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AGING IN METROPOLIS DYNAMICS OF THE REM: A PROOF
VERONIQUE GAYRARD

ABSTRACT. We study the aging behavior of the Random Energy Model (REM)ving
under Metropolis dynamics. We prove that a classical tweetcorrelation function con-
verges almost surely to the arcsine law distribution fuorcthat characterizes activated
aging, as predicted in the physics literature, in the opthoanain of the time-scale and
temperature parameters where this result can be expectaaldo In the course of the
proof we establish that a certain continuous time clock @ssc after proper rescaling,
converges almost surely to a stable subordinator, impgoupon the result of Refl_[15]
where a closely related clock is shown to converge in prdityabinly, and in a restricted
region of the time-scale and temperature parameters. Tuonarescaling involved in
this convergence is controlled at the fine level of fluctuaioAs a byproduct, we refine
and prove a conjecture made in Ref.|[15].

1. INTRODUCTION

While there is as yet no established theory for the desonpif glasses, a consensus
exists that this amorphous state of matter is intrinsicdylgamical in nature [19]) [29],
[26]. Measuring suitable two-time correlation functiondeed reveals that glassy dynam-
ics are history dependent and dominated by ever sloweriérass they areaging The
realization in the late 80’s thatean-fieldspin glass dynamics could provide a mathemati-
cal formulation for this phenomenon sparked renewed istémanodels, such as Derrida’s
REM andp-spin SK models[[16],[[17], whose statics had, until thergrbthe main fo-
cus of attention [11]. Despite this, Bouchaud’s phenomeagiohltrap modeldfirst took
the center stage as they succeeded in predicting the paweatdcay of two-time correla-
tion functions observed experimentally, even though thdysd at the cost of an ad hoc
construction and drastically simplifying assumptidns|[102].

It was not until 2003 that a trap model dynamics was showngoltéor the microscopic
Glauber dynamics of a (random) mean-field spin glass Hamigdtg namely, the REM en-
dowed with the so-calleRandom Hoppinglynamics and observed on time-scales near
equilibrium [4/5] 6]. Quite remarkably, the predicted ftinnal form of two-time correla-
tion functions was recovered. Rapid progress followed tweensuing decade, beginning
with [7]. The optimal domain of temperature and time-scalese this prediction applies
was obtained in Ref. [22] (almost surely in the random emriment except for times scales
near equilibrium where the results hold in probability grand these results were partially
extended to the-spin SK models [3],[[13].

The choice of the Random Hopping dynamics, however, cléavigred the emergence
of trap models. Just as in trap model constructions, itedtajies are those of a simple
random walk on the underlying graph, and thus, do not depanth® random Hamil-
tonian. This is in sharp contrast wiMetropolis[30] dynamics, a choice heralded in the
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physic’s literature ashe natural microscopic Glauber dynamics|[27], whose trajeeso
are biased against increasing the energy. This dependenttee dandom Hamiltonian
makes the analysis of the two-time correlation functionglmisarder. This problem was
first tackled in[[24] were a truncated REM is considered, andtaral two-time correlation
function is proved to behave as in the Random Hopping dyngnnche same, optimal
range of time-scales and temperatures for which this résldis almost surely in the ran-
dom environment. In the present paper, we free ourselveseo$itmplifying truncation
assumption and prove that the same result holds true almagdy gor the full REM. A
recent paper [15], by establishing the convergence of abeecclock process, suggested
that this might be the case but failed short of proving agthg: sole clock convergence,
indeed, does not suffice to deduce aging, a property of etiwal functions.

1.1. Main result. Let us now specify the model. Denote by, = {—1,1}" the n-
dimensional discrete cube and 8yits edge set. The Hamiltonian (or energy) of the REM
is a collection of independent Gaussian random variab®sx), z € V,,), satisfying
EH,(r) =0, EH?(z)=n. (1.1)
The sequencéH,,(x),z € V,), n > 1, is defined on a common probability space denoted
by (2, F,IP). OnV),, we consider the Markov jump process,,(t), ¢ > 0) with rates
1 ,
(2, y) = —e_B[H”(y)_H”(“”)ﬁ, if (z,y) € &, (1.2)
n

and\,(z,y) = 0 else, werer+ = max{a, 0}. This defines the single spin-flip continuous
time Metropolis dynamics of the REM at temperate > 0. Note that the rates are
reversible with respect to the measure that assignstd/, the mass

To(z) = exp{—FHn(2)}. (1.3)

When studying aging the choice of the observation timeeseg] is all-important. Given
0<e<land0d < f < oo, we lete, = ¢,(8, ) be the two-parameter sequence defined
by

2°"P(71,(z) > ¢,) = 1. (1.4)
Gaussian tails estimates yield the explicit form

¢ = exp {npBB:(e) — (1/2a(e)) (log(82(e)n/2) + log 4w + o(1)) } (1.5)

where
Be(e) = Ve2log2, (1.6)
a(e) = Be(e)/B. (1.7)

A classical choice of two-time correlation function is thelpability C,, (¢, s) to find the
process in the same state at the two endpoints of the timeahfe, ¢, ¢, (¢ + s)],

Cu(t,s) = P, (Xnlcnt) = Xp(en(t+s))), t,s>0. (1.8)

HereP,, denotes the law aX,, conditional onF (i.e. for fixed realizations of the random
Hamiltonian) when the initial distribution,,, is the uniform measure ow,.

