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AGING IN METROPOLIS DYNAMICS OF THE REM: A PROOF

VÉRONIQUE GAYRARD

ABSTRACT. We study the aging behavior of the Random Energy Model (REM)evolving
under Metropolis dynamics. We prove that a classical two-time correlation function con-
verges almost surely to the arcsine law distribution function that characterizes activated
aging, as predicted in the physics literature, in the optimal domain of the time-scale and
temperature parameters where this result can be expected tohold. In the course of the
proof we establish that a certain continuous time clock process, after proper rescaling,
converges almost surely to a stable subordinator, improving upon the result of Ref. [15]
where a closely related clock is shown to converge in probability only, and in a restricted
region of the time-scale and temperature parameters. The random rescaling involved in
this convergence is controlled at the fine level of fluctuations. As a byproduct, we refine
and prove a conjecture made in Ref. [15].

1. INTRODUCTION

While there is as yet no established theory for the description of glasses, a consensus
exists that this amorphous state of matter is intrinsicallydynamical in nature [19], [29],
[26]. Measuring suitable two-time correlation functions indeed reveals that glassy dynam-
ics are history dependent and dominated by ever slower transients: they areaging. The
realization in the late 80’s thatmean-fieldspin glass dynamics could provide a mathemati-
cal formulation for this phenomenon sparked renewed interest in models, such as Derrida’s
REM andp-spin SK models [16], [17], whose statics had, until then, been the main fo-
cus of attention [11]. Despite this, Bouchaud’s phenomenological trap modelsfirst took
the center stage as they succeeded in predicting the power-law decay of two-time correla-
tion functions observed experimentally, even though they did so at the cost of an ad hoc
construction and drastically simplifying assumptions [10], [12].

It was not until 2003 that a trap model dynamics was shown to result for the microscopic
Glauber dynamics of a (random) mean-field spin glass Hamiltonian, namely, the REM en-
dowed with the so-calledRandom Hoppingdynamics and observed on time-scales near
equilibrium [4, 5, 6]. Quite remarkably, the predicted functional form of two-time correla-
tion functions was recovered. Rapid progress followed overthe ensuing decade, beginning
with [7]. The optimal domain of temperature and time-scaleswere this prediction applies
was obtained in Ref. [22] (almost surely in the random environment except for times scales
near equilibrium where the results hold in probability only) and these results were partially
extended to thep-spin SK models [3], [13].

The choice of the Random Hopping dynamics, however, clearlyfavored the emergence
of trap models. Just as in trap model constructions, its trajectories are those of a simple
random walk on the underlying graph, and thus, do not depend on the random Hamil-
tonian. This is in sharp contrast withMetropolis[30] dynamics, a choice heralded in the
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physic’s literature asthe natural microscopic Glauber dynamics [27], whose trajectories
are biased against increasing the energy. This dependence on the random Hamiltonian
makes the analysis of the two-time correlation functions much harder. This problem was
first tackled in [24] were a truncated REM is considered, and anatural two-time correlation
function is proved to behave as in the Random Hopping dynamics, in the same, optimal
range of time-scales and temperatures for which this resultholds almost surely in the ran-
dom environment. In the present paper, we free ourselves of the simplifying truncation
assumption and prove that the same result holds true almost surely for the full REM. A
recent paper [15], by establishing the convergence of a so-called clock process, suggested
that this might be the case but failed short of proving aging:the sole clock convergence,
indeed, does not suffice to deduce aging, a property of correlation functions.

1.1. Main result. Let us now specify the model. Denote byVn = {−1, 1}n the n-
dimensional discrete cube and byEn its edge set. The Hamiltonian (or energy) of the REM
is a collection of independent Gaussian random variables,(Hn(x), x ∈ Vn), satisfying

EHn(x) = 0, EH2
n(x) = n. (1.1)

The sequence(Hn(x), x ∈ Vn), n > 1, is defined on a common probability space denoted
by (Ω,F ,P). OnVn, we consider the Markov jump process(Xn(t), t > 0) with rates

λn(x, y) =
1

n
e−β[Hn(y)−Hn(x)]

+

, if (x, y) ∈ En, (1.2)

andλn(x, y) = 0 else, werea+ = max{a, 0}. This defines the single spin-flip continuous
time Metropolis dynamics of the REM at temperatureβ−1 > 0. Note that the rates are
reversible with respect to the measure that assigns tox ∈ Vn the mass

τn(x) ≡ exp{−βHn(x)}. (1.3)

When studying aging the choice of the observation time-scale,cn, is all-important. Given
0 < ε < 1 and0 < β < ∞, we letcn ≡ cn(β, ε) be the two-parameter sequence defined
by

2εnP(τn(x) ≥ cn) = 1. (1.4)

Gaussian tails estimates yield the explicit form

cn = exp
{
nββc(ε)− (1/2α(ε))

(
log(β2

c (ε)n/2) + log 4π + o(1)
)}

(1.5)

where

βc(ε) =
√
ε2 log 2, (1.6)

α(ε) = βc(ε)/β. (1.7)

A classical choice of two-time correlation function is the probability Cn(t, s) to find the
process in the same state at the two endpoints of the time interval [cnt, cn(t + s)],

Cn(t, s) ≡ Pµn (Xn(cnt) = Xn(cn(t+ s))) , t, s > 0. (1.8)

HerePµn denotes the law ofXn conditional onF (i.e. for fixed realizations of the random
Hamiltonian) when the initial distribution,µn, is the uniform measure onVn.

Theorem 1.1. For all 0 < ε < 1 and all β > βc(ε), for all t > 0 ands > 0, P-almost
surely,

lim
n→∞

Pµn (Xn(cnt) = Xn(cn(t+ s))) =
sinα(ε)π

π

∫ t/(t+s)

0

uα(ε)−1(1−u)−α(ε) du. (1.9)
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Remark.We in fact prove the more general statement that (1.9) holds along anyn-dependent
sequences of the form0 < εn ≤ 1−c′β

√
n−1logn+c′′n−1logn where0 < c′, c′′ < ∞ are

constants, that satisfylimn→∞ εn = ε, 0 < ε ≤ 1. Relaxation to stationarity is known to
occur, to leading order, on time-scalescn of the form (1.5) withεn = 1 [21]. At the other
extremity, a behavior known as extremal aging is expected tocharacterize the process on
times scales that are sub-exponential in the volume and defined through sequencesεn that
decay to 0 slowly enough [14], [8]. This will be the object of afollow up paper.

As in virtually all papers on aging, the proof of Theorem 1.1 relies on a two-step scheme
that seeks to isolate the causes of aging by writing the process of interest,Xn, as an
exploration processtime-changed by (the inverse of) aclock process. Aging is then linked
to the arcsine law for stable subordinators through the convergence of the suitably rescaled
clock process to anα-stable subordinator,0 < α < 1. This is provided that the two-time
correlation function at hand can be brought into a suitable function of the clock. Both
steps heavily depend on the properties of the exploration process.

While this scheme offers the methodological underpinningsof the analysis of aging,
two distinct ways of implementing it, throughdiscreteor continuoustime objects, respec-
tively, have emerged from the literature (we refer to the recent papers [24], [25], and [15]
for in-depth bibliographies). The first arose from the studyof models whose exploration
process can be chosen as the simple random walk on the underlying graph. As mentioned
earlier, this includes all Random Hopping dynamics and several trap models (e.g. on the
complete graph or onZd). In physically more realistic dynamics the discrete scheme may
quickly become intractable. As shown in Ref. [24] for Metropolis dynamics of a trun-
cated REM, the associated exploration process is itself an aging process that presents the
same complexity as the original dynamics. A similar situation arises when considering
asymmetric trap models onZd. Initiated in that context, the continuous scheme consists
in choosing a (now continuous time) exploration process that mimics the simple random
walk.

Prescribing the exploration process completely determines the clock process. Clearly,
having efficient tools available to prove their convergenceto stable subordinators is es-
sential. Such tools were provided in Ref. [23] and [13] for discrete time clock processes
in the general setting of reversible Markov jumps processesin random environment on
sequences of finite graphs and, more recently, for both discrete and continuous time clock
processes of similar Markov jumps processes on infinite graphs [25]. These tools both
allowed one to improve all earlier results on the Random Hopping dynamics of mean-
field models [22], [13], [14], turning statements previously obtained in law into almost
sure statements in the random environment, and to obtain thefirst aging results for several
two-time correlation functions of asymmetric trap model onZ

d [25].
In Section 1.2 below we fill the gap left by continuous time clock processes in the case

of sequences of finite graphs and, thus, extent the results ofRef. [13] to that setting. This
is perhaps no more than an exercise but the results we present(Theorem 1.2 and Theorem
1.3) are the cornerstone of our approach and, hopefully, of other papers to come. We
close this introduction out in Section 1.3 by stating a clockprocess convergence result
for Metropolis dynamics of the REM (Theorem 1.4) that is at the heart of the proof of
Theorem 1.1.

1.2. Convergence of continuous time clock processes. We now enlarge our focus to the
following abstract setting. LetGn(Vn, En) be a sequence of loop-free graphs with set of
verticesVn and set of edgesEn. A random environmentis a family of possibly dependent
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positive random variables,(τn(x), x ∈ Vn). The sequence(τn(x), x ∈ Vn), n > 1, is de-
fined on a common probability space denoted by(Ω,F ,P). OnVn we consider a Markov
jump process,(Xn(t), t > 0), with initial distributionµn and jump rates(λn(x, y))x,y∈Vn
satisfyingλn(y, x) = 0 if (x, y) /∈ En and

τn(x)λn(x, y) = τn(y)λn(y, x) if (x, y) ∈ En, x 6= y. (1.10)

ThusXn is reversible with respect to the (random measure) that assigns tox ∈ Vn the mass
τn(x). To Xn we associate anexploration processYn. This is any Markov jump process,
(Yn(t), t > 0), with state spaceVn, initial distributionµn, and jump rates(λ̃n(x, y))x,y∈Vn
chosen such thatXn andYn have the same trajectories, that is to say,

λn(x, y)

λn(x)
=

λ̃n(x, y)

λ̃n(x)
∀(x, y) ∈ En, (1.11)

whereλ̃−1n (x) andλ−1n (x) are, respectively, the mean holding times atx of Yn andXn:

λ̃n(x) ≡
∑

y:(x,y)∈En

λ̃n(x, y), (1.12)

λn(x) ≡
∑

y:(x,y)∈En

λn(x, y). (1.13)

ThenXn andYn are related to each other through the time change

Xn(t) = Yn(S̃
←
n (t)), t ≥ 0, (1.14)

whereS̃←n denotes the generalized right continuous inverse ofS̃n, andS̃n, the so-called
continuous time clock process, is given by

S̃n(t) =

∫ t

0

λ−1n (Yn(s))λ̃n(Yn(s))ds, t ≥ 0. (1.15)

Note that there is considerable freedom in the choice of the exploration processYn. We
will come back to this issue at the end of this subsection and focus, for the time being, on
the analysis of the asymptotic behavior of the general clockprocess (1.15).

For future reference, we denote byFY the σ-algebra generated by the processesYn.
We writeP for the law of the processYn conditional on theσ-algebraF , i.e. for fixed
realizations of the random environment. Likewise we callP the law ofXn conditional on
F . If the initial distribution,µn, has to be specified we writePµn andPµn . Expectation
with respect toP, Pµn , andPµn are denoted byE, Eµn , andEµn , respectively.

Our main aim is to obtain simple and robust criteria for the convergence of the (suit-
ably rescaled) clock process (1.15) to a stable subordinator. Since the clock is a doubly
stochastic process, the desired convergence mode must be specified. We will ask whether
there exist sequencesan andcn that make the rescaled clock process

Sn(t) = c−1n S̃n(ant) , t ≥ 0, (1.16)

converge weakly, asn ↑ ∞, as a sequence of random elements in Skorokhod’s space
D((0,∞]), and strive to obtainP-almost sure results in the random environment since
such results (also referred to asquenched) contain the most useful information from the
point of view of physics.

As for discrete time clock processes [23], [13], the drivingforce behind our approach is
a powerful method developed by Durrett and Resnick [20] to prove functional limit theo-
rems for sums of dependent variables. Clearly this method does not cover the case of our
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continuous time clock processes. The simple idea (already present in [25] ) is to introduce
a suitable “blocking” that turns the rescaled clock process(1.16) into a partial sum process
to which Durrett and Resnick method can now be applied. For this we introduce a new
scale,θn, and set

kn(t) ≡ ⌊ant/θn⌋. (1.17)

Theblocked clock process, Sb
n(t), is defined through

Sb
n(t) =

kn(t)∑

i=1

Zn,i (1.18)

where, for eachi ≥ 1,

Zn,i ≡ c−1n

∑

x∈Vn

(
λ−1n (x)λ̃n(x)

)
[ℓxn(θni)− ℓxn(θn(i− 1))], (1.19)

and where, for eachx ∈ Vn,

ℓxn(t) =

∫ t

0

1{Yn(s)=x}ds (1.20)

is the local time atx. The next theorem gives sufficient conditions forSb
n to converge.

These conditions are expressed in terms of a small number of key quantities. For each
t > 0, let

πY,t
n (y) = k−1n (t)

kn(t)−1∑

i=1

1{Yn(iθ)=y} (1.21)

be the empirical measure onVn constructed from the sequence(Yn(iθ), i ∈ N). Fory ∈ Vn

andu > 0, denote by
Qu

n(y) ≡ Py(Zn,1 > u) (1.22)

the tail distribution of the aggregated jumps whenXn (equivalently,Yn) starts iny. Using
these quantities, define the functions

νY,t
n (u,∞) ≡ kn(t)

∑

y∈Vn

πY,t
n (y)Qu

n(y), (1.23)

σY,t
n (u,∞) ≡ kn(t)

∑

y∈Vn

πY,t
n (y) [Qu

n(y)]
2 . (1.24)

Observe that the sequence of measuresπY,t
n as well as the sequence of functionsQu

n(y), y ∈
Vn, are random variables on the probability space(Ω,F ,P) of the random environment.
Thus, the functionsνY,t

n andσY,t
n also are random variables on that space.

We now formulate four conditions for the sequenceSb
n to converge to a subordinator.

These conditions refer to a given sequence of initial distributionsµn, given sequences of
numbersan, cn, andθn as well as a given realization of the random environment.

Condition (A0). For allu > 0,

lim
n→∞

Pµn(Zn,1 > u) = 0. (1.25)

Condition (A1). There exists aσ-finite measureν on(0,∞) satisfying
∫∞
0
(x∧1)ν(dx) <

∞ and such that for all continuity pointsx of the distribution function ofν, for all t > 0
and allu > 0,

Pµn

(∣∣νY,t
n (u,∞)− tν(u,∞)

∣∣ < ǫ
)
= 1− o(1) , ∀ǫ > 0 . (1.26)
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Condition (A2). For allu > 0 and allt > 0,

Pµn

(
σY,t
n (u,∞) < ǫ

)
= 1− o(1) , ∀ǫ > 0 . (1.27)

Condition (A3). For all t > 0,

lim
ǫ↓0

lim sup
n↑∞

kn(t)
∑

y∈Vn

Eµn(π
Y,t
n (y))Ey(Zn,11{Zn,1≤ǫ}) = 0. (1.28)

Theorem 1.2. For all sequences of initial distributionsµn and all sequencesan, cn, and
1 ≤ θn ≪ an for which Conditions (A0), (A1), (A2), and (A3) are verified,eitherP-almost
surely or inP-probability, the following holds w.r.t. the same convergence mode:

Sb
n ⇒J1 Sν , (1.29)

whereSν is the Ĺevy subordinator with Ĺevy measureν and zero drift. Convergence holds
weakly on the spaceD([0,∞)) equipped with the SkorokhodJ1-topology.

Remark.Note that the theorem is stated for theblockedprocessSb
n rather than the original

processSn (defined in (1.16)). This may falsely appear as an undesirable consequence of
our techniques. We stress that for applications to correlation functions, one needs state-
ments that are valid in the strongJ1 topology whereas forming blocks is needed in order to
make sense of writingJ1 convergence statements in the setting of continuous time clocks.

Remark.Also note that convergence ofSb
n in the strongJ1 topology immediately implies

the strictly weaker result thatSn converges to the same limit in theM1 topology.

As for discrete time clocks of Ref. [13], our next step consists in reducing Conditions
(A1) and (A2) of Theorem 1.2 to (i) amixing conditionfor the chainYn, and (ii) a law
of large numbersfor the random variablesQn. Again we formulate three conditions for
a given sequence of initial distributionsµn, given sequencesan, cn, andθn, and a given
realization of the random environment.

Condition (B0). Denote byπn the invariant measure ofYn. There exists a sequence
κn ∈ N and a positive decreasing sequenceρn, satisfyingρn ↓ 0 asn ↑ ∞, such that, for
all pairsx, y ∈ Vn, and allt ≥ 0,

|Px (Yn(t+ κn) = y)− πn(y)| ≤ ρnπn(y). (1.30)

Condition (B1). There exists a measureν as in Condition (A1) such that, for allt > 0
and allu > 0,

νt
n(u,∞) ≡ kn(t)

∑

y∈Vn

πn(y)Q
u
n(y) → tν(u,∞), (1.31)

Condition (B2). For all t > 0 and allu > 0,

σt
n(u,∞) ≡ kn(t)

∑

y∈Vn

πn(y) [Q
u
n(y)]

2 → 0. (1.32)

Condition (B3). For all t > 0,

lim
ǫ↓0

lim sup
n↑∞

kn(t)
∑

y∈Vn

πn(y)Ey(Zn,11{Zn,1≤ǫ}) = 0. (1.33)

Theorem 1.3. Assume that for all sequences of initial distributionsµn and all sequences
an, cn, κn, andκn ≤ θn ≪ an, Conditions (A0), (B0), (B1), (B2), and (B3) holdP-almost
surely, respectively inP-probability. Then, as in (1.29),Sb

n ⇒J1 Sν , P-almost surely,
respectively inP-probability.
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Theorem 1.3 is our key tool for proving convergence of blocked clock processes to
subordinators. It is of course essential for the success of our strategy that the convergence
criteria we obtained be tractable. Going back to (1.11) we thus now ask, in this light, how
best to choose the exploration processYn.

