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This paper continues a study that was started in our previous paper [A. A. Doinikov et al., Phys. Rev. E 100,
033104 (2019)]. The overall aim of the study is to develop a theory for modeling the velocity field of acoustic
microstreaming produced by nonspherical oscillations of an acoustically driven gas bubble. In the previous
paper, general equations were derived that describe the velocity field of acoustic microstreaming produced by
modes n and m of bubble oscillations. In the present paper, the above equations are solved analytically in the
case that acoustic microstreaming is the result of the interaction of the translational mode (mode 1) with a mode
of arbitrary order m � 1. Solutions are expressed in terms of complex mode amplitudes, which means that the
mode amplitudes are assumed to be known and serve as input data for the calculation of the velocity field of
acoustic microstreaming. No restrictions are imposed on the ratio of the bubble radius to the viscous penetration
depth. Analytical results are illustrated by numerical examples.

DOI: 10.1103/PhysRevE.100.033105

I. INTRODUCTION

In Part I of our study [1], equations were derived for the
velocity field of acoustic microstreaming that is produced by
modes n and m of oscillations of a gas bubble; see Sec. II C of
Part I [1]. The aim of the present paper is to apply the above
general equations to the case that acoustic microstreaming is
produced by the interaction of the translational mode (mode
1) with a mode of arbitrary order m � 1.

The case 1−1, where only mode 1 is involved, and the
case of modes 1 and m with m > 1 are shown in Part I [1]
to be described by different equations. Therefore, the present
calculation is divided into two parts. In Sec. II A, a solution
for the case 1−1 is derived, while the case 1 − m with m > 1
is considered in Sec. II B.

The case 1−1 was considered previously by Davidson and
Riley [2] and Longuet-Higgins [3]. We consider this case in
a different formulation. In Refs. [2] and [3], it is assumed
that the bubble is fixed while the liquid oscillates about it.
This means that the liquid at infinity has a unidirectional
velocity. Conversely, we assume that the bubble is moving
while the liquid at infinity is at rest. Our results show that these
assumptions lead to different solutions for the streaming. The
fact that these two cases are not equivalent as far as acoustic
streaming is concerned is also confirmed by results of Wu and
Du [4], which are presented in more detail below. Another
important distinctive feature of our solutions is that they do
not impose any restrictions on the ratio of the bubble radius
to the viscous penetration depth, whereas the results obtained
in Refs. [2] and [3] are valid only when the bubble radius is
much greater than the viscous penetration depth.

*Corresponding author: claude.inserra@inserm.fr

II. THEORY

We consider a gas bubble undergoing axisymmetric oscil-
lations, which include the radial pulsation (mode 0), transla-
tion (mode 1), and shape modes of order m � 2. The liquid
motion produced by the bubble oscillations is described by
spherical coordinates r and θ whose origin is at the equilib-
rium center of the bubble. The geometry of the problem is
depicted by Fig. 1 of Part I [1].

A. Acoustic microstreaming produced by mode 1 alone

According to the theory developed in Part I [1], in the case
1−1, the Eulerian streaming velocity is represented by〈

v11
2

〉 = ∇ × [〈
ψ11

2 (r, θ )
〉
eε

]
, (1)

where 〈〉 denotes the time average, eε is the unit azimuth
vector, and 〈ψ11

2 〉 is the amplitude of the vector potential of
the streaming velocity that is calculated from Eq. (33) of Part
I, in which n is set equal to 1, giving the following result:(

�rθ − 1

r2sin2θ

)2〈
ψ11

2

〉

= μ
√

1 − μ2

νr2
Re

{
k2

1a1b∗
1

(
R0

r

)2[
x1h(1)′

1 (x1) − h(1)
1 (x1)

]∗

− k2
1b1b∗

1x1h(1)′
1 (x1)h(1)∗

1 (x1)

}
. (2)

In Eq. (2), �rθ denotes the rθ part of the Laplace opera-
tor (see Appendix A), μ = cos θ , x1 = k1r, k1 = (1 + i)/δ1,
δ1 = √

2ν/ω1, ν is the kinematic liquid viscosity, ω1 is the
frequency of mode 1, R0 is the bubble radius at rest, a1 and
b1 are linear scattering coefficients (see Appendix A), h(1)

n
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FIG. 1. Case 1−1. Comparison of the streaming velocity components given by different theories inside the viscous boundary layer.

is the spherical Hankel function of the first kind, h(1)′
n (x1) =

dh(1)
n (x1)/dx1, and the asterisk denotes complex conjugate.
A solution to Eq. (2) (see Appendix A) is given by

〈
ψ11

2

〉 = μ
√

1 − μ2
|b1|2
6ν

Re{F (x1)}, (3)

where the function F (x1) is defined by Eq. (A12). Substituting
Eq. (3) into Eq. (1) yields the following expressions for the
radial and tangential components of the streaming velocity:

〈
v11

2r

〉 = |b1|2
3νr

Re{F (x1)}P2(μ), (4)

〈
v11

2θ

〉 = −|b1|2
6νr

Re{F (x1) + x1F ′(x1)}μ
√

1 − μ2, (5)

where P2 is the Legendre polynomial of order 2 and the
function F ′(x1) is defined by Eq. (A21).

It should be emphasized that Eqs. (4) and (5) give the
components of the Eulerian streaming velocity, the functions
F and F ′ specifying the dependence of these components
on distance. To calculate the Lagrangian streaming velocity,
Eqs. (4) and (5) are added with the components of the Stokes
drift velocity, which are given by Eqs. (A28) and (A29). A
MATLAB code for the calculation of the Eqs. (4), (5), (A28),
and (A29) is provided as Supplemental Material [5].

As said in the Introduction, we consider a case different
from that considered by Davidson and Riley [2] and Longuet-
Higgins [3]. We assume that the bubble is moving and the
liquid at infinity is at rest, whereas the above authors assume
that the bubble is fixed and the liquid at infinity is moving.
The streaming velocity, as a nonlinear effect, is different in
these two cases. This inference follows from our results and is
corroborated by results of Wu and Du [4].

Wu and Du [4] derived approximate solutions for the
streaming velocity within the thin viscous boundary layer at
the outer and inner surface of a gas bubble undergoing the
monopole and dipole vibrations. They assumed that the gas
inside the bubble was viscous and used the non-slip boundary
conditions. Therefore, their main solutions cannot be correctly
compared to those of Davidson and Riley [2] and Longuet-
Higgins [3], as well as our solutions. However, we can use
limiting equations obtained by Wu and Du [4] in the case
that the gas viscosity tends to zero, Eqs. (26′) and (28′) in
their paper, which give the streaming velocity in the case
1−1 within the boundary layer outside the bubble. We cannot
perform an exact quantitative comparison as Wu and Du [4]
use a quantity u0 called by them “the velocity amplitude of a

sound source.” It is not clear how to correctly recalculate this
quantity to the translational amplitude used in our theory and
in the theories of Davidson and Riley [2] and Longuet-Higgins
[3]. However, we can compare the sign of the components of
the streaming velocity inside the viscous boundary layer.

It follows from the theory of Wu and Du [4] that u0 can
be treated as the amplitude of the liquid velocity generated by
the incident acoustic wave at the center of the bubble as if the
bubble were absent. Then the following relation between u0
and the magnitude of the translational velocity of the bubble,
vb, can be written: vb = ω1|s1| = 3u0 [6], where s1 is the
complex amplitude of mode 1 used in our theory. Substituting
this relation into Eqs. (26′) and (28′) of Ref. [4], we can write
the components of the streaming velocity derived by Wu and
Du in the following form:

vWDr = −ω2
1|s1|2R3

0ρg

2ηr2

(
1 − r

R0

)
P2(μ), (6)

vWDθ = −ω2
1|s1|2R2

0ρg

4ηr
μ

√
1 − μ2, (7)

where η is the dynamic liquid viscosity and ρg is the equilib-
rium gas density.

According to the theory of Longuet-Higgins [3], in case
1−1, the components of the Lagrangian streaming velocity
inside the viscous boundary layer are calculated by

vLHr = 18ω1|s1|2δ2
1

R0r2

×
(

e−ξ cos ξ − 1 + 1

2
ξe−ξ cos ξ − 3

20
ξ

)
P2(μ), (8)

vLHθ = 9ω1|s1|2δ1

4R0r

[
2e−ξ (cos ξ + 2 sin ξ )

+ 2ξe−ξ (cos ξ + sin ξ ) + 3

5

]
μ

√
1 − μ2, (9)

where ξ = (r − R0)/δ1. These equations follow from Eq. (6.5)
of Ref. [3].

