N (·) is defined in (1.7) of [14]. Theorem 1.3 of [14] now asserts the convergence

of {u−1
p log 2,N (

√
aΞ

(1)
σ1 ), u−1

(1−p) log 2,N (
√

1− aΞ
(2)
σ1σ2); σ1σ2 ∈ VN} to the Poisson cascade in-

troduced in [14]. (2.15) and (2.17) follow from that and Theorem 1.7 in the same
reference after straightforward considerations – see also Proposition 1.8 of [14].

Remark 2.3. It follows from the above results that the Gibbs measure Gβ,N converges
suitably to Gβ̄ – the normalized γ – as N →∞.

2.5 Scaling limit of XN

In order to have the three cases outlined in the heuristics discussion, namely, above,
at and below fine tuning temperatures, we need that βFT > βcr2 , namely, that√

1− p
1− a

<
1− p
2
√
pa

; (2.18)

1In this sentence, α1 and α2 are notations from [14], and should not be confused with the notation of the
present paper introduced in (2.16).
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Low temperature cascading 2-GREM close to equilibrium

otherwise, all low temperatures according to (2.2) are below fine tuning. In each case
we find a different scaling and different scaling limit for XN .

To state the first theorem, we take ζ+
N as in Definition 2.1, with the extra assump-

tion (2.14), i.e., we let the sequence of real numbers ζ+
N satisfy

lim
N→∞

ζ+
N =∞ and lim

N→∞
ζ+
N/N2 <

β2
∗

2

(
1− 2

√
p

1− p

√
a

1− a

)
. (2.19)

The latter condition is equivalent to (2.2) once we replace ’lim inf’ by ’lim’ there. Set

X̃N (t) = XN (t/cN2 ), t ≥ 0. (2.20)

We recall that this is a process in the random environment γN . The limiting processes,
which are K processes, described in the appendix, will naturally also be processes in
random environment.

Consider f1,w1 : N2 → (0,∞) such that f1(x1x2) = γ̃2(x1x2) := 1
1−pγ2(x1x2), w1(x1x2) =

γ1(x1) for all x1x2 ∈ N2. These functions will play the role of random environment for
the limiting process in this case.

Theorem 2.4 (Above fine tuning temperatures). As N →∞

X̃N ⇒ K(f1,w1); (2.21)

where⇒ stands for convergence in P ⊗ Pµ-distribution. The convergence takes place
on the Skorohod space of trajectories of both processes, with the J1 metric.

See the definition of K(·, ·) in the first subsection of the appendix.
To state our second theorem, we assume limN→∞ ζN = ζ for some real finite ζ.
Let f2 : N→ (0,∞), f′2 : N2 → (0,∞) such that f2(x1) = γ̃1(x1) := ψγ1(x1), f′2(x1, x2) =

γ̃2(x1, x2) for all x1x2 ∈ N2.

Theorem 2.5 (At fine tuning temperatures). As N →∞

X̃N ⇒ K2(f2, f
′
2). (2.22)

The convergence takes place in the Skorohod space of trajectories of both processes,
with the J1 metric.

See the definition of K2(·, ·) in the first subsection of the appendix.

Remark 2.6. In order for the above mentioned two-level K-process to be well de-
fined, we need to make sure that f2, f

′
2 satisfy (almost surely) the summability con-

ditions (12.1, 12.4). This is a classic result for (12.1) – recall that w ≡ 1 in this case –,
and follows by standard arguments for (12.4) from the fact that α1 < α2 < 1 (as noted
above, below (2.16)).

For our last theorem, we take ζ−N as in Definition 2.1.
Let c̄N = cN1 2N2cN2 and make

X̄N (t) = XN (t/c̄N ), t ≥ 0. (2.23)

Let also f3 : N→ (0,∞), with f3(x1) = γ1(x1)
∑
x2∈Nγ̃2(x1x2), x1 ∈ N.

Theorem 2.7 (Below fine tuning temperatures). As N →∞

X̄N ⇒ X̄1X̄2, (2.24)

where X̄1 ∼ K(f3, 1) and, given γ2 and X̄1 = x1 ∈ N, X̄2 is an iid family of random
variables on N (indexed by time) each of which is distributed according to the weights
given by γx1

2 . The marginal convergence of the first coordinate takes place in the
Skorohod space of trajectories of both processes, with the J1 metric, and the convergence
of the second coordinate is in the sense of finite dimensional distributions only.
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Low temperature cascading 2-GREM close to equilibrium

Remark 2.8. If Condition 2.18 is not satisfied (within the cascading, low temperature
regime treated in this paper), then we are below fine tuning temperatures and Theo-
rem 2.7 holds for all β > βcr2 temperatures, as can be readily checked from its proof. The
other regimes are not present in this case.

Remark 2.9. It is either known or follows readily from known results that the limiting
processes in the above theorems are ergodic Markov processes2, having the infinite
volume Gibbs measure Gβ̄ (see Remark 2.3 above) as their unique equilibrium distri-
bution. See [21] for the case of the 2-level K-process, and [17] for the cases involving
weighted/uniform K-processes.

Remark 2.10. As discussed earlier (see the one before last paragraph of Section 1.1)
we may then say, after Remark 2.9, that the time scale 1/cN2 is an extreme time scale
at and above fine tuning, and the time scale 1/c̄N is an extreme time scale below fine
tuning.

2.6 Strategy

The proofs of all the above theorems have the same structure3, reflecting the fact
that at extreme time scales, the dynamics lives on ground state configurations. In each
case, there are three ingredients:

1. Showing that the process spends virtually all of the time on ground state configura-
tions;

2. Getting sharp estimates on the time spent on each visit to a ground state configu-
rations;

3. Getting sharp estimates on the transition probabilities between ground state
configurations.

Point 1 is quite simple in each case, resulting from straightforward expected value
computations.

Point 2 is immediate for Theorems 2.4 and 2.5, since in those cases the time scale
coincides with the order of magnitude of the waiting times at the ground state config-
urations. For Theorem 2.7, it is a longer time scale, corresponding to the time spent
on the second level configurations before jumping from a given first level ground state
configuration; the main point of this estimation involves deriving a law of large numbers
for the number of visits to a given second level ground state configuration before the
jump from the first level ground state configuration occurs – see (7.6).

As for Point 3, in Theorem 2.7 the transition between first level ground state con-
figuration are already well known to be approximately uniform; and this time scale is
well above the equilibration time scale for the second level, so the transitions we see are
beween independent configurations of equilibrium – we get that from known spectral
gap estimates.

The bulk of our work comprise the estimation of the transition laws for Theorems 2.4
and 2.5. In the latter case, we heavily rely on a potential theoretic point of view, extending
the lumping approach adopted in the analysis of the Random Hopping dynamics for
the REM in [3], and further developed in [6]. See Proposition 3.1. There are many fine
points to be considered here, making for a long analysis. The treatment of Theorem 2.4
demands a finer estimation, on the one hand – see Proposition 3.3 and the discussion
around its statement; on the other hand, a more direct approach works in this case.

2I.e., Markov processes that have an irreducible state space and a unique invariant distribution.
3Except for the second level dynamics part in Theorem 2.7.
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3 Entrance law. Main result

In this and the next three sections, we will mostly not be concerned with limits, so
we find it convenient to revert to the original representation of σN as spin configuration.
Given a subset A ⊂ VN , the hitting times τA of A by the continuous and discrete time
processes σN and J∗N are defined, respectively, as

τA = inf{t > 0 | σN (t) ∈ A} and τA = inf{i ∈ N | J∗N (i) ∈ A}. (3.1)

3.1 The Top

Given two integers Mi < 2Ni , i = 1, 2, setM = M1 ×M2 whereMi = {1, . . . ,Mi},
i = 1, 2. We then let the Top be the set

T ≡ T ((Mi)i≤2, (Ni)i≤2) ≡ {σ ∈ VN | σ = ξx1
1 ξx1x2

2 , x1x2 ∈M} (3.2)

Note that we may also write T = ∪x1∈M1
T x1 where, for each x1 ∈M1

T x1 ≡ T x1(M1, N1) ≡ {σ ∈ VN | σ = ξx1
1 ξx1x2

2 , x2 ∈M2}. (3.3)

Further introduce the canonical projection of T on VN1
,

T1 ≡ T1(M1, N1) ≡ {σ1 ∈ VN1 | σ = ξx1
1 , x1 ∈M1}. (3.4)

To each ξx1
1 in T1 we associate the cylinder set

W x1 ≡W x1((Ni)i≤2) ≡ {σ ∈ VN | σ1 = ξx1
1 }. (3.5)

Clearly, T x1 is the restriction of T to this cylinder, T x1 = W x1 ∩ T . Finally, set

W ≡ ∪x1∈M1
W x1 . (3.6)

3.2 Main entrance law results

From now on we fix (ζN ), a sequence of real numbers such that β = β(a, p,N, ζN ) > 0

for all N , and let ψN be as in (2.12). For each x1 ∈M1 and A ⊆ T x1 set

λx1

N (A) ≡ λx1

N (|A|, N, ψN ) =
1

1 + |A|ψNγN1 (ξx1
1 )

. (3.7)

We will see that this quantity can be interpreted as the probability that, starting in W x1 ,
the process exits W x1 before finding an element of A. Note that λx1

N (A) is a random
variable. We use it to define the random probability measure ν1 onM1 that assigns to x1

the mass

νN1 (x1) =
1− λx1

N (T x1)∑
x′1∈M1

(1− λx′1(T x
′
1))

(3.8)

Similarly, given η̄ ∈ T , we denote by ν1 the random measure onM1 defined through

νN1 (x1) =
1− λx1

N (T x1 \ η̄)∑
x′1∈M1

(1− λx′1(T x
′
1 \ η̄))

(3.9)

(where clearly T x1 \ η̄ = T x1 if η̄ /∈ T x1).

Proposition 3.1. There exists a subset Ω̃ ⊂ Ω with P(Ω̃) = 1 such that on Ω̃, for
all N large enough, the following holds in the temperature domain determined by
β = β(a, p,N, ζN ) > 0 and ζN � logN . Let εN = O

(
N−1

)
.

i) Entrance law. Let x1 ∈M1 and η ∈ T x1 . Then
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i-1) for all σ ∈W x1 \ T x1

Pσ
(
τη < τT\η

)
=

1

M2

[
(1− λx1

N (T x1)) + νN1 (x1)λx1

N (T x1)
]

(1 + εN ) , (3.10)

i-2) for all x′1 ∈M1 \ x1 and all σ ∈W x′1 \ T x′1

Pσ
(
τη < τT\η

)
=

1

M2
νN1 (x1)λx

′
1(T x

′
1) (1 + εN ) , (3.11)

i-3) for all σ ∈ VN \W

Pσ
(
τη < τT\η

)
=
νN1 (x1)

M2
(1 + εN ) . (3.12)

i-4) Entrance in cylinder sets. For all σ ∈ VN \W and all x1 ∈M1

Pσ

(
τWx1\Tx1 < τW\(Wx1\Tx1 )

)
=

1

M1
(1 + εN ). (3.13)

ii) Level 2 transitions. For all η ∈ T x1 , η̄ ∈ T x̄1 , x1 = x̄1 η 6= η̄,

Pη̄
(
τη < τT\{η,η̄}

)
=

1

M2 − 1

[
(1− λx1

N (T x1 \ η̄)) + νN1 (x1)λx1

N (T x1 \ η̄)
]

(1 + εN ) . (3.14)

iii) Level 1 transitions. For all η ∈ T x1 , η̄ ∈ T x̄1 , x1 6= x̄1

Pη̄
(
τη < τT\{η,η̄}

)
=

1

M2
νN1 (x1)λx1

N (T x̄1 \ η̄) (1 + εN ) . (3.15)

Remark 3.2. Taking limits of the above quantities we get, for ψ as in (2.13)

lim
N→∞

λx1

N (T x1) =


1, above FT,

1
1+M2ψγ1(x1) , at FT,

0, below FT,

(3.16)

which leads to

lim
N→∞

νN1 (x1) = ν1(x1), ν1(x1) ≡


γ1(x1)∑

z1∈M1
γ1(z1) , above FT,

h(γ1(x1))∑
z1∈M1

h(γ1(z1)) , at FT,

1
M1
, below FT,

(3.17)

where h = hM2,ψ : R+ → R+ is such that h(r) = r/(1 + M2ψr). At FT both limits hold
weakly with respect to the environment. Below FT, there is a window of values of ζ−N
for which both limits hold almost surely, and above which both hold in probability. One
may readily check that the following window has these properties: ζ−N � − log logN ;
see Lemma 5.3, and its proof. Above FT, we have a mixed situation. For λx1

N (T x1), there
is a window above which the convergence is almost sure: ζ+

N � logN . And for νN1 (x1),
we need in addition the existence of limN→∞ ζN/N , and the convergence is weak. The
asymptotics of the probabilities follow readily.

Getting the estimates in Proposition 3.1 above fine tuning when we do not have that
ζN � logN , requires an extra level of precision, related to the fact that, in that regime,
νN1 (·) is a quotient of vanishing terms. We state next a separate result where we deal
with this case. Since it is a limit result, we require the existence of limN→∞ ζN/N .

Proposition 3.3 (Above fine tuning temperatures). Suppose (2.19) holds. Then for all
σ /∈ T and η = ξy ∈ T

lim
N→∞

Pσ
(
τη < τT\η

)
=

1

M2
ν1(y), (3.18)

where the limit holds in distribution in (Ω,F ,P).
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The proof of Proposition 3.1 follows a strategy initiated in [3] for the study of aging
in the REM and further developed in [6] with the main object of providing the tools to
tackle more general spin glass models, such as the GREM. These tools are prepared in
Section 4. They are used in Section 5 to prove basic probability estimates for the jump
chain that, in turn, are the key ingredients of the proof of Proposition 3.1, concluded in
Section 6, after which we prove Proposition 3.3.

4 Entrance law. Key tools

As announced above, the proof of Proposition 3.1 naturally draws upon [6] since
that paper was designed precisely for that purpose. The strategy pursued in [6] (and
initiated in [3] and [11]) consists, firstly, in reducing the probabilities of interest, say, the
harmonic measure of a given set, A, to quantities which are functions only of the simple
random walks J◦Ni and, secondly, in using lumping techniques (a coarse graining of the
configuration space that is built from the set A) to express these quantities through a
new chain, called lumped chain. This lumped chain, which is again Markovian, can be
thought of as a (discrete analogue of a) diffusion in a convex potential (whose properties
strongly depend on A) and is finally studied with precision using the potential theoretic
approach developed in [11, 12]. Going back to the original state space, the resulting
estimates on the harmonic measure of A come with conditions, which essentially relate
to specific properties of the set A (e.g. its size and sparseness).

To see how the HRHD (1.4) links up to the simple random walk, first observe that it
can be described alternatively through its jump chain, J∗N , and jump rates, wN , where

wN (σ) =
∑
σ′∼σ

wN (σ, σ′) (4.1)

and (J∗N (i), i ∈ N) is the discrete time Markov chain with one step transition probabilities

p∗N (σ, σ′) = wN (σ, σ′)w−1
N (σ). (4.2)

Then, introducing the parameters

q∗N (σ1) ≡ 1

1 + N2

N1
e−βH

(1)
N (σ1)

, (4.3)

one has that
p∗N (σ, σ′) = q∗N (σ1)p◦N1

(σ1, σ
′
1) + (1− q∗N (σ1))p◦N2

(σ2, σ
′
2) (4.4)

where, for i = 1, 2, p◦Ni(σi, σ
′
i) = N−1

i if σi ∼ σ′i and p◦Ni(σi, σ
′
i) = 0 else denote the one

step transition probabilities of the simple random walk (J◦Ni(j), j ∈ N) on VNi . Clearly,
the J∗N is reversible w.r.t. the measure G∗β,N defined through

G∗β,N (σ) = wN (σ)e−βHN (σ)
(
Z∗β,N

)−1
= (N1/N)

(
q∗N (σ1)Z∗β,N

)−1
(4.5)

where Z∗β,N is a normalization making this measure a probability.
In line with the strategy described above, this section has three parts. Subsection

4.1 gathers simple lemmata needed to link probabilities for the original chain σN (with
rates (1.4)) to probabilities for the jump chain J∗N (with transitions (4.4)), and to link the
latter to quantities depending only on the simple random walks J◦Ni . In Subsection 4.2
we introduce the notion of lumped chains. Finally, in Subsection 4.3, we state and prove
the properties of various sets that are needed in Section 5 to make use of the known
lumped chain estimates from [6]. This last section can be skipped at first reading.

For future reference, we call P∗ the law of the process J∗N conditional on F . We
denote by P◦,i the law of J◦Ni , i = 1, 2. If the initial state, say η, has to be specified we
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write Pη, P∗η and P◦,iηi . We will denote by P ⊗ Pη the probability measure obtained by
integrating Pη with respect to P. Expectation with respect to P, P∗, P◦,i, P and P ⊗ Pµ
are denoted by E, E∗, E◦,i, Eand E ⊗Eµ, respectively, where µ is the uniform probability
measure on VN .