A tentative answer to this question is to mimic the exploration process of the Random
Hopping dynamics, which means chooseYn such that its invariant measure,πn, is “close”
to the uniform measure and its mixing time,κn, is short compared to that of the pro-
cessXn. The following class of jump rates, inspired from an ingenious choice made in
Ref. [15], is intended to favor the emergence of these properties. Given a fresh sequence
ηn ≥ 0, set

λ̃n(x, y) = max(ηn, τn(x))λn(x, y). (1.34)

One easily checks that (1.11) is verified, thatYn is reversible with respect to the measure

πn(x) =
min

(
ηn, τn(x)

)
∑

x∈Vn min
(
ηn, τn(x)

)
1{ηn>0} + |Vn|−11{ηn=0}, x ∈ Vn, (1.35)

and that the clock (1.15) becomes

S̃n(t) =

∫ t

0

max
(
ηn, τn(Yn(s))

)
ds. (1.36)

Let us discuss the role ofηn on the example of Metropolis dynamics of REM. When
ηn = 0, πn nicely reduces to the uniform measure but the mixing time,κn, of the resulting
exploration process turns out to be of the same order as that of Xn, that is to say, of the
order ofmax(x,y)(min (τn(x), τn(y)))

−1 = eβn
√
log 2(1+o(1)). This leaves little hope that the

conditions of Theorem 1.3 can be verified. A moment’s thoughtsuffices, however, to see
that such a large mixing time is a side effect of the symmetry of the Hamiltonian (1.1). By
breaking this symmetry, the termmax(ηn, τn(x)) in (1.34) places anηn-dependent cap on
κn (see Section 3.1). One is then left to chooseηn small enough so thatπn remains close
to the uniform measure but large enough so thatκn is kept as small as needed. A similar
strategy should hopefully apply to more general mean-field spin glass Hamiltonians.

Remark.We stress that the sole convergence of the clock process doesnot suffice to deduce
aging, namely, the specific power law decay of the two-time correlation function. One still
has to solve the problem of reducing the behavior of the two-time correlation function, as
n → ∞, to the arcsine law for stable subordinators, and this requires more information
on the exploration process than needed to only prove convergence of the clock. Notice
also that unlike the discrete time clock process, the continuous time clock process is not a
physical time. It thus has no physical meaning on its own.

1.3. Application to Metropolis dynamics of the REM. From that point onwards we
focus on Metropolis dynamics of the REM (see (1.1)-(1.2)) started in the uniform measure
on Vn. Applying the abstract results of Section 1.2 enables us to proveP-almost sure
convergence of the blocked clock processSb

n(t), defined in (1.18), when the continuous
time clock process̃Sn(t), given by (1.15), is chosen as in (1.36).

To sate this result we must specify several quantities: the parameterηn, the time-scales,
an andcn, and the block length,θn, entering the definitions of̃Sn(t) andSb

n(t). We begin
by defining a sequence,r⋆n, that is ubiquitous throughout the rest of the paper: givenβ > 0
and a constantc⋆ > 1 + log 4, we letr⋆n ≡ rn(β, c⋆) be the solution of

nc⋆P(τn(x) ≥ r⋆n) = 1. (1.37)
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In explicit form

r⋆n = exp
{
β
√

2c⋆n logn
(
1− log logn

8c⋆ logn
(1 + o(1))

)}
. (1.38)

We now takeηn ≡ (r⋆n)
−1 in (1.34) which, combined with (1.2), yields

λ̃n(x, y) =
1

nr⋆n

min(τn(y), τn(x))

min
(

1
r⋆n
, τn(x)

) , if (x, y) ∈ En, (1.39)

andλ̃n(x, y) = 0 else. The physical observation time-scale,cn, is chosen as in (1.4). It is
naturally the same as in the Random Hopping dynamics. On the contrary, the definition
of the auxiliary time-scale,an, contrasts sharply with the simple choicean = 2εn made in
the Random Hopping dynamics. We here must take

an = 2εn/bn (1.40)

where the sequencebn is defined as follows. Recalling (1.6) and (1.7), define

Fβ,ε,n(x) ≡ x
αn(ε)− log x

2nβ2
(
1− log x

nββc(ε)

)−1
, x > 0, (1.41)

whereαn(ε) ≡ (nβ2)−1 log cn, that is, in view of (1.5),

αn(ε) = α(ε)− log(β2
c (ε)n/2)+log 4π+o(1)

2nββc(ε)
. (1.42)

Further introduce the random set

Tn ≡
{
x ∈ Vn | τn(x) ≥ cn(n

2θn)
−1} . (1.43)

Then, forℓxn as in (1.20), we set

bn ≡ (θnπn(Tn))
−1

∑

x∈Tn

Eπn [Fβ,ε,n,(ℓ
x
n(θn))] . (1.44)

It now only remains to choose the block lengthθn. (The notationxn ≪ yn means that
the sequencesxn > 0 andyn > 0 satisfyxn/yn → 0 asn → ∞.)

Theorem 1.4. Given0 < ε < 1 let θn be any sequence such that
4

1−α(ε) log r
⋆
n < log θn ≪ n (1.45)

and letcn andan be as in (1.4) and (1.40)-(1.44), respectively. Then, for all 0 < ε < 1
and allβ > βc(ε), P-almost surely,

Sb
n ⇒J1 Vα(ε) (1.46)

whereVα(ε) is a stable subordinator with zero drift and Lévy measureν defined through

ν(u,∞) = u−α(ε), u > 0, (1.47)

and where⇒J1 denotes weak convergence in the spaceD([0,∞)) of càdlàg functions
equipped with the SkorokhodJ1-topology.

We again emphasize (see the remark below Theorem (1.2)) thatthe J1 convergence
statement of Theorem 1.4 is crucial to the control correlation functions. Of course, The-
orem 1.4 implies the weaker result that the original (non blocked) clock process (1.16)
converges to the same limit in theM1 topology of Skorokhod. Such a result was proved in
Ref. [15] (for the clock obtained by takingηn = 1 in (1.36)) albeit only inP-probability
and in the restricted domain of parametersβ > βc(ε) and1/2 < ε < 1. As shown in
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[24] (see lemma 2.1) the graph structure of the setTn when1/2 < ε < 1 reduces to a col-
lection of isolated vertices (no element ofTn has a neighbor inTn) and this considerably
simplifies the analysis.

Let us now examine the sequencebn introduced in (1.40) and defined in (1.44). This
sequence is a priori random in the random environment and depends on a sequence,θn, that
can itself be chosen within the two widely different bounds of (1.45). The next proposition
provides upper and lower bounds onbn that are not affected by the choice ofθn.

Proposition 1.5. Given0 < ε < 1, let cn andθn be as in Theorem 1.4. Then, there exists
a subsetΩ′ ⊆ Ω with P(Ω′) = 1 such that onΩ′, for all but a finite number of indicesn

(
nc−(r⋆n)

1+αn(ε)+o(1)
)−1 ≤ bn ≤ nc+(r⋆n)

1+αn(ε) (1.48)

where0 < c−, c+ ≤ ∞ are numerical constants. Thuslimn→∞ n−1 log an = ε P-a.s..

Remark.The definition (1.40)-(1.44) ofan and that of the sequenceRN in (2.10) of
Ref. [15] have an obvious family resemblance. Our control ofan through Proposition
1.5 implies the behavior conjectured in item 4 page 4 of that paper.

Remark.One may wonder whether the lower bound of (1.45) can be improved. The main
technical obstacle to doing so is the lower bound on mean hitting times of Lemma 3.5. In
particular, trying to improve the bound (3.5) on the spectral gap by choosingηn larger, say
as large as 1 as in Ref. [15], can at best improve the constant4

1−α(ε) in front of log r⋆n in
(1.45).

The rest of the paper is organized as follows. Section 2 is concerned with the properties
of the REM’s landscape: several level sets that play an important role in our analysis
are introduced and their properties collected. Section 3 gathers all needed results on the
exploration processYn. The proof of Theorem 1.4 can then begin. Section 4, 5, and 6 are
devoted, respectively, to the verification of Condition (B1), (B2), and (B3) of Theorem 1.3.
The proof of Theorem 1.4 is completed in Section 7. Also in Section 7, the link between
the blocked clock process of (1.46) and the two-time correlation function (1.8) is made,
and the proof of Theorem 1.1 is concluded. An appendix (Section 8) contains the proof of
the results of Section 1.2.

2. LEVEL SETS OF THEREM’S LANDSCAPE: THE TOP AND OTHER SETS

GivenV ⊆ Vn we denote byG ≡ G(V ) the undirected graph which has vertex setV
and edge setE(G(V )) ⊆ En consisting of pairs of vertices{x, y} in V with dist(x, y) = 1,
wheredist(x, x′) ≡ 1

2

∑n
i=1 |xi −x′i| is the graph distance onVn. Whendist(x, y) = 1 we

simply writex ∼ y. We are concerned with the graph properties of level sets of the form

Vn(ρ) = {x ∈ Vn | τn(x) ≥ rn(ρ)} (2.1)

where, givenρ > 0, the threshold levelrn(ρ) is the sequence defined through

2ρnP(τn(x) ≥ rn(ρ)) = 1. (2.2)

Observe thatVn(ρ) can uniquely be decomposed into a collection of subsets

Vn(ρ) = ∪L
l=1Cn,l(ρ), Cn,l(ρ) ∩ Cn,k(ρ) ∀1 ≤ l 6= k ≤ L, L ≡ Ln(ρ), (2.3)

such that each graphG(Cn,l(ρ)) is connected but any two distinct graphsG(Cn,l(ρ)) and
G(Cn,k(ρ)) are disconnected. With a little abuse of terminology we callthe setsCn,l(ρ)
the connected components of the graphG(Vn(ρ)). As ρ decreases from∞ to 0, the set
Vn(ρ) grows and the graphG(Vn(ρ)) potentially acquires new edges. It is known [9] that



AGING IN METROPOLIS DYNAMICS OF THE REM: A PROOF 10

the size of the largest connected componentCn,l(ρ) undergoes a transiton near the critical
valueρc ≈ logn

n log 2
, with a unique “giant” component of sizeO(n−12n) emerging slightly

below this value. Asρ decreases the small components merge into the giant one, andtotal
connectedness is achieved forρ slightly smaller thann−1. One may naturally think of
the connected componentsCn,l(ρ) before criticality as containing distinct “valleys” of the
REM’s energy landscape, the level of emergence of the totally connected giant component
then being a “ground level” connecting the local valleys.

We now introduce several sets that play key roles in our analysis.

• The sets V ⋆
n and V

⋆

n (of valleys and hills). Let c⋆ be as in (1.37) and set

ρ⋆n ≡ c⋆ log n

n log 2
. (2.4)

Thus, takingρ = ρ⋆n in (2.1)-(2.3),r⋆n ≡ rn(ρ
⋆
n) and the setV ⋆

n ≡ Vn(ρ
⋆
n) decomposes into

V ⋆
n = ∪L⋆

l=1C
⋆
n,l, C⋆

n,l ∩ C⋆
n,k ∀l 6= k, L⋆ ≡ Ln(ρ

⋆
n), (2.5)

where theC⋆
n,l are the connected components of the graphG(Vn(ρ

⋆
n)). According to our

earlier picture they contain “valleys” of the landscape. SinceHn(x) is symmetrical the set

V
⋆

n ≡ V n(ρ
⋆
n) =

{
x ∈ Vn | τ−1n (x) ≥ r⋆n

}
(2.6)

obtained fromVn(ρ
⋆
n) by substituting−Hn(x) for Hn(x) in (1.3) has the same random

graph properties asV ⋆
n but now contains “hills”. As in (2.5) we write

V
⋆

n ≡ V n(ρ
⋆
n) = ∪L⋆

l=1C
⋆

n,l, C
⋆

n,l ∩ C
⋆

n,k ∀l 6= k, L
⋆ ≡ Ln(ρ

⋆
n), (2.7)

whereC
⋆

n,l are the connected components of the graphG(V n(ρ
⋆
n)). With this definition

(1.39) becomes

λ̃n(x, y) =

{
1
n
e−βmax(Hn(y),Hn(x)), if x /∈ V

⋆

n,
1

nr⋆n
e−β[Hn(y)−Hn(x)]

+

, if x ∈ V
⋆

n.
(2.8)

Furthermore, by (1.12), denoting by∂A = {x ∈ Vn | dist(x,A) = 1} the outer boundary
of A ⊂ Vn, we have that for allx ∈ ∂V ⋆

n ,

λ̃n(x) =
∑

y∈(V ⋆
n )c

λ̃n(x, y) +
(
(nr⋆n)

−1
1{x∈V ⋆

n} + τn(x)n
−1
1{x∈(V ⋆

n)
c}

)
|∂x ∩ V ⋆

n |. (2.9)

Hence, conditional onV ⋆
n , the mean holding time atx ∈ (V ⋆

n )
c does not depend on the

variables{τn(y), y ∈ V ⋆
n } but only depends on the variables{τn(y), y ∈ (V ⋆

n )
c}.

• Immersions in V ⋆
n . Given any subsetA ⊂ V ⋆

n we call theimmersion ofA in V ⋆
n and

denote byA⋆ the set

A⋆ ≡ ∪L⋆

l=1A
⋆
n,l, A⋆

n,l =

{
C⋆

n,l, if C⋆
n,l ∩ A 6= ∅,

∅, else.
(2.10)

Thus the setsA⋆
n,l are the valleysC⋆

n,l that contain at least one element ofA. Clearly,

V
⋆

n ∩ V ⋆
n = ∅. Hence by (2.8), immersed sets have the property that

λ̃n(x, y) ≤ n−1r⋆n for all x ∼ y such thatx ∈ A⋆, y /∈ A⋆ or y ∈ A⋆, x /∈ A⋆. (2.11)

• The top, Tn, and the associated sets T ⋆
n , T ◦n and I⋆n. Given a sequenceδn ↓ 0 asn ↑ ∞,

setεn ≡ ε− δn and let thetop be the set

Tn ≡ Vn(εn) (2.12)
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obtained by takingρ = εn in (2.3). (δn will later be chosen so that the definitions (2.12)
and (1.43) ofTn coincide.)Tn contains the top of the order statistics or theτn(x)’s, whence
its name. Sinceρ⋆n ≪ εn, Tn ⊂ V ⋆

n , and soTn can be immersed inV ⋆
n . According to (2.10)

we write

T ⋆
n ≡ ∪L⋆

l=1T
⋆
n,l. (2.13)

To eachx ∈ Tn corresponds a unique index1 ≤ l ≡ l(x) ≤ L⋆ such thatx ∈ T ⋆
n,l(x).

Of course a given valleyT ⋆
n,l may contain several vertices ofTn. A set that is of special

importance in the sequel is the subsetT ◦n of vertices ofTn that are alone in their valley,

T ◦n ≡
{
x ∈ Tn | T ⋆

n,l(x) ∩ Tn = {x}
}
. (2.14)

This in particular implies that

T ◦n ⊆ {x ∈ Vn | τn(x) ≥ rn(εn), ∀y∼xτn(y) < rn(εn)}. (2.15)

Finally, define

I⋆n ≡ {x ∈ Vn | τn(x) ≥ rn(εn), ∀y∼x(r
⋆
n)
−1 < τn(y) < r⋆n} ⊆ T ◦n . (2.16)

This is the largest subset ofT ◦n such thatdist
(
(V ⋆

n ∪ V
⋆

n), I
⋆
n

)
≥ 2.

Most of the content of the next three lemmata is taken from [24]. The first lemma gives
estimates on the size of various sets.

Lemma 2.1. There existsΩ⋆ ⊂ Ω with P (Ω⋆) = 1 such that onΩ⋆, for all but a finite
number of indicesn,

1 ≤ |C⋆
n,l| ≤ {ρ⋆n[1− 2c−1⋆ (1 +O(log n/n))]}−1, 1 ≤ l ≤ L⋆. (2.17)

The same bounds hold replacingC⋆
n,l byC

⋆

n,l andL⋆ byL
⋆

in (2.17). Furthermore,

|V ⋆
n | = 2nn−c⋆(1 + o(n−c⋆)) and|V ⋆

n| = 2nn−c⋆(1 + o(n−c⋆)), (2.18)

|Tn| = 2n(1−εn)(1 +O(n2−nεn/2)), (2.19)

|T ◦n | = 2n(1−εn)(1 +O(n2−nεn/2)), (2.20)

|Tn \ T ◦n | ≤ n42n(1−2εn)(1 + o(1)), (2.21)

|I⋆n| = 2n(1−εn)(1− 2n−c⋆+1(1 + o(1)), (2.22)

|T ◦n \ I⋆n| = 2n−c⋆+12n(1−εn)(1 + o(1)). (2.23)

Finally, introducing the set

Mn ≡ {x ∈ Vn | τn(x) > τn(y) for all y ∼ x} (2.24)

of local minima of the Hamiltonian,

|V ⋆

n ∩Mn| = 0. (2.25)

Proof of Lemma 2.1.Recall that by assumptionc⋆ > 1 + log 4 > 2. Eq. (2.17) is (2.9)
of Lemma 2.2 of Ref. [24]. That the same bound holds for|C⋆

n,l| follows by symmetry of

Hn. The estimate (2.18) on|V ⋆
n | is (2.11) of Ref. [24] and the estimate on|V ⋆

n| follows
again by symmetry ofHn. Eq. (2.19) and (2.22) are proved, respectively, as (2.11) of and
(2.10) of Ref. [24]. The proof of (2.21) is a simple adaptation of the proof of lemma 7.1 of
Ref. [24]. Clearly, (2.20) follows from (2.19) and (2.21), and (2.23) follows from (2.20)
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and (2.22). It only remains to prove (2.24). For this note that x ∈ V
⋆

n ∩Mn if and only if
τn(x) ≤ (r⋆n)

−1 andτn(y) < τn(x) for all y ∼ x. Thus

P
(
|V ⋆

n ∩Mn| ≥ 1
)

≤
∑

x∈Vn
P
(
τn(x) ≤ (r⋆n)

−1, ∀y∼xτn(y) < (r⋆n)
−1) (2.26)

= 2nn−c⋆
(
n−c⋆

)n
(2.27)

which is summable. Thus, by Borel-Cantelli Lemma, there exists a set of full measure
such that on that set, for all but a finite number of indices,|V ⋆

n ∩Mn| = 0. �

The second lemma expresses the functionrn(ρ) defined through (2.2).