In Fig. 1, we compare the dependence on r given by
Eqs. (6)–(9) to the results of our theory. Since Longuet-
Higgins [3] states that his results for the case 1−1 are identical
to those of Davidson and Riley [2], we only provide the
results of Longuet-Higgins [3] in Fig. 1. The simulations
were made at the following values of the physical parameters:
R0 = 50 μm, f = ω1/2π = 50 kHz, the liquid density ρ =
1000 kg/m3, η = 0.001 Pa s, and ρg = 1.2 kg/m3. The
components of the streaming velocity were normalized by
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FIG. 2. Case 1−1. Comparison of the streaming velocity components given by Longuet-Higgins’ and our theories outside the viscous
boundary layer.

the factor ω1|s1|2/R0. The comparison is carried out within
the viscous boundary layer, from r/R0 = 1 up to r/R0 =
1 + δ1/R0, where δ1/R0 = 0.05 for the above mentioned
parameters. As one can see, the velocity components of Wu
and Du [4] are of the same sign as those predicted by our
theory inside the viscous boundary layer, whereas the velocity
components of Longuet-Higgins [3] are of opposite sign.

Outside the viscous boundary layer, the theory of Longuet-
Higgins [3] gives

vLHr = 27ω1|s1|2δ1

20R2
0

(
R4

0

r4
− R2

0

r2

)
P2(μ), (10)

vLHθ = 27ω1|s1|2R2
0δ1

20r4
μ

√
1 − μ2. (11)

These equations follow from Eq. (6.7) of Ref. [3]. Figure 2
compares the dependence on r given by Eqs. (10) and (11)

to the results of our theory. The parameters are the same as
in Fig. 1. The velocity components are normalized by the
factor ω1|s1|2/R0. As one can see, our theory predicts a greater
velocity magnitude. However, it should be emphasized once
again that Fig. 2 compares two different physical cases.

B. Acoustic microstreaming produced by modes 1 and m
with m > 1

In the case 1 − m, the Eulerian streaming velocity is repre-
sented by

〈
v1m

2

〉 = ∇ × [〈
ψ1m

2 (r, θ )
〉
eε

]
, (12)

where 〈ψ1m
2 〉 is calculated from Eq. (32) of Part I [1], in which

n is set equal to 1, leading to

(
�rθ − 1

r2sin2θ

)2〈
ψ1m

2

〉

= 1

νr2
μP1

m(μ)Re

{
k2

1a1b∗
m

(
R0

r

)2[
2h(1)

m (x1) − x1h(1)′
m (x1)

]∗−k2
1b1b∗

m

[
x1h(1)′

1 (x1)h(1)∗
m (x1) + x∗

1h(1)
1 (x1)h(1)′∗

m (x1)
]}

− m + 1

2νr2

√
1 − μ2Pm(μ)Re

{
k2

1amb∗
1

(
R0

r

)m+1[
(m + 1)h(1)

1 (x1) − x1h(1)′
1 (x1)

]∗

− mk2
1bmb∗

1

[
x1h(1)′

m (x1)h(1)∗
1 (x1) + x∗

1h(1)
m (x1)h(1)′∗

1 (x1)
]}

+
√

1 − μ2

2νr2

[√
1 − μ2P1

m(μ)
]′

Re

{
k2

1h(1)∗
m (x1)

[
a1b∗

m

(
R0

r

)2

− b1b∗
m

[
h(1)

1 (x1) + x1h(1)′
1 (x1)

]]

+ k2
1h(1)∗

1 (x1)

[
amb∗

1

(
R0

r

)m+1

− bmb∗
1

[
h(1)

m (x1) + x1h(1)′
m (x1)

]]}
. (13)

Here, the scattering coefficients am and bm are defined by
Eqs. (B1) and (B2), Pm is the Legendre polynomial of order
m, and P1

m is the associated Legendre polynomial of the first
order and of degree m.

A solution to Eq. (13) (see Appendix B) is given by〈
ψ1m

2

〉 = 1

ν
Re

{
b∗

1bm
[
μP1

m(μ)F1(x1) +
√

1 − μ2Pm(μ)F2(x1)
]}

,

(14)

where the functions F1(x1) and F2(x1) are defined by
Eqs. (B35) and (B36). Substituting Eq. (14) into Eq. (12)
yields the following expressions for the radial and tangential
components of the streaming velocity:〈
v1m

2r

〉 = − 1

νr
Re

{
b∗

1bm
[
μPm(μ)[m(m + 1)F1(x1) − 2F2(x1)]

+
√

1 − μ2P1
m(μ)[F1(x1) − F2(x1)]

]}
, (15)
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〈
v1m

2θ

〉 = − 1

νr
Re

{
b∗

1bm
[
μP1

m(μ)[F1(x1) + x1F ′
1 (x1)]

+
√

1 − μ2Pm(μ)[F2(x1) + x1F ′
2 (x1)]

]}
, (16)

where the functions F ′
1 (x1) and F ′

2 (x1) are defined by
Eqs. (B41) and (B42).

It should be emphasized that Eqs. (15) and (16) give
the components of the Eulerian streaming velocity. As one
can see, the dependence of these components on distance is
determined by the functions F1, F2 and their derivatives. Note
that the above functions are independent of the phase shift
between the modes. The phases of the modes are included in
the coefficients b1 and bm, which, as Eqs. (A3) and (B2) show,
are proportional to the complex amplitudes of the modes, s1

and sm. These amplitudes are defined as sm = |sm| exp(iφm),
where |sm| and φm are the magnitude and the phase of mode
m, respectively.

To calculate the Lagrangian streaming velocity, Eqs. (15)
and (16) are added with the components of the Stokes drift
velocity, which are given by Eqs. (B52) and (B53). A MAT-
LAB code for the calculation of Eqs. (15), (16), (B52), and
(B53) is provided as Supplemental Material [5].

The case 1 − m with m > 1 was considered previously by
Spelman and Lauga [7]. Just as in the case of the microstream-
ing produced by modes 0 and m discussed in Part I [1], the
difference between their theoretical model and ours is that
they assume that the bubble is fixed while the liquid oscillates
around it, whereas we assume that the bubble is moving while
the liquid at infinity is at rest. This means that at infinity the
first-order liquid velocity tends to a nonzero value in their
case. Hence our model and the one of Spelman and Lauga
describe two different physical situations. Figure 3 compares
the radial and tangential components of the Lagrangian ve-
locity given by the theory of Spelman and Lauga [7] and the
present model, for the microstreaming produced by modes 1
and 4. The simulations were made at the following values of
physical parameters: ρ = 1000 kg/m3, η = 0.001 Pa s, f =
50 kHz, and R0 = 50 μm. To eliminate from consideration the
magnitudes of the modes |s1| and |s4|, the streaming velocity
was normalized by the factor R0/(ω0|s1||s4|). The phase shift
between modes 1 and 4 is set to 0. Because of the relative
complexity of the equations for the Eulerian or Stokes drift
velocities [Eqs. (15), (16), (B52), and (B53)] containing terms
with different dependence on theta, we plot the streaming
velocities for particular angles: θ = 0, π

4 , π
2 . Both models

show similar behavior for the evolution of the Lagrangian
streaming velocities. However, as in the case 0 – m [1], a
difference in the amplitudes of the streaming velocities is
observed, which, however, decreases with increasing r.

III. NUMERICAL RESULTS

Numerical simulations were made at the following values
of physical parameters: ρ = 1000 kg/m3, η = 0.001 Pa s,
f = 50 kHz, and R0 = 100 µm. The streaming velocity was
normalized by the factor ω1|s1||sm|/R0.