4.1 Comparison lemmata

Our starting point is the observation that

Lemma 4.1. For all A,B ⊆ VN such that A ∩B = ∅ and for all σ ∈ VN \ (A ∪B),

Pσ (τA < τB) = P∗σ (τA < τB) . (4.6)

We skip the proof of Lemma 4.1 which is elementary.
The next two lemmata deal with two classes of events that can be expressed through

just one of the simple random walks J◦Ni on VNi . The first are REM-like events that can
be reduced to those of a REM (which is a 1-level GREM). Let πi, i = 1, 2, denote the
canonical projection of VN onto VNi , that is

πiσ = σi. (4.7)

Lemma 4.2 (REM-like events). Let A,B ⊆ VN1 be such that A ∩ B = ∅. Then, for all
σ1 ∈ VN1 \A and all σ ∈ π−1

1 σ1,

P∗σ

(
τπ−1

1 A < τπ−1
1 B

)
= (1 + δσ1∈B(q∗N (σ1)− 1))P◦,1σ1

(τA < τB) . (4.8)

Proof. Note that P∗σ
(
τπ−1

1 A < τπ−1
1 B

)
= Pπ1

σ1
(τA < τB) where Pπ1

σ1
= P∗σ ◦ π−1

1 denotes the
law of the projection π1J

∗
N of the jump chain on VN1 . By (4.4) this is a Markov chain with

transition probabilities pπN (σ1, σ
′
1) = q∗N (σ1)p◦N1

(σ1, σ
′
1)1σ1∼σ′1 + (1− q∗N (σ1))1σ1=σ′1

. The
lemma now easily follows.

Given σ = σ1σ2 ∈ VN , define the cylinder sets

C(σi) ≡ π−1
i σi = {σ′ ∈ VN | σ′i = σi}, i = 1, 2. (4.9)

The next lemma deals with so-called level-2 events, namely, events whose trajectories
are confined to a given cylinder set C(σ1), and that can thus be expressed through just
the simple random walk J◦N2

on VN2
. Define the outer boundary of a set A ⊂ VN as

∂A ≡ {σ′ ∈ (VN \A) | ∃σ ∈ A s.t. σ ∼ σ′}. (4.10)

Lemma 4.3 (Level-2 events). Given σ1 ∈ VN1 , let A,B ⊆ C ≡ C(σ1) be such that
A ∩B = ∅. Set u(σ1) ≡ log (1− q∗N (σ1)). Then, for all σ ∈ C,

P∗σ (τA ≤ τB∪∂C) =

{
E◦,2σ2

(
eu(σ1)τπ2A1{τπ2A

<τπ2B
}

)
if B 6= ∅,

E◦,2σ2

(
eu(σ1)τπ2A

)
if B = ∅.

(4.11)

Proof. Write

P∗σ (τA ≤ τB∪∂C) =
∑∞
k=1P

∗
σ (k = τA ≤ τB | τ∂C > k)P∗σ (τ∂C > k) (4.12)

and note that by (4.4), τ∂C is a geometric r.v. with success probability q∗N (σ1). Thus, on the

one hand, P∗σ (τ∂C > k) = (1− q∗1(σ1))
k while on the other handP∗σ (k = τA ≤ τB | τ∂C > k) =

P◦,2π2σ (k = τπ2A ≤ τπ2B).
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Low temperature cascading 2-GREM close to equilibrium

Estimates on the probabilities P◦,1σ1
(τA < τB) appearing in Lemma 4.2 and the Laplace

transform of Lemma 4.3 are derived in [6] using lumping techniques. For the one-
dimensional case (when the set A reduces to a singleton), lumping reduces to the
classical Ehrenfest chain. We recall below an expression for the probability generating
function of hitting times of such chain, appearing in [27] (see (4.28,29) in that reference),
and needed later. For t ∈ [0, 1) and σ2, σ

′
2 ∈ VN2

E◦,2σ2
(t
τσ′2 ) =

Bi(t
′)

B0(t′)
, (4.13)

where i = d2(σ2, σ
′
2), t′ = N2

2
1−t
t , and for α > 0

Bi(α) =

∫ 1

0

(1− u)i(1 + u)N2−iuα−1du =

N2−i∑
j=0

(
N − i
j

)
Γ(i+ 1)Γ(α+ j)

Γ(α+ i+ j + 1)
. (4.14)

4.2 Lumped chains and K-lumped chains

In this section we introduce certain functions of the simple random walks J◦Ni on
VNi , i ∈ {1, 2}, that play a key rôle in our proofs. Fix i ∈ {1, 2}. Given a partition Λi
of {1, ..., Ni} into d classes, that is, non-empty disjoint subsets Λ1

i , . . . ,Λ
d
i , 1 ≤ d ≤ Ni,

satisfying Λ1
i ∪ · · · ∪ Λdi = {1, ..., Ni}, let mi be the many-to-one function that maps the

elements of VNi onto d-dimensional vectors

mi(σi) =
(
m1
i (σi), . . . ,m

k
i (σi), . . . ,m

d
i (σi)

)
, σi ∈ VNi (4.15)

by setting, for all k ∈ {1, . . . , d},

mk
i (σi) ≡

1

|Λki |
∑
j∈Λki

σi,j (4.16)

where σi,j denotes the j-th cartesian co-ordinate of σi. The image Ii ≡ mi(J
◦
Ni

) of the
simple random walk J◦Ni , called lumped chain, also is a Markov chain that now takes
value in a discrete grid ΓNi,d that contains Vd = {−1, 1}d.

Different choices of the partition Λi yield different lumped chains. Given an integer
n and a collection K =

{
η1, . . . , ηx, . . . , ηn

}
of elements of VNi , the so-called K-lumped

chain is induced by a partition Λi(K) of {1, ..., Ni} into d = 2n classes, {1, ..., Ni} =

Λ1
i (K) ∪ · · · ∪ Λdi (K), defined as follows. Let us identify the set K with the n × Ni

matrix (ηxj )x=1,...,n
j=1,...,Ni

whose row vectors are the ηx’s, that is, ηx ≡ (ηxj )j=1,...,Ni ∈ VNi ,
x ∈ {1, . . . , n}, and denote by ηj the column vectors ηj ≡ (ηxj )x=1,...,n ∈ Vn, j ∈ {1, . . . , Ni}.
Given an arbitrary labelling {e1, . . . , ek, . . . , ed} of the set of all d = 2n elements of Vn, we
then set

Λki (K) ≡ {j ∈ {1, . . . , Ni} | ηj = ek}, 1 ≤ k ≤ d. (4.17)

We denote by mi,K the function (4.15)-(4.16) resulting from (4.17), by

Ii,K ≡ mi,K(J◦Ni) (4.18)

the associated K-lumped chain and by P
i,K

its law.
As mentioned earlier the K-lumped chain should be thought of as a discrete analogue

of a diffusion in a convex potential (at least for values of d of order o(
√
N i)) with a drift

induced by the convex potential ψi,K ≡ − 1
Ni

log |(mi,K)
−1

(z)| + log 2, z ∈ ΓNi,d. This

potential is very steep close to its global maxima, achieved at the 2d vertices of Vd, and
has a unique global minimum, henceforth called the origin. Furthermore, there is a
one-to-one correspondance between the set K and its image K ≡ mi,K(K), and K ⊆ Vd.
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Intuitively, this chain exhibits the following scenario typical in the large deviation context
of Freidlin and Wentzell: before reaching any vertex of Vd it explores the bulk of the
grid ΓNi,d and remains there for an exponentially (in Ni) large time, revisiting the origin
an exponential number of times before, at some random time, it quickly travels (in a
polynomial time) from the origin to a vertex z ∈ Vd, with almost uniform distribution.
Analysing this behavior using the potential theoretic tools developed in [11, 12] for the
analysis of metastability, Ref. [6] gives (among other results) precise sufficient conditions
for the hitting time of subsets K of Vd to be asymptotically exponentially distributed, and
for the hitting distribution to be uniform. These conditions essentially require that K
should be sparse enough (see Definition 1.2 in [6]) and that the partition Λi(K) does not
contain too many small boxes Λki (K) (which would give flat directions to the potential).
Because each vertex of Vd has exactly one pre-image by mi,K these results and their
conditions can be translated back for the original process in the original state space.

The conditions mentioned above as well as the precision of the estimates of [6] are
expressed through the following key quantities: given a subset K of VNi define

UNi,di(σ,K) ≡
∑
η∈A\σ FNi,di(dist(σ, η)), σ ∈ VNi , (4.19)

UNi,di(K) ≡ maxσ∈A UNi,di(σ,K), (4.20)

We further set UNi,di(K) = 0 ifK = ∅ and UNi,di(σ,K) = 0 ifK\σ = ∅. The function FNi,di
in (4.19) is a function of the Hamming distance between the elements of A (depending
on Ni and di), whose definition is explicit but pretty involved. We therefore refer to
(3.5)-(3.8) of Section 3 of [6] for this definition. Its properties are analyzed in detail in
Appendix A3 of [6].

4.3 Properties of the Top and other sets

The aim of this section is to prepare the ground for the use of the results of [6] by
proving bounds for the quantities UNi,di(K), UNi,di(σ,K) and FNi,di defined, respectively,
in (4.19) and (4.20) above and in (3.5)-(3.8) of [6], for the three types of sets K that we
will later encounter in our proofs: the Top, the Top plus a non random point, and large
random subsets of VN1

.
In what follows K =

{
η1, . . . , ηx, . . . , ηmi

}
denotes a collection of mi elements of VNi ,

and Λi(K) is the partition of {1, ..., Ni} into di = 2mi classes, Λki (K), 1 ≤ k ≤ di, induced
by K through (4.17).

4.3.1 The Top

Consider the partitions Λ1(T1) and Λ2(T x1) induced respectively by T1 and π2T
x1 , x1 ∈

M1, through (4.17). Let K be any of the sets T1 or π2T
x1 , x1 ∈ M1 (thus mi = Mi and

i = 1 if K = T1 and i = 2 if K = π2T
x1 , x1 ∈M1). Introducing the sets

ΩNi(K) ≡
{∣∣∣∣ diNi |Λki (K)| − 1

∣∣∣∣ < δi(Ni), 1 ≤ k ≤ di
}
, δi(Ni) ≡ 2

√
di
Ni

logNi

and Ωi(K) ≡
⋃
N ′i≥i

⋂
Ni≥N ′i

ΩNi(K), define

Ω ≡ Ω1(T1)
⋂(⋂

x1∈M1
Ω2(T x1)

)
. (4.21)

Lemma 4.4. P(Ω) = 1.

Proof. The proof is an easy adaptation of that of Lemma 4.2 of [22].

For i = 1, 2, η ∈ VNi and ρ > 0 set Bρ(η) = {σ ∈ VNi | dist(σ, η) ≤ ρ}.
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Lemma 4.5. On Ω, for all large enough N the following holds: denoting by K any of the
sets T1, π2T

x1 , x1 ∈M1, or ∪x1∈M1
π2T

x1 we have, for all η ∈ K and η̄ ∈ K, η 6= η̄,

|dist(η, η̄)− (Ni/2)| ≤ (Ni/2)δi(Ni) (4.22)

and for all 0 ≤ ε < 1/2

BεNi(η) ∩ BεNi(η̄) = ∅. (4.23)

Proof. This is the analogue of Lemma 2.12 of [BBG1] and is proved in the same way.

Lemma 4.6. With the notation of Lemma 4.5, the following holds on Ω for all large
enough N : for all η ∈ K and η̄ ∈ K, η 6= η̄,

FNi,di(dist(η, η̄)) ≤ 2−Ni/4, (4.24)

UNi,di(η,K) ≤ UNi,di(K) ≤ |K| 2−Ni/4. (4.25)

Proof. Eq. (4.24) follows from (4.22) of Lemma 4.5 and (10.7) of Lemma 10.1 of [6] and
implies the leftmost inequality of (4.25) which in turn implies the rightmost one.

For any σ ∈ VNi and any subset A ⊂ VNi , set

j(σ,A) ≡

{
1 if dist(σ,A) = 1,

2 else.
(4.26)

Lemma 4.7. With the notation of Lemma 4.5, the following holds on Ω for all large
enough N : for all η ∈ K and all σ ∈ VNi \K,

FNi,di(dist(σ, η)) ≤ j

Nji
(1 + o(1)), j = j(η, σ), (4.27)

UNi,di(σ,K) ≤ j

Nji
(1 + o(1)), j = j(σ,K). (4.28)

Proof. Eq. (4.27) follows from the definition of the definition of F and case (a) and (b) of
Lemma 10.1 of [6]. To prove (4.28) we distinguish two cases: (a) there exists η ∈ K such
that dist(σ, η) ≤ εNi for some 0 ≤ ε < 1/2 and (b) for all η ∈ K, dist(σ, η) > εNi. In case
(b) we have: UNi,di(σ,K) ≤ |K| 2−Ni/4 ≤ o(N−2

i ). This is proven just as (4.25). In case
(a) we write

UNi,di(σ,K) = FNi,di(dist(σ, η)) +
∑
η′∈K\η FNi,di(dist(σ, η′)). (4.29)

By (4.23) of Lemma 4.5 we may apply the bound just obtained in case (b) to bound the
second term (namely the sum) in the right-hand side of (4.29) whereas the first term is
bounded as in (4.27).

4.3.2 The Top and a non random point

We will frequently need to lump the simple random walk J◦Ni on VNi with sets of the form
K ∪ σi ⊂ VNi where σi ∈ VNi is arbitrary and K = T1 (then i = 1) or K = π2T

x1 for some
x1 ∈M1 (then i = 2). We are now interested in the partition Λi(K ∪ σi) of {1, ..., Ni} into
d′i = 2Mi+1 classes, Λki (K ∪ σi), 1 ≤ k ≤ d′i, induced by K ∪ σi through (4.17). Lemma 4.6
and Lemma 4.7 can be extended to this setting as follows.

Lemma 4.8. With the notation of Lemma 4.5, the following holds on Ω for all large
enough N : for all η ∈ K and all σ′ ∈ VNi \ (K ∪ σi), σ′′ ∈ VNi ,

FNi,d′i(dist(σ′, σ′′)) ≤ (j/N j
i )(1 + o(1)) , j = j(σ′, σ′′), (4.30)

UNi,d′i(K ∪ σi) ≤ (j/N j
i )(1 + o(1)), j = j(σi,K). (4.31)
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Low temperature cascading 2-GREM close to equilibrium

Proof. This is a simple adaptation of the proofs of Lemmata 4.6 and 4.7.

Remark 4.9. Upper bounds of the functions FNi,di , UNi,di and UNi,di imply upper bounds
on the quantities φ, VNi,di and VNi,di defined (with obvious notation) in (4.1), (5.4)
and (5.9) of [6] (see Lemma 4.2, Lemma 5.2, Lemma 5.4, and Lemma 5.7 of [6]).
Furthermore, they imply upper bounds on the quantities U◦Ni,di , U

◦
Ni,di

, V ◦Ni,di and V◦Ni,di
for the associated lumped chain, defined in (5.3), (5.10), and (5.11) of [6] (see Lemma 5.3
and Lemma 5.5 of [6]). We do not repeat these arguments in the proofs of the statements
of Section 5.1.

5 Basic estimates for the jump chains

This Section is concerned with the jump chain only. We state and prove a collection
of probability estimates that will later be shown, in Section 6, to form the basic blocks of
the proof of Proposition 3.1. This section heavily relies on Ref. [6] and the preparations
of Section 4.3.

5.1 Main estimates

We recall that the set Ω is defined in (4.21). From now on we drop the dependence
on N in the notation.

Proposition 5.1 (REM-like estimates). On Ω, for all large enough N , the following holds:
for all x1 ∈M1 and all σ ∈ VN \W ,∣∣∣∣P∗σ (τWx1 < τW\Wx1

)
− 1

M1

∣∣∣∣ = O
(
N−i1

)
(5.1)

where i = 1 if dist(σ1, ξ
x1
1 ) = 1 and i = 2 otherwise.

Proposition 5.2 (Level-2 motion). On Ω, for all large enough N , the following holds: For
x1 ∈M1 and A ⊂ T x1 , set

u(ξx1
1 ) = log(1− q∗(ξx1

1 )), (5.2)

sx1(A) =
∣∣u(ξx1

1 )
∣∣2N2

|A|
(1 +N−1

2 ), (5.3)

λx1(A) =
sx1(A)

1 + sx1(A)
. (5.4)

Then, for all non empty subset A ⊆ T x1 and all σ ∈W x1 \A, we have:

i) (Motion within the cylinder set W x1 .) For all η ∈ A,

P∗σ
(
τη < τ(A\η)∪∂Wx1

)
= (1− λx1(A))|A|−1 + bA(σ, η) (5.5)

where, setting i = 1 if dist(σ2, η2) = 1 and i = 2 otherwise, bA(σ, η) > 0 and

0 ≤ bA(σ, η) ≤ (1− λx1(A))|A|−1O(N−i2 ) + λx1(A)FN2,d2(dist(σ2, η2))

+
1

1 + 2N2ψNγN1 (ξx1
1 )
O
(
N

(d2+1)/2
2 logN2

)
.

(5.6)

Here FN2,d2
, d2 = 2M2 , is the function introduced in (4.19) (see also the paragraph below

(4.20)); in particular,

FN2,d2
(dist(σ2, η2)) ≤ i

N i
2

(1 + o(1)). (5.7)
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ii) (Leaving the cylinder set W x1 .) For all non empty subset A ⊆ T x1 , and all σ ∈W x1 \A,

P∗σ (τ∂Wx1 < τA) = λx1(A) + cA(σ) (5.8)

where cA(σ) =
∑
η∈A bA(σ, η).

The following almost sure (but rough) bounds on the ranked variables γN1 (ξx1
1 ) will

enable us to further express the quantity λx1(A). Define the set Ω̂ ≡ ∩M>1Ω̂M where
Ω̂M ≡

⋃
N ′1≥1

⋂
N1≥N ′1

Ω̂M,N1
and

Ω̂M,N1
≡

⋂
1≤x1≤M

{
ω ∈ Ω | N−2/αN1

1 ≤
(
γN1 (ξx1

1 )
)−1

< (lnN1)2/αN1

}
. (5.9)

Lemma 5.3. P(Ω̂) = 1.