Lemma 2.2 (Lemma 2.3 of [24]). For all ρ > 0, possibly depending onn, and such that
ρn ↑ ∞ asn ↑ ∞,

rn(ρ) = exp
{
nββc(ρ)− (β/2βc(ρ))

[
log(β2

c (ρ)n/2) + log 4π
]
+ o(β/βc(ρ))

}
. (2.28)

Corollary 2.3. Setxn = δn/ε and assume thatxn ↓ 0 asn ↑ ∞ andenββc(ε)x ≫ r⋆n. Then

rn(εn)/rn(ε) = exp
{
−nββc(ε)x

[
1 + x

2
+O(x2)

]}
. (2.29)

The third and last lemma states needed bounds, in particular, on the maximal jump rate.

Lemma 2.4 (Lemma 2.4 of [24]). There exists a subsetΩ0 ⊆ Ω withP
(
Ω0

)
= 1 such that

onΩ0, for all but a finite number of indicesn the following holds:

e−βmin{max(Hn(y),Hn(x)) | (x,y)∈En} ≤ eβn
√
log 2(1+2 logn/n log 2) ≡ nνn, (2.30)

e−βmin{Hn(x) | x∈Vn} ≤ eβn
√
2 log 2(1+2 logn/n). (2.31)

Thus,max(x,y)∈En λ̃n(x, y) ≤ νn.

3. PROPERTIES OF THE EXPLORATION PROCESSYn

In this Section we establish the properties of the exploration process needed in the rest
of the paper. By (1.35) withηn ≡ (r⋆n)

−1 and (2.6), the invariant measureπn of Yn can be
written as

πn(x) =
1{x/∈V ⋆

n} + r⋆nτn(x)1{x∈V ⋆
n}

Zβ,n
, x ∈ Vn (3.1)

whereZβ,n ≡ |Vn \ V
⋆

n|+
∑

x∈V ⋆
n
r⋆nτn(x).

Lemma 3.1. OnΩ⋆, for all but a finite number of indicesn,

2n(1− n−c⋆(1 + o(n−c⋆)) ≤ Zβ,n ≤ 2n. (3.2)

Therefore, ifA is any of the setsTn, T ◦n , Tn \ T ◦n , I⋆n or T ◦n \ I⋆n in (2.19)- (2.23),

πn(A) = |A|2−n(1 + o(1)) (3.3)

whereas for anyx ∈ Vn,
πn(x) ≤ 2−n(1 + o(1)). (3.4)

Proof. Since{x ∈ V
⋆

n} = {r⋆nτn(x) ≤ 1}, |Vn \ V ⋆

n| ≤ Zβ,n ≤ |Vn \ V ⋆

n| + |V ⋆

n| ≤ 2n.
Eq. (3.2) then follows from (2.18) of Lemma 2.1. Eq. (3.4) is then immediate and (3.3)
follows from the fact thatA ∩ V

⋆

n = ∅ for each of the mentioned sets. �
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3.1. Spectral gap and mixing condition. Denote byL̃n the Markov generator matrix of
Yn (that is, the matrix with off-diagonal entries̃λn(x, y) and diagonal entries−λ̃n(x)), and
by 0 = ϑn,0 < ϑn,1 ≤ · · · ≤ ϑn,2n−1 the eigenvalues of−L̃n.

Proposition 3.2. If c⋆ > 1 + log 4 then for allβ > 0, there exists a subsetΩ1 ⊂ Ω with
P (Ω1) = 1 such that, onΩ1, for all but a finite number of indicesn,

1/ϑn,1 ≤ 5
2
n2r⋆n(1 + o(1)) ≡ κ̃n (3.5)

As a direct consequence on Proposition 3.2, Condition (B0) of Theorem 1.3 is satisfied
P-almost surely with e.g.

κn ≡ ⌊n4r⋆n(1 + o(1))⌋. (3.6)

Proposition 3.3. Under the assumptions of Proposition 3.2, onΩ1, for all but a finite
number of indicesn, for all β > 0, allpairsx, y ∈ Vn, and allt ≥ 0,

|Px (Yn(t+ κn) = y)− πn(y)| ≤ ρnπn(y), (3.7)

whereκn is given by (3.6) andρn < e−n.

Proof of Proposition 3.2.The proof of (3.5) relies on a well known Poincaré inequality,
taken from [18] (see Proposition 1’ p. 38), applied to the stochastic matrixP̃n = I+ν−1n L̃n

whereI denotes the identity matrix andνn is defined in Lemma 2.4. By Lemma 2.4, on
Ω0, for all n large enough,

max
(x,y)∈En

λ̃n(x, y) ≤ νn < ∞. (3.8)

Thus, onΩ0, for large enoughn, the entries̃pn(x, y) of P̃n obey0 ≤ p̃n(x, y) ≤ 1 and∑
y∈Vn p̃n(x, y) = 1. The Poincaré inequality of interest now reads as follows.For each

pair of distinct verticesx, y ∈ Vn, choose a pathγx,y going fromx to y in the graphG(Vn).
Paths may have repeated vertices but a given edge appears at most once in a given path.
Let Γn denote such a collection of paths (one for each pair{x, y}). Then

1/ϑn,1 ≤ ν−1n maxe ρ
−1
n (e)

∑
γx,y∋e |γx,y|πn(x)πn(y), (3.9)

where the max is over all edgese = {x′, y′} of G(Vn), ρn(e) ≡ πn,l(x
′)p̃n(x

′, y′), and the
summation is over all pathsγx,y in Γn that pass throughe.

The quality of the bound (3.9) now depends on making a judicious choice of the set of
pathsΓn. We adopt the following clever choice made in Ref. [21]. Given i ∈ {1, . . . n}
and given two verticesx andx′ ∈ Vn such thatxi 6= x′i, let γi

x,x′ be the path obtained by
going left to right cyclically fromx tox′, successively flipping the disagreeing coordinates,
starting from thei-th coordinate. SetΓi

n =
{
γi
x,x′, x, x′ ∈ Vn

}
, 1 ≤ i ≤ n. These paths

are ordered in an obvious way. Givenx, x′ andγx,x′, let γx,x′ be the set of vertices visited
by the pathγx,x′, and letγint

x,x′ = γx,x′ \ {x, x′} be the subset of “interior” vertices. We
next split the set of verticesVn into goodones andbadones. Recalling (2.7), we say that
a vertex is good if it does not belong toV

⋆

n; otherwise it is bad. We say that a pathγ is
good if all its interior pointsγint are good, and that a set of paths is good if all its elements
are good.

The (random) set of pathΓn is then constructed as follows:
(i) Consider pairsx andx′ such thatdist(x, x′) ≥ n/ logn. If {γi

x,x′, 1 ≤ i ≤ n} contains
a good path, choose the first such forΓn; otherwise chooseγ1

x,x′.
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(ii) Consider pairsx andx′ such thatdist(x, x′) < n/ logn. If there is a good vertex
x′′ ∈ Vn such thatdist(x, x′′) ≥ n/ logn anddist(x′′, x′) ≥ n/ logn, and if there are
good paths, one in

{
γi
x,x′′, 1 ≤ i ≤ n

}
and one in

{
γi
x′′,x′, 1 ≤ i ≤ n

}
, such that the union

of these two good paths is a self avoiding path of length less thann, select this union as
the path connectingx to x′ in Γn (notice that this is a good path); otherwise chooseγ1

x,x′.
It turns out that thisΓn is almost surely good. More precisely, setΩGOOD

n = {Γ′n is good},
n ≥ 1, andΩGOOD = lim infn→∞ΩGOOD

n .

Proposition 3.4 (Proposition 4.1 of [21]). If c⋆ > 1 + log 4 thenP
(
ΩGOOD

)
= 1.

From now on we assume thatω ∈ ΩGOOD so that, for all large enoughn, Γn is good.
Note that the paths ofΓn have length smaller thann. Hence (3.9) yields

1/ϑn,1 ≤ n max
e={x′,y′}

(
πn(x

′)λ̃n(x
′, y′)

)−1 ∑

γx,y∋e
πn(x)πn(y)

= max
e={x′,y′}

n2

min(τn(y′), τn(x′))

∑

γx,y∋e

min (1, r⋆nτn(x))min (1, r⋆nτn(y))

Zβ,n

(3.10)

where the final equality follows from (1.39), (1.35) (withηn ≡ (r⋆n)
−1), and (3.1). Also

note that since bad vertices (i.e. vertices ofV
⋆

n) can appear only at the ends of any path,
the paths ofΓn do not contain any edge of the graphGn(V

⋆

n). This prompts us to write
1/ϑn,1 ≤ max{K1,n,K2,n,K3,n} whereK1,n, K2,n, andK3,n are obtained, respectively, by
restricting the maximum in (3.10) to the maximum over edgese = {x′, y′} with x′ ∈ V

⋆

n

andy′ /∈ V
⋆

n, x′ /∈ V
⋆

n andy′ ∈ V
⋆

n, andx′ /∈ V
⋆

n andy′ /∈ V
⋆

n. To boundK1,n note that
the sum over paths that containe = {x′, y′} reduces to the sum over all paths starting in
x′ that containe, so that

K1,n = max
e={x′,y′}:x′∈V ⋆

n,y
′ /∈V ⋆

n

n2min
(
1, r⋆nτn(x

′)
)

min(τn(y′), τn(x′))

∑

γx′,y∋e
πn(y) ≤ n2rn. (3.11)

By symmetry of the bound (3.10),K2,n ≤ n2rn. Finally,min(τn(y
′), τn(x

′)) ≥ 1/r⋆n for
all x′, y′ /∈ V

⋆

n andmin (1, r⋆nτn(x))min (1, r⋆nτn(y)) ≤ 1 for all x, y ∈ Vn. Thus

K3,n ≤ n2r⋆nZ
−1
β,n max

e∈G(Vn)
|{γ ∈ Γn | e ∈ γ}| ≤ n2r⋆nZ

−1
β,n(2

n−1 + 22n/ logn), (3.12)

where we used that the number of paths connecting vertices atdistancen/ log n or more
apart is at most2n−1 (see e.g. Example 2.2, p. 45 in Ref. [18] for this well known bound)
whereas, arguing as in Ref. [21] (see Section 4.2.2, page 934), the number of paths con-
necting vertices less thann/ logn apart and containinge is bounded above by the volume
of a hypercube of dimension at mostn/ log n arounde, and so, is smaller than22n/ logn.
In view of Lemma 3.1 we have that onΩ⋆ ∩ΩGOOD, for all but a finite number of indicesn,

K3,n ≤ 1
2
n2r⋆n(1 + o(1)). (3.13)

Collecting our bounds and takingΩ1 = Ω0∩Ω⋆∩ΩGOOD yields (3.5) and ends the proof.�

Proof of Proposition 3.3.It is well know that for reversible irreducible Markov processes,
bounds on spectral gaps yield bounds on their total variation distance‖·‖var to stationarity.
For instance, Proposition 3 of Ref. [18] applied toYn states that for allx ∈ Vn and all
t > 0,

4 ‖Px (Yn(t) = ·)− πn(·)‖2var ≤
1−πn(x)
πn(x)

e−2tϑn,1 . (3.14)
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By (3.1), Lemma 3.1, and (2.31) of Lemma 2.4, onΩ0 ∩ Ω⋆, for all but a finite number
of indicesn, supz∈Vn π

−1
n (z) ≤ (2n/r⋆n)e

βn
√
2 log 2(1+2 logn/n). The claim of Proposition 3.3

now readily follows from this, (3.14), and Proposition 3.2,choosingκn as in (3.6). �

3.2. Hitting time for the stationary chain. Drawing heavily on Aldous and Brown’s
work [2], this section collects results on hitting times forthe processYn at stationarity. Let

H(A) = inf{t ≥ 0 | Yn(t) ∈ A} (3.15)

be the hitting time ofA ⊆ Vn. We begin with bounds on the mean value ofH(A).

Lemma 3.5. OnΩ1, for all but a finite number of indicesn, for all A ⊆ Vn,

(1− nπn(A))
2

r⋆nnπn(A)(1− πn(A))
≤ EπnH(A)

1− πn(A)
≤ κ̃n

πn(A)
. (3.16)

(If dist(V ⋆
n , A) > 1, nπn(A) can be replaced byπn(A) in the right-hand side).

The next lemma gives bounds on the density functionhn,A(t), t > 0, of H(A) whenYn

starts in its invariant measure,πn.

Lemma 3.6. OnΩ1, for all but a finite number of indicesn, for all A ⊆ Vn and all t > 0,

1

EπnH(A)

(
1− κ̃n

EπnH(A)

)2(
1− t

EπnH(A)

)
≤ hn,A(t) ≤

1

EπnH(A)

(
1 +

κ̃n

2t

)
.

The bounds of Lemma 3.6 imply thathn,A(t) ≈ 1
EπnH(A)

whenκ̃n ≪ t ≪ EπnH(A).
Complementing this, Lemma 3.7 is well suited to dealing with“small” values oft.

Lemma 3.7. OnΩ⋆, for all but a finite number of indicesn, for all A ⊆ Vn and all t > 0,

Pπn(H(A) > t) ≥ (1− nπn(A)) exp

(
−t

r⋆nnπn(A)

1− nπn(A)

)
. (3.17)

In particular, for anyA and any sequencetn such thattnr⋆nnπn(A) → 0 asn → ∞,

Pπn(H(A) ≤ tn) < tnr
⋆
nnπn(A)(1 + o(1)). (3.18)

If A ⊂ Vn \ V ⋆
n the factorn in front ofπn(A) in (3.17) and (3.18) can be suppressed.

The next Corollary is stated for later convenience.

Corollary 3.8. Under the assumptions of Lemma 3.7 the following holds: For all 0 < ε <
1, for any sequencetn such thattnr⋆nn2

−nεn → 0 asn → ∞
Pπn(H(Tn \ T ◦n) ≤ tn) ≤ tnr

⋆
nn

52−2nεn(1 + o(1)), (3.19)

Pπn(H(T ◦n) ≤ tn) ≤ tnr
⋆
nn2

−nεn(1 + o(1)). (3.20)

We now prove these results, beginning with Lemma 3.7.

Proof of Lemma 3.7.WriteA = B ∪Bc whereB = A ∩ V ⋆
n andBc = A \B. LetB⋆ be

the immersion ofB in V ⋆
n (see (2.10)). SinceA ⊆ B⋆ ∪Bc, H(A) ≥ H(B⋆ ∪ Bc), and

Pπn(H(A) > t) ≥ Pπn(H(B⋆ ∪ Bc) > t). (3.21)

To bound the right-hand side of (3.21), we use a well know lower bound on hitting times
for stationary reversible chains taken from Ref. [2] (combine Theorem 3 and Lemma 2
therein) that states that for allC ⊆ Vn and allt > 0,

Pπn(H(C) > t) ≥ (1− πn(C)) exp

(
−t

qn(C,C
c)

1 − πn(C)

)
(3.22)
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where, for for any two setsC andC̃ such thatC ∩ C̃ = ∅,

qn(C, C̃) ≡
∑

x∈C

∑

y∈C̃

πn(x)λ̃n(x, y). (3.23)

Let us thus evaluate (3.23) withC = B⋆ ∪ Bc. Clearly qn(B⋆ ∪ Bc, (B⋆ ∪ Bc)c) ≤
qn(B

⋆, (B⋆ ∪ Bc)c) + qn(B
c, (B⋆ ∪ Bc)c). Clearly also, by (2.8),̃λn(x, y) ≤ n−1r⋆n for

any x ∈ Bc and anyy ∼ x. Thusqn(Bc, (B⋆ ∪ Bc)c) ≤ r⋆nπn(B
c). Next, by (2.11),

qn(B
⋆, (B⋆ ∪Bc)c) ≤ r⋆nπn(B

⋆). Thus

qn(B
⋆ ∪Bc, (B⋆ ∪Bc)c) ≤ r⋆n[πn(B

⋆) + πn(B
c)]. (3.24)

Denoting byC⋆
n,l(x) the (unique) component ofB⋆ (see (2.10)) that containsx, we have

|B⋆| ≤ | ∪x∈B C⋆
n,l(x)| ≤ |B|maxx∈B |C⋆

n,l(x)| where by (2.17), onΩ⋆, |C⋆
n,l(x)| ≪ n. By

this and (3.1) we getπn(B
⋆) = Z−1β,n|B⋆| ≤ nZ−1β,n|B| = nπn(B). Therefore,

πn(B
⋆∪Bc) ≤ πn(B

⋆)+πn(B
c) ≤ nπn(B)+πn(B

c) ≤ nπn(B∪Bc) = nπn(A). (3.25)

Using (3.25) in the right-and side of (3.24) and plugging theresult in (3.22) finally yields
(3.17). Clearly, ifA ⊂ Vn \ V ⋆

n thenB = ∅ and the right-and side of (3.24) reduces to
r⋆n[πn(∅) + πn(B

c)] = r⋆nπn(A). �

Proof of Corollary 3.8.This follows from (3.3) of Lemma 3.1, (2.20), and (2.21). �

Proof of Lemma 3.6.Proceed as in Lemma 13 of Ref. [2] and use Proposition 3.2.�

Proof of Lemma 3.5.The rightmost inequality is that of Lemma 2 of Ref. [2] combined
with Proposition 3.2. Lemma 2 of Ref. [2] also states that forC ⊆ Vn andqn(C,Cc)
defined as in (3.23),

EπnH(C)

1− πn(C)
≥ 1− πn(C)

qn(C,Cc)
. (3.26)

GivenA ⊆ Vn letB⋆ andBc be defined as in the first line of the proof of Lemma 3.7. Since
H(A) ≥ H(B⋆ ∪ Bc), EπnH(A) ≥ EπnH(B⋆ ∪ Bc). Using (3.26) withC = B⋆ ∪ Bc,
(3.16) follows from (3.24) and the bound onπn(B

⋆ ∪Bc) of (3.25). �

3.3. On hitting the top starting in the top. Let T ◦n andI⋆n be as in (2.14) and (2.16).

Proposition 3.9. Givenǫ > 0 there exists a subsetΩ◦ ⊂ Ω with P (Ω◦) = 1 such that on
Ω◦, for all but a finite number of indicesn, for all s > 0

|T ◦n |−1
∑

x∈T ◦
n

Px (H(T ◦n \ x) ≤ s) ≤ snc⋆+3r⋆nπn(T
◦
n). (3.27)

The next proposition is a variant of Proposition 3.9 that we state for later convenience.