Figure 4 exemplifies Lagrangian streamline patterns pro-
duced by modes 1−1, 1 – 2, 1 – 3, and 1 – 4. The phase
shift between the modes was set zero. As one can see, the
main vortices have a form of lobes. The numerical examples

Spelman and Lauga

Doinikov et al.
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FIG. 3. Evolution of the radial (left column) and tangential (right
column) components of the Lagrangian streaming velocity given by
the theory of Spelman and Lauga [7] and the present model for modes
1 and 4. The velocity components are plotted for three angles: (a), (b)
θ = 0; (c), (d) θ = π/4; (e), (f) θ = π/2.

presented in Fig. 4 show that for modes 1 and m with m > 1,
the number of lobes is equal to 2(m − 1). It is interesting to
note that the streamline patterns in the cases 1−1 and 1 – 3
look identical.

Figure 5 shows the dependence of the normalized magni-
tude of the Eulerian streaming velocity on the distance from
the bubble surface at various values of the phase shift between
modes. The case of modes 1 and 3 is presented. The variation
of the streaming velocity along three directions is shown:
θ = 0, θ = π/4, and θ = π/2. As one can see, a change in the
phase shift leads to a considerable change in the magnitude
of the streaming velocity. As the phase shift increases, the
magnitude of the streaming velocity first decreases but then
again increases. The bend of the φ = π/6 curve in Fig. 5(c)
results from the fact that the sign of the velocity changes at
this spatial point.

IV. CONCLUSIONS

In the present paper, a general theory developed in our
previous paper [1] has been applied to the case that acoustic
microstreaming is produced by the interaction between the
bubble translation (mode 1) and a mode of arbitrary order
m � 1. Since the case 1−1, where only mode 1 is involved,
and the case of modes 1 and m with m > 1 are described
by different equations [1], solutions were obtained separately
for these cases. Analytical results were then used to carry out
numerical simulations. The simulations have shown that in the
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FIG. 4. Numerical examples of streamline patterns produced by various mode pairs.

case 1 − m with m > 1 streamlines form lobes whose number
is equal to 2(m − 1).
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APPENDIX A: SOLUTION OF EQ. (2)

Let us first define the operator �rθ and the constants a1 and
b1 that appear in Eq. (2).

According to Eq. (A9) of Part I [1], �rθ is given by

�rθ = 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
. (A1)

The constants a1 and b1 are known as the linear scattering
coefficients of, respectively, the potential and the vortical parts
of the scattered wave from the bubble. According to Eqs. (18)
and (19) of Part I [1], they are calculated by

a1 = iR0ω1s1x̄2
1h(1)′′

1 (x̄1)

2
[
x̄2

1h(1)′′
1 (x̄1) + 6h(1)

1 (x̄1)
] , (A2)

b1 = 3iR0ω1s1

x̄2
1h(1)′′

1 (x̄1) + 6h(1)
1 (x̄1)

, (A3)

where s1 is the complex amplitude of mode 1 and x̄1 = k1R0.
Making use of Eqs. (A1)–(A3) to express �rθ in terms of

x1 and μ and a1 in terms of b1, Eq. (2) is transformed to

D2
〈
ψ11

2

〉 = μ
√

1 − μ2
k4

1 |b1|2
6νx4

1

× Re
{
x̄4

1h(1)′′
1 (x̄1)

[
x1h(1)′

1 (x1) − h(1)
1 (x1)

]∗

− 6x3
1h(1)′

1 (x1)h(1)∗
1 (x1)

}
, (A4)
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FIG. 5. Case 1 – 3. Dependence of the magnitude of the Eulerian
streaming velocity on the distance from the bubble surface at various
values of the phase shift φ between the modes. The velocity variation
along three directions is shown: (a) θ = 0, (b) θ = π/4, (c) θ = π/2.

where the operator D is given by

D = k2
1

x2
1

[
∂

∂x1

(
x2

1
∂

∂x1

)
+ (1 − μ2)

∂2

∂μ2
− 2μ

∂

∂μ
− 1

1 − μ2

]
.

(A5)

Taking 〈ψ11
2 〉 in the form

〈
ψ11

2

〉 = μ
√

1 − μ2
|b1|2
6ν

Re{F (x1)} (A6)

and substituting into Eq. (A4), one obtains the following
equation for F (x1):

d4F

dx4
1

+ 4

x1

d3F

dx3
1

− 12

x2
1

d2F

dx2
1

+ 24F

x4
1

= G(x1), (A7)

where G(x1) is given by

G(x1) = 1

x4
1

{
x̄4

1h(1)′′
1 (x̄1)

[
x1h(1)′

1 (x1) − h(1)
1 (x1)

]∗

− 6x3
1h(1)′

1 (x1)h(1)∗
1 (x1)

}
. (A8)

Equation (A7) is solved by the method of variation of pa-
rameters [8], which means that we first solve a homogeneous
equation that corresponds to Eq. (A7),

d4F

dx4
1

+ 4

x1

d3F

dx3
1

− 12

x2
1

d2F

dx2
1

+ 24F

x4
1

= 0. (A9)

Assuming that partial solutions to Eq. (A9) are given by xλ

and substituting them into Eq. (A9), one obtains a polynomial
for λ,

λ(λ − 1)(λ − 2)(λ − 3)

+ 4λ(λ − 1)(λ − 2) − 12λ(λ − 1) + 24 = 0. (A10)

The roots of Eq. (A10) are –3, –1, 2, and 4, which means
that the general solution of Eq. (A9) is given by

C1

x3
1

+ C2

x1
+ C3x2

1 + C4x4
1, (A11)

and hence the solution of Eq. (A7) can be written as

F (x1) = C1(x1)

x3
1

+ C2(x1)

x1
+ C3(x1)x2

1 + C4(x1)x4
1, (A12)

where Cn(x1) should obey the following system of equations:

C′
1y1 + C′

2y2 + C′
3y3 + C′

4y4 = 0,

C′
1y′

1 + C′
2y′

2 + C′
3y′

3 + C′
4y′

4 = 0,

C′
1y′′

1 + C′
2y′′

2 + C′
3y′′

3 + C′
4y′′

4 = 0,

C′
1y′′′

1 + C′
2y′′′

2 + C′
3y′′′

3 + C′
4y′′′

4 = G(x1). (A13)

Here, the prime denotes the derivative with respect to x1 and
the functions yn are given by

y1 = x−3
1 , y2 = x−1

1 , y3 = x2
1, y4 = x4

1, (A14)

Solving system (A13) for C′
n and integrating the solutions,

one obtains

C1(x1) = C10 − 1

70

∫ x1

x̄1

s6G(s)ds, (A15)

C2(x1) = C20 + 1

30

∫ x1

x̄1

s4G(s)ds, (A16)

C3(x1) = C30 − 1

30

∫ x1

x̄1

sG(s)ds, (A17)

C4(x1) = C40 + 1

70

∫ x1

x̄1

G(s)

s
ds, (A18)

where Cn0 are constants to be determined by boundary condi-
tions.

To apply the boundary conditions, we first calculate
the components of the Eulerian streaming velocity, using
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Eq. (A6), 〈
v11

2r

〉 = −1

r

∂

∂μ

(〈
ψ11

2

〉√
1 − μ2

)

= |b1|2
6νr

(3μ2 − 1)Re{F (x1)}, (A19)

〈
v11

2θ

〉 = −1

r

∂

∂x1

(
x1

〈
ψ11

2

〉)

= −|b1|2
6νr

μ
√

1 − μ2Re{F (x1) + x1F ′(x1)}, (A20)

where, as follows from Eqs. (A12) and (A13),

F ′(x1) = −3C1(x1)

x4
1

− C2(x1)

x2
1

+ 2C3(x1)x1 + 4C4(x1)x3
1 .