Proof of Lemma 5.3. By (2.9) and (2.6),

exp
{
−u−1

N1
(Ξ

(1)

ξ1
1

)/αN1

}
≤
(
γN1 (ξx1

1 )
)−1 ≤ exp

{
−u−1

N1
(Ξ

(1)

ξM1
)/αN1

}
(5.10)

for each 1 ≤ x1 ≤M . From the well known asymptotic distribution of Ξ
(1)

ξk1
we get that

P(u−1
N1

(Ξ
(1)

ξM1
) ≤ −2 ln lnN1) ≤ e−(lnN1)2 (lnN1)2M

M ! (1 + o(1)) < N−2
1 (1 + o(1))

and P(u−1
N1

(Ξ
(1)

ξ1
1

) > 2 lnN1) ≤ N−2
1 (1 + o(1)). The lemma then follows from Borel-Cantelli

Lemma.

Lemma 5.4. On Ω̂, for all but a finite number of indices N1 we have

λx1(A) =
1

1 + |A|ψNγN1 (ξx1
1 )

(1 +O(N−1
2 )), (5.11)

1− λx1(A) =
|A|ψNγN1 (ξx1

1 )

1 + |A|ψNγN1 (ξx1
1 )

(1 +O(N−1
2 )). (5.12)

Proof of Lemma 5.4. By (4.3), Lemma 5.3 and the fact that cN1 decays exponentially fast
to zero (see (2.8))

0 < q∗N (ξx1
1 ) = N1

N2

cN1
γN1 (ξ

x1
1 )

(
1 +O

(
cN1 (lnN1)2/αN1

))
� 1. (5.13)

Thus by (5.2)

u(ξx1
1 ) = −q∗(ξx1

1 )
(

1 +O
(
cN1 (lnN1)2/αN1

))
. (5.14)

The lemma now follows from (5.4), (2.4) and (2.12). For later use let us observe that
q∗N (ξx1

1 ) decays exponentially fast. Indeed by (2.4) and (2.12) we have that (N1/N2)cN1 =

2−N2ψ−1
N , whereas, by assumption on ζN , there exists δ > 0 such that ζN ≤ (1−δ)N2β

2
∗/2,

so that

q∗N (ξx1
1 ) =

1

1 + 2N2ψNγN1 (ξx1
1 )
≤ e−δN2β

2
∗/2+κ/αN1 (lnN1)2/αN1 (1 + o(1)). (5.15)

Remark 5.5. Note that if 1 − λx1(A) � N−1 the term bA(σ, η) in (5.5) is sub-leading
and if λx1(A)� N−1 the term cA(σ) in (5.8) is sub-leading. This will still be true when
1− λx1(A) < const.N−1, respectively, λx1(A) < const.N−1 provided only that σ2 and η2

are far enough from each other. Indeed the function FN2,d2(dist(σ2, η2)) is decreasing
and can be made exponentially small in N2 by choosing dist(σ2, η2) proportional to N2

(see (10.7) of Lemma 10.1, Appendix A3 of [6]) while by (5.15) the last term in (5.6)
always is exponentially small.
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We now turn to “inter-level motions”.

Proposition 5.6 (Inter-level motion). On Ω, for all large enough N , the following holds:
for all η ∈ T , all σ ∈ VN \W , and some constant c > 0

P∗σ

(
τη < τW\η

)
≤ c

N1
. (5.16)

It is not difficult to deduce from Proposition 5.6 that:

Corollary 5.7. On Ω, for all large enough N , we have for all σ ∈ VN \W and all x1 ∈M1,

P∗σ

(
τTx1 < τW\Tx1

)
≤ c|Tx1 |

N1
, (5.17)∣∣∣P∗σ (τWx1\Tx1 < τW\(Wx1\Tx1 )

)
− 1

M1

∣∣∣ ≤ c|Tx1 |+1
N1

. (5.18)

5.2 Proofs of the statements of Section 5.1

Proof of Proposition 5.1 (REM-like estimates). Since σ /∈W then π1σ /∈ T1 so that using
Lemma 4.2 with A = {ξx1

1 } and B = T1 \ ξx1
1

P∗σ

(
τWx1 < τW\Wx1

)
= P◦,1σ1

(
τξx1

1
< τT1\ξ

x1
1

)
. (5.19)

Proposition 5.1 then follows from Theorem 1.4 of [6] using the partition Λ1(T1) induced
by T1 through (4.17) together with (4.25) of Lemma 4.6 and (4.27) of Lemma 4.7.

Proof of Proposition 5.2. Throughout the proof we place ourselves on the set of full
measure Ω̂∩Ω ⊂ Ω (see (5.9) and (4.21)). We first prove Assertion (i). Set d2 = 2|π2T

x1 | =

2M2 and let Λ2(π2T
x1) be the partition into d2 classes obtained by taking i = 2 and K =

π2T
x1 in (4.17). (The needed properties of this partition are established in Subsection

4.3.1). Recall that m2,π2Tx1 is the function defined in (4.15)-(4.16) using the partition

Λ2(π2T
x1) and that E

2,π2T
x1

denotes the expectation w.r.t. to the law P
2,π2T

x1

of the
π2T

x1 -lumped chain I2,π2Tx1 (4.18). By (4.11) of Lemma 4.3 (with i = 1, j = 2, A = {η},
B = A \ η and C(σ1) = W x1) and Lemma 2.5 of [6] we have, setting y ≡ m2,π2Tx1 (σ2),
x ≡ m2,π2Tx1 (η2), A ≡ m2,π2Tx1 (π2A) and u(ξx1

1 ) ≡ log(1− q∗(ξx1
1 ))

P∗σ
(
τη < τ(A\η)∪∂Wx1

)
= E

2,π2T
x1

y

(
eu(ξ

x1
1 )τx1{τx<τA\x}

)
≡ Gyx,A(u(ξx1

1 )).
(5.20)

We now use Proposition 7.7 of [6] to express the Laplace transform Gyx,A\x(u), u < 0. In
view of remark 4.9 and Lemma 4.6, it is easy to check that condition (7.38) of Proposition
7.7 of [6] is satisfied: indeed, by (5.15) of Lemma 5.5 of [6], (5.16) of Lemma 5.7 of [6]
and (4.25) of Lemma 4.6, for any A ⊆ T x1 ,

V◦N2,d2
(A) = VN2,d2(π2A) ≤ UN2,d2(π2A) ≤ |π2A|2−N2/4 ≤M22−N2/4. (5.21)

Next, the quantities u(d2) and ū appearing in (7.39) and (7.40) of [6] are, here, given by

ū−1 ≡ 2N2

|A|

(
1 + 1

N2

)
, u(d2) ≡ Cd2

N
d2/2+1
2 (logN2)2(1 + o(1)) (5.22)

where Cd2
= C2(2d2/π)d2/2 for some constant 0 < C <∞. Indeed, using that on Ω the

partition Λ2(π2T
x1) is very close to an equipartition, we have by Lemma 2.6 of [6] that

E◦τ0
0 = (π/2d2)

d2/2N
d2/2
2 (1 + o(1)) and by (6.7) of Theorem 6.3 of [6] that

Θ̂(d2) = CN
(d2+1)/2
2 logN2(1 + o(1)). (5.23)
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Finally, let us check that the point u(ξx1
1 ) lies in the segment (−ρu(d2), ū) for some

0 < ρ < 1. Inserting (5.15) in (5.14) and using the bound on u(d2) from (5.22), we see
that

0 > u(ξx1
1 ) = − 1

1 + 2N2ψNγN1 (ξx1
1 )

(1 + o(1))� −u(d2). (5.24)

Thus u(ξx1
1 ) lies in the segment (−ρu(d2), 0) for any 0 < ρ < 1, and so, we can use

assertion (i)-(a) of Proposition 7.7 of [6] to express the Laplace transform Gyx,A(u(ξx1
1 ))

in (5.20). Using the notation (5.2)-(5.4) and writing P ≡ P2,π2T
x1

, this yields

Gyx,A\x(u(ξx1
1 )) = Py

(
τx < τA\x

)
(1− λx1(A)) + Py

(
τx < τ(A\x)∪0

)
λx1(A) +R0 (5.25)

where
R0 = P0

(
τx < τA\x

)
(1− λx1(A))

[
R1 + Py (τ0 < τA)R2

]
+R3 (5.26)

and where, by (5.21)-(5.24), the remainder terms are given by

Ri =
1

1 + 2N2ψNγN1 (ξx1
1 )
O
(
N

(d2+1)/2
2 logN2

)
, i = 1, 3,

R2 = O
(

max

{
1

N2
2

λx1(A),
1

1 + 2N2ψNγN1 (ξx1
1 )

N
d2/2+1
2 (logN2)2

})
.

In particular, in view of (5.15) and the fact that 0 < λx1(A) ≤ 1, R2 = O(N−2
2 ) and

Ri, i=1,3, decay exponentially fast. It now remains to estimate the four probabilities
that enter the above expressions. We trivially bound 0 ≤ Py (τ0 < τA) ≤ 1. To deal
with the prefactors of (1− λx1(A)) in (5.25) and (5.26), namely, the harmonic measures
stating from 0 and from y we use, respectively, Lemma 4.4 of [6] and Theorem 4.5 of [6]
combined with Lemma 4.2 of [6]. Together with Lemma 4.6 and Lemma 4.7, they yield,

P0

(
τx < τA\x

)
= |A|−1

(
1 +O(N−2

2 )
)
, (5.27)

0 ≤ Py
(
τx < τA\x

)
− |A|−1

(
1 +O(N−2

2 )
)
≤ FN2,d2

(dist(σ2, η2)), (5.28)

where FN2,d2
is the function introduced in Definition 3.3 of [6] and studied in Appendix 11

of [6]. It is a decreasing function that decays polyniomally fast in N2 for small distances
and exponentially fast in N2 for distances proportional to N2. In particular, setting i = 1

if dist(η2, σ2) = 1 and i = 2 otherwise, we have the rough bound

FN2,d2(dist(σ2, η2)) ≤ i

N i
2

(1 + o(1)). (5.29)

It remains to deal with the pre-factors of λx1(A) in (5.25). For an upper bound, write

0 ≤ Py
(
τx < τ(A\x)∪0

)
≤ Py (τx < τ0) ≤ FN2,d2

(dist(σ2, η2)) (5.30)

where the last inequality is Theorem 3.2 of [6]. Inserting our estimates in (5.25) and
combining the result with (5.20), we arrive at

P∗σ
(
τη < τ(A\η)∪∂Wx1

)
= (1− λx1(A|)|A|−1 + bA(σ2, η2) (5.31)

where

0 ≤ bA(σ2, η2) ≤ (1− λx1(A))|A|−1
(
FN2,d2

(dist(σ2, η2)) +O(N−2
2 )
)

+ λx1(A)FN2,d2
(dist(σ2, η2)) +R3

(5.32)

which readily yields (5.5). The second assertion of Proposition 5.2 is a direct consequence
of the first, observing that

P∗σ (τ∂Wx1 < τA) = 1−
∑
η∈A

P∗σ
(
τη < τ(A\η)∪∂Wx1

)
= 1−

∑
x∈A

Gyx,A\x(u(ξx1
1 ))
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where the last equality is (5.20), and use (5.31)-(5.32). The proof of Proposition 5.2 is
now complete.

Proof of Proposition 5.6. Using (4.9), η = η1η2 ∈ T can be written as η = C(η2) ∩ C(η1)

where C(η1) = W x1 for some x1 ∈ M1. Thus, for the event {τη < τW\η} to take place,
the chain must reach η “from within” the set C(η2), without of course having ever visited
W . Building on this observation we begin by establishing an a priori upper bound on the
probability (5.16) that is valid for all starting points σ in VN \W .

Lemma 5.8. The following holds on Ω (see (4.21)) for all large enough N : for all η ∈ T
and all σ ∈ VN \W

P∗σ

(
τη < τW\η

)
≤ q∗N (σ1)

M1
(1 +O(M1/N1)) . (5.33)

Proof. Using the renewal identity (see e.g. Corollary 1.9 in [11])

P∗σ

(
τη < τW\η

)
≤
P∗σ

(
τη < τ(W\η)∪σ

)
P∗σ (τW < τσ)

. (5.34)

To deal with the numerator we use reversibility and (4.5) to write

P∗σ

(
τη < τ(W\η)∪σ

)
=
G∗β,N (η)

G∗β,N (σ)
P∗η (τσ < τW ) =

q∗N (σ1)

q∗N (η1)
P∗η (τσ < τW ) . (5.35)

Now for the event {τσ < τW } to take place the chain, starting in η, must exit η through
the set C(η2). Thus, setting ∂1η ≡ C(η2) ∩ ∂η = {σ ∈ VN | σ1 ∼ η1, σ2 = η2} we have

P∗η (τσ < τW ) = P∗η (τ∂1η < τσ < τW )

=
∑

σ′∈∂1η

P∗η

(
τσ′ < τ(∂1η\σ′)∪W∪σ

)
P∗σ′ (τσ < τW ) . (5.36)

To bound the last probability in the right-hand side of (5.36) we simply observe that on
Ω, for all large enough N ,

P∗σ′ (τσ < τW ) ≤ P∗σ′
(
τC(σ1) < τW

)
=

1

M1 + 1
(1 +O(M1/N1)) (5.37)

where the last equality is proved just as Proposition 5.1, namely, using first Lemma 4.2
with A = {σ1}, B = T1 and σ′1 6= σ1 to write that P∗σ′

(
τC(σ1) < τW

)
= P

◦,1
σ′1

(τσ1 < τT1), and

using next Theorem 1.4 of [6] with the partition Λ1(T1 ∪ σ1) induced by T1 ∪ σ1 (that is to
say, the Top and a non random point) together with (4.30) and (4.31) of Lemma 4.8 and
(4.27) of Lemma 4.7, under the assumptions therein (namely, on Ω, for all large enough
N ) which are assumed from now on to be verified. Plugging (5.37) in (5.36), we get

P∗η (τσ < τW ) ≤ 1

M1 + 1
(1 +O(M1/N1))P∗η (τ∂1η < τW∪σ) (5.38)

where P∗η (τ∂1η < τW∪σ) ≤ P∗η (τ∂1η < τWx1 ) =
∑
σ′′∈∂1η

p∗2(η, σ′′) = q∗N (η1). Combined
with (5.35), this finally gives

P∗σ

(
τη < τ(W\η)∪σ

)
≤ q∗N (σ1)

M1 + 1
(1 +O(M1/N1)) . (5.39)

It now remains to bound the denominator of (5.34). For this we simply decompose on
the first step of the jump chain,

P∗σ (τW < τσ) =
∑

σ′∼σ:σ′∈W

p∗N (σ, σ′) +
∑

σ′∼σ:σ′ /∈W

p∗N (σ, σ′)P∗σ′ (τW < τσ) ,
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and observe that P∗σ′ (τW < τσ) ≥ P∗σ′
(
τW < τC(σ1)

)
= 1 − 1

M1+1

(
1 +O(M1

N1
)
)

where the
last equality follows from (5.37). Since

∑
σ′∼σ p

∗
N (σ, σ′) = 1 we get

P∗σ (τW < τσ) ≥ 1− 1

M1 + 1
(1 +O(M1/N1)) . (5.40)

Inserting (5.39) and (5.40) in (5.34) yields (5.33) and proves the lemma.

Now choose r(N) such that

2N1/2P
(

exp
{
β
√
aN1Ξ(1)

σ1

}
≥ r(N)

)
= 1. (5.41)

and consider the set V+
N ≡ V

+
N1
× VN2

where

V+
N1

=
{
σ1 ∈ VN1

| Ξ(1)
σ1 ≥

log r(N)

β
√
aN1

}
. (5.42)

Corollary 5.9. Under the assumptions of Lemma 5.8, for all η ∈ T and all σ ∈ V+
N \W ,

P∗σ

(
τη < τW\η

)
≤ 1

M1
e−
√

1
2ββ∗N1(1+o(1)). (5.43)

Proof. By (4.3), (1.1) and (5.42), q∗N (σ1) ≤ [1 + (N2/N1)r(N)]−1 ≤ e−
√

1
2ββ∗N1(1+o(1)) for

all σ ∈ V+
N . Inserting this in Lemma 5.8 yields (5.43).