Theorem 1.1. Forall 0 < ¢ < 1 and all g > S.(¢), forall ¢t > 0 ands > 0, P-almost
surely,

- H/(t+s)
lim P, (X,(cnt) = Xp(cn(t+s))) = W/ w1 (1—u) ) du. (1.9)
0

n—00 T
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Remark.We in fact prove the more general statement (1.9) hdiaganyn-dependent
sequences of the forth< ¢, < 1—B+/n togn+c’n~tlogn whered < ¢, " < oo are
constants, that satistym,, .., = ¢, 0 < ¢ < 1. Relaxation to stationarity is known to
occur, to leading order, on time-scatgsof the form [1.5) withe,, = 1 [21]. At the other
extremity, a behavior known as extremal aging is expectexghémacterize the process on
times scales that are sub-exponential in the volume andedkefimough sequences that
decay to 0 slowly enough [14],][8]. This will be the object dibdlow up paper.

As in virtually all papers on aging, the proof of Theorem Zllas on a two-step scheme
that seeks to isolate the causes of aging by writing the peooé interest,X,,, as an
exploration proceseme-changed by (the inverse oftbock processAging is then linked
to the arcsine law for stable subordinators through the@gance of the suitably rescaled
clock process to an-stable subordinatof, < o < 1. This is provided that the two-time
correlation function at hand can be brought into a suitabitection of the clock. Both
steps heavily depend on the properties of the exploratioogss.

While this scheme offers the methodological underpinnioigghe analysis of aging,
two distinct ways of implementing it, throughscreteor continuoudime objects, respec-
tively, have emerged from the literature (we refer to thentpapers [24]/[25], and [15]
for in-depth bibliographies). The first arose from the stoflynodels whose exploration
process can be chosen as the simple random walk on the undsghaph. As mentioned
earlier, this includes all Random Hopping dynamics and rsgweap models (e.g. on the
complete graph or o?). In physically more realistic dynamics the discrete schenay
quickly become intractable. As shown in Ref. [24] for Metotip dynamics of a trun-
cated REM, the associated exploration process is itselfagarocess that presents the
same complexity as the original dynamics. A similar sitoratarises when considering
asymmetric trap models d&’. Initiated in that context, the continuous scheme consists
in choosing a (now continuous time) exploration processttimics the simple random
walk.

Prescribing the exploration process completely detersiine clock process. Clearly,
having efficient tools available to prove their convergetastable subordinators is es-
sential. Such tools were provided in Réf.[23] andl [13] faalete time clock processes
in the general setting of reversible Markov jumps processeandom environment on
sequences of finite graphs and, more recently, for bothetis@nd continuous time clock
processes of similar Markov jumps processes on infinitelgra@5]. These tools both
allowed one to improve all earlier results on the Random Hgpplynamics of mean-
field models([22], [1B], [[14], turning statements previgusbtained in law into almost
sure statements in the random environment, and to obtafirshaging results for several
two-time correlation functions of asymmetric trap modelAsr25].

In Sectior_1.R below we fill the gap left by continuous timeatigrocesses in the case
of sequences of finite graphs and, thus, extent the resuRefo{13] to that setting. This
is perhaps no more than an exercise but the results we p@$atreni 1.2 and Theorem
[1.3) are the cornerstone of our approach and, hopefullytlefrgpapers to come. We
close this introduction out in Sectign 1.3 by stating a clpc&cess convergence result
for Metropolis dynamics of the REM (Theordm 11.4) that is & Heart of the proof of
Theoreni 11.