(A21)

From the condition 〈v11
2 〉 → 0 for r → ∞, it follows that

C30 = 1

30

∫ ∞

x̄1

sG(s)ds, (A22)

C40 = − 1

70

∫ ∞

x̄1

G(s)

s
ds. (A23)

To apply boundary conditions at the bubble surface, we

need the Lagrangian streaming velocity, which is defined
by [3]

v11
L = 〈

v11
2

〉 + v11
S , (A24)

where v11
S , called the Stokes drift velocity, is calculated by [3]

v11
S =

〈(∫
v11

1 dt · ∇
)

v11
1

〉
= 1

2ω1
Re

{
i
(
v11

1 · ∇)
v11∗

1

}
,

(A25)
v11

1 being the linear liquid velocity produced by mode 1.
From Eqs. (11) and (12) of Part I [1], it follows that

v11
1r = −e−iω1t k1b1

3

μ

x3
1

[
x̄4

1h(1)′′
1 (x̄1) + 6x2

1h(1)
1 (x1)

]
, (A26)

v11
1θ = −e−iω1t k1b1

6

√
1 − μ2

x3
1

× [
x̄4

1h(1)′′
1 (x̄1) − 6x3

1h(1)′
1 (x1) − 6x2

1h(1)
1 (x1)

]
. (A27)

Substituting Eqs. (A26) and (A27) into Eq. (A25) yields

v11
Sr = |b1|2

6ω1r3
(1 − 3μ2)Re

{
6ix1h(1)∗

1 (x1)h(1)′
1 (x1)

− i
x̄4

1h(1)′′
1 (x̄1)

x2
1

[
2h(1)

1 (x1) + x1h(1)′
1 (x1)

]∗
}
, (A28)

v11
Sθ = |b1|2

6ω1r3
μ

√
1 − μ2Re

{
6ix2

1h(1)
1 (x1)h(1)′′∗

1 (x1)

+ i
x̄4

1h(1)′′
1 (x̄1)

x2
1

[
6h(1)

1 (x1) − x2
1h(1)′′

1 (x1)
]∗

}
. (A29)

The boundary conditions at the bubble surface are written
as (see Part I [1] for more detail)

v11
Lr = 0 at r = R0, (A30)

1

r

∂v11
Lr

∂θ
+ ∂v11

Lθ

∂r
− v11

Lθ

r
= 0 at r = R0. (A31)

Substituting Eqs. (A19), (A20), (A28), and (A29) into
Eqs. (A30) and (A31) yields

C10 + x̄2
1C20 = A, (A32)

16C10 + 6x̄2
1C20 = B, (A33)

where

A = −C30x̄5
1 − C40x̄7

1 + x̄3
1h(1)′′∗

1 (x̄1)
[
2h(1)

1 (x̄1) + x̄1h(1)′
1 (x̄1)

]
− 6x̄2

1h(1)′
1 (x̄1)h(1)∗

1 (x̄1), (A34)

B=−6C30x̄5
1 −16C40x̄7

1 +x̄4
1h(1)′′′

1 (x̄1)
[
x̄2

1h(1)′′∗
1 (x̄1)−6h(1)∗

1 (x̄1)
]

− 2x̄3
1h(1)′′

1 (x̄1)
[
2x̄2

1h(1)′′∗
1 (x̄1)+3x̄∗

1h(1)′∗
1 (x̄1) − 6h(1)∗

1 (x̄1)
]

+ 48x̄3
1h(1)′′∗

1 (x̄1)h(1)
1 (x̄1) − 36x̄2

1h(1)∗
1 (x̄1)h(1)′

1 (x̄1). (A35)

It follows from Eqs. (A32) and (A33) that

C10 = B − 6A

10
, (A36)

C20 = 16A − B

10x̄2
1

. (A37)

APPENDIX B: SOLUTION OF EQ. (13)

From Eqs. (18) and (19) of Part I [1], it follows that

am = x̄2
mh(1)′′

m (x̄m) − (m − 1)(m + 2)h(1)
m (x̄m)

2(m + 2)
bm for m � 1,

(B1)

bm = 2iR0(m + 2)ωmsm

(m + 1)
[
x̄2

mh(1)′′
m (x̄m) + (m2 + 3m + 2)h(1)

m (x̄m)
] ,

(B2)

where x̄m = kmR0, km = (1 + i)/δm, δm = √
2ν/ωm, ωm is the

frequency of the mth mode, and sm is the complex amplitude
of the mth mode. In the case under consideration, it is assumed
that modes 1 and m oscillate at the same frequency ω1, so
ωm = ω1, km = k1, and x̄m = x̄1.

By using Eqs. (B1) and (B2) and the transformation

√
1 − μ2

[√
1 − μ2P1

m(μ)
]′ = m(m + 1)

√
1 − μ2Pm(μ),

(B3)

Eq. (13) is rearranged to

D2〈ψ1m
2

〉 = k4
1

ν
Re

{
b∗

1bm
[
μP1

m(μ)G1(x)

+
√

1 − μ2Pm(μ)G2(x)
]}

, (B4)

where, for convenience, we denote x1 = x and x̄1 = x̄, the
operator D is given by Eq. (A5), and G1(x) and G2(x) are
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calculated by

G1(x) = x̄4

6x4
h(1)′′∗

1 (x̄)
[
2h(1)

m (x) − xh(1)′
m (x)

] + 1

x
h(1)∗

1 (x)h(1)′
m (x) − 1

x∗ h(1)′∗
1 (x)h(1)

m (x), (B5)

G2(x) = m(m + 1)h(1)
m (x)

[
x̄4

12x4
h(1)′′

1 (x̄) − 1

x
h(1)′

1 (x)

]∗

+ (m + 1)x̄m+1

4(m + 2)xm+5

[
x̄2h(1)′′

m (x̄) − (m2 + m − 2)h(1)
m (x̄)

][
x2h(1)

1 (x) − x3h(1)′
1 (x)

]∗
. (B6)

A solution to Eq. (B4) is sought in the following form:

〈
ψ1m

2

〉 = 1

ν
Re

{
b∗

1bm
[
μP1

m(μ)F1(x) +
√

1 − μ2Pm(μ)F2(x)
]}

. (B7)

Substitution of Eq. (B7) into Eq. (B4) yields

D2[μP1
m(μ)F1(x)

] + D2[
√

1 − μ2Pm(μ)F2(x)] = k2
1μP1

m(μ)G1(x) + k2
1

√
1 − μ2Pm(μ)G2(x). (B8)

By using Eqs. (C10) and (C14) from Appendix C, one obtains

μP1
m

[
F IV

1 + 4

x
F ′′′

1 − 2m(m + 1)

x2
F ′′

1 + m(m + 1)(m2 + m + 2)

x4
F1 + 4

x2
F ′′

2 − 4m(m + 1)

x4
F2

]

+
√

1 − μ2Pm

[
F IV

2 + 4

x
F ′′′

2 − 2(m2 + m + 2)

x2
F ′′

2 + m(m + 1)(m2 + m + 6)

x4
F2

+4m(m + 1)

x2
F ′′

1 − 4m2(m + 1)2

x4
F1

]
= μP1

mG1 +
√

1 − μ2PmG2. (B9)

Equation (B9) is divided into the following two equations:

F IV
1 + 4

x
F ′′′

1 − 2m(m + 1)

x2
F ′′

1 + m(m + 1)(m2 + m + 2)

x4
F1 + 4

x2
F ′′

2 − 4m(m + 1)

x4
F2 = G1, (B10)

F IV
2 + 4

x
F ′′′

2 − 2(m2 + m + 2)

x2
F ′′

2 + m(m + 1)(m2 + m + 6)

x4
F2 + 4m(m + 1)

x2

[
F ′′

1 − m(m + 1)

x2
F1

]
= G2. (B11)

To solve Eqs. (B10) and (B11), we need to transform them into a system of ordinary differential equations of first order [8].
To this end, we introduce the following functions:

Y1 = F1, Y2 = xY ′
1, Y3 = xY ′

2, Y4 = xY ′
3, (B12)

Y5 = F2, Y6 = xY ′
5, Y7 = xY ′

6, Y8 = xY ′
7 . (B13)

Equation (B12) gives the equations

Y2 = xF ′
1 , Y3 = x2F ′′

1 + xF ′
1 , Y4 = x3F ′′′

1 + 3x2F ′′
1 + xF ′

1 , Y ′
4 = x3F IV

1 + 6x2F ′′′
1 + 7xF ′′

1 + F ′
1 , (B14)

from which we obtain

F ′
1 = 1

x
Y2, F ′′

1 = 1

x2
(Y3 − Y2), F ′′′

1 = 1

x3
(Y4 − 3Y3 + 2Y2), F IV

1 = 1

x3
Y ′

4 − 1

x4
(6Y4 − 11Y3 + 6Y2). (B15)

In a similar way, from Eq. (B13) we find

F ′
2 = 1

x
Y6, F ′′

2 = 1

x2
(Y7 − Y6), F ′′′

2 = 1

x3
(Y8 − 3Y7 + 2Y6), F IV

2 = 1

x3
Y ′

8 − 1

x4
(6Y8 − 11Y7 + 6Y6). (B16)