This implies that the bound (5.16) holds true for all σ ∈ V+
N \W . To extend this result

to the entire set VN \W , observe that W ⊂ V+
N (see the definition (3.4)-(3.6) of W ) and

decompose the probability in (5.16) according to whether the jump chain visits V+
N \W

before η or not, namely, for σ ∈ VN \ V+
N write

P∗σ

(
τη < τW\η

)
= P∗σ

(
τV+

N\W
< τη < τW\η

)
+ P∗σ

(
τη < τ(W\η)∪(V+

N\W )

)
(5.44)

Call Q1 and Q2, respectively, the first and second probabilities in the r.h.s. of (5.44).
Then

Q1 =
∑

σ′∈V+
N\W

P∗σ

(
τσ′ < τV+

N\σ′

)
P∗σ′

(
τη < τW\η

)
≤ 1

M1
e−
√

1
2ββ∗N1(1+o(1)) (5.45)

where the inequality in (5.45) follows from Corollary 5.9. To bound Q2 note that given
any set AN1

⊂ V+
N1

, AN ≡ ∪σ1∈AN1
C(σ1) ⊂ ∪σ1∈V+

N1

C(σ1), so that for all σ ∈ VN \ V+
N

Q2 = P∗σ

(
τη < τV+

N\η

)
≤ P∗σ

(
τC(η1) < τAN\C(η1)

)
= P◦,1σ1

(
τη1 < τAN1

\η1

)
(5.46)

where the last equality is Lemma 4.2 applied with A = {η1}, B = AN1
⊂ V+

N1
and

σ1 /∈ V+
N1

.
Now let `(N) = 2N1/

∣∣V+
N1

∣∣ be the inverse of the density of the random cloud V+
N1

. By
(5.41), (5.42), a simple large deviation estimate and Borel-Cantelli lemma, there exists a
set Ω+

1 with P
(
Ω+

1

)
= 1 and such that on Ω+

1 , `(N) = 2N1/2(1 + o(1)) for all large enough
N . Decomposing the event {τη1

< τAN1
\η1
} according to whether τAN1

\η1
< `(N)/N1 or

τAN1
\η1
≥ `(N)/N1 yields

P◦,1σ1

(
τη1 < τAN1

\η1

)
≤ P◦,1σ1

(τη1 < `(N)/N1) + P◦,1σ1

(
τAN1

\η1
≥ `(N)/N1

)
. (5.47)

By Theorem 1.1 of [16], carefully collecting all estimates in its proof, we get that

max
σ1

P◦,1σ1

(
τAN1

\η1
≥ `(N)/N1

)
≤ c

N1
(5.48)
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for some constant c > 0. It remains to bound the first probability in the right-hand side of
(5.47). Notice that the mean hitting time of a given vertex in V+

N1
by the simple random

walk is to leading order 2N1 = `2(N)� `(N)/N1. Assume first that dist(σ1, η1) > 1. Then,
by Tchebychev exponential inequality, for all u > 0,

P◦,1σ1
(τη1

< `(N)/N1) ≤ exp
(

u
N1`(N)

)
E◦,1σ1

(
e
− u
`2(N)

τAN1
\η1

)
(5.49)

≤ exp
(

u
N1`(N)

) 1

1 + u(1 + 1
N )

+
c

N2
1

(5.50)

where the last inequality follows from (7.7) of Theorem 7.2 of [6]. Choosing e.g. u = N2
1

yields P◦,1σ1
(τη1

< `(N)/N1) ≤ c/N2
1 for some c > 0. Proceeding in a similar way when

dist(σ1, η1) = 1 but using (7.6) of Theorem 7.2 of [6] we get P◦,1σ1
(τη1

< `(N)/N1) ≤ c/N1

for some c > 0. Hence, collecting our bounds,

max
σ1

P◦,1σ1

(
τAN1

\η1
≥ `(N)/N1

)
≤ c

N1
. (5.51)

for some constant c > 0. Inserting (5.48) and (5.51) in (5.47) and plugging the result in
(5.46), we finally get that for all σ ∈ VN \ V+

N and some constant c > 0,

0 ≤ Q2 ≤ c/N1. (5.52)

Plugging (5.45) and (5.52) in (5.44) we obtain that, on Ω+
1 ∩ Ω1(T1) and for all N1 large

enough, for all σ ∈ VN \ V+
N

P∗σ

(
τη < τW\η

)
≤ c/N1. (5.53)

Combining (5.53) and (5.43) yields the claim of Proposition 5.6.

Proof of Corollary 5.7. The bound (5.17) follows from Proposition 5.6 and the identity

P∗σ

(
τTx1 < τW\Tx1

)
=
∑
η∈Tx1 P

∗
σ

(
τη < τW\η

)
. (5.54)

To prove (5.18) note that

P∗σ

(
τWx1 < τW\Wx1

)
= P∗σ

(
τWx1\Tx1 < τW\(Wx1\Tx1 )

)
+ P∗σ

(
τTx1 < τW\Tx1

)
.

and use (5.1) of Proposition 5.1 to bound the probability in the left-hand side above and
(5.17) to bound the second probability in the right-hand side.

6 Entrance law. Proofs

6.1 Proof of Proposition 3.1

The set Ω̃ of Propositions 3.1 is chosen to be Ω̃ = Ω ∩Ω+
1 ∩ Ω̂ where Ω, Ω+

1 , and Ω̂ are
defined, respectively, in (4.21), above (5.47) and in (5.9). Since each of this set has full
measure (see Lemma 4.4, Lemma 5.3 and the paragraph above (5.47)) P(Ω̃) = 1. From
now on we will assume that ω ∈ Ω̃. Lemma 4.1 will be frequently used without making
explicit mention of it.

Proof of Assertion (i) of Proposition 3.1. We first work out general expressions, valid at
all temperature, that relate the entrance probabilities Pσ

(
τη < τT\η

)
, σ /∈ T , η ∈ T , to

the basic REM-like, level-2 and inter-level probabilities estimated in Propositions 5.1,
5.2 and 5.6. To shorten the notations we write, given x1 ∈M1 and η ∈ T x1

Pσ
(
τη < τT\η

)
=


Pη(σ) if σ ∈W x1 \ T x1 ,

Qη(σ) if σ ∈W x′1 \ T x′1 for some x′1 ∈M1 \ x1,

Rη(σ) if σ ∈ SN \W.

(6.1)
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Note that the probabilities (3.10), (3.11) and (3.12) are of the form, respectively, Pη(σ),
Qη(σ), and Rη(σ). As the next lemma shows, both Pη(σ) and Qη(σ) can be expressed
as functions of Rη(σ) whereas, using a renewal kind of argument, Rη(σ) itself is the
solution of a linear system of equations.

Lemma 6.1. Given x1 ∈M1 and η ∈ T x1 define, for σ ∈ VN \W ,

bη(σ) = Pσ

(
τη < τW\η

)
+

∑
σ′∈Wx1\Tx1

Pσ

(
τσ′ < τW\σ′

)
Pσ′

(
τη < τ(Tx1\η)∪∂Wx1

)
(6.2)

and, for σ ∈ VN \W and σ′′ ∈ ∂W ,

a(σ, σ′′) =
∑

x′1∈M1

∑
σ′∈Wx′1\Tx

′
1

Pσ

(
τσ′ < τW\σ′

)
Pσ′

(
τσ′′ < τ

(∂Wx′1\σ′′)∪Tx
′
1

)
. (6.3)

If A denotes the square matrix A = (a(σ, σ′′))σ,σ′′∈∂W and bη the vector bη = (bη(σ))σ∈∂W ,
then the vector Rη ≡ (Rη(σ))σ∈∂W obeys

Rη = bη +ARη. (6.4)

Moreover, if R∗η = (R∗η(σ))σ∈∂W solves the linear system (6.4), then

(i) for all σ ∈ SN \W ,

Rη(σ) = bη(σ) +
∑

σ′′∈∂W

a(σ, σ′′)R∗η(σ′′), (6.5)

(ii) for all σ ∈W x1 \ T x1 ,

Pη(σ) = Pσ
(
τη < τ(Tx1\η)∪∂Wx1

)
+

∑
σ′∈∂Wx1

Pσ
(
τσ′ < τ(∂Wx1\σ′)∪Tx1

)
R∗η(σ′), (6.6)

(iii) for all σ ∈W x′1 \ T x′1 and all x′1 ∈M1 \ x1,

Qη(σ) =
∑

σ′∈∂Wx′1

Pσ

(
τσ′ < τ

(∂Wx′1\σ′)∪Tx
′
1

)
R∗η(σ′). (6.7)

Proof. Let us first consider Pη(σ). Decomposing the event {τη < τT\η} according to
whether, starting in σ, the chain visits η before visiting the boundary ∂W x1 or not, we
get:

Pη(σ) = Pσ
(
{τη < τT\η} ∩ {τη < τ∂Wx1 }

)
+ Pσ

(
{τη < τT\η} ∩ {τ∂Wx1 < τη}

)
= Pσ

(
τη < τ(Tx1\η)∪∂Wx1

)
+ Pσ

(
τ∂Wx1 < τη < τT\η

)
= Pσ

(
τη < τ(Tx1\η)∪∂Wx1

)
+

∑
σ′∈∂Wx1

Pσ
(
τσ′ < τ(∂Wx1\σ′)∪Tx1

)
Rη(σ′) (6.8)

where we used (6.1) in the last line. Proceeding in the same way with Qη(σ) yields

Qη(σ) =
∑

σ′∈∂Wx′1

Pσ

(
τσ′ < τ

(∂Wx′1\σ′)∪Tx
′
1

)
Rη(σ′). (6.9)

We now focus on Rη(σ). Clearly Pσ(τW <∞) = 1 and by definition of W

{τW <∞} =
⋃
x′1∈M1

{τ
Wx′1

< τ
W\Wx′1

}. (6.10)
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Hence
Rη(σ) =

∑
x′1∈M1

Pσ

(
{τη < τT\η} ∩ {τWx′1

< τ
W\Wx′1

}
)
. (6.11)

Setting Ex′1 ≡ {τη < τT\η} ∩ {τWx′1
< τ

W\Wx′1
} and observing that for x′1 = x1

Ex1 =
(⋃

σ′∈Wx1\Tx1 {τσ′ < τW\σ′} ∩ {τη < τT\η}
)
∪ {τη < τW\η} (6.12)

whereas for all x′1 ∈M1 \ x1

Ex′1 =
⋃
σ′∈Wx′1\Tx

′
1
{τσ′ < τW\σ′} ∩ {τη < τT\η}, (6.13)

(6.11) becomes

Rη(σ) = Pσ

(
τη < τW\η

)
+

∑
σ′∈Wx1\Tx1

Pσ

(
τσ′ < τW\σ′

)
Pη(σ′) (6.14)

+
∑

x′1∈M1\x1

∑
σ′∈Wx′1\Tx

′
1

Pσ

(
τσ′ < τW\σ′

)
Qη(σ′). (6.15)

Plugging the expressions (6.8) and (6.9) of Pη(σ) and Qη(σ) in (6.15) readily yield that
for bη(σ) and a(σ, σ′′) as in (6.2) and (6.3), Rη(σ) obeys, for all σ ∈ SN \W ,

Rη(σ) = bη(σ) +
∑

σ′′∈∂Wx′1

a(σ, σ′′)Rη(σ′′). (6.16)

The restriction of this last relation to σ ∈ ∂W enables us to see the vector (Rη(σ))σ∈∂W
as solution of the linear system of equations (6.4). This observation together with (6.16),
(6.8) and (6.9) prove, respectively, (6.5), (6.6) and (6.7). Lemma 6.1 is proven.

Lemma 6.2. Under the assumptions and with the notation of Proposition 3.1, the linear
system (6.4) has a unique solution, R∗η = (R∗η(σ))σ∈∂W , that obeys

R∗η(σ) =
ν1(x1)

M2
(1 + εN ) ∀σ ∈ ∂W. (6.17)

The proof of Lemma 6.2 makes use of the following two lemmata.

Lemma 6.3. The matrix A has the following properties: for each σ ∈ ∂W

0 ≤
∑

σ′′∈∂W

a(σ, σ′′) = 1−
∑
η∈T

bη(σ) ≤ 1 (6.18)

Proof. Summing both sides of (6.4) over η ∈ T and using that by (6.1) and (6.2),∑
η∈T

Rη(σ) = 1 for all σ ∈ SN \W (6.19)

yields the equality of (6.18). The first and final upper and lower bounds simply reflect
the fact that A is a positive matrix and bη a positive vector.

Lemma 6.4. A necessary and sufficient condition for a solution to (6.4) to exist is that

minσ∈∂W
∑
η∈T bη(σ) > 0. (6.20)

In this case the solution is unique, positive and given by Rη = (I − A)−1bη, where I

denotes the identity matrix and (I −A)−1 =
∑∞
k=1A

k exists.
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Proof. Denote by ρ(A) the Perron-Frobenius eigenvalue of A. By (6.18) and the standard
min and max row-sum bounds on the Perron-Frobenius eigenvalue of primitive matrices
(see [30], p. 8 Corollary 1)

0 ≤ 1−maxσ∈∂W
∑
η∈T bη(σ) ≤ ρ(A) ≤ 1−minσ∈∂W

∑
η∈T bη(σ) ≤ 1. (6.21)

The claim of the lemma now follows from (6.18), (6.21) and Theorem 2.1 p. 30 of [30]
(see also Corollary 3 p. 31).

We are now ready to prove Lemma 6.2.

Proof of Lemma 6.2. Let us establish that if 1− λx1(T x1)� O(N−1) then, there exists a
constant 0 < c <∞ (that depends on a1, a2) such that, for all x1 ∈ M1, all η ∈ T x1 and
all σ ∈ VN \W

v(x1) ≤ bη(σ) ≤ v(x1) + cN−1 where v(x1) ≡ 1

M1M2
(1− λx1(T x1)). (6.22)

Inserting (5.5) of Proposition 5.2 in (6.2) and using (5.18) of Corollary 5.7 yields that for
all σ ∈ VN \W and all η ∈ T x1 , bη(σ) = v(x1)(1 +N−1

1 (1 + o(1))) + δbη(σ) where v(x1) is
as in (6.22) and

δbη(σ) ≡ Pσ
(
τη < τW\η

)
+

∑
σ′∈Wx1\Tx1

Pσ

(
τσ′ < τW\σ′

)
bA(σ, η). (6.23)

By (5.6), (5.7) and (5.15), 0 ≤ bTx1 (σ, η) ≤ N−1
2 (1 + o(1)) for all for all σ ∈ VN \W and

all η ∈ T x1 . Inserting this rough bound in (6.23) and using again (5.18) to bound the
resulting sum, the first term in (6.22) being bounded in (5.16), we get

0 ≤ max
σ∈∂W,η∈Tx1

δbη(σ) ≤ 1

N1
(1 + o(1)) +

1

M1N2
(1 + (2M1/N1)(1 + o(1)). (6.24)

This proves the claim (6.22). Eq. (6.22) in particular implies that the solution R∗η of the
linear system (6.4) obeys

v(x1)(I −A)−11 ≤ R∗η ≤ (v(x1) + cN−1)(I −A)−11 (6.25)

where 1 is the vector with all components equal to one and where the inequalities hold
component wise, for each R∗η(σ), σ ∈ ∂W . Now, by (6.18) of 6.3 and Lemma 6.4,

(I −A)−11 =
∑∞
k=1A

k1 =
(∑

η∈T bη(σ)
)−1

1 (6.26)

where by (6.22),
∑
η∈T v(x1) ≤

∑
η∈T bη(σ) ≤

∑
η∈T (v(x1) + cN−1) and∑

η∈T v(x1) =
∑
x1∈M1

∑
η∈Tx1 v(x1) =

∑
x1∈M1

1
M1

(1− λx1(T x1)). (6.27)

Thus if 1 − λx1(T x1) � N−1, v(x1) � N−1. Now by (5.9) of Lemma 5.3, ζN � logN

implies that ψNγN1 (ξx1
1 ) � N−1 which in turn implies that 1 − λx1(T x1) � N−1. The

claim of the lemma now readily follows.

We are now ready to prove (3.10), (3.11) and (3.12). Clearly, Eq. (3.12) follows from
(6.5), (6.17) of Lemma 6.2 and the bounds (6.22) which are valid for all x1 ∈ M1, all
η ∈ T x1 and all σ ∈ VN \W . Next, inserting (6.17) in (6.7) gives

Qη(σ) = Pσ

(
τ
∂Wx′1

< τ
Tx
′
1

) ν1(x1)

M2
(1 + εN ) . (6.28)
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Using (5.8) to express the probability in (6.28) and proceeding as in the proof of Lemma
6.2 to bound the term c

Tx
′
1
(σ) (that is, the terms b

Tx
′
1
(σ, η)) appearing in that expression

yields (3.11). Finally, inserting (6.17) in (6.6) gives

Pη(σ) = Pσ
(
τη < τ(Tx1\η)∪∂Wx1

)
+ Pσ (τ∂Wx1 < τTx1 )

ν1(x1)

M2
(1 + εN ) . (6.29)

Using Lemma 6.2 to bound the two probabilities appearing above, reasoning again as
in the proof of Lemma 6.2 to bound the terms bTx1 (σ, η) and cTx1 (σ), proves (3.10). As
for (i-4), it follows from Corollary 5.7. The proof of Assertion (i) of Proposition 3.1 is
complete.

Proof of Assertions (ii) and (iii) of Propositions 3.1. The proofs of these two assertions
are similar to those of (3.10) and (3.11) and present no new difficulties. As before they
center on “renewal systems” that closely ressemble (6.16) and that we now describe.