1.2. Convergence of continuoustime clock processes. We now enlarge our focus to the
following abstract setting. Let,,(V,,, £,) be a sequence of loop-free graphs with set of
vertices),, and set of edgeS,. A random environmernis a family of possibly dependent



AGING IN METROPOLIS DYNAMICS OF THE REM: A PROOF 4

positive random variable$r, (z),z € V,,). The sequencér,(z),z € V,),n > 1, is de-
fined on a common probability space denotedQy.F, P). On)),, we consider a Markov
jump process(X,,(t),t > 0), with initial distributiony,, and jump rateg\, (z, y)).yev,
satisfying\,,(y,x) = 01if (z,y) ¢ &, and

To(X) A (2, y) = T (W) Ay, ) if (2,y) € &,y x #y. (1.10)
ThusX,, is reversible with respect to the (random measure) thagas$sbz < V), the mass
T.(x). To X,, we associate aexploration proces%’,. This is any Markov jump process,
(Y,(t),t > 0), with state spac¥®,, initial distribution,,, and jump rategh, (z, Y))zyevn
chosen such thaX,, andY,, have the same trajectories, that is to say,

An(®,y) _ A, y) (@, y) € En, (1.11)

An(2) An(2)

whereX;l(x) and),!(z) are, respectively, the mean holding times aff Y,, and X,

(@)= > Aa(z,y), (1.12)
y:(z,y)€ER
M@= D Malay). (1.13)
y:(z,y)€ER
ThenX,, andY,, are related to each other through the time change
X, (t) = Yu(SS(®),  t>0, (1.14)

wheregg denotes the generalized right continuous inverss,ofand S,,, the so-called
continuous time clock process given by

Sp(t) = /0 t)\gl(Yn(s))Xn(Yn(s))ds, t>0. (1.15)

Note that there is considerable freedom in the choice oftpieation procesy’,. We
will come back to this issue at the end of this subsection andd, for the time being, on
the analysis of the asymptotic behavior of the general cpyokess[(1.15).

For future reference, we denote [ the o-algebra generated by the proces¥gs
We write P for the law of the process,, conditional on ther-algebrar, i.e. for fixed
realizations of the random environment. Likewise we &athe law of X,, conditional on
F. If the initial distribution, ., has to be specified we wri®e,, and P,,. Expectation
with respect td®, P, , andP,, are denoted b, £, , and&,, , respectively.

Our main aim is to obtain simple and robust criteria for thevewgence of the (suit-
ably rescaled) clock proceds (1.15) to a stable subordin&iace the clock is a doubly
stochastic process, the desired convergence mode musttiéesh We will ask whether
there exist sequences andc, that make the rescaled clock process

Sut) = ¢, Sulant), >0, (1.16)

converge weakly, as 1 oo, as a sequence of random elements in Skorokhod’s space
D((0,00]), and strive to obtairP-almost sure results in the random environment since
such results (also referred to @genchedl contain the most useful information from the
point of view of physics.

As for discrete time clock processes|[23],/[13], the driviogce behind our approach is
a powerful method developed by Durrett and Resnick [20] aw@ifunctional limit theo-
rems for sums of dependent variables. Clearly this methed dot cover the case of our
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continuous time clock processes. The simple idea (alreegBept inl[25] ) is to introduce
a suitable “blocking” that turns the rescaled clock prodé@sEd) into a partial sum process
to which Durrett and Resnick method can now be applied. Fentle introduce a new
scaleg,,, and set

kn(t) = [ant/0y]. (1.17)
Theblocked clock process?(t), is defined through
kn (£)
Sht) =Y Zns (1.18)
i=1
where, for each > 1,
Zoi =0 S (@) (@) [ (0ui) — (8,00 — 1))], (1.19)
€V
and where, foreach ¢ V,,
t
ln(t) = / Liy, (s)=2)ds (1.20)
0

is the local time atr. The next theorem gives sufficient conditions fjr to converge.
These conditions are expressed in terms of a small numbegyoflantities. For each
t>0,let

kn(t)—1

o) =k () D Livao—y (1.21)
=1

be the empirical measure df) constructed from the sequen@g, (i6),: € N). Fory € V),
andu > 0, denote by

Qn(y) = Py(Zy1 > u) (1.22)
the tail distribution of the aggregated jumps whep (equivalentlyy;,) starts iny. Using
these quantities, define the functions

vot(u,00) = ka(t) Y 7 (y)Qu(y), (1.23)
YEVn

ot (u,00) = ka(t) > mrt(y) [Qu(y). (1.24)
YEVn

Observe that the sequence of measufesas well as the sequence of functidp(y), vy €
V,, are random variables on the probability sp&eF, P) of the random environment.
Thus, the functions)** ands )" also are random variables on that space.

We now formulate four conditions for the sequerit’eto converge to a subordinator.
These conditions refer to a given sequence of initial distronsy.,,, given sequences of
numbersz,,, ¢, andd,, as well as a given realization of the random environment.