Substitution of Eqs. (B15) and (B16) into Eqs. (B10) and (B11) yields

Y ′
4 = −m(m + 1)(m2 + m + 2)

x
Y1 − 2m(m + 1) + 2

x
Y2 + 2m(m + 1) + 1

x
Y3 + 2

x
Y4 + 4m(m + 1)

x
Y5 + 4

x
Y6 − 4

x
Y7 + x3G1,

(B17)

033105-8



ACOUSTIC MICROSTREAMING PRODUCED BY … PHYSICAL REVIEW E 100, 033105 (2019)

Y ′
8 = 4m(m + 1)

x
[m(m + 1)Y1 + Y2 − Y3] − m(m + 1)(m2 + m + 6)

x
Y5 − 2(m2 + m + 2) + 2

x
Y6

+ 2(m2 + m + 2) + 1

x
Y7 + 2

x
Y8 + x3G2. (B18)

Equations (B12), (B13), (B17), and (B18) are combined into the following system:

Y ′
1 = 1

x
Y2, Y ′

2 = 1

x
Y3, Y ′

3 = 1

x
Y4,

Y ′
4 = −m(m + 1)(m2 + m + 2)

x
Y1 − 2(m2 + m + 1)

x
Y2 + 2m2 + 2m + 1

x
Y3 + 2

x
Y4 + 4m(m + 1)

x
Y5 + 4

x
Y6 − 4

x
Y7 + x3G1,

Y ′
5 = 1

x
Y6, Y ′

6 = 1

x
Y7, Y ′

7 = 1

x
Y8,

Y ′
8 = 4m(m + 1)

x
[m(m + 1)Y1 + Y2 − Y3] − m(m + 1)(m2 + m + 6)

x
Y5 − 2(m2 + m + 3)

x
Y6

+ 2m2 + 2m + 5

x
Y7 + 2

x
Y8 + x3G2. (B19)

The system of Eqs. (B19) is solved by the method of variation of parameters [8]. We first seek solutions to homogeneous
equations corresponding to system Eqs. (B19), setting G1 = G2 = 0. Partial solutions are sought as Yn = γnxλ (n = 1,2, …,8)
with γn being a constant. Substituting this expression into system Eqs. (B19) with G1 = G2 = 0, one obtains a system of
equations for γn,

λγ1 − γ2 = 0, λγ2 − γ3 = 0, λγ3 − γ4 = 0,

m(m + 1)(m2 + m + 2)γ1 + 2(m2 + m + 1)γ2 − (2m2 + 2m + 1)γ3 + (λ − 2)γ4 − 4m(m + 1)γ5 − 4γ6 + 4γ7 = 0,

λγ5 − γ6 = 0, λγ6 − γ7 = 0, λγ7 − γ8 = 0,

4m(m + 1)[m(m + 1)γ1 + γ2 − γ3] − m(m + 1)(m2 + m + 6)γ5 − 2(m2 + m + 3)γ6 + (2m2 + 2m + 5)γ7 + (2 − λ)γ8 = 0.

(B20)

This system has nonzero solutions for γn only if its determinant is equal to zero. This condition gives an equation for λ,

(λ2 − λ − m − m2)2[(λ2 − λ)2 − 2(4 + m + m2)(λ2 − λ) + 12 − 8m − 7m2 + 2m3 + m4] = 0. (B21)

This equation is transformed to

(λ2 − λ − m − m2)2(λ2 − λ − m2 − 5m − 6)(λ2 − λ − m2 + 3m − 2) = 0. (B22)

It is easy to check that the roots of Eq. (59) are given by

λ1 = −m − 2, λ2 = m + 3, λ3 = 2 − m, λ4 = m − 1, λ5,6 = −m, λ7,8 = m + 1. (B23)

When we substitute λ1 into system Eqs. (B20), we get equations that give the values of γn corresponding to the root λ1. Let us
denote these values as γn1 (n = 1,2, …,8). Since the determinant of system Eqs. (B20) is equal to zero, only seven equations are
independent. This means that one of the unknowns γn1 should be taken as an arbitrary constant and then the other unknowns γn1

can be expressed in terms of this constant. Let us set γ11 as an arbitrary constant. Then, substituting λ1 into system Eqs. (B20)
and solving this latter for γn1 with n = 2,3, …,8, we obtain

γ21 = −(m + 2)γ11, γ31 = (m + 2)2γ11, γ41 = −(m + 2)3γ11, γ51 = −(m + 1)γ11,

γ61 = (m + 1)(m + 2)γ11, γ71 = −(m + 1)(m + 2)2γ11, γ81 = (m + 1)(m + 2)3γ11. (B24)

In an analogous way, for the roots λ2, λ3, and λ4, one finds

γ22 = (m + 3)γ12, γ32 = (m + 3)2γ12, γ42 = (m + 3)3γ12, γ52 = −(m + 1)γ12,

γ62 = −(m + 1)(m + 3)γ12, γ72 = −(m + 1)(m + 3)2γ12, γ82 = −(m + 1)(m + 3)3γ12, (B25)

γ23 = (2 − m)γ13, γ33 = (2 − m)2γ13, γ43 = (2 − m)3γ13, γ53 = mγ13,

γ63 = m(2 − m)γ13, γ73 = m(2 − m)2γ13, γ83 = m(2 − m)3γ13, (B26)

γ24 = (m − 1)γ14, γ34 = (m − 1)2γ14, γ44 = (m − 1)3γ14, γ54 = mγ14,

γ64 = m(m − 1)γ14, γ74 = m(m − 1)2γ14, γ84 = m(m − 1)3γ14, (B27)

where γ12, γ13, and γ14 are arbitrary constants.
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We have two pairs of repeated roots: λ5 = λ6 and λ7 = λ8. Partial solutions corresponding to these roots are written as [8]

Yn = (γn5 + γn6 ln x)xλ5 , Yn= (γn7 + γn8 ln x)xλ7 , n = 1, 2, ...8. (B28)

To find γn5 and γn6, we substitute the partial solutions given by the first expression of Eq. (B28) into system Eqs. (B19) with
G1 = G2 = 0. As a result, we obtain

mγ15 − γ16 + γ25 + (mγ16 + γ26) ln x = 0,

mγ25 − γ26 + γ35 + (mγ26 + γ36) ln x = 0,

mγ35 − γ36 + γ45 + (mγ36 + γ46) ln x = 0,

m(m + 1)(m2 + m + 2)(γ15 + γ16 ln x) + 2(m2 + m + 1)(γ25 + γ26 ln x) − (2m2 + 2m + 1)(γ35 + γ36 ln x)

− (m + 2)(γ45 + γ46 ln x) + γ46 − 4m(m + 1)(γ55 + γ56 ln x) − 4(γ65 + γ66 ln x) + 4(γ75 + γ76 ln x) = 0,

mγ55 − γ56 + γ65 + (mγ56 + γ66) ln x = 0,

mγ65 − γ66 + γ75 + (mγ66 + γ76) ln x = 0,

mγ75 − γ76 + γ85 + (mγ76 + γ86) ln x = 0,

4m(m + 1)[m(m + 1)(γ15 + γ16 ln x) + γ25 − γ35 + (γ26 − γ36) ln x] − m(m + 1)(m2 + m + 6)(γ55 + γ56 ln x)

− 2(m2 + m + 3)(γ65 + γ66 ln x) + (2m2 + 2m + 5)(γ75 + γ76 ln x) + (m + 2)(γ85 + γ86 ln x) − γ86 = 0. (B29)

From these equations, it follows that all the constants γn6 = 0 and the constants γn5 are defined by

γ25 = −mγ15, γ35 = m2γ15, γ45 = −m3γ15, γ65 = −mγ55, γ75 = m2γ55, γ85 = −m3γ55, (B30)

where γ15 and γ55 are arbitrary constants.
In a similar way, one obtains for the roots λ7 = λ8 that γn8 = 0 and the constants γn7 are defined by

γ27 = (m + 1)γ17, γ37 = (m + 1)2γ17, γ47 = (m + 1)3γ17,

γ67 = (m + 1)γ57, γ77 = (m + 1)2γ57, γ87 = (m + 1)3γ57, (B31)

where γ17 and γ57 are arbitrary constants.
The general homogeneous solutions are written as