Proposition 3.10. Under the assumptions and with the notation of Proposition 3.9, onΩ◦,
for all but a finite number of indicesn, for all s > 0

|T ◦n \ I⋆n|−1
∑

x∈T ◦
n\I⋆n

Px (H(I⋆n) ≤ s) ≤ sn2r⋆nπn(I
⋆
n)(1 + o(1)). (3.28)

Proof of Proposition 3.9.A key ingredient of the proof is an explicit expression of the
density functionhx

n,A(t), t ≥ 0, of the hitting timeH(A) whenYn starts inx ∈ Ac ≡
Vn \ A. We first state this expression in full generality as given in[28] (see Section 6.2,
p. 83). Consider the stochastic matrix̃Pn = (p̃n(x, y)) defined above (3.8). Denote by
Qn = (qn(x, y)) the matrix with entriesqn(x, y) : Ac × Ac → R given byqn(x, y) =
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p̃n(x, y). This is the sub-matrix of̃Pn onAc × Ac. ThusQn is sub-stochastic. Similarly,
denote byRn = (rn(x, y)) the sub-matrix of̃Pn onAc ×A. Let 1A be the vector of1’s on
A and letδx be the vector onAc taking value 1 atx and zero else. Then, for allx ∈ Ac,

hx
n,A(t) = νn

∞∑

k=0

(νnt)
k

k!
e−νnt

(
δx, Q

k
nRn1A

)
, t ≥ 0, (3.29)

where(·, ·) denotes the inner product inR|A
c|. Consequently, for alls > 0,

Px (H(A) ≤ s) =

∫ s

0

νn

∞∑

k=0

(νnt)
k

k!
e−νnt

(
δx, Q

k
nRn1A

)
dt. (3.30)

For later reference we also denote by(hx
n,y,A(t))y∈A the vector whose components are, for

eachy ∈ A, the joint density thatA is reached at timet, and that arrival to that set occurs
in statey, namely,hx

n,y,A(t) is defined as in (3.29) substitutingδy for 1A therein; as a result
hx
n,A(t) =

∑
y∈A hx

n,y,A(t).
Returning to (3.27), a first order Tchebychev inequality yields, for allǫ > 0

P

[∑
x∈T ◦

n
Px (H(T ◦n \ x) ≤ s) ≥ ǫ

]
≤ ǫ−1E

[∑
x∈T ◦

n
Px

(
H
(
T ⋆
n \ T ⋆

n,l(x)

)
≤ s

)]

≡ ǫ−1Wn, (3.31)

whereT ⋆
n ≡ ∪L⋆

l=1T
⋆
n,l is defined in (2.13) and1 ≤ l(x) ≤ L⋆ denotes the (unique) index

such thatT ⋆
n,l(x) ∩ T ◦n = {x} in (2.14). By (3.30) withA = T ⋆

n \ T ⋆
n,l(x),

Wn =
∑

x∈Vn

∫ s

0

dt
∞∑

k=1

(νnt)
k

k!
e−νntWn,k(x) (3.32)

where
Wn,k(x) ≡ E

[
1{x∈T ◦

n}νn

(
δx, Q

k
nRn1T ⋆

n\T ⋆
n,l(x)

)]
. (3.33)

Note that the termk = 0 is zero. Fork ≥ 1 the matrix term in (3.33) reads,

1{x∈T ◦
n}νn

(
δx, Q

k
nRn1T ⋆

n\T ⋆
n,l(x)

)
= 1{x∈T ◦

n}
∑

y∈(T ⋆
n\T ⋆

n,l(x)
)c

q(k)n (x, y)
∑

z∈T ⋆
n\T ⋆

n,l(x)

νnrn(y, z)

(3.34)
whereq(k)n (x, y) denotes the entries ofQk

n. By (2.11), for ally ∈ (T ⋆
n \ T ⋆

n,l(x))
c,

∑

z∈T ⋆
n\T ⋆

n,l(x)

νnrn(y, z) =
∑

z∈T ⋆
n\T ⋆

n,l(x)

λ̃n(y, z) ≤ n−1r⋆n
∑

z∈T ⋆
n\T ⋆

n,l(x)

1{z∼y}. (3.35)

Therefore, inserting (3.35) in (3.34), (3.33) yields

Wn,k(x) ≤
r⋆n
n
E

[
E

[
1{x∈T ◦

n}
∑

y∈(T ⋆
n\T ⋆

n,l(x)
)c

q(k)n (x, y)
∑

z∈T ⋆
n\T ⋆

n,l(x)

1{z∼y}

∣∣∣∣V
⋆
n

]]
(3.36)

whereE[· | V ⋆
n ] denotes the conditional expectation given a realization ofthe setV ⋆

n =
∪L⋆

l=1C
⋆
n,l (see (2.5)), namely, expectation with respect to the measure

P(· | V ⋆
n ) =

P(· ∩ {∀1≤l≤L⋆∀x∈C⋆
n,l
τn(x) ≥ r⋆n} ∩ {∀x∈C⋆

n,0
τn(x) < r⋆n})

P({∀1≤l≤L⋆∀x∈C⋆
n,l
τn(x) ≥ r⋆n} ∩ {∀x∈C⋆

n,0
τn(x) < r⋆n})

, (3.37)

where we setC⋆
n,0 ≡ Vn \ V⋆

n for simplicity. ThusVn = ∪0≤l≤L⋆C⋆
n,l andC⋆

n,l ∩ C⋆
n,l′ = ∅

for all 0 ≤ l 6= l′ ≤ L⋆, so that ifLi ⊂ {0, . . . , L⋆}, i = 1, . . . , j, is a collection of disjoint
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sets, functionsfi of the variables{τn(x), x ∈ ∪l∈Li
C⋆

n,l}, i = 1, . . . , j, are independent
under the conditional law (3.37). Observe now that conditional onV ⋆

n the entries of the
matrixQn are functions of the variables{τn(y), y ∈ (T ⋆

n \ T ⋆
n,l(x))

c} only: for off-diagonal
entries, i.e. forqn(x, y) with x 6= y, this is an immediate consequence of (2.8); for diagonal
entries, i.e.qn(x, x) = 1 − ν−1n λ̃n(x), this claim follows from (1.12) and (2.8) ifx /∈ ∂V ⋆

n

and from (2.9) and (2.8) ifx ∈ ∂V ⋆
n (the boundary set∂A of A is defined above (2.9)).

Next, observe that the sum overy ∈ (T ⋆
n \T ⋆

n,l(x))
c in (3.36) can be restricted to the sum

overy ∈ ∂V ⋆
n ⊆ C⋆

n,0 and use the definition ofT ⋆
n (see (2.13)) to write

∑

y∈(T ⋆
n\T ⋆

n,l(x)
)c

q(k)n (x, y)
∑

z∈T ⋆
n\T ⋆

n,l(x)

1{z∼y}

=
∑

x1∈Vn

· · ·
∑

xk−1∈Vn

∑

y∈∂V ⋆
n

∑

z∼y

∑

0≤l1≤L⋆

C⋆
n,l1

∩x1 6=∅

· · ·
∑

0≤lk−1≤L⋆

C⋆
n,lk−1

∩xk−1 6=∅

∑

1≤l 6=l(x)≤L⋆

C⋆
n,l

∩z 6=∅

qn(x, x1) . . . qn(xk−1, y)1{∀x′1∈C⋆
n,l1

\{x}τn(x
′
1)<rn(εn)} . . .

. . .1{∀x′
k−1

∈C⋆
n,lk−1

\{x}τn(x
′
k−1)<rn(εn)}1{∃z′∈C⋆

n,l
τn(z′)≥rn(εn)}.

(3.38)

Since1{∀z′∈C⋆
n,l

\{x}τn(z
′)<rn(εn)}1{∃z′∈C⋆

n,l
τn(z′)≥rn(εn)} = 0 for all l 6= l(x), the sums over

l in (3.38) can be restricted to1 ≤ l 6= l(x), l1, . . . , lk−1 ≤ L⋆. We may now multiply
(3.38) by1{x∈T ◦

n} and take the conditional expectation. The variables{τn(z′), z′ ∈ C⋆
n,l}

being independent of the variables{τn(x′), x′ ∈ ∪0≤l′ 6=l≤L⋆C⋆
n,l′}, they can be integrated

out first, yielding, for ally ∈ ∂V ⋆
n

∑

z∼y

∑

1≤l 6=l(x),l1,...,lk−1≤L⋆

C⋆
n,l

∩z 6=∅

P

[
∃z′∈C⋆

n,l
τn(z

′) ≥ rn(εn)
∣∣V ⋆

n

]
(3.39)

≤ n max
1≤l 6=l(x),l1,...,lk−1≤L⋆

|C⋆
n,l|2−(εn−ρ

⋆
n)n (3.40)

≤ n22−(εn−ρ
⋆
n)n, (3.41)

where we used in (3.40) that the sum overl contains at most one term while the sum over
z contains at mostn terms. Eq. (3.41) then follows from (2.17) and so, is valid onΩ⋆ for
all large enoughn. This bound is uniform iny ∈ ∂V ⋆

n . Therefore, using (3.41) in (3.38)
and re-summing, (3.36) becomes

Wn,k(x) ≤
r⋆n
n
n22−(εn−ρ

⋆
n)nE

[
E

[
1{x∈T ◦

n}
∑

y∈∂V ⋆
n

q(k)n (x, y)

∣∣∣∣V
⋆
n

]]
(3.42)

≤ r⋆n
n
n22−(εn−ρ

⋆
n)nP(x ∈ T ◦n) (3.43)

where we used in (3.43) that sinceQn is sub-stochastic,
∑

y∈∂V ⋆
n
q
(k)
n (x, y) ≤ 1 for all x.

Now, by (2.14) and (2.2),P(x ∈ T ◦n) ≤ P(τn(x) ≥ rn(εn)) = 2−εnn. Thus

Wn,k(x) ≤ r⋆nn2
−2εnn2ρ

⋆
nn = nc⋆+1r⋆n2

−2εnn. (3.44)
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The last equality is (2.4). Using this bound in (3.32) finallyyields that onΩ⋆, for all large
enoughn,

Wn =
∑

x∈Vn

∫ θn

0

dt

∞∑

k=1

(νnt)
k

k!
e−νntSn,k(x) ≤ θnn

c⋆+1r⋆n2
n2−2εnn. (3.45)

It only remains to observe that by (2.20) and (3.3) of Lemma 3.1, on Ω⋆, πn(T
◦
n) =

2−nεn(1 + o(1)) for all but a finite number of indicesn. Hence

P

[
|T ◦n |−1

∑
x∈T ◦

n
Px

(
H(T ⋆

n \ T ⋆
n,l(x)) ≤ s

)
≥ ǫ

]
≤ ǫ−1snc⋆+1r⋆nπn(T

◦
n)(1 + o(1)).

Choosingǫ = n2nc⋆+1r⋆nπn(T
◦
n), the claim of the proposition follows from Borel-Cantelli

Lemma. �

Proof of Proposition 3.10.This is a rerun of the proof of Proposition 3.9. �

3.4. Rough bounds on local times.

Lemma 3.11. For all 0 ≤ α ≤ 1, all x ∈ Vn, and alls > 0,

Ex [ℓ
x
n(s)]

α ≥ (λ̃−1n (x))αΓ(1 + α)[1− c1 exp(−c2sλ̃n(x))] + sα exp(−sλ̃n(x)) (3.46)

where0 < c1, c2 < ∞ are constants, and if moreoversr⋆nnπn(x) → 0 asn → ∞,

Ex [ℓ
x
n(s)]

α ≤ (1 + o(1))
[
κα
n + 1{s>κn}s

α(s− κn)r
⋆
nnπn(x)

]
. (3.47)

Proof of Lemma 3.6.The lower bound follows from the trite observation thatℓxn(s) is at
least as large as the minimum between the first jump ofYn ands, that is,

ℓxn(s) ≥ λ̃−1n (x)e11s>λ̃−1
n (x)e1

+ s1s≤λ̃−1
n (x)e1

, (3.48)

wheree1 is an exponential random variable of mean one. Thus

Ex [ℓ
x
n(s)]

α ≥ Ex

[
λ̃−1n (x)e11s>λ̃−1

n (x)e1

]α
+ sαEx

[
1s≤λ̃−1

n (x)e1

]α
. (3.49)

Explicit calculations yield

Ex

[
λ̃−1n (x)e11s>λ̃−1

n (x)e1

]α
≥ (λ̃−1n (x))αΓ(1 + α)[1− c1 exp(−c2sλ̃n(x))] (3.50)

for some constants0 < c1, c2 < ∞. Eq. (3.46) now readily follows. To get an upper
bound writeEx [ℓ

x
n(s)]

α ≤ κα
n if s ≤ κn. Otherwise write

Ex [ℓ
x
n(s)]

α ≤ Ex

[
κn +

∫ s

κn
1{Yn(s)=x}ds

]α
(3.51)

≤ (1 + ρn)Eπn

[
κn +

∫ s−κn

0
1{Yn(s)=x}ds

]α
(3.52)

where the last line follows from Proposition 3.3 and the Markov property. Next,

Eπn

[
κn +

∫ s−κn

0
1{Yn(s)=x}ds

]α
≤ Eπn

(
κα
n1{H(x)>s−κn} + sα1{H(x)≤s−κn}

)

≤ κα
n + sαPπn(H(x) ≤ s− κn)

≤ κα
n + sα(s− κn)r

⋆
nnπn(x)(1 + o(1)),

(3.53)

the last inequality being (3.18) of Lemma 3.7. Eq. (3.47) is proved. �
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4. VERIFICATION OF CONDITION (B1)

In this section we prove a strong law of large number for the functionνt
n(u,∞) defined

in (1.31). Recall that forr⋆n defined in (1.37), we takeηn ≡ (r⋆n)
−1 in (1.34), (1.35), and

(1.36). Then by (1.18)-(1.19), (1.22), and (1.34),

νt
n(u,∞) = kn(t)Pπn

(∫ θn

0

max
(
(cnr

⋆
n)
−1, c−1n τn(Yn(s))

)
ds > u

)
(4.1)

whereπn is the invariant measure (1.35) ofYn, θn is the block length of the blocked clock
process (1.18),kn(t) = ⌊ant/θn⌋, and, given0 < ε < 1, cn andan are defined in (1.4) and
(1.40)-(1.44), respectively. By Theorem 1.3,θn andan must obey

⌊n4r⋆n(1 + o(1))⌋ ≡ κn ≤ θn ≪ an, (4.2)

where the left-most equality is (3.6). Further recall from Section 2 that forρ⋆n as in (2.4),

ρ⋆n ≪ εn ≡ ε− δn. (4.3)

(Recall that0 < xn ≪ yn means thatxn/yn → 0 asn → ∞.) From now on we takeδn
such that2nδn = (n2θn)

α(ε), i.e.

δn ≡ 1

nβ

√
2ε

log 2
log

(
n2θn

)
. (4.4)

Thus, given0 < ε < 1 andβ > 0, all sequences exceptθn are determined.

Proposition 4.1. Given0 < ε < 1 andβ > 0 let the sequencescn andan be defined as in
(1.4) and (1.40)-(1.44), respectively, and letθn be such that

(r⋆n)
4 ≪ θ

1−α(ε)
n , (4.5)

n−1 log θn ≪ 1. (4.6)

Then, for all0 < ε < 1 andβ > 0, P-almost surely,

lim
n→∞

νt
n(u,∞) = tuα(ε), ∀ t > 0, u > 0. (4.7)

Remark.Eq. (4.6) implies thatδn ≪ 1 and thatθn ≪ cn for all ε > 0. In view of (1.38),
(3.5), (4.4) and (3.6), (4.6) also implies that

c0n
c1 κ̃c2

n κ
c3
n (r

⋆
n)

c4θc5n ≪ 2εn and c0n
c1κ̃c2

n κ
c3
n (r

⋆
n)

c4θc5n ≪ 2εnn (4.8)

for all ε > 0 and any choice of constants0 ≤ ci < ∞.

Remark.In order to guarantee strict equivalence of the definitions (1.43) and (2.12) of the
setTn whenδn is given by (4.4), we should replace the termcn(nθn)−1 in (1.43) by

cn exp
{
− log(n2θn)

[
1 + (1 + o(1))(2nββc(ε))

−1 log(n2θn)
]}

(4.9)

(see Corollary 2.3). We didn’t state this precise formula tokeep the presentation simple.