Given x1, x̄1 ∈ M1, let η ∈ T x1 and η̄ ∈ T x̄1 . Instead of the three quantities of
(6.1) we now need to distinguish six quantities, denoted by P=

η (σ), Q=
η (σ), R=

η (σ) and
P 6=η (σ), Q6=η (σ), R 6=η (σ), and defined as follows: letting the symbol ∗ stand for = if x1 = x̄1

and 6= if x1 6= x̄1,

Pσ
(
τη < τT\{η,η̄}

)
≡


P ∗η (σ) if σ ∈W x1 \ (T x1 \ η̄),

Q∗η(σ) if σ ∈W x′1 \ (T x
′
1 \ η̄) for some x′1 ∈M1 \ x1,

R∗η(σ) if σ ∈ SN \ (W \ η̄)

(6.30)

where T x
′
1 \ η̄ = T x

′
1 if η̄ /∈ T x1 . Note that the probabilities (3.14) and (3.15) are of the

form, respectively, P η(η) and Qη(η). As before they can be expressed as functions of,
respectively, R=

η (σ) and R 6=η (σ). Proceeding exactly as in the derivation of (6.8) and (6.9),
we get

P=
η (η̄) = Pη̄

(
τη < τ(Tx1\{η,η̄})∪∂Wx1

)
+

∑
σ′∈∂Wx1

Pη̄
(
τσ′ < τ(∂Wx1\σ′)∪(Tx1\η̄)

)
R=
η (σ′),

Q6=η (η̄) =
∑

σ′∈∂W x̄1

Pη̄

(
τσ′ < τ η̄(∂W x̄1\σ′)∪(T x̄1\η̄)

)
R 6=η (σ′). (6.31)

A reasoning similar to that which leads to (6.16) yields, with the same notational
convention as above

R∗η(σ) = b∗η(σ) +
∑

σ′′∈∂Wx′1

a∗(σ, σ′′)R∗η(σ′′), (6.32)

where for all σ ∈ SN \ (W \ η̄)

b=η (σ) =
(
1 + P=

η (η̄)
)
Pσ

(
τη < τW\η

)
+

∑
σ′∈Wx1\Tx1

Pσ

(
τσ′ < τW\σ′

)
Pσ
(
τη < τ(Tx1\{η,η̄})∪∂Wx1

)
, (6.33)

b 6=η (σ) =
(
1 +Q6=η (η̄)

)
Pσ

(
τη < τW\η

)
+

∑
σ′∈Wx1\Tx1

Pσ

(
τσ′ < τW\σ′

)
Pσ
(
τη < τ(Tx1\η)∪∂Wx1

)
(6.34)

and, for σ ∈ SN \ (W \ η̄) and σ′′ ∈ ∂W x′1 , a=(σ, σ′′) = a6=(σ, σ′′) = ā(σ, σ′′) where

ā(σ, σ′′) ≡
∑

x′1∈M1

∑
σ′∈Wx′1\Tx

′
1

Pσ

(
τσ′ < τW\σ′

)
Pσ′

(
τσ′′ < τ

(∂Wx′1\σ′′)∪(Tx
′
1\η̄)

)
. (6.35)
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Note that by virtue of Proposition 5.6, the terms P=
η (η̄) and Q

6=
η (η̄) in (6.33) and (6.34)

are absorbed in the εN term of (3.14) and (3.15). The proof of Assertions (ii) and (iii) of
Propositions 3.1 are now reruns of the proof of Assertions (i). We omit the details.

6.2 Proof of Proposition 3.3

There are two parts to the argument, a quite simple one: how the process leaves
M; and the bulk of the argument: how it returns to M. The latter part would be
quite straightforward – apart from a result about the random walk in the hypercube
and Ehrenfest chains; see Lemma 12.5 –, if we could assume that both the returns to
first level ground state configurations and to second level ground state configurations
are uniform at each instance, irrespective of the starting point. Of course this is only
approximately the case at each instance, and there are exponentially many instances to
be controlled; so, in the end, indeed an extensive, careful analysis, is required, tailored
to take advantage of existing bounds on the approximation of the law of the random walk
in the hypercube to the uniform law.

6.2.1 Transition withinM: LeavingM

By the rules of our dynamics when leaving x1x2 ∈M, the probability to jump to x′1x2 for
some x′1 ∼ x1 equalsq∗N (ξx1) (recall (4.3)), which vanishes as N →∞ for x1 ∈M1. Once
X̄N leaves x1x2 ∈M and goes to some neighboring x1x

′
2, while X̄N

1 rests, the number
of jumps X̄N

2 would have to take before coming back toM2
4 is of the order of 2N2 (by

Corollary 1.8 of [6]), which in this temperature regime is much larger than 1/q∗N (ξx1),
the order of the number of jumps of X̄N before X̄N

1 moves. The upshot is that with
probability tending to 1 as N →∞, starting fromM, X̄N first leavesM in such a way
that X̄N

1 leavesM1 before X̄N returns toM.

6.2.2 Transition withinM: Return toM

In the presentation of the arguments in the remainder of this subsection, we find it
convenient to go back to the representation X̄N of our process (introduced in Subsec-
tion 2.2). Let τ1 = inf{t > 0 : X̄N

1 ∈ M1}, τ̌1 = inf{t > τ1 : X̄N
1 /∈ M1} and, for i ≥ 2,

τ i = inf{t > τ̌ i−1 : σN ∈ M1}, τ̌ i = inf{t > τ i : X̄N
1 /∈ M1}. We then have that τ i,

i = 1, 2, . . ., represent the successive hitting times ofM1 by X̄N
1 . Notice that τ1 = τW .

Let also Ai, resp. Ayi , i = 1, 2, . . ., denote the event that X̄N
2 hitsM2, resp. y ∈M2 during

the i-th visit of X̄N
1 toM1. Let I = min{i ≥ 1 : Ai occurs}. Below we will compute the

limit as N →∞ of
Pσ(X̄N

1 (τI) = x,AyI), xy ∈M. (6.36)

From the discussion on Subsubsection 6.2.1, we may take σ /∈ W . The expression
in (6.36) is not quite the probability in the left hand side of (3.18), but close enough in
the sense that they turn out to have the same limit, as will also be argued below, in the
conclusion of the our proof.

For x ∈M1, set

π(x) = Pµ2
(Ay1|X̄N

1 (0) = x); π̂(x) = Pµ2
(A1|X̄N

1 (0) = x), (6.37)

where µ2 is the uniform initial distribution of X̄N
2 (on VN2). Notice that π(x) does not

depend on y. We show in the appendix – see Lemma 12.5 – that

π(x) ∼ N2

N1
γ1(x)

1

cN1 2N2
; π̂(x) ∼M2π(x). (6.38)

4Let us recall from Lemma 4.5 that x′2 may be assumed not in M2.
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Let now Di denote the event that X̄N
2 gives at least N3

2 steps between times τ i−1

and τ i, i ≥ 2. Now let L1 = inf{i ≥ 2 : Di occurs}, and, for k ≥ 2, Lk = inf{i > Lk−1 :

Di occurs} , and define τ̄1 = τ1 and τ̄k = τLk , k ≥ 2. Let also Āi, i = 1, 2, . . ., denote the
event that X̄N

2 hits M2 while X̄N
1 ∈ M1 between times τ̄ i and τ̄ i+1, i ≥ 1. Finally, let

Ī = min{i ≥ 1 : Āi occurs}.
We will now couple X̄N to a process X̆N = X̆N

1 X̆
N
2 which moves like X̄N , except that

at the times τ̄ i, i ≥ 1, it is uniformly distributed in the second coordinate. Lemma 12.4
and Lemma 3.1 of [13] should in principle allow for a direct argument for such a
coupling, but there is a periodicity issue for the aplication of the latter result, so we find
it convenient to go through an intermediate step, in order to deal with that issue.

Let X̊N = X̊N
1 X̊

N
2 be such that X̊N

1 = X̄N
1 ; for the definition of X̊N

2 , we partition the
trajectory of X̄N

2 into alternating portions, the first kind of which starts at a time τ̄ i for
some i ≥ 1, when X̄N

1 = x1 for some x1 ∈M1, and ends when X̄N
1 jumps (away from x1);

the second kind are the remaining portions of the trajectory of X̄N
2 . Let us denote the

number of steps in a given first kind of portion by G (it is a geometric random variable).

X̊N
2 will be defined so that it gives the same number of steps as X̄N

2 within each
portion of their respective trajectories, in the same overall order, as follows. We let
X̊N

2 = X̄N
2 for the second kind of portion. For any given first kind of portion, let Υi

denote it, we will consider an extra step of X̄N
2 after the G-th step, independent of all

else, except of course the position of X̄N
2 after that step. Let Ϋi denote the trajectory

obtained by putting that extra step at the end of the portion of Υi starting at the second
step of X̄N

2 within Υi. Notice that both portions of trajectory, Υi and Ϋi, have the same
number of steps, namely G. We then toss an independent fair coin; if it comes up heads,
then we make X̊N

2 = X̄N
2 for that portion of the trajectory as well; otherwise, if it comes

up tails, then we make X̊N
2 coincide with Ϋi, instead.

This extra coin-tossing randomness solves the periodicity issue, and we may now
apply Lemma 12.4 and Lemma 3.1 of [13] to couple X̊N to a process X̆N = X̆N

1 X̆
N
2 such

that X̆N
1 = X̊N

1 , and, defining the random times in the above paragraph in the same way
(and with the same notation) for X̊N and X̆N , we have that X̆N

2 is uniformly distributed
on D2 at the times τ̄ i, i ≥ 2, in such a way that, with probability tending to 1 as N →∞,
we have that X̆N

2 = X̊N
2 for all times till τ̄ Ī . Notice that, since Ī ≤ I, Lemma 12.4 holds

also for Ī.

We now proceed to compute Pσ(X̄N
1 (τI) = x,AyI), x ∈M1. The first step is to replace

X̄N in that expresion by X̊N . The error in thus doing is bounded above by the probability
that either there is a visit of X̄N

2 to y on the first step of Υi or on the last (extra) step of
Ϋi for some i ≤ Ī. But this is readily checked to be an o(1) by applying Lemma 12.4 and
Lemma 3.1 of [13].

For the next step, let I ′ = min{i ≥ 0 : ALĪ+i occurs}. Then for x ∈ M1, apart from
an o(1) error according to the above paragraphs, we have that

Pσ(X̄N
1 (τI) = x,AyI) = Pσ(X̊N

1 (τI) = x,AyI) =

∞∑
k=1

Pk(xy), where for k ≥ 2 (6.39)

Pk(xy) =

∞∑
`=0

∑
z∈M1

Pσ(X̆N
1 (τ̄k) = z, X̆N

1 (τLk+`) = x, Ī = k, I ′ = `, AyLk+`)

=

∞∑
`=0

∑
x1,...,xk+`−1∈M1

Pσ(X̆N
1 (τ̄1) = x1, . . . , X̆

N
1 (τ̄k−1) = xk−1,

X̆N
1 (τLk) = xk, . . . , X̆

N
1 (τLk+`−1) = xk+`−1, X̆

N
1 (τLk+`) = x,

Āc1, . . . , Ā
c
k−1, A

c
Lk
, F1, . . . , A

c
Lk+`−1, F`, A

y
Lk+`),
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where Fi is the event that X̆N
2 gives less than N3

2 jumps between τLk+i−1 and τLk+i,
i = 1, 2, . . ., and all the other quantities and events in the latter probability should be
defined with X̄N replaced by X̆N . Using the Markov property, the right-hand side above
can be written as

M1
−1

∑
x0,...,xk−1∈M1

k−1∏
i=1

(1− π̄(xi))P(X̆N
1 (τ̄ i) = xi|X̆N

1 (τ̄ i−1) = xi−1, Ā
c
i−1)

×

π(x)P(X̆N
1 (τLk) = x|X̆N

1 (τ̄k−1) = xk−1, Ā
c
k−1) +

∞∑
`=1

∑
xk,...,xk+`−1∈M1

Q`xk,...,xk+`−1

 ,
(6.40)

where π̄(xi) = Pµ2
(Āi|X̄N

1 (τ̄ i) = xi) (it does not depend on i ≥ 1 except through xi) and
Q`xk,...,xk+`−1

equals

P(X̆N
1 (τLk) = xk, A

c
Lk
, F1, . . . , X̆

N
1 (τLk+`−1) = xk+`−1, A

c
Lk+`−1, F`,

X̆N
1 (τLk+`) = x,AyLk+`|X̆

N
1 (τ̄k−1) = xk−1, Ā

c
k−1).

(6.41)

Removing the Ac’s and using the Markov property, we find that the expression
in (6.41) is bounded above by

P(X̆N
1 (τLk) = xk|X̆N

1 (τ̄k−1) = xk−1, Ā
c
k−1)P(F1|X̆N

1 (τLk) = xk)×
`−1∏
i=1

{P(X̆N
1 (τLk+i) = xk+i|X̆N

1 (τLk+i−1) = xk+i−1, Fi)P(Fi+1|X̆N
1 (τLk+i) = xk+i)}×

P(X̆N
1 (τLk+`) = x|X̆N

1 (τLk+`−1) = xk+`−1, F`)P(AyLk+`|X̆
N
1 (τLk+`) = x),

(6.42)

since the events F1, F2, . . . depend only on X̆N
1 , and starting with a uniform distribution

on D2, its invariant distribution, at time Lk, X̆N
2 (Lk + `) still has that same distribution.

Now from Lemma 12.2 and Remark 12.3 above, each probability of the form P(Fi|·)
in (6.42) are bounded above by c/N for some constant c. We also notice that the latter
probability in the same expression equals π(x). Thus the second term within brackets on
the bottom of (6.40) is bounded above by

π(x)
∑∞
`=1

(
c
N

)`∑
xk,...,xk+`−1∈M1

P(X̆N
1 (τLk) = xk|X̆N

1 (τ̄k−1) = xk−1, Ā
c
k−1)

×
∏`−1
i=1 P(X̆N

1 (τLk+i) = xk+i|X̆N
1 (τLk+i−1) = xk+i−1, Fi),

and since the latter sum is over probabilities, it equals 1. It follows that the expression
within brackets on the bottom of (6.40) equals

[P(X̆N
1 (τLk) = x|X̆N

1 (τ̄k−1) = xk−1, Ā
c
k−1) + oxk−1,x]π(x), (6.43)

where ox′,x is an o(1) for every x, x′ ∈M1.
Let us now consider π̄(z) for a given z ∈ M1; arguing in the same way as for the

expression within brackets on the bottom of (6.40), we find that it equals π̂(z) plus an
error bounded above by

∞∑
`=1

( c
N

)` ∑
x′1,...,x

′
`∈M1

∏̀
i=1

P(X̆N
1 (τLk−1+i) = x′i|X̆N

1 (τLk−1+i−1)= x′i−1, F
′
i ) π̂(x′`),
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where F ′1, F
′
2, . . . are defined in the obvious, parallel way to F1, F2, . . . above. From (6.38),

we have that π̂(x), x ∈M1, are all of the same order of magnitude. It follows that

π̄(xi) = (1 + oxi)π̂(xi), xi ∈M1, (6.44)

where ox is an o(1) for every x ∈M1.

In particular, we have that Pµ2
(Āci |X̄N

1 (τ̄ i) = xi) ∼ 1 for all i = 1, 2, . . . and using also
Corollary 1.5 of [6], we find that

P̄x,y := P(X̆N
1 (τ̄ i) = y|X̆N

1 (τ̄ i−1) = x, Āci−1) ∼ 1

M1
, x, y ∈M1. (6.45)

We note that the latter conditional probability does not depend on i = 1, 2, . . ..

The upshot of the above discussion is that the right-hand side of (6.39) may be written
as

(1 + o(1))
1

M1

∑
x0∈M1

∞∑
k=1

R̄kx0,x

π(x)

1− π̄(x)
, (6.46)

where R̄k is the k-th power of the matrix R̄ = P̄ (I − Π̄), where I is the identity matrix in
M1 and Π̄ is the diagonal matrix inM1 with entries {π̄(y), y ∈M1}.

Now by (6.38), we have that Π̄ ∼M2εΓ, with ε = N2

N1

1
cN1 2N2+1 and Γ = diag {γ1(y), y ∈

M1} is the diagonal matrix inM1 with entries {γ1(y), y ∈ M1}; thus, it is an o(1) and
from (6.45), we have that R̄ is a positive matrix for all large enough N . We may thus
apply the Perron-Frobenius theory to write the internal sum in (6.46) as

∞∑
k=1

ρk[(ρ−1R̄)k − S̄]x0,x
π(x)

1− π̄(x)
+

1

1− π̄(x)

S̄x0,xπ(x)

1− ρ
, (6.47)

where ρ is the top eigenvalue of R̄, and S̄ = vwT , with v, w the right and left eigenvectors
of R̄ associated to ρ such that vTw = 1. See Theorem 8.2.11, its proof, and the preceding
and subsequent material of Section 2 of Chapter 8 of [26]. To check that ρ < 1 for all
large enough N , we first note that R̄ is a perturbation of P̄ , which is stochastic, and
thus has 1 as its top eigenvalue, and then resort to a standard perturbation result to
the effect that ρ = 1−M2 ε

′ w̄T P̄Γv̄
w̄T v̄

+ Cε2, where v̄ and w̄ are right and left eigenvectors
of P̄ associated to the eigenvalue 1, ε′ ∼ ε, and C is a constant. See Theorem IV.2.3
in [31]. Since the latter matrix is stochastic, we may take v̄ as the vector with all entries
equal to 1. By (6.45) and again well known perturbation results, we may take w̄ ∼ v̄

(see Subsection V.2.3 of [31]), and from (6.45) we have that P̄ ∼ 1
M1

I; we thus get

ρ = 1−M2 ε
′′ γ̄1 +Cε2, where γ̄1 = 1

M1

∑
y∈M1

γ1(y), and ε′′ ∼ ε. We then have that ρ < 1

for all large enough N .

Again the Perron-Frobenius theory tells us that the expression within brackets
in (6.47) decays exponentially fast in k, uniformly in N . Since π(x), π̄(x) are o(1) for all
x ∈M1, the infinite sum in (6.47) vanishes as N →∞.