Yn = γn1x−m−2 + γn2xm+3 + γn3x2−m + γn4xm−1 + γn5x−m + γn7xm+1, n = 1, 2, ..., 8. (B32)

Recall that eight of the constants γnk are arbitrary.
To find solutions to the inhomogeneous system Eqs. (B19), we assume that eight arbitrary constants (γ11, γ12, γ13, γ14, γ15,

γ17, γ55, γ57) are functions of x. With this assumption, the substitution of the general solutions given by Eq. (B32) into system
Eqs. (B19) yields

γ ′
11x−m−2 + γ ′

12xm+3 + γ ′
13x2−m + γ ′

14xm−1 + γ ′
15x−m + γ ′

17xm+1 = 0,

(m + 2)γ ′
11x−m−2 − (m + 3)γ ′

12xm+3 + (m − 2)γ ′
13x2−m − (m − 1)γ ′

14xm−1 + mγ ′
15x−m − (m + 1)γ ′

17xm+1 = 0,

(m + 2)2γ ′
11x−m−2 + (m + 3)2γ ′

12xm+3 + (m − 2)2γ ′
13x2−m + (m − 1)2γ ′

14xm−1 + m2γ ′
15x−m + (m + 1)2γ ′

17xm+1 = 0,

(m + 2)3γ ′
11x−m−2 − (m + 3)3γ ′

12xm+3 + (m − 2)3γ ′
13x2−m − (m − 1)3γ ′

14xm−1 + m3γ ′
15x−m

− (m + 1)3γ ′
17xm+1 = −x3G1,

(m + 1)γ ′
11x−m−2 + (m + 1)γ ′

12xm+3 − mγ ′
13x2−m − mγ ′

14xm−1 − γ ′
55x−m − γ ′

57xm+1 = 0,

(m + 1)(m + 2)γ ′
11x−m−2 − (m + 1)(m + 3)γ ′

12xm+3 − m(m − 2)γ ′
13x2−m + m(m − 1)γ ′

14xm−1 − mγ ′
55x−m

+ (m + 1)γ ′
57xm+1 = 0,

(m + 1)(m + 2)2γ ′
11x−m−2 + (m + 1)(m + 3)2γ ′

12xm+3 − m(m − 2)2γ ′
13x2−m − m(m − 1)2γ ′

14xm−1

− m2γ ′
55x−m − (m + 1)2γ ′

57xm+1 = 0,

(m + 1)(m + 2)3γ ′
11x−m−2 − (m + 1)(m + 3)3γ ′

12xm+3 + m(2 − m)3γ ′
13x2−m + m(m − 1)3γ ′

14xm−1

− m3γ ′
55x−m + (m + 1)3γ ′

57xm+1 = x3G2. (B33)
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From these equations, one obtains that

γ11(x) = γ̄11 + 1

2(2m + 1)(2m + 3)(2m + 5)

∫ x

x̄
[G2(s) − mG1(s)]sm+5ds,

γ12(x) = γ̄12 + 1

2(2m + 1)(2m + 3)(2m + 5)

∫ x

x̄
[mG1(s) − G2(s)]s−mds,

γ13(x) = γ̄13 + 1

2(2m + 1)(2m − 1)(2m − 3)

∫ x

x̄
[(m + 1)G1(s) + G2(s)]sm+1ds,

γ14(x) = γ̄14 − 1

2(2m + 1)(2m − 1)(2m − 3)

∫ x

x̄
[(m + 1)G1(s) + G2(s)]s4−mds,

(B34)

γ15(x) = γ̄15 − 1

2(2m − 1)(2m + 1)(2m + 3)

∫ x

x̄
[3G1(s) + 2G2(s)]sm+3ds,

γ17(x) = γ̄17 + 1

2(2m − 1)(2m + 1)(2m + 3)

∫ x

x̄
[3G1(s) + 2G2(s)]s2−mds,

γ55(x) = γ̄55 − 1

2(2m − 1)(2m + 1)(2m + 3)

∫ x

x̄
[2m(m + 1)G1(s) + G2(s)]sm+3ds,

γ57(x) = γ̄57 + 1

2(2m − 1)(2m + 1)(2m + 3)

∫ x

x̄
[2m(m + 1)G1(s) + G2(s)]s2−mds,

where γ̄11, γ̄12, etc. are constants to be determined by boundary conditions.
It will be recalled that Y1 = F1 and Y5 = F2 so we have

F1(x) = γ11(x)x−m−2 + γ12(x)xm+3 + γ13(x)x2−m + γ14(x)xm−1 + γ15(x)x−m + γ17(x)xm+1, (B35)

F2(x) = −(m + 1)γ11(x)x−m−2 − (m + 1)γ12(x)xm+3 + mγ13(x)x2−m + mγ14(x)xm−1 + γ55(x)x−m + γ57(x)xm+1. (B36)

The components of the Eulerian streaming velocity are calculated by〈
v1m

2r

〉 = −1

r

∂

∂μ

(〈
ψ1m

2

〉√
1 − μ2

)
, (B37)

〈
v1m

2θ

〉 = −1

r

∂

∂x

(
x
〈
ψ1m

2

〉)
. (B38)

Substitution of Eq. (B7) into Eqs. (B37) and (B38) yields〈
v1m

2r

〉 = − 1

νr
Re

{
b∗

1bm
[
μPm(μ)[m(m + 1)F1(x) − 2F2(x)] +

√
1 − μ2P1

m(μ)[F1(x) − F2(x)]
]}

, (B39)

〈
v1m

2θ

〉 = − 1

νr
Re

{
b∗

1bm
[
μP1

m(μ)[F1(x) + xF ′
1 (x)] +

√
1 − μ2Pm(μ)[F2(x) + xF ′

2 (x)]
]}

, (B40)

where

F ′
1 (x) = −(m + 2)γ11(x)x−m−3 + (m + 3)γ12(x)xm+2 + (2 − m)γ13(x)x1−m + (m − 1)γ14(x)xm−2

− mγ15(x)x−m−1 + (m + 1)γ17(x)xm, (B41)

F ′
2 (x) = (m + 1)(m + 2)γ11(x)x−m−3 − (m + 1)(m + 3)γ12(x)xm+2 + m(2 − m)γ13(x)x1−m

+ m(m − 1)γ14(x)xm−2 − mγ55(x)x−m−1 + (m + 1)γ57(x)xm. (B42)

From the condition 〈v1m
2 〉 → 0 for r → ∞, it follows that

γ̄12 = − 1

2(2m + 1)(2m + 3)(2m + 5)

∫ ∞

x̄
[mG1(s) − G2(s)]s−mds, (B43)

γ̄14 = 1

2(2m + 1)(2m − 1)(2m − 3)

∫ ∞

x̄
[(m + 1)G1(s) + G2(s)]s4−mds, (B44)

γ̄17 = − 1

2(2m − 1)(2m + 1)(2m + 3)

∫ ∞

x̄
[3G1(s) + 2G2(s)]s2−mds, (B45)

γ̄57 = − 1

2(2m − 1)(2m + 1)(2m + 3)

∫ ∞

x̄
[2m(m + 1)G1(s) + G2(s)]s2−mds. (B46)
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To find the other constants, we need to calculate the Lagrangian streaming velocity, v1m
L = 〈v1m

2 〉 + v1m
S , where v1m

S denotes
the Stokes drift velocity, which is calculated by [3]

v1m
S =

〈(∫
v1dt · ∇

)
v1

〉
1m

= 1

2ω1
Re{i(v1 · ∇)v∗

1}1m. (B47)

In Eq. (B47), v1 is the linear liquid velocity and the subscript 1m means that cross terms produced by modes 1 and m should
be only kept. Equation (B47) gives

v1m
Sr = 1

2ω1
Re

{
ivm

1r

∂v1∗
1r

∂r
− iv1∗

1r

∂vm
1r

∂r
+ ivm

1θ

r

∂v1∗
1r

∂θ
− iv1∗

1θ

r

∂vm
1r

∂θ

}
, (B48)

v1m
Sθ = 1

2ω1
Re

{
ivm

1r

∂v1∗
1θ

∂r
− iv1∗

1r

∂vm
1θ

∂r
+ ivm

1θ

r

∂v1∗
1θ

∂θ
− iv1∗

1θ

r

∂vm
1θ

∂θ
+ i

v1∗
1r v

m
1θ − v1∗

1θ v
m
1r

r

}
, (B49)

where vm
1r and vm

1θ are the radial and tangential components of the linear liquid velocity vm
1 produced by mode m.