Condition (A0). For allu > 0,
lim P, (Z,1 > u) =0. (1.25)

n—o0

Condition (A1). There exists a-finite measure on (0, co) satisfying[,” (zA1)v(dz) <
oo and such that for all continuity pointsof the distribution function of, for all ¢t > 0
and allu > 0,

P, (vt (u,00) — tr(u,00)| <€) =1—0(1), Ve>0. (1.26)
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Condition (A2). For allu > 0 and allt > 0,

P, (or'(u,00) <€) =1—=0(1), Ve>0. (1.27)

Condition (A3). For allt > 0,
lim lim sup k&, ( E,, Zn1liz <) = 0. 1.28
in nTOOP yezvn Ey(Zn114z,1<e}) (1.28)

Theorem 1.2. For all sequences of initial distributions, and all sequences,, ¢, and
1 <0, < a, forwhich Conditions (A0), (A1), (A2), and (A3) are verifiedherP-almost
surely or inPP-probability, the following holds w.r.t. the same converge mode:

St =, S, (1.29)

wheresS, is the Lleévy subordinator with &vy measure and zero drift. Convergence holds
weakly on the spacB([0, o)) equipped with the Skorokhof-topology.

Remark.Note that the theorem is stated for tlleckedprocesss? rather than the original
processS,, (defined in[(1.16)). This may falsely appear as an undesiredohsequence of
our techniques. We stress that for applications to corogldtinctions, one needs state-
ments that are valid in the strong topology whereas forming blocks is needed in order to
make sense of writing; convergence statements in the setting of continuous tiowksl

Remark.Also note that convergence 6f in the strong/; topology immediately implies
the strictly weaker result that, converges to the same limit in thié; topology.

As for discrete time clocks of Ref. [13], our next step cotssis reducing Conditions
(A1) and (A2) of Theorem 112 to (i) enixing conditionfor the chainY;,, and (ii) alaw
of large numbergor the random variable®,,. Again we formulate three conditions for
a given sequence of initial distributions,, given sequences,, ¢,, andd,,, and a given
realization of the random environment.

Condition (B0). Denote by, the invariant measure df,,. There exists a sequence
k, € N and a positive decreasing sequepggesatisfyingp,, | 0 asn 1 oo, such that, for
all pairsz,y € V,,, and allt > 0,

[Py (Yo(t + 5n) = y) — m(y)| < pumn(y)- (1.30)

Condition (B1). There exists a measureas in Condition (Al) such that, for all > 0
and allu > 0,

v (u,00) = k() Y 7 (1)Qu(y) — tv(u, 00), (1.31)
YEVn
Condition (B2). For allt > 0 and allu > 0,
ol (u,00) = k() Y ma(y) [Qu(y)]” — 0. (1.32)
YyEVn

Condition (B3). For allt > 0,
lim lim sup k&, (t) Z T (Y) Ey(Zn1l{z,.<a) = 0. (1.33)

<0 nfoo yeY,
n

Theorem 1.3. Assume that for all sequences of initial distributignsand all sequences
Qp,y Cny Ky, @Ndk, < 0, < a,, Conditions (A0), (B0O), (B1), (B2), and (B3) hdkdalmost
surely, respectively ifP-probability. Then, as in[(1.29)S°* =, S,, P-almost surely,
respectively irP-probability.
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Theorem 1B is our key tool for proving convergence of blackéock processes to
subordinators. It is of course essential for the successdtoategy that the convergence
criteria we obtained be tractable. Going backto (IL.11) ws thow ask, in this light, how
best to choose the exploration proc&ss

A tentative answer to this question is to mimic the explamaprocess of the Random
Hopping dynamics, which means chods$gesuch that its invariant measure,, is “close”
to the uniform measure and its mixing time,, is short compared to that of the pro-
cessX,. The following class of jump rates, inspired from an ingeisiehoice made in
Ref. [15], is intended to favor the emergence of these ptgserGiven a fresh sequence
n, > 0, set

(2, y) = max(ny,, 7, (2)) A\ (2, ). (1.34)
One easily checks that (1]11) is verified, thiatis reversible with respect to the measure

min (nn, Tn(l‘))
> wcy, Min (nn, Tn (:1:))
and that the clocK (1.15) becomes

Sn(t) = /Ot max (7, 7,(Yn(s)))ds. (1.36)

Let us discuss the role of, on the example of Metropolis dynamics of REM. When
n, = 0, m, nicely reduces to the uniform measure but the mixing time of the resulting
exploration process turns out to be of the same order as théf othat is to say, of the
order ofmax(, ,(min (7,,(z), 7,(y))) ! = efnvies2(i+ol) This |eaves little hope that the
conditions of Theorern_ 11.3 can be verified. A moment’s thowglffices, however, to see
that such a large mixing time is a side effect of the symméittii@® Hamiltonian[(1.11). By
breaking this symmetry, the termax (7, 7,,(x)) in (1.34) places an,-dependent cap on
kn (see Section 3l1). One is then left to chogsesmall enough so that, remains close
to the uniform measure but large enough so thais kept as small as needed. A similar
strategy should hopefully apply to more general mean-figid glass Hamiltonians.