The rest of the section is organized as follows. In Section 4.1 we show thatνt
n(u,∞)

can be reduced to the quantityν◦,tn (u,∞) defined in (4.32). In Section 4.2 we prove upper
et lower bounds on a sequence,b◦n, defined asbn with T ◦n substituted forTn, and show that
bn andb◦n behave in the same way to leading order. In Section 4.3 we showthatν◦,tn (u,∞)
concentrates around its mean value when choosingan = 2εn/b◦n. The proof of Proposition
4.1 is finally completed in Section 4.2.
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4.1. Preparations. To begin with, we bring the functionνt
n(u,∞) given in (4.1) into a

form amenable to treatment. LetTn be as in (2.12). For all0 < ε < 1 andδn as in (4.4),

0 ≤
∫ θn

0

max
(
(cnr

⋆
n)
−1, c−1n τn(Yn(s))

)
1{Yn(s)/∈Tn}ds ≤θn

rn(εn)

rn(ε)
≤ n−2 (4.10)

as follows from (2.29). Hence visits ofYn outside the setTn only yield a negligible con-
tribution to the event in (4.1), implying that

ν̌t
n(u,∞) ≤ νt

n(u,∞) ≤ ν̌t
n

(
u− n−2,∞

)
(4.11)

where

ν̌t
n(u,∞) ≡ kn(t)Pπn

(∫ θn

0

c−1n τn(Yn(s))1{Yn(s)∈Tn}ds > u

)
. (4.12)

Our next step consists in reducing visits toTn in ν̌t
n(u,∞) to visits to the subsetT ◦n defined

in (2.14). Set

ν̄t
n(u,∞) ≡ kn(t)Pπn

(∫ θn

0

c−1n τn(Yn(s))1{Yn(s)∈T ◦
n}ds > u

)
. (4.13)

Lemma 4.2. Assume that (4.6) holds. Then onΩ⋆, for all but a finite number of indicesn,

|ν̌t
n(u,∞)− ν̄t

n(u,∞)| ≤ 2kn(t)θnr
⋆
nn

52−2nεn(1 + o(1)). (4.14)

Proof of Lemma 4.2.Decomposing the event appearing in the probability in (4.12) accord-
ing to whether{H(Tn \ T ◦n) ≤ θn} or {H(Tn \ T ◦n) > θn}, (4.14) follows from (3.19) of
Corollary 3.8 applied withtn = θn, which is licit by virtue of (4.6) (see also (4.8)). �

We next decompose (4.13) according to the hitting time,H(T ◦n), and hitting place,Yn(H(T ◦n)),
of the setT ◦n . The density of the joint distribution ofH(T ◦n) andYn(H(T ◦n)) is a |T ◦n |-
dimensional vector,(hn,x)x∈T ◦

n
, whose components are, for eachx ∈ T ◦n , the joint density

thatT ◦n is reached at timev, and that arrival to that set occurs in statex,

Pπn(H(T ◦n) ≤ s, Yn(H(T ◦n)) = x) =

∫ s

0

hn,x(v)dv. (4.15)

For this vector of densities we have
∑

x∈T ◦
n

∫ ∞

0

hn,x(v)dv = 1, (4.16)

and, denoting byhn,T ◦
n

the density ofH(T ◦n),

hn,T ◦
n
=

∑

x∈T ◦
n

hn,x. (4.17)

In the notation of Section 3.3 (see the paragraph below (3.30)) hn,x =
∑

y∈Vn πn(y)h
y
n,x,T ◦

n

where, fory ∈ T ◦n , hy
n,x,T ◦

n
= δy. From this and the strong Markov property it follows that

ν̄t
n(u,∞) = kn(t)

∑

x∈T ◦
n

∫ θn

0

hn,x(v)Px

(∫ θn−v

0

c−1n τn(Yn(s))1{Yn(s)∈T ◦
n}ds > u

)
dv.

(4.18)
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Denote byQ
u,v

n (x) the probability appearing in (4.18). Notice thatYn starts inx ∈ T ◦n
and further decompose this probability according to whether {H(T ◦n \ x) ≤ θn − v} or
{H(T ◦n \ x) > θn − v}, that is, writeQ

u,v

n (x) ≡ Q̃u,v
n (x) + Q̂u,v

n (x),

Q̃u,v
n (x) = Px

(∫ θn−v

0

c−1n τn(Yn(s))1{Yn(s)∈T ◦
n}ds > u,H(T ◦n \ x) ≤ θn − v

)
, (4.19)

Q̂u,v
n (x) = Px

(∫ θn−v

0

c−1n τn(Yn(s))1{Yn(s)∈T ◦
n}ds > u,H(T ◦n \ x) > θn − v

)
, (4.20)

and split (4.18) accordingly. Clearly, for allv > 0

Q̃u,v
n (x) ≤ Px (H(T ◦n \ x) ≤ θn) . (4.21)

This and the bound
∫ θn
0

hn,x(v)dv ≤ Pπn(H(x) ≤ θn) (that follows from (4.15)), yield

kn(t)
∑

x∈I◦n

∫ θn

0

hn,x(v)Q̃
u,v
n (x)dv (4.22)

≤ kn(t)
∑

x∈T ◦
n

Pπn(H(T ◦n) ≤ θn, Yn(H(T ◦n)) = x)Px (H(T ◦n \ x) ≤ θn) (4.23)

≤ ν̃t
n (4.24)

where
ν̃t
n ≡ kn(t)

∑

x∈T ◦
n

Pπn(H(x) ≤ θn)Px (H(T ◦n \ x) ≤ θn) . (4.25)

Lemma 4.3. Assume that (4.6) holds. Then onΩ⋆, for all but a finite number of indicesn,

ν̃t
n ≤ kn(t)n

c⋆+4 (θnπn(T
◦
n)r

⋆
n)

2 (1 + o(1)). (4.26)

Proof of Lemma 4.3.By (3.3), (2.20), (4.3) and (4.4), onΩ⋆, for all large enoughn,
θnnπn(T

◦
n)r

⋆
n = n1+2α(ε)r⋆nθ

1+α(ε)
n 2−nε(1 + o(1)), wich decays to zero asn diverges

by (4.6) (see also (4.8)). We may thus use (3.18) of Lemma 3.7 to bound the term
Pπn(H(x) ≤ θn) in (4.25), and by this and (3.3) we get that onΩ⋆, for all large enoughn,

ν̃t
n ≤ kn(t)θnnπn(T

◦
n)r

⋆
n(1 + o(1))|T ◦n |−1

∑
x∈T ◦

n
Px (H(T ◦n \ x) ≤ θn) . (4.27)

The lemma now follows from Proposition 3.9. �

Consider now the contribution to (4.18) coming from (4.20).By definition,

Q̂u,v
n (x) = Px

(
c−1n τn(x)ℓ

x
n(θn − v) > u,H(T ◦n \ x) > θn − v

)
. (4.28)

Thus

ν̂t
n(u,∞) (4.29)

≡ kn(t)
∑

x∈T ◦
n

∫ θn

0

hn,x(v)Q̂
u,v
n (x)dv (4.30)

= kn(t)
∑

x∈T ◦
n

∫ θn

0

hn,x(v)Px

(
c−1n τn(x)ℓ

x
n(θn − v) > u,H(T ◦n \ x) > θn − v

)
dv.(4.31)

Setting

ν◦,tn (u,∞) ≡ kn(t)
∑

x∈T ◦
n

∫ θn

0

hn,x(v)Px

(
c−1n τn(x)ℓ

x
n(θn − v) > u

)
dv, (4.32)
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we have
ν◦,tn (u,∞)− wt

n(u,∞) ≤ ν̂t
n(u,∞) ≤ ν◦,tn (u,∞) (4.33)

where

wt
n(u,∞) ≡ kn(t)

∑

x∈T ◦
n

∫ θn

0

hn,x(v)Px

(
c−1n τn(x)ℓ

x
n(θn − v) > u,H(T ◦n \ x) ≤ θn − v

)
dv

≤ kn(t)
∑

x∈T ◦
n

∫ θn

0

hn,x(v)Px (H(T ◦n \ x) ≤ θn − v) dv ≤ ν̃t
n. (4.34)

Inserting our bounds in (4.18), we finally get that for allu > 0
∣∣ν◦,tn (u,∞)− ν̄t

n(u,∞)
∣∣ ≤ ν̃t

n. (4.35)

Our aim now is to prove almost sure convergence ofν◦,tn (u,∞). To do so we will need
certain properties a sequence,b◦n, associated to the sequencebn, that we now define.

4.2. Properties of the sequences bn and b◦n. ForFβ,ε,n(x) as in (1.41) define

b◦n ≡ (θnπn(T
◦
n))
−1

∑

x∈T ◦
n

∫ θn

0

hn,x(v)Ex[Fβ,ε,n(ℓ
x
n(θn − v))]dv. (4.36)

Thusb◦n is nothing butbn (see (1.44)) withT ◦n substituted forTn. The next lemma collects
properties of the sequencesbn andb◦n needed in the verification of both Condition (B1)
and (B2). SetIn(a, b) = (θnπn(T

◦
n))
−1∑

x∈T ◦
n
J x

n (a, b),

J x
n (a, b) =

∫ b

a

hn,x(v)Ex[Fβ,ε,n(ℓ
x
n(θn − v))]dv, (4.37)

and given0 < ζn < θn split b◦n into b◦n = In(0, κn) + In(κn, θn − ζn) + In(θn − ζn, θn).

Lemma 4.4. Assume that (4.5) and (4.6) hold. Letζn > 0 be a sequence satisfying

n−1| log ζn| ≪ 1, and κ̃n(r
⋆
n)

1+αn(ε)+o(1)ζαn(ε)+o(1)
n ↓ 0 as n ↑ ∞. (4.38)

Then, onΩ1 ∩ Ω◦ ∩ Ω⋆, for all but a finite number of indicesn,

In(0, κn)

In(κn, θn − ζn)
≤ θ−1n κ̃nκ

1+αn(ε)
n (nr⋆n)

1+αn(ε)+o(1), (4.39)

0 ≤ (bn − b◦n)/b
◦
n ≤ n(r⋆n)

1+αn(ε)+o(1)κ1+αn(ε)
n 2−nεn, (4.40)

and the right-hand sides of (4.39) and (4.40) decay to zero asn diverges. Furthermore

κ−1n (r⋆n)
−{αn(ε)+o(1)} ≤ b◦n ≤ (1 + o(1))nr⋆nκ

αn(ε)
n . (4.41)

Proof of Lemma 4.4.We first prove a lower bound onIn(κn, θn − ζn). For this write

J x
n (κn, θn − ζn) ≥ J x

n,1 ≡
∫ θn−ζn

κn

hn,x(v)Ex[Fβ,ε,n(ℓ
x
n(θn − v))1{ζn<ℓxn(θn−v)≤θn}]dv.

SinceFβ,ε,n(x) = (1 + o(1))xαn(ε)+o(1) for all ζn < x ≤ θn,

J x
n,1 ≥ (1 + o(1))

∫ θn−ζn

κn

hn,x(v)Ex[ℓ
x
n(θn − v)]αn(ε)+o(1)(1− 1{ℓxn(θn−v)<ζn})dv

≡ J x
n,3 − J x

n,4

(4.42)
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where we used the left-most inequality in (4.74) to relax theconstraintℓxn(θn − v) ≤ θn.
Let us boundJ x

n,3 for x ∈ I⋆n. Note that by (2.16) and (2.8)

(r⋆n)
−1 ≤ λ̃n(x) ≤ r⋆n, ∀x ∈ I⋆n. (4.43)

Thus, settingζ ′n ≡ nr⋆n, it follows from (3.46) of Lemma 3.11 that for allx ∈ I⋆n,

J x
n,3 ≥ c3(λ̃

−1
n (x))αn(ε)+o(1)

∫ θn−ζ′n

κn

hn,x(v)dv (4.44)

for some numerical constant0 < c3 < ∞. Summing overx, wet get

∑

x∈T ◦
n

J x
n,3 ≥

∑

x∈I⋆n

J x
n,3 ≥ c3(r

⋆
n)
−{αn(ε)+o(1)}

∑

x∈I⋆n

∫ θn−ζ′n

κn

hn,x(v)dv (4.45)

where the last sum in the right-hand side of (4.45) is equal to

Pπn(κn < H(I⋆n) < θn − ζ ′n, H(I⋆n) < H(T ◦n \ I⋆n)). (4.46)

Decomposing this probability into

p1−p2 ≡ Pπn(κn < H(I⋆n) < θn−ζ ′n)−Pπn(κn < H(I⋆n) < θn−ζ ′n, H(I⋆n) > H(T ◦n\I⋆n))
we have, by Lemma 3.6 and (3.16), wheneverθnr

⋆
nnπn(I

⋆
n) → 0,

p1 ≥ κ̃−1n θnπn(I
⋆
n)(1− θ−1n ζ ′n)(1 + o(1)) = κ̃−1n θnπn(I

⋆
n)(1 + o(1)) (4.47)

where the last equality follows from (4.5). To get an upper bound onp2, write

p2 ≤Pπn(H(T ◦n \ I⋆n) < κn) + Pπn(H(T ◦n \ I⋆n) < H(I⋆n) < θn) ≡ p3 + p4. (4.48)

By (3.18),p3 ≤ κnr
⋆
nnπn(T

◦
n \ I⋆n)(1 + o(1)), whereas proceeding as in (4.22)-(4.25),

p4 ≤
∑

x∈T ◦
n\I⋆n

Pπn(H(x) ≤ θn)Px (H(I⋆n) ≤ θn) (4.49)

= n3(θnr
⋆
n)

2πn(T
◦
n \ I⋆n)πn(I

⋆
n)(1 + o(1)) (4.50)

where the last equality follows from (3.18) and (3.28). By (2.22), (2.23), and (3.3), on
Ω⋆ and for large enoughn, πn(I

⋆
n) = 2−nεn(1 − n−c⋆(1 + o(1))) andπn(T

◦
n \ I⋆n) =

n−c⋆+12−nεn(1 + o(1)) (thus in particular,πn(I
⋆
n)/πn(T

◦
n) = 1 + o(1)). In view of this,

(4.5), and (4.6), one checks thatθnr
⋆
nnπn(I

⋆
n) → 0 (as requested above (4.47)) and that

p2 = o(p1). Thusp1 − p2 = p1(1 + o(1)) and by this, (4.47), and (4.45),

(θnπn(T
◦
n))
−1

∑

x∈T ◦
n

J x
n,3 ≥ κ̃−1n (r⋆n)

−{αn(ε)+o(1)}(1 + o(1)). (4.51)

Turning toJ x
n,4 we have

∑

x∈T ◦
n

J x
n,4 ≤ (1 + o(1))ζαn(ε)+o(1)

n

∑

x∈T ◦
n

∫ θn−ζn

κn

hn,x(v)dv, (4.52)

where the last sum is equal toPπn(κn < H(T ◦n) < θn − ζn). Since by Lemma 3.6 and
(3.16),Pπn(κn < H(T ◦n) < θn − ζn) ≤ (1 + o(1))r⋆nnθnπn(T

◦
n), we get

(θnπn(T
◦
n))
−1

∑

x∈T ◦
n

J x
n,4 ≤ (1 + o(1))nr⋆nζ

αn(ε)+o(1)
n . (4.53)
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At this point we may observe that the right-most condition in(4.38) is tailored to guarantee
that

∑
x∈T ◦

n
J x

n,3 ≫
∑

x∈T ◦
n
J x

n,4. Hence, collecting our bounds,

In(κn, θn − ζn) =
1 + o(1)

θnπn(T ◦n)

∑

x∈T ◦
n

∫ θn−ζn

κn

hn,x(v)Ex[ℓ
x
n(θn − v)]αn(ε)+o(1) (4.54)

≥ κ̃−1n (r⋆n)
−{αn(ε)+o(1)}. (4.55)

We now prove an upper bound onIn(0, κn). Using thatFβ,ε,n(x) ≤ (1 + o(1))xαn(ε)

for all 0 < x ≤ θn together with (3.47) of Lemma 3.11 (which by (4.6) and (3.4) is licit),

J x
n (0, κn) ≤ (1 + o(1))καn(ε)

n

∫ κn

0

hn,x(v)dv. (4.56)

Summing overx ∈ T ◦n and using (3.20) and (4.6) to bound the resulting probability,

Ix
n(0, κn) ≤ (1 + o(1))nr⋆nθ

−1
n κ1+αn(ε)

n . (4.57)

One proves in the same way that

Ix
n(0, θn) ≤ (1 + o(1))nr⋆nκ

αn(ε)
n

[
1 + θ1+αn(ε)

n r⋆nnκ
−αn(ε)
n 2−n

]
, (4.58)

where by (4.6) the term in square brackets (that comes from (3.47)) is equal to1 + o(1).
Combining (4.57) and (4.55) proves (4.39). SinceIn(κn, θn − ζn) ≤ b◦n = In(0, θn),

(4.55) and (4.58) yield, respectively, the lower and upper bounds of (4.41). It remains to
prove (4.40). By definition (see (1.44), (4.36), and the second remark below (4.7) on the
definition ofTn)

|Tn|bn − |T ◦n |b◦n = 2nθ−1n

∑

x∈Tn\T ◦
n

Eπn [Fβ,ε,n(ℓ
x
n(θn))] . (4.59)

Conditioning on the time of the first visit tox, and proceeding as in (4.57)-(4.58) to bound
the expectation starting inx, Eπn [Fβ,ε,n(ℓ

x
n(θn))] ≤ (1 + o(1))Pπn(H(x) ≤ θn)κ

αn(ε)
n .

From this and (3.18),|Tn|bn − |T ◦n |b◦n ≤ (1 + o(1))r⋆nn2
nπn(Tn \ T ◦n)κ

αn(ε)
n . Now by

(2.19)-(2.21),|Tn| = |T ◦n |(1 + o(1)) and |Tn \ T ◦n | = |T ◦n |n42−nεn(1 + o(1)). Hence
bn − b◦n ≤ (1 + o(1))n5r⋆nκ

αn(ε)
n 2−nεn. Combining this and (4.55) yields (4.40). The proof

of Lemma 4.4 is now complete. �

Proof of Proposition 1.5.This is a straightforward consequence of (4.40), (4.41), the as-
sumptions of (1.45), and (1.38). �

4.3. Concentration of ν◦,tn (u,∞). Let us now focus on the termν◦,tn (u,∞) of (4.32).
Recall the definitions ofkn(t) andb◦n from (1.17) and (4.36), respectively.