Again resorting to well known perturbation theory results, since R̄ is also a perturba-
tion of 1

M1
I, we have that v and w may be taken as v ∼ v̄ = (1, . . . , 1), and w ∼ 1

M1
v; it

follows that S̄ ∼ 1
M1

I; the upshot is that the second summand in (6.47) is asymptotic to

1
M1
εγ1(x)

M2 ε′′ γ̄
∼ γ1(x)∑

y∈M1
γ1(y)

1

M2
, (6.48)

and thus so is the left hand side of (6.39).
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6.2.3 Conclusion of the proof of Proposition 3.3

Let us show that P (X̄N
1 (τI) = x,AyI) agrees with the entrance probability at left-hand

side of (3.18) apart from an o(1) error. As it stands, the former probability is actually the
probability that X̄N

2 visits y during the first visit of X̄N
1 toM1 where X̄N

2 hitsM2: the
visit of X̄N

2 to y may be not the first one toM2. However, this probability is clearly an
upper bound for the entrance probability, and if we subtract the following probability, we
obtain a lower bound. For i = 1, 2, . . ., let Bi denote the event that X̄N

2 hitsM2 at least
twice during the i-th visit of X̄N

1 to M1. We may then estimate Pµ2
(X̆N

1 (τI) = x,BI)

in the same way as above (starting in (6.39)), by replacing AyI , A
y
Lk+` by BI , BLk+`,

respectively, and π(x) by Pµ2
(B1|X̄N

1 (τ1) = x). But this is bounded above by the right-
hand side of (12.12), which was shown above to be an o(π(x)). We thus get that
Pµ2

(X̆N
1 (τI) = x,BI) is an o(1), and subtracting it from Pµ2

(X̆N
1 (τI) = x,AyI) gives us a

lower bound for the entrance law; the right-hand side of (6.48) as the limit for the latter
quantity follows.

7 Proof of Theorem 2.7

In this and next two sections, we present the proofs of the scaling limit theorems for
XN , one section for each proof. We will use the results of Section 3 on entrance laws.
There are two remaining things to establish in the case of Theorems 2.4 and 2.5: that
the process spends virtually all of the time at the top, and what time is spent at each
visit of a top configuration. The structure of the proof of Theorem 2.7 is not dissimilar:
we control time spent off the top states as before, then evaluate the time spent on visits
of XN

1 to top first level states, and finally resort to a spectral gap argument to get the
behavior on second level.

Specifically in this section, we will concentrate on showing that

1. X̄N spends virtually all the time onM;

2. the time X̄N
1 spends on each visit to each x1 ∈ M1 is roughly exponential with

mean f3(x1);

3. given an interval of constancy I = [a, b) of X̄N
1 where X̄N

1 = x1 for some x1 ∈
M1, and t1, . . . , tk such that a < t1 < . . . , tk < b for some k ≥ 1, we have that
X̄N

2 (t1), . . . , X̄N
2 (tk) are roughly independent random variables taking values on N,

each distributed roughly with probability weights given by γ2(x1, ·) normalized.

As anticipated in Subsection 2.6, Point 1 is quite straightforward, and so is Point 3
as far as first level transitions are concerned; second level transitions are readily dealt
with through spectral gap estimates. The main work concerns Point 2, where the gist
of the argument is a law of large numbers for the number of visits to a given second
level ground state configuration before the jump from a given first level ground state
configuration – see (7.6).

After arguing these points in variable detail, we sketch an argument on how they fit
together in a proof of Theorem 2.7. We start with the second point, after a few remarks.

Let us notice that the total time spent by σN (·/cN2 ) on any single visit to a given
σ1 ∈ VN1

can be written as
G∑
j=0

γ̃N2 (σ1J
◦
N2

(j))Tj , (7.1)

where G is the geometric random variable τ∂C with mean N2

N1
exp{β

√
aNΞ

(1)
σ1 }, Ti, i ≥ 1,

EJP 0 (2019), paper 0.
Page 34/50

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.vVOL-PID
http://ejp.ejpecp.org/


Low temperature cascading 2-GREM close to equilibrium

are iid mean 1 exponential random variables, and

γ̃N2 (σ) =
N
N2
γN2 (σ)

1 + N1

N2
eβ
√
aNΞ

(1)
σ1

. (7.2)

Remark 7.1. It should be quite clear that (2.15) and (2.17) remain valid when we
replace γN2 and γ2 by γ̃N2 and γ̃2, respectively – see paragraph right above the statement
of Theorem 2.4 –; one reason for this is that the denominator in (7.2) tends to 1 as
N →∞ for every fixed x1.

Remark 7.2. We may indeed assume that all the convergences mentioned in the previous
remark, which are weak for the original environment, may be taken strong by going
to another, suitable probability space for the environment (resorting to Skorohod’s
theorem). We will effectively, and for convenience, assume below that we are in the full
measure event of such a probability space where those convergences take place, and
omit further reference to it.

7.1 Time spent on top first level visits

Let x1 ∈ M1. Set X2 = (ξx1·
2 )−1(J◦N2

), where ξx1·
2 is the function from D2 to VN2

mapping x2 to ξx1x2
2 . The time spent in M by X̄N

1 on its i-th visit to x1 ∈ M1 can
expressed as

Υ̂N
i (x1) := cN1 2N2

G∑
j=0

1{X2(j)∈M2}γ̃
N
2 (x1X2(j))Tj . (7.3)

Lemma 7.3. For each x1 ∈ N, Υ̂N
i (x1) converges weakly as N → ∞ to an exponential

random variable of mean fM3 (x1) = γ1(x1)
∑
x2∈M2

γ2(x1x2).

Proof. We write Υ̂N
i (x1)

d
= cN1 (1 + G)

∑
x2∈M2

γN2 (x1x2)LN (x2), where

LN (x2) :=
2N2

1 + G

G∑
j=0

1{X2(j)=x2} Tj(x2), (7.4)

with {Tj(x2); j ≥ 0, x2 ≥ 1} an iid family of mean one exponential random variables
independent from G. One may readily check that

cN1 (1 + G)→ γ1(x1) E (7.5)

in distribution as N →∞, where E is a mean one exponential random variable. We will
next show that

LN (x2)→ 1 (7.6)

in probability as N →∞ for every x2 ∈M2. This and (7.5) readily implies that

Υ̂N
i (x1)→ fM3 (x1) E (7.7)

in distribution as N → ∞. From (7.5), since G is independent from the family of
exponential random variables entering LN (x2), we may suppose that G is roughly equal
to ĉN1 r, with r > 0 a real number, where ĉN1 = 1/cN1 . So rather than LN (x2), we may
consider instead

L̂N (x2, r) :=
2N2

1 + ĉN1 r

ĉN1 r∑
j=0

1{X2(j)=x2} Tj(x2), (7.8)

and show that
L̂N (x2, r)→ 1 (7.9)
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in probability as N →∞ for every r > 0.

We now note that the sum in (7.8) may be understood as the time spent on ξx1x2
2 by a

continuous time space homogeneous simple symmetric random walk in the VN2
during

the first ĉN1 r jumps.

Let us consider the delayed renewal process associated to that random walk con-
sisting of successive return times of that random walk to ξx1x2

2 . Each such time (with
the possible exception of the first one) can be decomposed as the sum of a mean one
exponential random variable – the initial time spent on ξx1x2

2 by the random walk prior
to that particular return to ξx1x2

2 – and the hitting time of ξx1x2
2 by the random walk

starting from the neighbor of ξx1x2
2 it jumps to after that initial time. We then have a

delayed renewal process with renewal times E1 +R1, E2 +R2, . . ., with E1,R1, E2,R2, . . .

independent, E2, E3, . . . and R2,R3, . . . identically distributed, E2 a mean one exponen-
tial random variable, and R2 is distributed as the hitting time of ξx1x2

2 starting from
a nearest neighbor of ξx1x2

2 . E1 may either be distributed as E2 or vanish, depending
on whether the state of X̄N

2 at the beginning of the visit of X̄N
1 to x1 was x2 or not.

Similarly, R1 may be either distributed as R2 or as the hitting time of ξx1x2
2 by the

random walk starting from another site of VN2
not ξx1x2

2 or a neighbor of ξx1x2
2 . As will

be clear below, neither (the distribution of) E1 or R1 will play a role in the result. Let
Sn =

∑n
i=1(Ei +Ri) and S′n =

∑n
i=1Ri, n ≥ 1. Let Nt the counting process associated to

Sn, namely Nt = N(t) = sup{n ≥ 0 : Sn ≤ t}, t ≥ 0, S0 = 0. Notice that the sum in (7.8)
is bounded below and above respectively by

N(ĉN1 r)∑
j=0

Tj(x2),

N(ĉN1 r+1)∑
j=0

Tj(x2). (7.10)

We now claim that in order to establish (7.9), it is enough to show that

1

K
S′Q → 1 (7.11)

in probability as N → ∞, where K = KN = ĉN1 r, Q = QN = ĉN1 r 2−N2 . Indeed,
from (7.11) and the law of large numbers satisfied by iid mean one exponential random
variables, it readily follows that 1

KSQ → 1 in probability as N →∞. This in turn readily
implies that 1

QNK → 1 in probability as N → ∞, and again the law of large numbers
satisfied by iid mean one exponential random variables implies that either of the two
expressions in (7.10), after division by Q, converges to 1 in probability as N →∞. The
claim is established.

We may ignore R1 in the argument for (7.11), or take it identically distributed to R2.
We take the Laplace transform of the left hand side of (7.11) as follows. For t > 0

Ē
(
e−t

1
K S
′
Q

)
=
[
Ē
(
e−t

1
KR2

)]Q
(7.12)

where Ē denotes expectation with respect to the law of J̄◦N2
. It follows from Proposition

7.7.i.b of [6], after a simple adaptation to continuous time, that the expression within
square brackets on the right of (7.12) can be written as

1 + õ

1 + t[1+o(1)]

ĉN1 r 2−N2

, (7.13)

where õ = o(ĉN1 2−N2), and (7.11) follows.
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7.2 Equilibrium on the second level

Let us check the third point of the list outlined at the beginning of the section.
We initially remark that during a constancy interval of X̄N

1 , where X̄N
1 = x1 for a

giben x1 ∈ D1, X̄N
2 is the mapping via ξ of a continuous time simple random walk on

the hypercube VN2 with mean waiting time at ξx1x2
2 given by γN2 (x1, x2), starting from

whichever second level configuration σN was at the beginning of the interval. We denote
this random walk by σ̄N2 .

Let us now briefly argue the claim that the time to reach equilibrium for that random
walk is of order smaller than that of the length of the constancy interval – which we just
saw above to be of the order of the inverse of c̄N = cN1 2N2cN2 .

After straightforward adjustments, we may check that the bound derived in [19] for
the associated Metropolis dynamics for the REM applies for σ̄N2 , and we find that

lim sup
N→∞

1

N2
logT2 ≤

√
1− aββ∗ (7.14)

almost surely, where T2 is the inverse of the spectral gap of σ̄N2 . It follows that

lim inf
N→∞

1

N
[log(c̄N )−1 − logT2] > 0, (7.15)

and

max
σ2∈VN2

∥∥Pσ2

(
σ̄N2 (t) = ·

)
−GN2

(·)
∥∥ ≤√ZN2 max

σ2∈VN2

exp{β
√

(1− a)NΞ
(2)

ξ
x1
1 σ2
} e−t/T2 ,

(7.16)
where GN2

is the equilibrium Gibbs measure for σ̄N2 , which is proportional to the weights

exp{−β
√

(1− a)NΞ
(2)

ξ
x1
1 ·
}, and ZN2 is the partition function associated to GN2 .

From well known results about the existence and exact expression for the limit of
1
N log of both factors inside the square root above, we have that almost surely that square
root is bounded from above by ecN for some finite constant c for all large enough N . It
immediately follows from (7.15) and the above that for times of the form t = s(c̄N )−1,
s > 0, we have that the left hand side of (7.16) is almost surely bounded above by
ecNe−e

dN

for all large enough N , with d > 0 related to the left hand side of (7.15), and
thus it almost surely vanishes as N →∞. This and (2.15) in turn readily imply the claim
of the third point at the beginning of the section.

7.3 Time spent by X̄N outsideM
7.3.1 Preliminaries

We start with results about the number of visits of a given configuration σ′ by a random
walk on VN before reaching vertex σ 6= σ′. There are two initial situations: equilibrium
and σ. Let τσ = inf{k ≥ 1 : J◦N = σ}, where J◦N is the random walk on VN . We know from
elementary theory of Markov chains that

E◦σ

(
τσ−1∑
k=0

1{J◦N (k) = σ′}

)
= 1 (7.17)

(see e.g. Theorems 1.7.5 and 1.7.6 in [28]; to get (7.17) we use also the fact that the
uniform measure on the vertices of the hypercube is invariant for X , which is moreover
irreducible). Let µ denote the uniform invariant measure for J◦.

Lemma 7.4. Suppose σ 6= σ′. For all large enough n

E◦µ

(
τσ−1∑
k=0

1{J◦N (k) = σ′}

)
≤ 2. (7.18)
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Proof. We write the left hand side of (7.18) as follows

∞∑
k=0

P◦µ(J◦N (k) = σ′, τσ ≥ k + 1) =
1

2n
+

1

2n

∞∑
k=1

∑
σ′′ 6=σ

P◦σ′′(J
◦
N (k) = σ′, τσ ≥ k + 1)

∗
=

1

2n
+

1

2n

∞∑
k=1

∑
z 6=y

P◦σ′(τσ ≥ k, J◦N (k) = σ′′)

=
1

2n
+

1

2n

∞∑
k=1

P◦σ′(τσ ≥ k)− 1

2n

∞∑
k=1

P◦σ′(τσ ≥ k, J◦N (k) = σ)

=
1

2n
+

1

2n

∞∑
k=1

P◦σ′(τσ ≥ k)− 1

2n

∞∑
k=1

P◦σ′(τσ = k) =
1

2n
E◦σ′(τσ) ≤ 2,

for all large enough n, where
∗
= is due to the reversibility of X , and the inequality at the

end follows from Theorem 1.6 of [6].

7.3.2 Time outside T1

Let us estimate the time spent by X̄N
1 outside T1 till the first visit to a vertex σ1 ∈ T1,

and between two visits to σ1. Let us fix x1 ∈M1 and take σ1 = ξx1
1 .

Let U denote the first such time, which can be written as follows.

U = cN1 2N2

τσ1
−1∑

k=0

1{J◦N1
(k) /∈ T1}

Gk+1(J◦N1
(k))∑

j=0

γ̃N2 (J◦N1
(k)J◦N2

(Sk + j))T kj , (7.19)

where G := {G1(σ′1),G2(σ′1), . . . ; σ′1 ∈ VN1} is a family of independent geometric random
variables with mean N2

N1
e−βH1(σ′1), independent of J◦N1

and J◦N2
; Sk =

∑k
i=1 Gi(J◦N1

(i)),

k ≥ 1; T kj , j, k ≥ 0 are iid mean 1 exponential random variables, independent from all
the other random variables.

We note that J◦N1
and J◦N2

are independent discrete time random walks on the
hypercubes VN1 and VN2 , respectively, each starting from its respective equilibrium
distribution. Thus

E◦(U|J◦N1
,G) = cN1 2N2

τσ1
−1∑

k=0

1{J◦N1
(k) /∈ T1}

Gk+1(J◦N1
(k))∑

j=0

E
(
γ̃N2 (J◦N1

(k)J◦N2
(Gk + j))|J◦N1

,G
)
.

The conditional expectation on the right-hand side may be written as∑
σ2∈VN2

γN2 (J◦N1
(k)σ2)P (J◦N2

(Sk + j) = σ2)) =
1

2N2

∑
σ2∈VN2

γ̃N2 (J◦N1
(k)σ2).

Thus

E◦(U|J◦N1
) =

∑
σ2∈VN2

τσ1
−1∑

k=0

1{J◦N1
(k) /∈ T1}γ̃N2 (J◦N1

(k)σ2)cN1 E
◦(Gk+1(J◦N1

(k))|J◦N1
)

=
∑

σ2∈VN2

τσ1
−1∑

k=0

1{J◦N1
(k) /∈ T1}γN1 (J◦N1

(k))γ̃N2 (J◦N1
(k)σ2), and

E◦(U) =
∑
σ′1 /∈T1

∑
σ2∈VN2

γN1 (σ′1)γ̃N2 (σ′1σ2)E

τσ1
−1∑

k=0

1{J◦N1
(k) = σ′1}


≤ 2

∑
σ′1 /∈T1

∑
σ2∈VN2

γN1 (σ′1)γ̃N2 (σ′1σ2),

(7.20)

EJP 0 (2019), paper 0.
Page 38/50

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.vVOL-PID
http://ejp.ejpecp.org/


Low temperature cascading 2-GREM close to equilibrium

where the inequality holds for all large enough N , according to Lemma 7.4.
It follows from (2.15) and Remark 7.1 that

lim sup
N→∞

E◦(U) ≤ 2
∑
σ′1 /∈T1

∑
σ2∈N

γ1(σ′1)γ2(σ′1σ2), (7.21)

and thus limM1→∞ lim supN→∞E
◦(U) = 0.

Let nowWi denote the time spent by X̄N
1 outside T1 between the i-th and i+ 1-st visit

to σ1 ∈ T1, i ≥ 1. A similar reasoning as above yields

E◦(Wi) =
∑
σ′1 /∈T1

∑
σ2∈VN2

γN1 (σ′1)γ̃N2 (σ′1σ2)Eσ1

τσ1
−1∑

k=0

1{J◦N1
(k) = σ′1}


=
∑
σ′1 /∈T1

∑
σ2∈VN2

γN1 (σ′1)γ̃N2 (σ′1σ2),

(7.22)

where we used (7.17) in the last passage; again

lim
M1→∞

lim sup
N→∞

E◦(Wi) = 0, i ≥ 1. (7.23)

7.3.3 Time inside T1 and outsideM2

Let now

Υ̌N
i (σ1) = cN1 2N2

G∑
j=0

1{J◦N2
(j)/∈M2}γ̃

N
2 (σ1J

◦
N2

(j))Tj (7.24)

be the time spent outsideM by X̄N
1 on its i-th visit to σ1 ∈ T1 – recall the notation on

the paragraph of (7.3). A similar reasoning to that leading to (7.20) and (7.22) yields

E◦(Υ̌N
i (σ1)) = γN1 (σ′1)

∑
η∈Tx

′
1

γ̃N2 (η), i ≥ 1 (7.25)

and again
lim

M2→∞
lim sup
N→∞

E◦(Υ̌N
i (σ1)) = 0, i ≥ 1. (7.26)

As a corollary to (7.26) and (7.7), we have that, recalling that x1 = (ξ1)−1(σ1),

ΥN
i (σ1)→ f3(x1) E (7.27)

in distribution as N →∞, where ΥN
i (σ1) = Υ̂N

i (σ1) + Υ̌N
i (σ1) is the time spent by X̄N

1 on
its i-th visit to σ1 ∈ T1, and E is a mean one exponential random variable.