7Tn(x) = IL{77n>0} + |Vn|711{nn:0}7 T € Vy, (135)

Remark.We stress that the sole convergence of the clock processidossffice to deduce
aging, namely, the specific power law decay of the two-tinreatation function. One still
has to solve the problem of reducing the behavior of the ime-torrelation function, as
n — oo, to the arcsine law for stable subordinators, and this requnore information
on the exploration process than needed to only prove coemeegof the clock. Notice
also that unlike the discrete time clock process, the cantis time clock process is not a
physical time. It thus has no physical meaning on its own.

1.3. Application to Metropolis dynamics of the REM. From that point onwards we
focus on Metropolis dynamics of the REM (ske [1[1)4(1.2jtsd in the uniform measure
onV,. Applying the abstract results of Sectibnll.2 enables ustogiP-almost sure
convergence of the blocked clock procegst), defined in[(1.18), when the continuous
time clock process,, (), given by [1.15), is chosen as [0(1l.36).

To sate this result we must specify several quantities: énameter,, the time-scales,
a, andc,, and the block length,,, entering the definitions of,,(¢) and.S®(¢). We begin
by defining a sequence;, that is ubiquitous throughout the rest of the paper: given0
and a constant, > 1 + log 4, we letr’ = r, (53, ¢,) be the solution of

n“P(r,(z) >r;) = 1. (1.37)
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In explicit form

rr = exp {ﬁ\/m ( — ;‘Zgllziz (14 0(1)))} : (1.38)

We now takey, = ()" in (.32) which, combined with (11.2), yields

n

Lo )

if (z,y) € En, (1.39)

and\,(x,y) = 0 else. The physical observation time-scalg,is chosen as in_(1.4). Itis
naturally the same as in the Random Hopping dynamics. Ondh&ary, the definition
of the auxiliary time-scaley,,, contrasts sharply with the simple choigce= 2" made in
the Random Hopping dynamics. We here must take

= 27" /b, (1.40)
where the sequendg is defined as follows. Recalling (1.6) and (1.7), define

log x

Fye(a) = 27207 (1 - ng}i@))’l, x>0, (1.41)
wherea,(¢) = (nf?)"!logc,, thatis, in view of [1.b),
an(2) = a(e) — sl rogdntoll) (1.42)
Further introduce the random set
T, ={z €V, | lz) > cu(n°0,) '} . (1.43)
Then, for/Z as in [1.20), we set
b = (0nma(T0)) ™" Y En, [Faen, (2(02))] (1.44)
€Ty

It now only remains to choose the block lendgth (The notationr,, < y, means that
the sequences, > 0 andy,, > 0 satisfyz, /y, — 0 asn — c0.)

Theorem 1.4. Given0 < ¢ < 1 let§,, be any sequence such that

ﬁ(e) logry < logf, < n (1.45)

and letc, anda,, be as in[[1.4) and (1.40)-(1.44), respectively. Then, fobak ¢ < 1
and all g > g.(e), P-almost surely,

SZ =1 Voz(a) (146)
whereV, . is a stable subordinator with zero drift andizy measure defined through
v(u,00) =u "y >0, (1.47)

and where=; denotes weak convergence in the spadg), o)) of cadlag functions
equipped with the Skorokhol-topology.

We again emphasize (see the remark below Theorem (1.2)}hbat, convergence
statement of Theorem 1.4 is crucial to the control corretafunctions. Of course, The-
orem[1.4 implies the weaker result that the original (norckdal) clock process (1.16)
converges to the same limit in thié; topology of Skorokhod. Such a result was proved in
Ref. [15] (for the clock obtained by taking, = 1 in (1.38)) albeit only inP-probability
and in the restricted domain of parametérs> (.(¢) and1/2 < ¢ < 1. As shown in
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[24] (see lemma 2.1) the graph structure of thel$eivhen1/2 < ¢ < 1 reduces to a col-
lection of isolated vertices (no elementBf has a neighbor iff;,) and this considerably
simplifies the analysis.

Let us now examine the sequerigeintroduced in[(1.40) and defined in (1144). This
sequence is a priori random in the random environment aneilson a sequenag,, that
can itself be chosen within the two widely different boun@i§lod5). The next proposition
provides upper and lower bounds gnthat are not affected by the choicefft

Proposition 1.5. Given0 < ¢ < 1, let¢, and6,, be as in Theorem 1.4. Then, there exists
a subset) C Q with P(€2") = 1 such that or{?, for all but a finite number of indices

(= () PHon @) T <, < e (i1 (1.48)
where) < c_, ¢, < oo are numerical constants. Thiis,,_,., n~!loga, = ¢ P-a.s..