Proposition 4.5. Choosean = 2εn/b◦n in kn(t) and assume that (4.6) holds. LetP
◦ denote

the law of the collection{τn(x), x ∈ T ◦n} conditional onT ◦n ,

P
◦(∩x∈T ◦

n
{τn(x) ∈ ·}) = P(∩x∈T ◦

n
{τn(x) ∈ ·} | T ◦n). (4.60)

Then, for any sequenceun > 0 such that0 < u− un < n−1 and allu > 0 andt > 0,

P
◦
(∣∣ν◦,tn (un,∞)− E

◦ν◦,tn (un,∞)
∣∣ > n

√
tΞnE

◦ν◦,tn (un,∞)

)
≤ n−2(1 + o(1)) (4.61)

whereΞn ≡ (2εn/b◦n)nr
⋆
n2
−n and

lim
n→∞

E
◦ν◦,tn (un,∞) = tuα(ε). (4.62)
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Proof of Proposition 4.5.We assume throughout thatω ∈ Ω⋆. A key ingredient of the
proof is the observation that the generatorL̃n of Yn is independent of the values of the
Hamiltonian at its local minima. More precisely, recallingthe definition of the set,Mn,
of local minima from (2.24), it follows from (2.8) and (2.25)that onΩ⋆, for all n large
enough, for allx ∈ Mn, andy ∼ x,

λ̃n(x, y) = n−1τn(y) and λ̃n(y, x) =

{
n−1τn(y), if y /∈ V

⋆

n,

n−1, if y ∈ V
⋆

n,
(4.63)

(note that ifx ∈ Mn andy ∼ x theny /∈ Mn). Hence the law ofYn does not depend on
theτn(x)’s in Mn (but it does depend onMn). Now by (2.15),

T ◦n ⊆ Mn ∩ Tn ⊆ Mn. (4.64)

Furthermore, one easily checks thatP
◦ in (4.60) is the product measure

P
◦(∩x∈T ◦

n
{τn(x) ∈ ·}) =

∏

x∈T ◦
n

P(τn(x) ∈ ·, τn(x) ≥ rn(εn))

P(τn(x) ≥ rn(εn))
. (4.65)

Consequently, for fixedT ◦n , the collection{Xn(x), x ∈ T ◦n},

Xn(x) ≡
∫ θn

0

hn,x(v)Px

(
c−1n τn(x)ℓ

x
n(θn − v) > un

)
dv, (4.66)

viewed as a collection of r.v.’s on the sub-sigma fieldF◦n = σ({τn(x), x ∈ T ◦n}), forms
a collection of independent random variables underP

◦ (that of course still depend on the
variablesτn(x) in (T ◦n)

c). The proof now hinges on a simple mean and variance argument.
We deal with the variance first. By (4.32) and (4.66),

E
◦ν◦,tn (un,∞) = kn(t)

∑

x∈T ◦
n

E
◦Xn(x), (4.67)

and by independence

E
◦(ν◦,tn (un,∞)− E

◦ν◦,tn (un,∞))2 ≤ k2
n(t)

∑

x∈T ◦
n

E
◦(Xn(x))

2. (4.68)

Note that since

Xn(x) ≤
∫ θn

0

hn,x(v)dv ≤ Pπn(H(x) ≤ θn) ≤ θnr
⋆
nn2

−n(1 + o(1)), (4.69)

(the last inequality is (3.18) combined with (3.3)) then

k2
n(t)

∑

x∈T ◦
n

E
◦(Xn(x))

2 ≤ t(2εn/b◦n)r
⋆
nn2

−n(1 + o(1))E◦ν◦,tn (un,∞), (4.70)

where we used that foran = 2εn/b◦n, θnkn(t) = θn⌊t(2εn/b◦n)/θn⌋ = t(2εn/b◦n)(1 + o(1)).
Inserting (4.70) in (4.68), a second order Tchebychev inequality then yields (4.61).

To estimateE◦ν◦,tn (un,∞) in (4.67) we first use Fubini to write,

E
◦Xn(x) =

∫ θn

0

hn,x(v)ExP
◦ (c−1n τn(x)ℓ

x
n(θn − v) > un

)
dv. (4.71)
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Denoting byPx the law of the single variableτn(x),

P
◦ (c−1n τn(x)ℓ

x
n(θn − v) > u

)
=

P
x (c−1n τn(x)ℓ

x
n(θn − v) > un, τn(x) ≥ rn(εn))

Px(τn(x) ≥ rn(εn))
(4.72)

=
P
x (c−1n τn(x)ℓ

x
n(θn − v) > un)

Px(τn(x) ≥ rn(εn))
(4.73)

where (4.73) follows from the definition ofcn (see (1.4)), the a priory bound

ℓxn(θn − v) ≤ θn − v ≪ cn, 0 ≤ v ≤ θn, (4.74)

and the fact thatδn in (4.4) in chosen in such a way thatθnrn(εn)r−1n (ε) ≤ n−2 ↓ 0 as
n ↑ ∞ (see the last inequality in (4.10)). Using classical estimates on the asymptotics of
gaussian integrals (see e.g. [1] p. 932), Lemma 2.2, and again the definition ofcn, simple
calculations yield that for all0 < u < ∞ and0 ≤ v < θn, (4.73) is equal to

(1 + o(1))Fβ,ε,n

(
ℓxn(θn−v)

un

)
P (τn(x) > cn)

P(τn(x) ≥ rn(εn))
(4.75)

whereFβ,ε,n(x) is defined in (1.41). Furthermore, by (1.4),2εnP(τn(x) ≥ cn) = 1whereas
by (2.2), (2.20), and (3.3),P(τn(x) ≥ rn(εn)) = πn(T

◦
n)(1 + o(1)). In view of this and

(4.36) we get, combining (4.75), (4.71), (4.67), and using the a priori bound (4.74) that

E
◦ν◦,tn (un,∞) = (1 + o(1))kn(t)θn(b

◦
n/2

εn)
I(0,θn)(un)

I(0,θn)(1)
(4.76)

where forw > 0

I(a,b)(w) =
∑

x∈T ◦
n

∫ θn

0

hn,x(v)Ex

[
Fβ,ε,n

( ℓxn(θn−v)
w

)]
1{a≤ℓxn(θn−v)<b}dv. (4.77)

To evaluate the ratio in (4.76) set0 < ζn ≡ e−n
9/10 ↓ 0 and split the integral inI(0,θn)(un)

intoI(0,θn)(un) ≡ I(0,ζn)(un)+I(ζn,θn)(un). Note thatn−1| log ζn| = n−1/10,n−1(log ζn)2 =
n4/5, while for all u > 0, n−1 log un ↓ 0, n−1(log un)

2 ↓ 0 asn ↑ ∞. Using thatFβ,ε,n(x)
is increasing on the domain(0, ζn/un)

I(0,ζn)(un) ≤ Fβ,ε,n

(
ζn
un

)
Pπn(H(T ◦n) < θn) (4.78)

whereFβ,ε,n

(
ζn
un

)
= eo(1) log unFβ,ε,n(ζn)Fβ,ε,n(u

−1
n ) andFβ,ε,n(ζn) ≤ e−αn(ε)n9/10−n4/5/2β2

.
By this, (3.18), the lower bound (4.41) onb◦n, and our assumptions onun,

I(0,ζn)(un)

I(0,θn)(1)
= eo(1) logunFβ,ε,n(u

−1
n )Fβ,ε,n(ζn)nκn(r

⋆
n)

1+αn(ε)+o(1) → 0 (4.79)

asn → ∞. Next, sincen−1 log l ↓ 0 asn ↑ ∞ for all ζn ≤ l ≤ θn we have, using (4.74),

I(ζn,θn)(un)

I(0,θn)(1)
= eo(1) log unFβ,ε,n(u

−1
n )

[
1− I(0,ζn)(un)

I(0,θn)(1)

]
→ u−α(ε) (4.80)

asn → ∞ for all u > 0. Inserting (4.79) and (4.80) in (4.76), choosingan = 2εn/b◦n, and
passing to the limitn → ∞ finally gives (4.62). The proof of the lemma is done. �
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4.4. Proof of Proposition 4.1. By (4.6), (4.3)-(4.4), and the boundκn ≤ θn, (4.40) im-
plies that onΩ1 ∩ Ω◦ ∩ Ω⋆, for large enoughn, bn = b◦n(1 + o(1)). The assumption that
an = 2εn/bn in (4.1) can thus be replaced byan = 2εn/b◦n. Consider now (4.61) and note
that by (4.41), (3.6), (1.38), and (4.6) (see also (4.8)), for all 0 < ε < 1,

(2εn/b◦n)r
⋆
nn

32−n ≤ κn(r
⋆
n)

1+αn(ε)+o(1)n32nε2−n → 0 (4.81)

asn → ∞. Thus, by Proposition 4.5 and Borel-Cantelli Lemma we get that for allu > 0
and allt > 0,

lim
n→∞

ν◦,tn (u,∞) = tuα(ε)
P− almost surely. (4.82)

In the same way we get that for allu > 0 and allt > 0,

lim
n→∞

ν◦,tn (u,∞) = tuα(ε)
P− almost surely. (4.83)

Next, by Lemma 4.2, Lemma 4.3, and (4.35) we have that onΩ⋆, for all but a finite
number of indicesn,

∣∣ν̌t
n(u,∞)− ν◦,tn (u,∞)

∣∣ (4.84)

≤ t(b◦n)
−1[2r⋆nn

5θn2
−nε+2δnn + nc⋆+42nε (θnπn(T

◦
n)r

⋆
n)

2](1 + o(1)) (4.85)

≤ 2tnc⋆+4(1+αn(ε))(r⋆n)
αn(ε)+2+o(1)κnθ

2+2α(ε)
n 2−nε(1 + o(1)) (4.86)

where the last inequality follows from (4.41), (2.20), (4.3), and (4.4). Sinceκn ≤ θn, (4.6)
(see also (4.8)) implies that (4.86) decays to zero asn → ∞. From this and (4.82) we get
that for allu > 0 and allt > 0, limn→∞ ν̌t

n(u,∞) = tuα(ε)
P-almost surely. One proves in

the same way that for allu > 0 and allt > 0, limn→∞ ν̌t
n (u− n−2,∞) = tuα(ε)

P-almost
surely. Therefore, by (4.11), for allu > 0 and allt > 0,

lim
n→∞

νt
n(u,∞) = tuα(ε)

P− almost surely. (4.87)

Sinceνt
n is increasing both int andu and since its limit continuous in those two variables,

(4.87) implies thatP-almost surely,

lim
n→∞

νt
n(u,∞) = tuα(ε), ∀ u > 0, t > 0. (4.88)

The proof of Proposition 4.1 is done.

5. VERIFICATION OF CONDITION (B2)

By (1.18)-(1.19), (1.22), and (1.34), Condition (B2) in (1.32) states that

σt
n(u,∞) ≡ kn(t)

∑

y∈Vn

πn(y)

[
Py

(∫ θn

0

max
(
(cnr

⋆
n)
−1, c−1n τn(Yn(s))

)
ds > u

)]2

(5.1)
decays to zero asn diverges. We prove in this section that this holds trueP-almost surely.

Proposition 5.1. Under the assumptions of Proposition 4.1, for all0 < ε < 1 andβ > 0,
P-almost surely,

lim
n→∞

σt
n(u,∞) = 0, ∀ t > 0, u > 0. (5.2)

As in the proof of Proposition 4.1 we first bringσt
n(u,∞) into a suitable form. Proceed-

ing as in (4.11)-(4.12), we first write

σ̌t
n(u,∞) ≤ σt

n(u,∞) ≤ σ̌t
n(u− n−2,∞) (5.3)
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where

σ̌t
n(u,∞) ≡ kn(t)

∑

y∈Vn

πn(y)

[
Py

(∫ θn

0

c−1n τn(Yn(s))1{Yn(s)∈Tn}ds > u

)]2
, (5.4)

and next reduce visits toTn in (5.4) to visits to visits toT ◦n , just as in Lemma 4.2. Set

σ̄t
n(u,∞) ≡ kn(t)

∑

y∈Vn

πn(y)

[
Py

(∫ θn

0

c−1n τn(Yn(s))1{Yn(s)∈T ◦
n}ds > u

)]2
. (5.5)

Lemma 5.2. Assume that (4.6) holds. Then onΩ⋆, for all but a finite number of indicesn,

|σ̌t
n(u,∞)− σ̄t

n(u,∞)| ≤ 6kn(t)θnn
5r⋆n2

−2nεn(1 + o(1)). (5.6)

Proof of lemma 5.2.As in the Proof of Lemma 4.2 we decompose the event appearing in
the probability in (5.4) according to whether{H(Tn \ T ◦n) ≤ θn} or not, that is, setting

q1(y) = Py

(∫ θn
0

c−1n τn(Yn(s))1{Yn(s)∈Tn}ds > u,H(Tn \ T ◦n) ≤ θn
)
, (5.7)

q2(y) = Py

(∫ θn
0

c−1n τn(Yn(s))1{Yn(s)∈Tn}ds > u,H(Tn \ T ◦n) > θn
)
, (5.8)

we writeσ̌t
n(u,∞) = kn(t)

∑
y∈Vn πn(y)[q1(y)+q2(y)]

2. In the same way writēσt
n(u,∞) =

kn(t)
∑

y∈Vn πn(y)[q̄1(y)+ q̄2(y)]
2 whereq̄1(y) andq̄2(y) are defined as in (5.7) and (5.8),

respectively, substitutingT ◦n for Tn. Note that

[x1 + x2]
2 ≤ 3x1 + x2

2, 0 ≤ x1, x2 ≤ 1. (5.9)

Applying (5.9) to the terms[q1(y)+q2(y)]
2 and[q̄1(y)+q̄2(y)]

2, and observing thatq22 = q̄22,
we get

|σ̌t
n(u,∞)− σ̄t

n(u,∞)| ≤ 3kn(t)
∑

y∈Vn

πn(y)(q1(y) + q̄1(y)) (5.10)

≤ 6kn(t)Pπn(H(Tn \ T ◦n) ≤ θn). (5.11)

The Lemma now follows from (3.19) of Corollary 3.8. �

We continue our parallel with the proof of Proposition 4.1 and decompose (5.5) ac-
cording to the hitting time and hitting place of the setT ◦n . We slightly abuse the notation
of Section 3 (see the paragraph below (3.30)) and denote byhy

n,x (instead ofhy
n,x,T ◦

n
) the

joint density thatT ◦n is reached at timet, and that arrival to that set occurs in statex,
given that the process starts iny. As already observed (see the paragraph below (4.17)),
hn,x =

∑
y∈Vn πn(y)h

y
n,x. Proceeding as in (4.18)-(4.20) we then get

σ̄t
n(u,∞) = kn(t)

∑

y∈Vn
πn(y)

[
R

u

n(y)
]2

(5.12)

where, using (4.19) and (4.20),

R
u

n(y) ≡
∑

x∈T ◦
n

∫ θn

0

hy
n,x(v)

(
Q̃u,v

n (x) + Q̂u,v
n (x)

)
dv ≡ R̃u

n(y) + R̂u
n(y). (5.13)

By analogy with (4.30) we also set

σ̂t
n(u,∞) ≡ kn(t)

∑

y∈Vn

πn(y)
[
R̂u

n(y)
]2
. (5.14)

The next lemma plays the role of Lemma 4.3.
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Lemma 5.3. Assume that (4.6) holds. ThenΩ⋆, for all but a finite number of indicesn,

0 ≤ σ̄t
n(u,∞)− σ̂t

n(u,∞) ≤ 3kn(t)n
c⋆+4 (θnπn(T

◦
n)r

⋆
n)

2 (1 + o(1)). (5.15)

Proof of Lemma 5.3.As in the proof of Lemma 5.2, the proof of Lemma 5.3 relies on the
observation that since0 ≤ R̃u

n(y), R̂
u
n(y) ≤ 1 in (5.13) for ally ∈ Vn, then by (5.9),

0 < σ̄t
n(u,∞)− σ̂t

n(u,∞) ≤ 3kn(t)
∑

y∈Vn
πn(y)R̃

u
n(y) (5.16)

= 3kn(t)
∑

x∈T ◦
n

∫ θn

0

hn,x(v)Q̃
u,v
n (x)dv ≤ 3ν̃t

n. (5.17)

The equality in (5.17) follows from the identityhn,x(v) =
∑

y∈Vn πn(y)h
y
n,x(v), and the

final inequality is (4.24). The claim of the lemma now followsfrom Lemma 4.3. �

We now need an upper bound onσ̂t
n(u,∞). For this we proceed as in (4.31)-(4.33) and

write that0 ≤ σ̂t
n(u,∞) ≤ σ◦,tn (u,∞) where, by analogy with (4.33),

σ◦,tn (u,∞) = kn(t)
∑

y∈Vn

πn(y)

[
∑

x∈T ◦
n

∫ θn

0

hy
n,x(v)Px

(
c−1n τn(x)ℓ

x
n(θn − v) > u

)
dv

]2

(5.18)
Again, the quantity in between the square brackets is in[0, 1]. Thus, splitting the integral
into the sum of the integrals over[0, κn] and[κn, θn], we get, using (5.9) and reasoning as
in (5.16)-(5.17),

σ◦,tn (u,∞) ≤ 3η̄◦,tn (u,∞) + η◦,tn (u,∞) (5.19)
where

η̄◦,tn (u,∞) ≡ kn(t)
∑

x∈T ◦
n

∫ κn

0

hn,x(v)Px

(
c−1n τn(x)ℓ

x
n(θn − v) > u

)
dv, (5.20)

η◦,tn (u,∞) ≡ kn(t)
∑

y∈Vn

πn(y)

[
∑

x∈T ◦
n

∫ θn

κn

hy
n,x(v)Px

(
c−1n τn(x)ℓ

x
n(θn − v) > u

)
dv

]2

.(5.21)

The next two propositions bound (5.20) and (5.21) in terms ofthe quantitiesν◦,tn (un,∞)
andE◦ν◦,tn (un,∞) defined in (4.32) and (4.67), respectively.