From Eqs. (11) and (12) of Part I [1] and Eq. (B1), one obtains

vm
1r = −e−iω1t bmPm(μ)

m + 1

R0

[
x̄2h(1)′′

m (x̄) − (m2 + m − 2)h(1)
m (x̄)

2(m + 2)

(
R0

r

)m+2

+ mx̄

x
h(1)

m (x)

]
, (B50)

vm
1θ = e−iω1t P1

m(μ)
bm

R0

[
x̄2h(1)′′

m (x̄) − (m2 + m − 2)h(1)
m (x̄)

2(m + 2)

(
R0

r

)m+2

− x̄

x
h(1)

m (x) − x̄h(1)′
m (x)

]
. (B51)

Substitution of Eqs. (B50) and (B51) into Eqs. (B48) and (B49) yields

v1m
Sr = − 1

6νR0
Re

{
b∗

1bm
[
μPm(μ)S1(x) +

√
1 − μ2P1

m(μ)S2(x)
]}

, (B52)

v1m
Sθ = − 1

6νR0
Re

{
b∗

1bm
[
μP1

m(μ)S3(x) +
√

1 − μ2Pm(μ)S4(x)
]}

, (B53)

where

S1(x) = (m + 1)

{[
3x̄4

x4
h(1)′′

1 (x̄) − 6

x
h(1)′

1 (x) + 6

x2
h(1)

1 (x)

]∗

×
[

x̄2h(1)′′
m (x̄) − (m2 + m − 2)h(1)

m (x̄)

2(m + 2)

(
x̄

x

)m+2

+ mx̄

x
h(1)

m (x)

]
−

[
x̄4

x4
h(1)′′

1 (x̄) + 6

x2
h(1)

1 (x)

]∗

×
[[

x̄2h(1)′′
m (x̄) − (m2 + m − 2)h(1)

m (x̄)
]

2

(
x̄

x

)m+2

− mx̄h(1)′
m (x) + mx̄

x
h(1)

m (x)

]}
, (B54)

S2(x) = m + 1

2

[
x̄4

x4
h(1)′′

1 (x̄) − 6

x
h(1)′

1 (x) − 6

x2
h(1)

1 (x)

]∗ [
x̄2h(1)′′

m (x̄) − (m2 + m − 2)h(1)
m (x̄)

2(m + 2)

(
x̄

x

)m+2

+ mx̄

x
h(1)

m (x)

]

−
[

x̄4

x4
h(1)′′

1 (x̄) + 6

x2
h(1)

1 (x)

]∗ [
x̄2h(1)′′

m (x̄) − (m2 + m − 2)h(1)
m (x̄)

2(m + 2)

(
x̄

x

)m+2

− x̄h(1)′
m (x) − x̄

x
h(1)

m (x)

]
, (B55)

S3(x) =
[

2x̄4

x4
h(1)′′

1 (x̄) − 6

x
h(1)′

1 (x)

]∗ [
x̄2h(1)′′

m (x̄) − (m2 + m − 2)h(1)
m (x̄)

2(m + 2)

(
x̄

x

)m+2

− x̄h(1)′
m (x) − x̄

x
h(1)

m (x)

]

−
[

x̄4

x4
h(1)′′

1 (x̄) + 6

x2
h(1)

1 (x)

]∗ [
x̄2h(1)′′

m (x̄) − (m2 + m − 2)h(1)
m (x̄)

2

(
x̄

x

)m+2

+ x̄xh(1)′′
m (x) + x̄h(1)′

m (x) − x̄

x
h(1)

m (x)

]
,

(B56)
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S4(x) = m + 1

2

{[
3x̄4

x4
h(1)′′

1 (x̄) + 6h(1)′′
1 (x) + 6

x
h(1)′

1 (x) − 6

x2
h(1)

1 (x)

]∗

×
[

x̄2h(1)′′
m (x̄) − (m2 + m − 2)h(1)

m (x̄)

2(m + 2)

(
x̄

x

)m+2

+ mx̄

x
h(1)

m (x)

]

+
[

x̄4

x4
h(1)′′

1 (x̄) − 6

x
h(1)′

1 (x) − 6

x2
h(1)

1 (x)

]∗[ (m + 1)[x̄2h(1)′′
m (x̄) − (m2 + m − 2)h(1)

m (x̄)]

2(m + 2)

(
x̄

x

)m+2

− mx̄h(1)′
m (x)

]}
.

(B57)

Let us apply the boundary conditions for the Lagrangian streaming velocity at the bubble surface. They are written as

v1m
Lr = 0 at r = R0, (B58)

1

r

∂v1m
Lr

∂θ
+ ∂v1m

Lθ

∂r
− v1m

Lθ

r
= 0 at r = R0. (B59)

Substituting Eqs. (B39), (B40), (B52), and (B53) into Eqs. (B58) and (B59), one obtains the following system of equations:

(m + 1)(m + 2)γ̄11x̄−m−2 + m(m − 1)γ̄13x̄2−m + m(m + 1)γ̄15x̄−m − 2γ̄55x̄−m

= −(m + 1)(m + 2)γ̄12x̄m+3 − m(m − 1)γ̄14x̄m−1 − m(m + 1)γ̄17x̄m+1 + 2γ̄57x̄m+1 − S1(x̄)

6
,

(m + 2)γ̄11x̄−m−2 − (m − 1)γ̄13x̄2−m + γ̄15x̄−m − γ̄55x̄−m

= −(m + 2)γ̄12x̄m+3 + (m − 1)γ̄14x̄m−1 − γ̄17x̄m+1 + γ̄57x̄m+1 − S2(x̄)

6
,

(m + 1)(m + 3)γ̄11x̄−m−2 + m(m − 2)γ̄13x̄2−m + (m2 + m − 1)γ̄15x̄−m − γ̄55x̄−m

= −(m + 1)(m + 3)γ̄12x̄m+3 − m(m − 2)γ̄14x̄m−1 − (m2 + m − 1)γ̄17x̄m+1 + γ̄57x̄m+1

− 1

12
[S1(x̄) − S3(x̄) + x̄S′

3(x̄)],

(m + 1)(m + 2)2γ̄11x̄−m−2 − m(m − 1)2γ̄13x̄2−m + m(m + 1)γ̄15x̄−m − (m2 + m + 1)γ̄55x̄−m

= −(m + 1)(m + 2)2γ̄12x̄m+3 + m(m − 1)2γ̄14x̄m−1 − m(m + 1)γ̄17x̄m+1 + (m2 + m + 1)γ̄57x̄m+1

− 1

12
[S1(x̄) + m(m + 1)S2(x̄) + S4(x̄) − x̄S′

4(x̄)]. (B60)

Solving these equations for four remaining constants, one gets finally

γ̄11 = −γ̄12x̄2m+5 + x̄m+2

12(2m + 1)(2m + 3)

{
m[(m2 − 3)S1(x̄) + (m3 − m + 4)S2(x̄)]

(m − 1)(m + 2)

+m[S3(x̄) − x̄S′
3(x̄)] − S4(x̄) + x̄S′

4(x̄)

}
, (B61)

γ̄13 = −γ̄14x̄2m−3 − x̄m−2

12(2m − 1)(2m + 1)

{
(m + 1)[(m2 + 2m − 2)S1(x̄) − (m3 + 3m2 + 2m − 4)S2(x̄)]

(m − 1)(m + 2)

+ (m + 1)[S3(x̄) − x̄S′
3(x̄)] + S4(x̄) − x̄S′

4(x̄)

}
, (B62)

γ̄15 = −γ̄17x̄2m+1 − x̄m

12(2m − 1)(2m + 3)

{
m(m + 1)[3S1(x̄) + 2(m2 + m − 5)S2(x̄)]

(m − 1)(m + 2)

−3[S3(x̄) − x̄S′
3(x̄)] − 2[S4(x̄) − x̄S′

4(x̄)]

}
, (B63)

γ̄55 = −γ̄57x̄2m+1 + x̄m

12(2m − 1)(2m + 3)

{
(2m4 + 4m3 − 9m2 − 11m + 6)S1(x̄) + m(m + 1)(3m2 + 3m + 2)S2(x̄)

(m − 1)(m + 2)

+2m(m + 1)[S3(x̄) − x̄S′
3(x̄)] + S4(x̄) − x̄S′

4(x̄)

}
. (B64)

Expressions for S′
3(x̄) and S′

4(x̄) are provided in Appendix D.
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APPENDIX C: EQUATIONS USED FOR THE CALCULATION OF EQ. (B9)

This Appendix provides equations that were used in the course of the derivation of Eq. (B9).