7.4 Conclusion of the proof of Theorem 2.7

Let us now fit together the above points in an argument for Theorem 2.7.
From the first claim at the beginning of the section (argued in Subsection 7.3), it is

enough to show that X̄N
1 restricted toM1 converges to X̄1 restricted toM1. We already

know from (7.27) that the sojourn times of X̄N
1 on the various vertices ofM1 converge

in distribution to the respective sojourn times of X̄1. We only have to argue that the
jump probabilities of X̄N

1 restricted toM1 converge to the uniform jump probabilities of
X̄1 restricted toM1. But that is established in (3.13). We have then that X̄N

1 converges
in distribution to X̄1 in Skorohod space, and the full statement readily follows from the
third point claimed at the beginning of the section (and argued in Subsection 7.2).

This concludes the proof of Theorem 2.7.
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8 Proof of Theorem 2.4

We start by showing that X̄N spends virtually all the time onM.

8.1 Time spent by X̄N outsideM

We will show that the expected time spent by X̄N outsideM until the first visit to
M or between consecutive visits to M is small. Indeed, we will argue that the first
such time (the others can be similarly treated) vanishes in probability as M1,M2 →∞
uniformly in N . We will be more precise next.

The first such time is bounded above by Ū =
∑I
i=1(Ûi + Ũi), where

Ûi =

τ̃ i−1∑
k=τ̃ i−1+1

Gk+1(J◦N1
(k))∑

j=0

γ̃N2 (J◦N1
(k)J◦N2

(Sk + j))T kj , (8.1)

and, writing X1 = (ξ1)−1(J◦N1
),

Ũi =

Gτ̃i+1(J◦N1
(τ̃ i))∑

j=0

1{J◦N2
(Sτ̃i+j)/∈TX1} γ̃

N
2 (J◦N1

(τ̃ i)J◦N2
(Sτ̃ i + j))T τ̃

i

j , (8.2)

where τ̃ i, i = 1, 2, . . . denote the successive hitting times of T1 by J◦N1
(the jump chain of

X̄N
1 ) – when i = 0, then in (8.1) τ̃0 is either 0 or −1 depending on whether X̄N

1 (0) ∈ T1 or
not, respectively.

We will show that limM1→∞ limM2→∞ lim supN→∞ Ū = 0 in probability. Given the
tightness result for I/[cN1 2N2 ] given in Lemma 12.4, it is enough to show that for all R

limM1→∞ limM2→∞ lim supN→∞E
◦
(∑RcN1 2N2

i=1 Ûi
)

= 0, (8.3)

limM1→∞ limM2→∞ lim supN→∞E
◦
(∑RcN1 2N2

i=1 Ũi
)

= 0. (8.4)

Let us first point out that for every i ≥ 1, Ûi is bounded above stochastically by
U/[cN1 2N2 ] (see (7.19) above). (8.3) then follows from the above and (7.23).

Now

E◦(Ũi) ≤ max
x1∈M1

E◦

G(x1)∑
j=0

1{J◦N2
(j)/∈Tx1}γ̃

N
2 (x1J

◦
N2

(j))

 , (8.5)

where G(x1) is a geometric random variable with mean N2

N1
exp{β

√
aNΞ

(1)

ξ
x1
1

}. We find

that the expectation on the right-hand side equals γN1 (x1)
∑
x2>M2

γ̃N2 (x1x2)/[cN1 2N2 ],

and (8.4) follows upon substitutions into (8.5) and the left hand side of (8.4).

8.2 Conclusion of the proof of Theorem 2.4

Given the result in Subsection 8.1 and the usual constancy interval matching argu-
ment that can be used to show convergence in Skorohod spaces, it is enough to show
convergence of the transition probabilities among sites inM (in the process restricted
toM, which is a Markov jump process) to the respective ones of the respective limit
process (the one restricted toM, which is also a Markov jump process), and the con-
vergence of the respective sojourn times. The latter convergence is quite clear, and the
former follows immediately from Proposition 3.3.
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9 Proof of Theorem 2.5

We start by observing that we can check that X̄N spends virtually all the time on
M by virtually the same argument as for below fine tuning. Indeed, the corresponding
expressions in the present regime of (7.19), (7.22) and (7.24) are the same, except for
the factor of cN1 2N2 , which is absent in the present regime. But notice that that factor is
bounded as N →∞, and so the arguments of Subsections 7.3.2 and 7.3.3 carry through.

We can then repeat the argument for the conclusion of the proof of Theorem 2.4
on Subsection 8.2, once we have the convergence of the transition probabilities of X̄N

restricted toM to those of the limiting 2-level K process restricted toM.
For x, y ∈ N, let PN (x, y) denote the transition probability of X̄N |M. Then, using the

remark in Subsubsection 6.2.1 and Proposition 3.1.i-1 and i-2, we have that

lim
N→∞

PN (x, y) = P(x, y) :=

{[
(1− λ̄x1) + λ̄x1 ν̄1(x1)

]
1
M2
, if x1 = y1,

ν̄1(y1)λ̄y1 1
M2
, otherwise,

(9.1)

where λ̄y1 = 1
1+M2γ̃1(y1) and ν̄1(y1) = 1−λ̄y1∑

y′1∈M1
(1−λ̄y

′
1 )

.

It is then enough to argue that P(x, y) is the transition probability from x to y for the
2-level K process restricted toM. We do that next.

Let X|M denote X restricted toM. We can construct X|M as follows. Let X́ denote
the 1-level K process used in the construction of X as at the end of Subsection 12.1. Let
us now construct a 2-level process X̂ in the same way as X, except that we use X́|M1

instead of X́. One readily checks that

1. X́|M1 is a Markov jump process onM1 with uniform initial state, uniform transi-
tions onM1 (we should allow loops), and jump rate at x1 ∈M1 given by 1/γ̃1(x1);

2. X|M = X̂|M;

3. letting X̂1 denote the jump chain of X́|M1
, and, for z ∈ D2, defining the events

An = {during the n+ 1-st sojourn period of X̂1, X̂2 visitsM2},
Azn = {during the n+ 1-st sojourn period of X̂1, X̂2 visits z before visitingM2 \ {z}},

we have that, given X̂1, the events A∗nn , n ≥ 0, with ∗n = y or blank for each n, are
independent, having respective (conditional) probabilities given by

(a) in the case of ∗n = blank: P (NT > 0), where N is a Poisson counting pro-
cess with intensity M2, and T is exponential with mean γ̃1(X̂1(n)), N and T

independent; we then have that NT has a geometric distribution with success
parameter 1

1+M2γ̃1(X̂1(n))
= λ̄X̂1(n), and thus P (NT > 0) = 1− λ̄X̂1(n);

(b) similarly, the probability of Ayn given X̂1 equals 1−λ̄X̂1(n)

M2
.

Let P′(x, y) denote the transition probability of X|M from x to y. From the above, we
conclude that if x1 = y1, P′(x, y) = P (Ay2

0 )+∑
n≥0

∑
w1,...,wn−1∈M1

P (Ac0, . . . , A
c
n−1, A

y2
n , X̂1(1) = w1, . . . , X̂1(n− 1) = wn−1, X̂1(n) = x1)

=
1− λ̄x1

M2
+ λ̄x1

1

M1

1− λ̄x1

M2

∑
n≥0

(
1

M1

∑
w1∈M1

λ̄x1

)n
,

which is readily checked to equal P(x, y) given in (9.1), in this case. When x1 6= y1, we
have that the same expression as in (9.2) holds for P′(x, y), except for the first term in
the sum, which is absent, and thus it agrees with P(x, y) again in this case.
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10 Aging in the K processes

As anticipated in the introduction, we will derive aging results for σN in a two-stage
scaling limit process. We first take the limit in the extreme time scale, where there is no
aging, since σN is close to equilibrium in that time scale: we have already done that in
our scaling limit theorems. In the second stage, we take a small time limit of the limiting
K processes. We will be concerned with correlation functions which involve only clock
processes of the limiting processes, so we will take the second limit only of the relevant
clocks. We will keep the presentation brief, in particular at and below fine tuning, since
the issues involved are quite clear in those regimes, and technicalities are quite well
known and fairly straightforward.

Let Y = Y1Y2 be the K process representing the scaling limit of either X̃N or X̄N in
Theorems 2.4, 2.5 and 2.7. We assume Y (0) = ∞ in the first case, ∞∞ in the second
case, and (∞, X̄2) in the latter case, where X̄2 is as in Theorem 2.7. Given θ > 0, we are
interested in taking the following limit

lim
tw,t→0
t/tw→θ

Π(tw, tw + t), (10.1)

where Π(·, ·) was defined in 1.6. Recall also Ni defined in 1.5.

10.1 Below fine tuning

This is the simplest case, since on the one hand, Y2 jumps at every time interval, so
there is no point in considering N2 (which has probability 0). On the other hand, Y1

is a uniform K process with waiting function given by a Poisson process with intensity
measure c1

xα1+1 dx for some constant c1. It is well known (see e.g., [7]) that the limit
in (10.1) is given by the arcsine law Aslα1(1/(1 + θ)), where

Aslα(u) =
sinπα

π

∫ u

0

x−(1−α)(1− x)−αdx, u, α ∈ (0, 1). (10.2)

This follows readily from the scaling limit of the clock process of Y1 at small times. This
issue will come up again in the other temperature regimes, so we let it rest for this
regime.

10.2 At fine tuning

We first notice that, for i = 1, 2, Ni = {Ri ∩ (tw, tw + t) = ∅}, where Ri, i = 1, 2, is
the range of the clock processes Γ1 and Γ′, respectively (see end of Subsection 12.1
below). It is a simple matter to check that in this case N2 ⊂ N1, so indeed Π(tw, tw + t) =

pP (N1) + (1− p)P (N2). Let us now point out that, as is well known, (10.1) follows from a
small time scaling limit for the respective clocks in an appropriate topology. Let us first
examine Γ′ – recall the definition at the end of Subsection 12.1, and the statement of
Theorem 2.5. As pointed out at the end of Subsection 12.1, within intervals of constancy
of X́, the increments of Γ′ are those of a uniform K process with waiting function f(x1, ·),
where x1 is the constant value of X́ within the interval. We know that the clock process
of a uniform K process with waiting function given by a Poisson process with intensity
measure c

xα+1 dx, α ∈ (0, 1), c any constant in (0,∞), converges in the J1 Skorohod
metric to an α-stable subordinator in the small time limit for almost every realization
of the Poisson process (see e.g., [7] with a = 0). This and the fact that f′2(x1, ·) are
given by iid in x1 Poisson processes with intensity measure c2

xα2+1 dx, for some constant
c2, yields ε−1Γ′(εα2 × ·) → S2(·) in distribution on the J1 Skorohod space as ε → 0 for
a.e. realization of f2, f′2, where S2 is an α2-stable subordinator. It readily follows that
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almost surely
lim

tw,t→0
t/tw→θ

P (R2 ∩ (tw, tw + t) = ∅) = Aslα2
(1/(1 + θ)). (10.3)

It can be also readily checked that ε−1Γ1(εα1α2 × ·) → S′1 := S1 ◦ S2(·) in distribution
on the J1 Skorohod space as ε→ 0 for a.e. realization of f2, f′2, where S1 is an α1-stable
subordinator. S′1 is thus an α1α2-stable subordinator, and it follows that almost surely

lim
tw,t→0
t/tw→θ

P (R1 ∩ (tw, tw + t) = ∅) = Aslα1α2(1/(1 + θ)). (10.4)

10.3 Above fine tuning

We first point out that right after the weighted K process Y jumps out of any state in
N2, it gives infinitely many jumps within any nonempty open time interval. This tells us
that N1 = N2 = {R ∩ (tw, tw + t) = ∅}, where R is the range of Γ, the clock process of Y
(see Subsection 12.1 below).

Let us then derive the small time limit of Γ. Recall from [17] that we may write

Γ(r) =
∑
x∈N2

Nx(r)∑
i=1

γ2(x)T xi , (10.5)

where Nx, x ∈ N2, are independent Poisson counting processes with rate γ1(x1), re-
spectively, and T ·· are iid mean one exponential random variables. We will now argue
that

ε−1Γ(εα2 × ·)→ S2(·) (10.6)

in distribution on the J1 Skorohod space as ε→ 0 for a.e. realization of γ1, γ2, where S2

is an α2-stable subordinator. It is enough to establish this convergence for

Γ̃(r) :=
∑
x∈N2

γ2(x)Nx(r) (10.7)

(see Lemma 2.1 in [7]). Since this is a subordinator, in order to get the small time
convergence, it is enough to consider the Laplace exponent of the small time scaled Γ̃,
given by

ϕ̃ε(λ) = r
∑
x1∈N

γ1(x1) εα2

∑
x2∈N

(1− eλε
−1γ2(x)). (10.8)

It is convenient at this point to write the scaled inner sum as εα2
∑
u∈[0,1](1− eλε

−1γ
x1
2 (u)),

where γx1
2 (·), x1 ∈ N, are iid sets of increments of an α2-stable subordinator in [0, 1]. By

the scale invariance of that subordinator, we have that it equals in distribution

εα2

bλα2ε−α2c∑
i=1

∑
u∈[0,1]

(1− eλε
−1γi2(u)) (10.9)

plus an independent random variable which is stochastically dominated by

εα2

∑
u∈[0,1]

(1− eλε
−1γ1

2(u)).

Now standard large deviation estimates and an application of Campbell’s Theorem,
showing that Z :=

∑
u∈[0,1](1−eλε

−1γ1
2(u)) has an exponential moment, imply that ϕ̃ε(λ)→

const× rλα2 , where const = E(Z)
∑
x1∈N γ1(x1). Given γ1, this is the Laplace exponent

of an α2-stable subordinator, and (10.6) follows. Thus

lim
tw,t→0
t/tw→θ

Π(tw, tw + t) = Aslα2
(1/(1 + θ)). (10.10)
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10.4 Final remark about aging at β > βcr2

We end this section on aging by pointing out, as anticipated in the introduction, that
the aging results in [29] are consistent with ours only in the fine tuning regime. As
also earlier anticipated, this is explained by the shorter time scale considered in that
reference. In those time scales, all levels are supposed to be aging simultaneously. That
indeed also happens in the fine tuning regime at the short extreme scale considered in
this section. Recall the discussion on Subsubsection 1.2.2.

We may understand the aging results in the other regimes treated in detail so far
as follows. Below fine tuning, we already explained that the second level is well within
equilibrium, so it does not age in the short extreme time scale (also in not much shorter
time scales). The aging behavior in that phase comes from the first level, with its
characteristic α1 exponent.

Above fine tuning, we have the opposite behavior: the first level by itself would
be in equilibrium, thus not aging, and aging comes from the second level, with its
characteristic α2 exponent.

11 Scaling limit at intermediate temperatures

In this section, we briefly state and discuss our scaling limit and aging results for
β ∈ (βcr1 , β

cr
2 ). We will be rather sketchy, trusting the experienced reader to be able to

readily fill in the gaps with standard arguments. Recall from the discussion around (7.1)
that the total time spent by σN (·) on a single visit to a given σ1 ∈ VN1 can be written as

N

N2 +N1e
β
√
aNΞ

(1)
σ1

G∑
j=0

exp{β
√

(1− a)N Ξ
(2)
σ1J◦N2

(j)}Tj , (11.1)

where again G is a geometric random variable with mean N2

N1
exp{β

√
aNΞ

(1)
σ1 }, and Ti,

i ≥ 0, are iid standard exponential random variables.
For top first level configurations σ1 = ξx1

1 , the factor in front of the sum above
contributes a constant (1/(1− p)) almost surely in the limit as N →∞, and thus we are
left to properly scale the sum itself. At this point we may replace G by 1−p

p
1
cN1
γ1(x1)T ,

with T a standard exponential, independent of all the other remaining random variables,
and then resort to Proposition 1.9.ii of [25] which gives the proper scaling of the sum, as
well as conditions under which the scaled sum satisfies a law of large numbers. Since
the result in [25] applies for the REM (which is indeed the model appearing in the above
sum), we need to do some translation in terms of our parameters. Upon doing that,

we find that the proper scaling is given by c̃N = cN1 exp{−β
2N
2 (1 − a)}, and, provided

β < 1−p
2
√
apβ∗ = βFT , the following law of large numbers holds:

c̃N

t/cN1∑
j=0

exp{β
√

(1− a)N Ξ
(2)
σ1J◦N2

(j)}Tj → t (11.2)

as N → ∞ in probability for each t > 0. It follows that the sum in (11.1) scaled by c̃N
converges in distribution as N → ∞ to γ̂1(x1)T , where γ̂1(·) := 1

pγ1(·). Given also that
the transition among top first level configurations is asymptotically uniform, we find
that the asymptotic motion among the top first level configurations is consistent with a
(uniform) K process. We can state the following result.