Proposition 5.4. Choosean = 2εn/b◦n in (1.17). Then, for any sequenceun > 0 such that
0 < u− un < n−1 and allu > 0,

P
(
η̄◦,tn (un,∞) ≥ tE◦ν◦,tn (un,∞)n2θ−1n κ̃nκ

1+αn(ε)
n (nr⋆n)

1+αn(ε)+o(1)
)
≤ n−2. (5.22)

Proposition 5.5. OnΩ⋆ ∩ Ω1, for all but a finite number of indicesn and allu > 0,

η◦,tn (u,∞) ≤ ν◦,tn (u,∞)θnr
⋆
nn2

−nεn(1 + o(1)). (5.23)

Proof of Proposition 5.4.As in the proof of Proposition 4.5 denote byP◦ the law of the
collection{τn(x), x ∈ T ◦n} conditional onT ◦n . By a first order Tchebychev inequality,

P
(
η̄◦,tn (un,∞) ≥ ǫ

)
≤ ǫ−1E

[
E
◦η̄◦,tn (un,∞)

]
. (5.24)

Note thatE◦η̄◦,tn (u,∞) only differs from the termE◦ν◦,tn (un,∞) of (4.67) in that the inte-
gral in (5.20) is over[0, κn] instead of[0, θn]. Takingan = 2εn/b◦n, a simple adaptation of
the proof of (4.62) (see (4.71)-(4.80)) yields

E
◦η̄◦,tn (un,∞) = t(1 + o(1))E◦ν◦,tn (un,∞)

In(0, κn)

In(0, θn)
(5.25)
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whereIn(a, b) is defined above (4.37). Eq. (4.39) of Lemma 4.4 was designed precisely
to control the ratio in (5.25). Namely, onΩ◦ ∩ Ω⋆, for all but a finite number of indicesn,

In(0, κn)

In(0, θn)
≤ In(0, κn)

In(κn, θn − ζn)
≤ θ−1n κ̃nκ

1+αn(ε)
n (nr⋆n)

1+αn(ε)+o(1). (5.26)

The combination of (5.24), (5.25), and (5.26) gives (5.22).The proof is complete. �

Proof of Proposition 5.5.To prove (5.23) first observe that
∑

x∈T ◦
n

∫ θn

κn

hy
n,x(v)Px

(
c−1n τn(x)ℓ

x
n(θn − v) > u

)
dv ≤ Py(κn < H(T ◦n) ≤ θn) (5.27)

≤ (1 + o(1))Pπn(H(T ◦n) ≤ θn)(5.28)

where the last line follows from Proposition 3.3 and the Markov property, and is valid on
Ω1, for all but a finite number of indicesn. Applying this bound to one of the two square
brackets in (5.21) and using (4.32) to bound the remaining term, we get, under the same
assumptions as above, that

η◦,tn (u,∞) ≤ (1 + o(1))ν◦,tn (u,∞)Pπn(H(T ◦n) ≤ θn). (5.29)

Using Corollary (3.20) to bound the last probability yieldsthe claim of the proposition.
�

We are now ready to complete the

Proof of Proposition 5.1.Recall from the proof of Proposition 4.1 that onΩ1 ∩ Ω◦ ∩ Ω⋆

an = 2εn/bn = 2εn/b◦n(1 + o(1)) for large enoughn and consider (5.22). By (4.5),
n2θ−1n κ̃nκ

1+αn(ε)
n (nr⋆n)

1+αn(ε)+o(1) ↓ 0 asn ↑ ∞ and by (4.62), for allu > 0 andt > 0
limn→∞ E

◦ν◦,tn (un,∞) = tuα(ε). Thus, by Proposition 5.4 and Borel-Cantelli Lemma we
get that for allu > 0 andt > 0,

lim
n→∞

η̄◦,tn (u,∞) = 0 P− almost surely. (5.30)

Turning to (5.23) and invoking (4.6) (see also (4.8)), it follows from Proposition 5.4 that
for all 0 < ε < 1 and for allu > 0 andt > 0,

lim
n→∞

η◦,tn (u,∞) = 0 P− almost surely. (5.31)

Hence by (5.19), for allu > 0 andt > 0,

lim
n→∞

σ◦,tn (u,∞) = 0 P− almost surely. (5.32)

From there on the proof is a rerun of the proof of Proposition 4.1 with Lemma 5.2 and
Lemma 5.3 playing the role of Lemma 4.2 and Lemma 4.3, respectively. We omit the
details. �

6. VERIFICATION OF CONDITION (B3)

By (1.18)-(1.20), (1.22), and (1.34), Condition (B3) in (1.33) will be verified if we can
establish that:

Proposition 6.1. Under the assumptions of Proposition 4.1, for all0 < ε < 1 and all
β > βc(ε), P-almost surely,

lim
ǫ↓0

lim sup
n↑∞

kn(t)Eπn

∫ θn

0

Mn(Yn(s))1{
∫ θn
0 Mn(Yn(s))ds≤ǫ} = 0, ∀t > 0. (6.1)
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whereMn(Yn(s)) = max ((cnr
⋆
n)
−1, c−1n τn(Yn(s))).

The Lemma below is central to the proof.

Lemma 6.2. There are constantsK,K ′ < ∞ such that forαn(ε) as in (1.42) and any
sequenceǫn > 0 such thatiα−1c (ε) − 1 − log ǫn

nββc(ε)
> 0 wherei = 1 in (6.2) andi = 2 in

(6.3), we have, for all large enoughn,

E2εnc−1n τn(x)1{c−1
n τn(x)≤ǫn} ≤ K

ǫ
1−αn(ε)− log ǫn

2nβ2

n

α−1c (ε)− 1− log ǫn
nββc(ε)

, (6.2)

E

(
2εnc−1n τn(x)1{c−1

n τn(x)≤ǫn}

)2

≤ K ′
ǫ
2−αn(ε)− log ǫn

2nβ2

n

2α−1c (ε)− 1− log ǫn
nββc(ε)

. (6.3)

Proof of Lemma 6.2.Using standard estimates on the asymptotics of Gaussian integrals
(see e.g. [1] p. 932) the claimed result follows from straightforward computations. �

Proof of Proposition 6.1.We assume throughout thatω ∈ Ω1 ∩ Ω◦ ∩ Ω⋆ and thatn is as
large as desired. Note thatMn(Yn(s)) ≤ (cnr

⋆
n)
−1 + c−1n τn(Yn(s)) and that the contribu-

tion to (6.1) coming from the term(cnr⋆n)
−1 if or ordero(1). Indeed by (1.17), (1.40), the

lower bound onbn obtained by combining (4.41) and (4.40), the expression (1.5) of cn,
the expression (3.6) ofκn, and the fact, that follows from (1.6), that2n = enβ

2
c (ε)/2,

kn(t)θn(cnr
⋆
n)
−1 ≤ 2tn4(r⋆n)

αn(ε)+o(1)enβ
2
c (ε)/2e−nββc(ε)(1+o(1)) (6.4)

and so, for all0 < ε < 1 andβ > βc(ε), by virtue of (4.6) (see also (4.8))

kn(t)θn(cnr
⋆
n)
−1 ≤ 2tn4(r⋆n)

αn(ε)+o(1)e−nβ
2
c (ε)(1+o(1))/2 → 0 (6.5)

asn → ∞. To prove Proposition 6.1 it thus suffices to establish thatP-almost surely,

lim
ǫ↓0

lim sup
n↑∞

kn(t)Eπn

∫ θn

0

c−1n τn(Yn(s))1{
∫ θn
0 c−1

n τn(Yn(s))ds≤ǫ} = 0, ∀t > 0. (6.6)

ForTn as in (2.12) withδn given by (4.4), set

S(1)
n,ǫ(t) ≡ kn(t)Eπn

∫ θn

0

c−1n τn(Yn(s))1{Yn(s)∈Tn}1{
∫ θn
0 c−1

n τn(Yn(s))ds≤ǫ}ds, (6.7)

S(2)
n,ǫ(t) ≡ kn(t)Eπn

∫ θn

0

c−1n τn(Yn(s))1{Yn(s)/∈Tn}1{
∫ θn
0

c−1
n τn(Yn(s))ds≤ǫ}ds. (6.8)

To boundS(2)
n,ǫ (t) simply note that, using (3.4),

S(2)
n,ǫ(t) ≤ kn(t)Eπn

∫ θn

0

c−1n τn(Yn(s))1{τn(Yn(s))≤rn(εn)}ds (6.9)

≤ kn(t)θn2
−n(1 + o(1))

∑

x∈Vn

c−1n τn(x)1{τn(x)≤rn(εn)}. (6.10)

Takeǫn = c−1n rn(εn) and note that by (2.29), the definition ofcn, and (4.6),

− (nββc(ε))
−1 log ǫn = o(1) and

(
n2(1+c⋆62/α(ε))θn

)−1
≤ ǫn ≤ (n2θn)

−1. (6.11)

Thus, by Lemma 6.2 and a first order Tchebychev inequality, for all large enoughn,

P
(
S(2)
n,ǫ(t) ≥ n2tb−1n (c−1n rn(εn))

1−α(ε)+o(1)
)
≤ n−2K ′′ (6.12)
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for some constantK ′′ > 0. Using the upper bound onǫn of (6.11) and the lower bound on
bn of Lemma 4.4 obtained by combining (4.41) and (4.40),

n2b−1n (c−1n rn(εn))
1−α(ε)+o(1) ≤ n2κn(r

⋆
n)

αn(ε)+o(1)
(
n2θn

)−1+α(ε)+o(1) → 0 (6.13)

asn → ∞ by (4.5). Hence by (6.12), (6.13), and Borel-Cantelli Lemma, for all ǫ > 0,

lim
n→∞

S(2)
n,ǫ(t) = 0, P− almost surely. (6.14)

To deal withS(1)
n,ǫ(t) we further decompose it intoS(1)

n,ǫ(t) = S(3)
n,ǫ(t) + S(4)

n,ǫ(t), where

S(3)
n,ǫ (t) ≡ kn(t)Eπn

∫ θn

0

c−1n τn(Yn(s))1{Yn(s)∈T ◦
n}1{

∫ θn
0 c−1

n τn(Yn(s))ds≤ǫ}ds, (6.15)

S(4)
n,ǫ (t) ≡ kn(t)Eπn

∫ θn

0

c−1n τn(Yn(s))1{Yn(s)∈Tn\T ◦
n}1{

∫ θn
0

c−1
n τn(Yn(s))ds≤ǫ}ds. (6.16)

SinceS(4)
n,ǫ(t) is non zero only if the event{H(Tn \ T ◦n) ≤ θn} occurs,

S(4)
n,ǫ (t) ≤ ǫkn(t)Eπn1{H(Tn\T ◦

n)≤θn}. (6.17)

Using assertion (ii) of Corollary 3.8 withtn = θn as in the proof of Lemma 4.2, we get,
assuming (4.6), that onΩ⋆, for all but a finite number of indicesn,

S(4)
n,ǫ(t) ≤ ǫkn(t)θnr

⋆
nn2

−2nεn(1 + o(1)), (6.18)

Proceeding as in (6.13) to boundbn, (4.6) (see also (4.8)) guarantees that for allǫ > 0

lim
n→∞

S(4)
n,ǫ(t) = 0, P− almost surely. (6.19)

Using next that
∫ θn
0

c−1n τn(Yn(s))1{Yn(s)∈A} =
∑

x∈A c−1n τn(x)ℓ
x
n(θn) for anyA ⊆ Vn,

S(3)
n,ǫ(t) ≤ S(5)

n,ǫ(t) ≡ kn(t)Eπn

∑

x∈T ◦
n

c−1n τn(x)ℓ
x
n(θn)1{∑x∈T◦

n
c−1
n τn(x)ℓxn(θn)≤ǫ}. (6.20)

With the notation of (4.15)-(4.17),

S(5)
n,ǫ(t) = kn(t)

∑

y∈T ◦
n

∫ θn

0

dvhn,y(v)Ey

∑

x∈T ◦
n

c−1n τn(x)ℓ
x
n(θn − v)1{

∑
x∈T◦

n
c−1
n τn(x)ℓxn(θn−v)≤ǫ}.

We further split the sum overx above intox = y andx 6= y. The latter contribution is

S(6)
n,ǫ(t) ≡ kn(t)

∑

y∈T ◦
n

∫ θn

0

dvhn,y(v)Ey

∑

x∈T ◦
n\y

c−1n τn(x)ℓ
x
n(θn−v)1{

∑
x∈T◦

n
c−1
n τn(x)ℓxn(θn−v)≤ǫ}.

Observing that

Ey

∑

x∈T ◦
n\y

c−1n τn(x)ℓ
x
n(θn − v)1{∑x∈T◦

n
c−1
n τn(x)ℓxn(θn−v)≤ǫ} ≤ ǫPy(H(T ◦n \ y) ≤ θn), (6.21)

yields the boundS(6)
n,ǫ(t) ≤ ǫν̃t

n whereν̃t
n is defined in (4.25). Thus by Lemma 4.3, reason-

ing as in the paragraph below (4.86), we get that for allǫ > 0

lim
n→∞

S(6)
n,ǫ(t) = 0, P− almost surely. (6.22)

It remains to boundS(5)
n,ǫ(t)− S(6)

n,ǫ(t). For this we writeS(5)
n,ǫ (t)− S(6)

n,ǫ(t) ≤ S(7)
n,ǫ (t) where

S(7)
n,ǫ(t) ≡ kn(t)

∑

y∈T ◦
n

∫ θn

0

dvhn,y(v)Eyc
−1
n τn(y)ℓ

y
n(θn − v)1{c−1

n τn(y)ℓxn(θn−v)≤ǫ}. (6.23)



AGING IN METROPOLIS DYNAMICS OF THE REM: A PROOF 34

Let us now establish that forb◦n as in (4.36),S(7)
n,ǫ(t) obeys the following

Lemma 6.3. Let the sequencesan, cn, θn be as in Proposition 6.1. Then, under the
assumptions and with the notation of Proposition 4.5,

P
◦ (∣∣S(7)

n,ǫ(t)− E
◦S(7)

n,ǫ(t)
∣∣ > tǫ1/2n2−n(1−ε)/2

)
≤ n−2(1 + o(1)) (6.24)

for all ǫ > 0, and
lim
ǫ→0

lim
n→∞

E
◦S(7)

n,ǫ(t) = 0. (6.25)

Proof of lemma 6.3.The proof closely follows that of Proposition 4.5. We only point out
the main differences. The random variables (4.66) are now replaced by

Xn(y) ≡
∫ θn

0

dvhn,y(v)Eyc
−1
n τn(y)ℓ

y
n(θn − v)1{c−1

n τn(y)ℓ
y
n(θn−v)≤ǫ} (6.26)

and
E
◦S(7)

n,ǫ(t) = kn(t)
∑

y∈T ◦
n
E
◦Xn(y). (6.27)

Proceeding as in (4.72)-(4.74) to deal with the conditionalexpectation and using that
P(τn(x) ≥ rn(εn)) = πn(T

◦
n)(1 + o(1)) (see the paragraph below (4.75)), we get

E
◦S(7)

n,ǫ(t) =
kn(t)(1 + o(1))

πn(T ◦n)

∑

y∈T ◦
n

∫ θn

0

dvhn,y(v)Eyℓ
y
n(θn − v)Eyc−1n τn(y)1{c−1

n τn(y)≤ǫn}

wherePy denotes the law ofτn(y) and whereǫn ≡ ǫn(y) = ǫ/ℓyn(θn − v). Using (6.2) if
ℓyn(θn − v) > ǫe−nββc(ε)(α

−1
c (ε)−1) and using that ifℓyn(θn − v) ≤ ǫe−nββc(ε)(α

−1
c (ε)−1) then

Eyℓ
y
n(θn − v)Eyc−1n τn(y)1{c−1

n τn(y)≤ǫn} ≤ ǫe−nββc(ε)(α
−1
c (ε)−1)c−1n enβ

2/2, (6.28)

we readily see that

E
◦S(7)

n,ǫ(t) ≤ C1t
ǫ
1−αn(ε)− log ǫ

2nβ2

b◦nθnπn(T ◦n)

∑

y∈T ◦
n

∫ θn

0

dvhn,y(v)EyF̃β,ε,ǫ,n(ℓ
y
n(θn − v))

+ C2ǫn
αn(ε)/2e−nβ

2/2kn(t)(πn(T
◦
n))
−1Pπn(H(T ◦n) ≤ θn)

(6.29)

where here and belowCi > 0, i = 1, 2, . . . are constants, and forFβ,ε,n as in (1.41),

F̃β,ε,ǫ,n(z) = Fβ,ε,n(z)
z

log ǫ

nβ2

(
1− log z

nββc(ε)

)

α−1c (ε)− 1− log ǫ
nββc(ε)

+ log z
nββc(ε)

1

{
z>ǫe−nββc(ε)(α

−1
c (ε)−1)

}. (6.30)

By the leftmost inequality of (4.74) and (4.6),̃Fβ,ε,ǫ,n(z) ≤ C3Fβ,ε,n(z). Thus, by (4.36),
the first summand in (6.29) is bounded above by

C4tǫ
1−αn(ε)− log ǫ

2nβ2 . (6.31)

Using (3.20) and proceeding as in (6.4) to boundkn(t), the second summand is bounded
above by

C5te
−n(β2−β2

c (ε))/2κnn
αn(ε)/2+1(r⋆n)

1+αn(ε)+o(1) → 0 (6.32)

asn → ∞ by virtue of (3.6), (1.38), and the assumption thatβ > βc(ε) where0 < ε < 1.
Note in particular thatlimn→∞ αn(ε) = α(ε) < 1. Hence, inserting (6.31) and (6.32) in
(6.29) and passing to the limit

lim
ǫ→0

lim sup
n→∞

E
◦S(7)

n,ǫ(t) = 0, ∀t > 0. (6.33)



AGING IN METROPOLIS DYNAMICS OF THE REM: A PROOF 35

This proves (6.25). Turning to the variance we have, as in (4.68), by independence, that

V
◦(S(7)

n,ǫ (t)) ≡ E
◦(S(7)

n,ǫ(t)− E
◦S(7)

n,ǫ(t))
2 ≤ k2

n(t)
∑

y∈T ◦
n

E
◦(Xn(y))

2. (6.34)

Proceeding as in the proof of (6.29) but using (6.3) and the line below (6.30), we get that

V
◦(S(7)

n,ǫ(t)) ≤ C6t
2 ǫ

2−αn(ε)− log ǫ

2nβ2

(b◦nθn)
2πn(T ◦n)

∑

y∈T ◦
n

(∫ θn

0

dvhn,y(v)EyFβ,ε,ǫ,n(ℓ
y
n(θn − v))

)2

+ C7ǫn
αn(ε)/2e−nββc(ε)

k2
n(t)θ

πn(T ◦n)

∑

y∈T ◦
n

(∫ θn

0

dvhn,y(v)

)2

.