D
[
μP1

m(μ)F1(x)
] = k2

1

x2

{
μP1

m(x2F ′
1 )

′ + F1

[
(1 − μ2)

(
μP1

m

)′′ − 2μ
(
μP1

m

)′ − μP1
m

1 − μ2

]}

= k2
1

x2

{
μP1

m(x2F ′
1 )

′ + F1

[
μ(1 − μ2)P1′′

m − 2μ2P1′
m + 2(1 − μ2)P1′

m − 2μP1
m − μP1

m

1 − μ2

]}

= k2
1

{
μP1

m

[
F ′′

1 + 2

x
F ′

1 − m(m + 1)

x2
F1

]
+ 2m(m + 1)

√
1 − μ2Pm

F1

x2

}
. (C1)

Here, we have used the following equations:

(1 − μ2)P1′′
m − 2μP1′

m = P1
m

1 − μ2
− m(m + 1)P1

m, (C2)

(1 − μ2)P1′
m (μ) = μP1

m(μ) + m(m + 1)
√

1 − μ2Pm(μ), (C3)

D[
√

1 − μ2Pm(μ)F2(x)] = k2
1

x2

{√
1 − μ2Pm(x2F ′

2 )
′ + F2

[
(1 − μ2)(

√
1 − μ2Pm)

′′ − 2μ(
√

1 − μ2Pm)
′ − Pm√

1 − μ2

]}

= k2
1

x2
{
√

1 − μ2Pm(x2F ′
2 )

′ + F2[
√

1 − μ2((1 − μ2)P′′
m − 2μP′

m) − 2
√

1 − μ2Pm − 2μ
√

1 − μ2P′
m]}

= k2
1

[√
1 − μ2Pm

(
F ′′

2 + 2

x
F ′

2 − m2 + m + 2

x2
F2

)
+ 2μP1

m

F2

x2

]
. (C4)

Here, we have used the following equations:

(1 − μ2)P′′
m(μ) − 2μP′

m(μ) = −m(m + 1)Pm(μ), (C5)√
1 − μ2P′

m(μ) = −P1
m(μ). (C6)

Applying the operator D to Eq. (C1), one has

D2
[
μP1

m(μ)F1(x)
] = k2

1D
[
μP1

mH1
] + 2m(m + 1)k2

1D[
√

1 − μ2PmH2], (C7)

where

H1 = F ′′
1 + 2

x
F ′

1 − m(m + 1)

x2
F1, H2 = F1

x2
. (C8)

By using Eqs. (C1) and (C4), one obtains

D2
[
μP1

m(μ)F1(x)
] = k4

1

{
μP1

m

[
H ′′

1 + 2

x
H ′

1 − m(m + 1)

x2
H1

]
+ 2m(m + 1)

√
1 − μ2Pm

H1

x2

}

+ 2m(m + 1)k4
1

[√
1 − μ2Pm

(
H ′′

2 + 2

x
H ′

2 − m2 + m + 2

x2
H2

)
+ 2μP1

m

H2

x2

]
. (C9)

Substitution of Eq. (C8) into Eq. (C9) yields

D2
[
μP1

m(μ)F1(x)
] = 4m(m + 1)k4

1

√
1 − μ2Pm

[
F ′′

1

x2
− m(m + 1)

x4
F1

]

+ k4
1μP1

m

[
F IV

1 + 4

x
F ′′′

1 − 2m(m + 1)

x2
F ′′

1 + m(m + 1)(m2 + m + 2)

x4
F1

]
. (C10)

Applying the operator D to Eq. (C4), one has

D2[
√

1 − μ2Pm(μ)F2(x)] = k2
1D[

√
1 − μ2PmJ1] + 2k2

1D
[
μP1

mJ2
]
, (C11)

where

J1 = F ′′
2 + 2

x
F ′

2 − m2 + m + 2

x2
F2, J2 = F2

x2
. (C12)
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By using Eqs. (C1) and (C4), one obtains

D2
[√

1 − μ2Pm(μ)F2(x)
]

= 2k4
1μP1

m

[
J ′′

2 + 2

x
J ′

2 − m(m + 1)

x2
J2 + 1

x2
J1

]

+ k4
1

√
1 − μ2Pm

[
J ′′

1 + 2

x
J ′

1 − m2 + m + 2

x2
J1 + 4m(m + 1)

x2
J2

]
. (C13)

Substitution of Eq. (C12) into Eq. (C13) results in

D2[
√

1 − μ2Pm(μ)F2(x)] = 4k4
1μP1

m

[
1

x2
F ′′

2 − m(m + 1)

x4
F2

]

+ k4
1

√
1 − μ2Pm

[
F IV

2 + 4

x
F ′′′

2 − 2(m2 + m + 2)

x2
F ′′

2 + m(m + 1)(m2 + m + 6)

x4
F2

]
. (C14)

APPENDIX D: EXPRESSIONS FOR S′
3(x̄) AND S′

4(x̄)

This Appendix provides expressions for S′
3(x̄) and S′

4(x̄), which appear in Eqs. (B61)–(B64). They are calculated by
differentiating Eqs. (B56) and (B57).

S′
3(x̄) =

[
6

x̄2
h(1)′

1 (x̄) − 14

x̄
h(1)′′

1 (x̄)

]∗ [
x̄2h(1)′′

m (x̄) − (m2 + m − 2)h(1)
m (x̄)

2(m + 2)
− x̄h(1)′

m (x̄) − h(1)
m (x̄)

]

+
[

2h(1)′′
1 (x̄) − 6

x̄
h(1)′

1 (x̄)

]∗ [
m(m + 1)

2x̄
h(1)

m (x̄) − h(1)′
m (x̄) − 3

2
x̄h(1)′′

m (x̄)

]

+
[

4

x̄
h(1)′′

1 (x̄) − 6

x̄2
h(1)′

1 (x̄) + 12

x̄3
h(1)

1 (x̄)

]∗[3

2
x̄2h(1)′′

m (x̄) + x̄h(1)′
m (x̄) − m(m + 1)

2
h(1)

m (x̄)

]

−
[

h(1)′′
1 (x̄) + 6

x̄2
h(1)

1 (x̄)

]∗ [
x̄2h(1)′′′

m (x̄) − m − 2

2
x̄h(1)′′

m (x̄) − h(1)′
m (x̄) + (m + 2)(m2 + m − 2) + 2

2x̄
h(1)

m (x̄)

]
,

(D1)

S′
4(x) = m + 1

2

{[
6

x̄3
h(1)

1 (x̄) − 6

x̄2
h(1)′

1 (x̄) − 3

x̄
h(1)′′

1 (x̄) + 3h(1)′′′
1 (x̄)

]∗ [
x̄2h(1)′′

m (x̄)

m + 2
+ (m + 1)h(1)

m (x̄)

]

+
[

9h(1)′′
1 (x̄) + 6

x̄
h(1)′

1 (x̄) − 6

x̄2
h(1)

1 (x̄)

]∗ [
(m − 2)(m + 1)

2x̄
h(1)

m (x̄) + mh(1)′
m (x̄) − x̄

2
h(1)′′

m (x̄)

]

+
[

6

x̄3
h(1)

1 (x̄) − 5

x̄
h(1)′′

1 (x̄)

]∗ [
(m + 1)[x̄2h(1)′′

m (x̄) − (m2 + m − 2)h(1)
m (x̄)]

m + 2
− mx̄h(1)′

m (x̄)

]

+
[

h(1)′′
1 (x̄) − 6

x̄
h(1)′

1 (x̄) − 6

x̄2
h(1)

1 (x̄)

]∗ [
(m + 1)(m2 + m − 2)h(1)

m (x̄)

2x̄
− 3m + 1

2
x̄h(1)′′

m (x̄)

]}
. (D2)
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