Remark.The definition [(1.40)E(1.44) of,, and that of the sequend®y in (2.10) of
Ref. [15] have an obvious family resemblance. Our controk,othrough Proposition
[1.5 implies the behavior conjectured in item 4 page 4 of thgiep.

Remark.One may wonder whether the lower bound[of (1.45) can be ingatoVhe main
technical obstacle to doing so is the lower bound on meaimgitimes of Lemma_3]5. In
particular, trying to improve the bound (8.5) on the spddap by choosing,, larger, say
as large as 1 as in Ref._[15], can at best improve the con;;f%@g in front of logr in

(1.49).

The rest of the paper is organized as follows. Secfion 2 isewred with the properties
of the REM'’s landscape: several level sets that play an itaporole in our analysis
are introduced and their properties collected. SecfiontBega all needed results on the
exploration process,,. The proof of Theoremn 114 can then begin. Sedtidn 4, 5[ane 6 ar
devoted, respectively, to the verification of Condition YBB2), and (B3) of Theorei 1.3.
The proof of Theorerh 114 is completed in Secfidon 7. Also inti®ecs, the link between
the blocked clock process df (1146) and the two-time cati@iafunction [1.8) is made,
and the proof of Theorem 1.1 is concluded. An appendix (8e@) contains the proof of
the results of Sectidn 1.2.

2. LEVEL SETS OF THEREM’S LANDSCAPE THE TOP AND OTHER SETS

GivenV C V), we denote byG = G (V) the undirected graph which has vertex Bet
and edge set(G(V)) C &, consisting of pairs of verticelse, y} in V with dist(z, y) = 1,
wheredist(z, ') = 2 37 | |z; — 2| is the graph distance o,. Whendist(z,y) = 1 we
simply writex ~ y. We are concerned with the graph properties of level setseofdrm

Valp) ={z € Vi | Tulx) = 10(p)} (2.1)
where, giverp > 0, the threshold level, (p) is the sequence defined through
2P (1, () > (p)) = L. (2.2)

Observe that/,(p) can uniquely be decomposed into a collection of subsets
Va(p) = Ulelcn,l(p)v Cri(p) N Coilp) V1 <I1#k <L, L= Ly(p), (2.3)

such that each grapl(C,,;(p)) is connected but any two distinct grap@isC,, ;(p)) and
G(C,x(p)) are disconnected. With a little abuse of terminology we tal sets,, ;(p)
the connected components of the graptl/,,(p)). As p decreases fromo to 0, the set
V.(p) grows and the grap&'(V,,(p)) potentially acquires new edges. It is known [9] that



AGING IN METROPOLIS DYNAMICS OF THE REM: A PROOF 10

the size of the largest connected compor@&ni(p) undergoes a transiton near the critical
valuep® =~ IOgg" with a unique “giant” component of sizZ8(n~12") emerging slightly
below this value. Ag decreases the small components merge into the giant on&tahd
connectedness is achieved foslightly smaller tham~—!. One may naturally think of
the connected componertds ;(p) before criticality as containing distinct “valleys” of the
REM'’s energy landscape, the level of emergence of the yatalinected giant component
then being a “ground level” connecting the local valleys.

We now introduce several sets that play key roles in our aisly

e Thesets V* and V. (of valleysand hills). Let ¢, be as in[(T.37) and set

1
Pz 081 (2.4)
nlog 2
Thus, takingp = pz in (2.1)-(2.3),% = r.(p}) and the set* = V,,(p) decomposes into
Vi=UE L, ConCiy Vg, L' = Lug)), (2.5)

where theC; ; are the connected components of the grafil, (p;,)). According to our
earlier picture they contain “vaIIeys” of the landscapenc®if,, () is symmetrical the set

V=Vl ={zeV, |7, (x) =1} (2.6)
obtained fromV,,(p%) by substltutlng—%n(x) for H,(x) in (1.3) has the same random
graph properties ag* but now contains “hills”. As in[(2]5) we write

V,=V.ph) =UC,, ConCy Yi£k, L =L,(p), (2.7)

whereC’, , are the connected components of the gragl,,()). With this definition
(1.39) becomes

. 1, _ﬁmdenW)HnWD ifx ¢V,
Ly 0 (2.8)

Furthermore, by[(1.12), denoting @yﬁl ={z €V, | dist(z, A) = 1} the outer boundary
of A C V,, we have that for al € 0V*,

= Y Nz ( T e P rn(x)n—lﬂ{xe(mc}) 0r NV (2.9)
ye(Vr)e
Hence, conditional o, the mean holding time at € (V*)¢ does not depend on the
variables{r,(y),y € V*} but only depends on the variablgs,(y),y € (V.X)¢}.
e Immersionsin V*. Given any subsett C V* we call theimmersion ofA in V* and
denote byA* the set
A =Ul A

n,l»

A = {Cnl’ it GLnAZD, (2.10)

0, else.