Theorem 11.1 (Intermediate temperatures). If β ∈ (βcr1 , β
cr
2 ) ∩ (0, βFT ), then

XN
1 (·/c̃N )⇒ X̃1(·) (11.3)

as N →∞, where X̃1 ∼ K(̂f, 1) starting at∞, with f̂ : N→ (0,∞), f̂(x1) = γ̂1(x1).
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We have indeed given all of the main ingredients of the proof above, except for an
estimate establishing that XN

1 (·/c̃N ) spends virtually all of its time on the first level top
configurations. This can be done as in the proofs of the Theorems 2.4, 2.5 and 2.7, by a
first moment estimate. For that to work, we resort to a further known result, namely that
the first level marginal of the Gibbs measure converges to the normalization of f̂. This is
given by Theorem 9.2 of [8]; indeed that result is stated for intermediate temperatures
for the case where p = 1/2, but one may readily check that it holds in general.

In order that the conditions on β above are not empty, we need of course βFT > βcr1 ,
which is equivalent to p < 1/3; in this case, it may or may not happen that βFT < βcr2 ;
in the former case, (11.3) holds only in a (nonempty) subinterval of (βcr1 , β

cr
2 ), namely

(βcr1 , β
FT ); otherwise, it holds in the full intermediate interval.

If βFT < β < βcr2 , then Theorem 1.10 in [25] tells us that the sum on the left hand side
of (11.2), when properly rescaled, converges weakly to a stable subordinator instead.
This signals aging, and thus the time scale is not extreme. This clarifies a point raised in
Subsubsection 1.2.2.

Under the conditions of the above theorem, the following aging result readily follows
in the same way as in the previous section

lim
tw,t→0
t/tw→θ

Π̃1(tw, tw + t) = Aslα1(1/(1 + θ)), (11.4)

where Π̃1(tw, tw + t) is the probability that X̃1 gives no jump within (tw, tw + t).

12 Appendix

12.1 K-processes

Let D be a countably infinite set, and let ∞ denote a point not in D, and make
D̄ = D ∪ {∞}. Let f,w : D→ (0,∞) be such that∑

x∈D

w(x) =∞,
∑
x∈D

w(x)f(x) <∞. (12.1)

Consider {Cx, x ∈ D}, an independent family of Poisson counting processes such that
Cx has intensity wx for each x ∈ D, with associated point processes S = {(θx(i), i ≥
1), x ∈ D} (the event times of the respective counting processes). Let ω : R+ → D̄ be
such that ω(θx(i)) = x for x ∈ D, i ≥ 1, and ω(s) = ∞ if s /∈ S. We note that ω is well
defined almost surely. Let {Ts, s ∈ R+} be an iid family of mean 1 exponential random
variables. Let now ν be an atomic measure on R+ concentrated on S as follows

ν({s}) = f(ω(s))Ts, s ∈ S, (12.2)

and let Γ be its distribution function, namely, Γ : R+ → R+ is such that Γ(r) = ν([0, r]),

and let ϕ be the right continuous inverse of Γ. Then for t ≥ 0 let

X(t) := ω(ϕ(t)). (12.3)

We call X thus defined a K-process on D̄ with waiting time function f, and weight
function w, starting at ∞. Notation: X ∼ K(f,w). In the particular case where w ≡ 1,
we call X a uniform K-process on D̄ with waiting time function f, and use the notation
X ∼ K(f, 1). Also, we call Γ the clock process of X.

We next define 2-level K-processes, as follows. Let X́ be a uniform K-process on D̄

with (w ≡ 1 and) f as above such that (12.1) is satisfied. Let D′ be a countably infinite
set and as before make D̄′ = D′ ∪ {∞}. Let f′ : D×D′ → (0,∞) be such that∑

xy∈D×D′
f(x)f′(xy) <∞. (12.4)
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Let {C′x, x ∈ D′} be an iid family of intensity 1 Poisson counting processes, indepen-
dent of {Cx, x ∈ D}, with associated point processes S ′ = {(θ′x(i), i ≥ 1), x ∈ D′}.

Let ω′ : R+ → D̄′ be such that ω′(θ′x(i)) = x for x ∈ D′, i ≥ 1, and ω′(s) =∞ if s /∈ S ′.
We note that ω′ is well defined almost surely.

Let ν′ be an atomic measure on R+ concentrated on S ′ as follows.

ν′({s}) = f′(X́(s)ω′(s))Ts, s ∈ S ′, (12.5)

and let Γ′ be its distribution function, and let ϕ′ be the right continuous inverse of Γ′.
Then for t ≥ 0 let

X(t) = X1(t)X2(t) := X́(ϕ′(t))ω′(ϕ′(t)). (12.6)

We call X = (X(t), t ≥ 0) a 2-level K-process (starting at (∞,∞)) on D̄ × D̄′ with
waiting time functions f, f′. Notation: X ∼ K2(f, f′). This process was introduced in [18]
(with D = D′ = N = {1, 2, . . .}), where some of its properties and those of a finite volume
version were studied (and where illustrations of their construction can be found). It may
be understood as two 1-level uniform K-processes arranged in hierarchies as follows.

Given the realization of the (1-level) K-process X́, let I be the set of maximal intervals
of constancy of X́ (maximal time intervals where X́ is constant), the second step of the
above description amounts to constructing within each such interval, say [a, b), a 1-level
uniform K-process with waiting time function f′(x, ·), where x is the constant value of
X́ within that interval. This results in what can be seen as an excursion of a 2-level
K-process X = X1X2 with X1 ≡ x. This excursion takes place within the time interval
[a′, b′), with a′ = Γ′(a), b′ = Γ′(b). Outside the union of all such intervals, X ≡ (∞,∞).

We call Γ′ the clock processes of X. We also call Γ1 := Γ́ ◦ Γ′ the clock process of X1,
where Γ́ is the clock process of X́.

12.2 Auxiliary results for the proof of Proposition 3.3

Let r = p/(1 − p). Let CN be the event that for all x1 ∈ M1 and x′1 ∈ VN1
such that

d1(ξ
x′1
1 , ξx1

1 ) ≤ ε0N1 we have that

#{x′′1 ∈ D1 : ξx
′′
1 ∼ ξx

′
1 and q∗N (ξ

x′′1
1 ) ≤ re−

√
N} ≥ ε1N1, (12.7)

Lemma 12.1. There exists ε0, ε1 > 0 such that P(CN )→ 1 as N →∞.

Proof. Since H1(y1) =
√
aNΞy1

, and {Ξy1
, y1 ∈ D1} are iid standard Gaussian random

variables, we have that the left hand side of (12.7) above dominates a binomial random
variable with N1 trials and probability of success Φ(−1/(β

√
a)) in each trial, where Φ

is the standard Gaussian distribution function. Therefore, by standard large deviation
bounds, there exists ε1 > 0 such that the probability of the complement of (12.7) may be
bounded above by c12−ε

′
1N1 for some constant c1, and ε′1 > 0. Now the probability of CcN

may be bounded above by

c1M1(ε0N1 + 1)
√
N1

(
N1

ε0N1

)
2−ε

′
1N1 ≤ c0N12−(ε′1−ε

′
0)N1 ,

for some constant c0, and ε′0 = ε′0(ε0) > 0 such that ε′0 → 0 as ε0 → 0; the result follows
by choosing ε0, ε1 > 0 such that 0 < ε′0 < ε′1.

Let us fix ε, ε0, ε1 > 0 satisfying the conditions of Lemma 4.5 and Lemma 12.1, and
such that ε0 < ε. Let BN be the event that for all η, η̄ ∈ T1, η 6= η̄, (4.22) holds.
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Lemma 12.2. Let J2 be the number of jumps of X̄N
2 till X̄N

1 reaches ξ−1
1 (T1). Given

σ1 ∈ VN1
such that d1(σ1, T1) > ε0N1, then provided BN and CN occur, and X̄N

1 starts
from ξ−1

1 (σ1), we have that Pσ1
(J2 ≤ N3) vanishes exponentially fast as N → ∞, i.e.,

there exists R > 1 such that
Pσ1

(J2 < N3) ≤ R−N . (12.8)

Proof. Let J1 be the number of jumps of X̄N
1 till X̄N

1 reaches ξ−1
1 (T1). Then

J2
d
=

J1−1∑
j=0

Gj(J◦N1
(j)) ≥

J1−1∑
j=0

Gj(J◦N1
(j)) 1{

d1

(
J◦N1

(j),T1

)
≤ε0N1

}, (12.9)

where J◦N1
is the jump chain of X̄N

1 , namely, a simple symmetric discrete time random
walk on VN1 , and Gj(σ′1), j ≥ 0, σ′1 ∈ VN1 , are independent geometric random variables

with success parameter q′N := re−
√
N ∧ 1. The right-hand side of (12.9) may be bounded

stochastically from below as follows. Notice that since BN occurs, the chain d1(J◦N1
(·), T1)

observed only when J◦N1
is at a distance at most ε0N1 from T1 may be identified (in distri-

bution) to a Markov chain Z in {0, 1, . . . , ε0N} which has the same transition probabilities
as Y := d′(J◦N (·), O), where J◦N is a simple symmetric random walk on a hypercube of
dimension N , and O is a given site of such a hypercube, except that Z is lazy at ε0N –
the jumps of Y to the right of ε0N are replaced by self jumps at ε0N of Z. Also, in this
case, Z starts from ε0N . Since CN occurs, every time J◦N1

gives a jump within distance
at most ε0N from T1, independent af all else, there is an at least ε1 probability it will land
on a site σ′1 ∈ VN1 such that q∗N (σ′1) ≤ q′N . The above justifies bounding stochastically the
right-hand side of (12.9) from below by

J′2 :=

J′1−1∑
j=0

G′j ≥ N3

J′1−1∑
j=0

1{G′j≥N3} ≥ N3
ε0N−1∑
j=0

1{G′j≥N3}, (12.10)

where J′1 is the number of jumps Y takes to reach 0 starting from ε0N , and G′j , j = 0, 1, . . .,
are iid random variables, independent of J′1; G′0 is a mixture of two random variables, the
first of which, with weight 1− ε1 is 0, and the other, with weight ε1, is geometric with
success parameter q′N . Now, P (G′0 ≥ N3) = ε0(1− q′N )N

3 ≥ ε′′0 > 0 for all large enough N ,
and (12.8) follows with R = (1− ε′′0)−ε0 .

Remark 12.3. From Theorem 3.1 of [6] starting from any σi ∈ VNi , the probability that
X̄N
i does not go a distance 1

2Ni from σi before it returns to σi is bounded above by
1/N + 4/N2.

Lemma 12.4. For I as in (6.36) we have that limR→∞ lim supN→∞P(I ≥ RcN1 2N2)→ 0.

Proof. We may stochastically bound I from below by a geometric random variable with
success parameter maxx1∈M1,σ∈Wx1 Pσ(G∗ > Θ∗), where G∗ is a geometric random vari-
able with success parameter q∗N (ξx1

1 ), independent of Θ∗, and Θ∗ = τ{σ′2∈π2Tx1 :d2(σ′2,σ2)=N2}.
Notice that the distribution of G∗ only depends on σ through x1, and that the distribution
of Θ∗ is independent of σ. Therefore we can drop the maximum over σ ∈ W x1 in the
above formula. Furthermore the maximum over x1 is achieved at x1 = M1. We then have

max
x1∈M1

P(G∗ > Θ∗) = E◦,2[(1− q∗N (ξM1
1 ))Θ∗ ] =: ρN ≥

ψNγ
N
1 (ξM1

1 )

1 + ψNγN1 (ξM1
1 )

(1 + o(1)), (12.11)

where the inequality follows from (5.5) and (5.12) (with A = {ξx1
1 } and where in (5.6),

d2 = 1 and FN2,d2
is absent). The probability in the statement of Lemma 12.4 is bounded

above by (1− ρN )Rc
N
1 2N2 . Since ρN → 0 as N →∞ and

ρNc
N
1 2N2 & const N2

N1
γ1(M1), the result follows.
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Lemma 12.5. (6.38) holds.

Proof of Lemma 12.5. We start by computing π(x). Let G denote the number of jumps
of X̄N

2 before X̄N
1 leaves x. G is a geometric random variable with success parameter

q∗N (ξx1 ), independent of τσ2 . Then, setting λ′N = N1

2
cN1

γN1 (x)
, and applying (4.13,4.14), we

get

π(x) =
1

2N2

∑
σ′2∈VN2

Pσ′2(G ≥ τσ2
) =

1

2N2

∑
σ′2∈VN2

E
◦,2
σ′2

[(1− q∗N (ξx1 ))τσ2 ]

=
1

B0(λ′N )

1

2N2

N2∑
i=0

∑
σ′2∈VN2

:d(σ2,σ′2)=i

Bi(λ
′
N ) =

1

B0(λ′N )

1

2N2

N2∑
i=0

(
N2

i

)
Bi(λ

′
N )

=
1

B0(λ′N )

∫ 1

0

uλ
′
N−1du

1

2N2

N2∑
i=0

(
N2

i

)
(1− u)i(1 + u)N2−i

=
1

B0(λ′N )

∫ 1

0

uλ
′
N−1du =

1

λ′NB0(λ′N )
=

1

1 + λ′N
∑N2

i=1

(
N2

i

)
1

i+λ′N

,

and the first claim of (6.38) follows upon noticing that the sum in the denominator on
the right-hand side above is ∼ 2N2+1/N2.

As for the second claim, we write π̂(x1) = P(∪x2∈M2Hx2 |X̄N
1 (0) = x1), where Hx2 is

the event that X̄N
2 hits x2 before the first jump of X̄N

1 . By the Bonferroni inequalities,
we have that

0 ≤
∑

x2∈M2

P(Hx2 |X̄N
1 (0) = x1)− π̂(x1) ≤

∑
x2 6=x′2∈M2

P(Hx2 ∩Hx′2
|X̄N

1 (0) = x1). (12.12)

Since the summands on the central expression above are identically equal to π(x1), and

the expression on the right-hand side equals π(x1)
∑

x2 6=x′2∈M2

P(Hx′2
|X̄N

1 (0) = x1, Hx2
), it

is enough to argue that each summand in the expression above is an o(1). But, given
Lemma 4.5 above, each such summand is, apart form an o(1) error, the probability that,
starting from the origin, an Ehrenfest chain on {0, . . . , N2} passes by bN2, with b = 1/3,
before an independent time which is geometrically distributed with success probability
q∗N (x1). Writing that probability as a moment generating function as above (see e.g. the
first equality in (12.11)), and applying (4.13,4.14), we have that that equals

1

B0(λ′N )

b̄N2∑
j=0

(
b̄N2

j

)
Γ(bN2 + 1)Γ(j + λ′N )

Γ(bN2 + 1 + j + λ′N )
, (12.13)

where b̄ = 1−b. The quotient inside the latter sum is bounded above by 1, and thus (12.13)
is bounded above by

1

λ′NB0(λ′N )
+

1

B0(λ′N )

b̄N2∑
j=1

(
b̄N2

j

)
. (12.14)

As we saw above the first term of this sum is ∼ γ1(x1)N2

N1

1
cN1 2N2

, which is an o(1). The

second term is readily checked to also be an o(1), and the claim is established.
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[5] Gérard Ben Arous and Jiří Černý, The arcsine law as a universal aging scheme for trap
models, Comm. Pure Appl. Math. 61 (2008), no. 3, 289–329. MR-MR2376843

[6] Gérard Ben Arous and Véronique Gayrard, Elementary potential theory on the hypercube,
Electron. J. Probab. 13 (2008), no. 59, 1726–1807. MR-2448129

[7] S. C. Bezerra, L. R. G. Fontes, R. J. Gava, V. Gayrard, and P. Mathieu, Scaling limits and aging
for asymmetric trap models on the complete graph and K processes, ALEA Lat. Am. J. Probab.
Math. Stat. 9 (2012), no. 2, 303–321. MR-3069367

[8] Erwin Bolthausen and Alain-Sol Sznitman, Ten lectures on random media, DMV Seminar,
vol. 32, Birkhäuser Verlag, Basel, 2002. MR-1890289

[9] J.-P. Bouchaud, L. Cugliandolo, J. Kurchan, and M. Mézard, Out of equilibrium dynamics in
spin-glasses and other glassy systems, Spin glasses and random fields (A. P. Young, ed.),
World Scientific, Singapore, 1998.

[10] J.-P. Bouchaud and D. S. Dean, Aging on Parisi’s tree, J. Phys I (France) 5 (1995), 265.

[11] Anton Bovier, Michael Eckhoff, Véronique Gayrard, and Markus Klein, Metastability in
stochastic dynamics of disordered mean-field models, Probab. Theory Related Fields 119
(2001), no. 1, 99–161. MR-1813041

[12] Anton Bovier, Michael Eckhoff, Véronique Gayrard, and Markus Klein, Metastability and low
lying spectra in reversible Markov chains, Comm. Math. Phys. 228 (2002), no. 2, 219–255.
MR-1911735

[13] Anton Bovier and Véronique Gayrard, Convergence of clock processes in random envi-
ronments and ageing in the p-spin SK model, Ann. Probab. 41 (2013), no. 2, 817–847.
MR-3077527

[14] Anton Bovier and Irina Kurkova, Derrida’s generalised random energy models. I. Models with
finitely many hierarchies, Ann. Inst. H. Poincaré Probab. Statist. 40 (2004), no. 4, 439–480.
MR-2070334

[15] D. Capocaccia, M. Cassandro, and P. Picco, On the existence of thermodynamics for the
generalized random energy model, J. Statist. Phys. 46 (1987), no. 3-4, 493–505. MR-883541
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