From the bound
∫ θn
0

dvhn,y(v)EyFβ,ε,ǫ,n(ℓ
y
n(θn − v)) ≤ (1 + o(1))

∫ θn
0

dvhn,y(v)θ
αn(ε)
n ≤

(1 + o(1))θ
αn(ε)
n Pπn(H(y) ≤ θn) and (3.18), (4.41), we get that onΩ⋆, for all but a finite

number of indicesn, the first summand is bounded above by

C8t
2ǫ

2−αn(ε)− log ǫ

2nβ2
(
nκnθ

αn(ε)
n (r⋆n)

1+αn(ε)+o(1)
)2

2−n. (6.35)

Using the bound
∑

y∈T ◦
n

(∫ θn
0

dvhn,y(v)
)2 ≤ supy∈T ◦

n
Pπn(H(y) ≤ θn)Pπn(H(T ◦n) ≤ θn),

and proceeding as in (6.32), the second summand is bounded above by

C9t
2ǫnαn(ε)/2

(
n2κn(r

⋆
n)

1+αn(ε)+o(1)
)2

θne
−nβc(ε)(β−βc(ε))2−n. (6.36)

Since by assumptionβ > βc(ε) and 0 < ε < 1, (4.6) (see also (4.8)) enables us to
conclude that onΩ⋆, for all large enoughn,

V
◦(S(7)

n,ǫ(t)) ≤ C10t
2ǫ2−n(1−ε). (6.37)

This yields (6.24) and concludes the proof of the Lemma. �

Arguing as in the proof of Proposition 4.1 thatbn = b◦n(1 + o(1)) onΩ1 ∩ Ω◦ ∩ Ω⋆ for
all large enoughn, it follows from Lemma 6.3 and Borel-Cantelli Lemma that

lim
ǫ→0

lim
n→∞

(
S(5)
n,ǫ(t)− S(6)

n,ǫ(t)
)
= 0, P− almost surely. (6.38)

Collecting (6.14), (6.19), (6.22) and (6.38) yields (6.6).The proof of Proposition 6.1 is
complete. �

7. PROOF OFTHEOREM 1.1 AND THEOREM 1.4

Proof of Theorem 1.4.By Proposition (3.3), Proposition (4.1), Proposition (5.1) and Propo-
sition (6.1), under the assumptions of Proposition (4.1) and Proposition (6.1), Conditions
(B0), (B1), (B2), and (B3) of Theorem 1.3 are satisfiedP-a.s.. It remains to check Condi-
tion (A0), i.e. to prove thatP-a.s., for allu > 0,

lim
n→∞

Pµn(Zn,1 > u) = 0 (7.1)

whereZn,1 =
∫ θn
0

max ((cnr
⋆
n)
−1, c−1n τn(Yn(s))) ds andµn is the uniform measure onVn.

By (3.3) and (3.4)

Pµn(Zn,1 > u) ≤ (1 + o(1))Pπn(Zn,1 > u) +
∑

x∈V ⋆
n
µn(x)Px(Zn,1 > u) (7.2)

≤ (1 + o(1))Pπn(Zn,1 > u) + n−c⋆(1 + o(1)) (7.3)

where the last line is (2.18). Thus (7.1) is an immediate consequence of Proposition (4.1).
One readily checks that the assumptions onan, cn, andθn of the theorem imply that the
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conditions (4.5) and (4.6) of Proposition (4.1) are verified. The proof of 1.4 is complete.
�

Proof of Theorem 1.1.Reasoning as in the proof of Theorem 1.4, we may assume that the
process starts in its invariant measureπn. The main idea behind the proof is now classical.
Suppose that

Pπn (An(t, s)) = Pπn ({Rn ∩ (t, t+ s) = ∅}) + o(1) (7.4)

whereAn(t, s) ≡ {X(cnt) = X(cn(t + s))} and whereRn denotes the range of the
rescaled blocked clock processSb

n(t). Then Theorem 1.1 is a direct consequence of The-
orem 1.4 and the arcsine law for stable subordinators. We refer to Ref. [23] for a detailed
proof of this statement (see the proof of Theorem 1.6 therein) and focus on establishing
(7.4). Fork ≥ 1 andZn,i as in (1.19) set

Bk =
{∑k

i=1 Zn,i < t,
∑k+1

i=1 Zn,i > t+ s
}
. (7.5)

Then by (1.18),{Rn ∩ (t, t + s) 6= ∅} = {∪k≥1Bk}. Furthermore, for anyT > 0,

Pπn

(
∪k>kn(T )Bk

)
≤ Pπn

(
Sb
n(T ) < t

)
−→
n→∞

P
(
Vα(ε)(T ) < t

)
≤ δ (7.6)

where convergence is almost sure in the random environment as follows from Theorem
1.4, and whereδ can be made as small as desired by takingT large enough. Therefore

0 ≤ Pπn ({Rn ∩ (t, t+ s) = ∅})− Pπn

(
∪1≤k≤kn(T )Bk

)
≤ δ. (7.7)

Note that the eventBk is non empty if and only if the incrementZn,k+1 straddles over
the interval(t, t + s). To show that (7.4) holds it now suffices to establish the following
two facts:
Fact 1. Almost surely in the random environment, with overwhelmingprobability, non-
empty eventsBk, k ≤ kn(T ), are produced by visits of the processYn to the setT ◦n and,
more precisely, by (many) visits of the process to one and thesame element ofT ◦n , no
other element ofT ◦n being visited in the time interval(t, t+ s). This implies thatP-a.s.

Pπn

(
An(t, s) ∩ {∪1≤k≤kn(T )Bk}

)
≥ Pπn

(
∪1≤k≤kn(T )Bk

)
+ o(1) (7.8)

Fact 2. If Bk andB′k, 1 ≤ k 6= k′ ≤ kn(T ), are two non-empty events then, almost surely
in the random environment they are produced by visits to two distinct elements ofT ◦n with
overwhelming probability. This implies thatP-a.s.

Pπn

(
An(t, s) ∩ (∩1≤k≤kn(T )Bc

k)
)
→ 0, n → ∞ (7.9)

Combining (7.7), (7.8), and (7.9) then establishes that

|Pπn (An(t, s))− Pπn ({Rn ∩ (t, t+ s) = ∅})| ≤ δ + o(1) (7.10)

which is tantamount to (7.4).
The proofs of Facts 1 and 2 mostly use information already obtained in the course of the

verification of Conditions (B1)-(B3). We present them succinctly below, beginning with
the proof of Fact 1. Fix0 < T < ∞ and assume that the assumption of Proposition (4.1)
are satisfied. LetHk(A) = inf{t ≥ θnk | Yn(t) ∈ A} be the first hitting time ofA ⊆ Vn

after timeθnk. Note first thatBk = Bk ∩ {Zn,k+1 > s} and thus, by (4.10),

Pπn

(
∪1≤k≤kn(T )(Bk ∩ {Hk(Tn) > θn})

)
= 0 (7.11)

for all large enoughn. Note next that reasoning as in (6.17)-(6.19), onΩ◦ ∩ Ω⋆,

Pπn

(
∪1≤k≤kn(T )(Bk ∩ {Hk(Tn \ T ◦n) ≤ θn})

)
≤ kn(T )Pπn (Hk(Tn \ T ◦n) ≤ θn) → 0
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asn → ∞ by virtue of (4.6). Hence onΩ◦ ∩ Ω⋆, for all large enoughn,

Pπn

(
∪1≤k≤kn(T )Bk

)

=Pπn

(
∪1≤k≤kn(T )(Bk ∩ {Hk(T

◦
n) ≤ θn} ∩ {Hk(Tn \ T ◦n) > θn)}

)
+ o(1).

(7.12)

This means that forBk to be non-empty, the incrementZn,k+1 must be produced by visits
of Yn to T ◦n , andT ◦n only. To prove that all these visits, if there are several of them, must
be to a single vertex it suffices to show that asn → ∞,

pn ≡ Pπn

(
∪1≤k≤kn(T )(Bk ∩ {Hk(T

◦
n) ≤ θn} ∩ Cn(Yn(Hk(T

◦
n)))

)
→ 0, (7.13)

where

Cn(Yn(Hk(T
◦
n))) ≡

{
inf{t > Hk(T

◦
n) | Yn(t) ∈ T ◦n \ Yn(Hk(T

◦
n))} ≤ θn

}
. (7.14)

Now,

pn = Pπn

(
∪1≤k≤kn(T ) ∪x∈T ◦

n
(Bk ∩ {Hk(T

◦
n) ≤ θn, Yn(Hk(T

◦
n)) = x} ∩ Cn(x)

)

≤ ν̃T
n

(7.15)

where ν̃T
n is defined in (4.25) and bounded in Lemma 4.3. Reasoning as in the para-

graph below (4.86) then yields that under the assumptions (4.5) and (4.6), onΩ◦ ∩ Ω⋆,
limn→∞ ν̃T

n = 0. Fact 1 is now proved.
Fact 2 will be established if we can prove that asn → ∞,

p̄n ≡ Pπn

(
∪1≤k≤kn(T ) ({Hk(T

◦
n) ≤ θn} ∩ Dn,k(Yn(Hk(T

◦
n))))

)
→ 0, (7.16)

where

Dn(Yn(Hk(T
◦
n))) ≡

{
inf{t > (k + 1)θn | Yn(t) = Yn(Hk(T

◦
n))} ≤ θnkn(T )

}
. (7.17)

To prove this observe that the event in (7.16) can be written as

∪x∈T ◦
n
∪y∈T ◦

n
({Hk(T

◦
n) ≤ θn, Yn(Hk(T

◦
n)) = x} ∩ {Yn(θn(k + 1)) = y} ∩ Dn,k(x))

Thus, by the Markov property we have, using the notation of (4.15)-(4.17) and the bound
Py (H(x) ≤ θn(kn(T )− (k + 1))) ≤ Py (H(x) ≤ θnkn(T )),

p̄n ≤
∑

1≤k≤kn(T )

∑

x∈T ◦
n

∑

y∈T ◦
n

∫ θn

0

dvhn,x(v)Px (Yn(θn − v) = y)Py (H(x) ≤ θnkn(T )) .

To proceed, we split the domain of integration into[0, θn − κn)∪ [θn − κn, θn]. Using that
by Proposition 3.3, onΩ1, for all n large enough,Px (Yn(θn − v) = y) = πn(y)(1+ o(1))
for all v ∈ [0, θn − κn), the contribution coming from this domain is at most

(1 + o(1))
∑

1≤k≤kn(T )

∑

x∈T ◦
n

∫ θn

0

dvhn,x(v)
∑

y∈T ◦
n

πn(y)Py (H(x) ≤ θnkn(T )) (7.18)

≤ (1 + o(1))kn(T )Pπn(H(T ◦n) ≤ θn) sup
y∈T ◦

n

Pπn(H(y) ≤ θnkn(T )) (7.19)

≤ (1 + o(1))
(
θnkn(T )r

⋆
nn2

−n)2 2nπn(T
◦
n) (7.20)

where we used (3.20) withtn = θn (which is licit as we many times saw) and (3.18) with
tn = θnkn(T ), which is licit provided thatθnkn(T )r⋆nn2

−n → 0 asn → ∞, and this is
guaranteed by our assumptions onan. Indeed, proceeding as in the proof of Proposition
4.1 (see (4.81) and the paragraph above) we get that onΩ◦ ∩Ω⋆ ∩Ω1, for large enoughn,

θnkn(T )r
⋆
nn2

−n ≤ κn(r
⋆
n)

1+αn(ε)+o(1)n2−(1−ε)n → 0 (7.21)
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asn → ∞ for all 0 < ε < 1. Since furthermore2nπn(T
◦
n) = (1 + o(1))2(1−ε)n (n2θn)

α(ε)

by (4.4), (3.3), and (2.20), and we get that onΩ◦ ∩ Ω⋆ ∩ Ω1, (7.20) is bounded above by

(1 + o(1))
(
κn(r

⋆
n)

1+αn(ε)+o(1)n
)2 (

n2θn
)α(ε)

2−(1−ε)n, (7.22)

and by (4.6) this decays to zero asn → ∞ for all 0 < ε < 1.
Consider next the domain[θn − κn, θn] and note that since

∑

y∈T ◦
n

Px (Yn(θn − v) = y)Py (H(x) ≤ θnkn(T )) ≤ 1 (7.23)

the corresponding contribution is bounded above bykn(T )Pπn (θn − κn ≤ H(T ◦n) ≤ θn).
By the upper bound of (3.6) and the lower bound of (3.5), onΩ⋆, for all but a finite number
of indicesn, this is in turn bounded above by

n1+2αn(ε)θ−(1−α(ε))n κ2
n(r

⋆
n)

1+αn(ε)+o(1) → 0 (7.24)

asn → ∞, where we again used that2nδn = (n2θn)
α(ε) by (4.4) whereas0 < α(ε) < 1

by assumption; the final convergence then follows from (4.5). Combining the conclusions
of (7.21) and (7.24) we get that onΩ◦ ∩ Ω⋆ ∩ Ω1,

lim
n→∞

p̄n = 0. (7.25)

This concludes the proof of Fact 2. The proof of Theorem 1.1 isnow complete. �

8. APPENDIX: PROOF OFTHEOREM 1.2 AND THEOREM 1.3

Proof of Theorem 1.2.The proof closely follows that of Theorem 1.2 of Ref. [13]. Through-
out we fix a realizationω ∈ Ω of the random environment but do not make this explicit in
the notation. We set

Ŝb
n(t) ≡ Sb

n(t)− Zn,1. (8.1)

Condition (A0) ensures thatSb
n − Ŝb

n converges to zero, uniformly. Thus we must show
that under Conditions (A1), (A2), and (A3),

Ŝb
n ⇒J1 Sν . (8.2)

For this we rely on Theorem 1.1 of Ref. [13]. (This result is itself a specialized form of
Theorem 4.1 of Ref. [20] suited to the present setting.) Namely, we want to show that
Conditions (A1), (A2), and (A3) imply the conditions of Theorem 1.1 of Ref. [13].

To this end let{Fn,i, n ≥ 1, i ≥ 0} be the array of sub-sigma fields ofFY defined
(with obvious notation) throughFn,i = σ (Yn(s), s ≤ θni), for i ≥ 0. Note that for each
n andi ≥ 1, Zn,i is Fn,i measurable andFn,i−1 ⊂ Fn,i. Next observe that by the Markov
property and the fact that, for alli ≥ 1 andy ∈ Vn, Py(Zn,i > u) = Py(Zn,1 > u),

Pµn

(
Zn,i > u

∣∣Fn,i−1
)
=

∑

y∈Vn

1{Yn((i−1)θ)=y}Py(Zn,1 > u). (8.3)

In view of this, (1.21), (1.22), and (1.23)
kn(t)∑

i=2

Pµn (Zn,i > u | Fn,i−1) = νY,t
n (u,∞), (8.4)

and in view of (1.24)
kn(t)∑

i=2

[Pµn (Zn,i > u | Fn,i−1)]
2 = σY,t

n (u,∞). (8.5)
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From (8.4) and (8.5) it follows that Conditions (A1) and (A2)of Theorem 1.2 are exactly
the conditions of Theorem 1.1 of Ref. [13]. Similarly Condition (A3) is condition (1.9).
Therefore the conditions of Theorem 1.1 of Ref. [13] are verified, and sôSb

n ⇒J1 Sν in
D([0,∞)) whereSν is a subordinator with Lévy measureν and zero drift. �

The proof of Theorem 1.3 centers of the

Proposition 8.1. Assume that Condition (B1) is satisfied. Then, choosingθn ≥ κn, the
following holds for all initial distributionsµn: for all t > 0, all u > 0, and allǫ > 0,

Pµn

(∣∣νY,t
n (u,∞)− νt

n(u,∞)
∣∣ ≥ ǫ

)
≤ 5ǫ−2

[
ρn

(
νt
n(u,∞)

)2
+ σt

n(u,∞)
]
, (8.6)

and
Pµn

(
σY,t
n (u,∞) ≥ ǫ

)
≤ ǫ−1(1 + ρn)σ

t
n(u,∞) . (8.7)

Proof of Proposition 8.1.We assume throughout thatθn ≥ κn. To prove (8.7), simply
note that by a first order Tchebychev inequality

Pµn

(
σY,t
n (u,∞) ≥ ǫ

)
≤ ǫ−1kn(t)

∑
y∈Vn Eµn(π

Y,t
n (y)) [Qu

n(y)]
2 (8.8)

≤ ǫ−1(1 + ρn)σ
t
n(u,∞), (8.9)

where we used in the last line that by (1.30),

|Eµn(π
Y,t
n (y))− πn(y)| ≤ ρnπn(y). (8.10)

Turning to (8.6), a second order Chebychev inequality yields

Pµn

(∣∣νY,t
n (u,∞)− νt

n(u,∞)
∣∣ ≥ ǫ

)

≤ ǫ−2Eµn

[
kn(t)

∑
y∈Vn

(
πY,t
n (y)− πn(y)

)
Qu

n(y)
]2

= ǫ−2
∑

x∈Vn
∑

y∈Vn Q
u
n(x)Q

u
n(y)

∑kn(t)−1
i=1

∑kn(t)−1
j=1 ∆ij(x, y) (8.11)

where

∆ij(x, y) ≡ Pµn (Yn(iθn) = x, Yn(jθn) = y) + πn(x)πn(y)

− πn(y)Pµn (Yn(iθn) = x)− πn(x)Pµn (Yn(jθn) = y) .
(8.12)

Using again (1.31) yields

|∆ij(x, y)| ≤





ρn(4 + ρn)πn(x)πn(y), if i 6= j,

(1 + ρn)πn(x) + (1 + 2ρn)π
2
n(x), if i = j and x = y,

0 else.

(8.13)

Thus (8.11) is bounded above by

ǫ−2ρn(4 + ρn)
[
kn(t)

∑

y∈Vn

πn(y)Q
u
n(y)

]2
+ ǫ−2(2 + 3ρn)kn(t)

∑

y∈Vn

πn(y) [Q
u
n(y)]

2 (8.14)

Since by assumptionρn ↓ 0 asn ↑ ∞, (8.14) is tantamount to the right-hand side of (8.6).
Proposition 8.1 is proven. �

Proof of Theorem 1.3.The proof of Theorem 1.3 is now immediate: Condition (B2) com-
bined with the conclusions of Proposition 8.1 implies both conditions (A1) and (A2), and
Condition (B3) combined with (8.10) implies Condition (A3). �
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V. GAYRARD , A IX MARSEILLE UNIVERSITÉ, CNRS, CENTRALE MARSEILLE, I2M UMR 7373,
13453, MARSEILLE, FRANCE

E-mail address: veronique.gayrard@math.cnrs.fr


	1. Introduction
	1.1. Main result
	1.2. Convergence of continuous time clock processes
	1.3. Application to Metropolis dynamics of the REM

	2. Level sets of the REM's landscape: the Top and other sets
	3. Properties of the exploration process Yn
	3.1. Spectral gap and mixing condition
	3.2. Hitting time for the stationary chain
	3.3. On hitting the top starting in the top.
	3.4. Rough bounds on local times.

	4. Verification of Condition (B1)
	4.1. Preparations.
	4.2. Properties of the sequences bn and bn.
	4.3. Concentration of n, t(u,).
	4.4. Proof of Proposition 4.1.

	5. Verification of Condition (B2)
	6. Verification of Condition (B3)
	7. Proof of Theorem 1.1 and Theorem 1.4
	8. Appendix: Proof of Theorem 1.2 and Theorem 1.3
	References