Thus the setsl; ; are the valleys”; , that contain at least one element 4f Clearly,

V. NV* = (. Hence by[(218), immersed sets have the property that
Xolz,y) <n % forall z ~y suchthatz € A%,y ¢ A*ory e A%z ¢ A*. (2.11)

e Thetop, 7,,, and the associated sets 77, 7)? and ;. Given a sequencg, | 0 asn T oo,
sete,, = ¢ — 9,, and let theop be the set

T, = Valen) (2.12)
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obtained by taking = ¢, in (2.3). @, will later be chosen so that the definitions (2.12)
and [1.48) off}, coincide.)T,, contains the top of the order statistics or thér)'s, whence
its name. Since} < ¢,, T, C V,5, and sdl,, can be immersed iii*. According to[(2.1D)
we write

T = UL Ty, (2.13)
To eachz € T,, corresponds a unique indeéx< [ = [(z) < L* such thatr € 17, .

Of course a given valle¥r, may contain several vertices @f,. A set that is of speC|aI
importance in the sequel is the subﬁgtof vertices of7,, that are alone in their valley,

Ty={zeT,|T),NnT,={x}}. (2.14)
This in particular implies that
T C{x €V | () > rnlen), YyaTn(y) < rulen)} (2.15)
Finally, define
= {z €V, | (@) > 10(En), Vo (1) < Taly) < 7} C T2 (2.16)

This is the largest subset 8f such thatlist ((V;x UV,), I}) > 2.
Most of the content of the next three lemmata is taken frornh [P4e first lemma gives
estimates on the size of various sets.

Lemma 2.1. There exist§2* C Q with P (2*) = 1 such that or(?*, for all but a finite
number of indices,

1< |Gyl < o[l —2¢, (1 + O(logn/n))} 74, 1 <1< L™ (2.17)
The same bounds hold replaciay , by C,, , and L* by L” in ZI7). Furthermore,

V| =2"n"(1+o(n"))and |V:L| =2"n"(14 o(n™%)), (2.18)

|T,| = 27(==n) (1 + O(n27"="/?)), (2.19)
1T2| = 2" (1 4 O(n27"n/?)), (2.20)
1T, \ T2| < n*2m(1=20)(1 4 o(1)), (2.21)
|I*| = 2= (1 — 2n~ (1 + o(1)), (2.22)
T2\ I*| = 2n~eF12m=en) (1 4 o(1)). (2.23)

Finally, introducing the set
M, ={z eV, | m(x) > 7,(y) forall y ~ z} (2.24)
of local minima of the Hamiltonian,
VN M,| =0. (2.25)

Proof of Lemma_2]1Recall that by assumption)y > 1 + log4 > 2. Eq. (2.17) is (2.9)
of Lemma 2.2 of Ref[[24]. That the same bound holds|fbf[71\ follows by symmetry of
H,. The estimate[{2.18) ofi’*| is (2.11) of Ref.[[24] and the estimate ¢¥ | follows
again by symmetry of,,. Eq. (2.19) and.(2.22) are proved, respectively, as (2.1and
(2.10) of Ref.[[24]. The proof of (2.21) is a simple adaptatid the proof of lemma 7.1 of
Ref. [24]. Clearly, [2.20) follows from(2.19) and (2]21)ch(2.23) follows from[(2.20)
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and [Z.2D). It only remains to provie (2124). For this noté tha V. N M, if and only if
T.(x) < (rX)~'andr,(y) < 7.(x) for all y ~ x. Thus

P(Vin M| >1) < 3P (rla) < (m) " Vyumuly) < (3)7)  (2.26)

TEV),
= 2"« (n_c*)n (2.27)
which is summable. Thus, by Borel-Cantelli Lemma, therestsxa set of full measure
such that on that set, for all but a finite number of indi¢&s, N M.,,| = 0. O

The second lemma expresses the functigip) defined through(2]2).

Lemma 2.2 (Lemma 2.3 of([24]) For all p > 0, possibly depending om, and such that
pn T oo asn T oo,

p) = exp {nfB:(p) — (8/26:(p)) [log(5Z(p)n/2) +logdn] + o(B/B.(p))} . (2.28)
Corollary 2.3. Setr,, = §,, /e and assume thatn } 0asn 1 oo ande™??() > r*. Then
Tn(en)/Ta(e) = exp {—nBBe(e)x [1 + % + O(2?)] } . (2.29)

The third and last lemma states needed bounds, in particudne maximal jump rate.

Lemma 2.4 (Lemma 2.4 of[[24]) There exists a subsg C Q with P() = 1 such that
on ), for all but a finite number of indices the following holds:

e B min{max(Hn (y),Hn(x)) | (x,y)€ER} < eﬁn\/log2(1+2 logn/nlog2) — nv,, (230)
e Amin{Hn(z) |2€Vn} < ofnv2log2(1+2logn/n) (2.31)

Thus,max; y)ce, An(@,y) < Vp.

3. PROPERTIES OF THE EXPLORATION PROCESS,

In this Section we establish the properties of the explorgtrocess needed in the rest
of the paper. By[(1.35) with,, = (r*)~! and [2.6), the invariant measurg of Y;, can be
written as
Ligvy T ma(@)levsy

Ta(z) = Zo , TEV, (3.1)
whereZs , = [V, \ V| + 3 v mia(2).
Lemma 3.1. OnQ*, for all but a finite number of indices,
(1 —n"(1+o0(n")) < Zg, < 2" (3.2)
Therefore, ifA is any of the set$,,, 7>, T, \ T, I* or T \ I* in (2.19)- [2.28),
m(A) = [A|27"(1 + o(1)) (3.3)
whereas for any € V,,,
() <271 + o(1)). (3.4)

Proof. Since{z € V,} = {ri7,(x) < 1}, [Va \ V5| < Zsp < |V \ V| + [V] < 2%
Eq. (3.2) then follows from(2.18) of Lemnia 2.1. EQ. (3.4)hsn immediate and (3.3)
follows from the fact thatd NV, = § for each of the mentioned sets. O
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3.1. Spectral gap and mixing condition. Denote byZn the Markov generator matrix of
Y, (thatis, the matrix with off-diagonal entries (x, y) and diagonal entries \,,(x)), and
by 0 =1v,0 <V,1 <--- < 9,204 the eigenvalues of L,,.

Proposition 3.2. If ¢, > 1 + log4 then for all 5 > 0, there exists a subs€}; C 2 with
P (©;) = 1 such that, orf),, for all but a finite number of indices,

1/0n1 < 5nPri(140(1) = &, (3.5)

As a direct consequence on Proposifiod 3.2, Condition (BOheoreni 1B is satisfied
P-almost surely with e.g.

ko = [n*r5(1 4+ 0(1))]. (3.6)

Proposition 3.3. Under the assumptions of Propositibn]3.2, Qn, for all but a finite
number of indices, for all 5 > 0, allpairsz,y € V,,, and allt > 0,

[P (Ya(t + kn) = y) — m(y)| < pumn(y), (3.7)
wherex,, is given by[(3.6) ang,, < e™".

Proof of Propositio 3]2The proof of {3.5) relies on a well known Poincaré ineqyalit
taken from|[18] (see Proposition 1’ p. 38), applied to theksstic matrix?, = I+v, 'L,
where! denotes the identity matrix ang, is defined in Lemma2l4. By Lemnmia 2.4, on
Qo, for all n large enough,

max A, (z,y) < v, < 0. (3.8)
(z,y)€€n

Thus, on(, for large enough, the entriep,, (z,y) of P, obey0 < p,(z,y) < 1 and
> yev, Pu(r,y) = 1. The Poincaré inequality of interest now reads as follof. each
pair of distinct vertices, y € V,,, choose a path, , going fromz to y in the graphG(V,,).
Paths may have repeated vertices but a given edge appeaostabmee in a given path.
Let I',, denote such a collection of paths (one for each faiy }). Then

1/ < vt maxe pirt(e) 32, s oyl (@) T (y), (3.9)

where the max is over all edges= {z',y'} of G(V,,), pn(e) = m, 1 (2")pn (2, y'), and the
summation is over all paths, , in I, that pass through

The quality of the bound (3.9) now depends on making a judgithoice of the set of
pathsI',,. We adopt the following clever choice made in Ref./[21]. Gives {1,... n}
and given two vertices andz’ € V,, such thaty; # =, let Vfc,x/ be the path obtained by
going left to right cyclically fromr to 2/, successively flipping the disagreeing coordinates,
starting from the-th coordinate. Sef!, = {+{ ,,z,2’ € V,},1 < i < n. These paths
are ordered in an obvious way. Givenr’ and-, ./, lety, . be the set of vertices visited
by the pathy, ./, and lety!, = 7, ., \ {z, 2’} be the subset of “interior” vertices. We
next split the set of vertices, into goodones andadones. Recalling(217), we say that
a vertex is good if it does not belong ’o_éfl; otherwise it is bad. We say that a paths
good if all its interior pointsy™** are good, and that a set of paths is good if all its elements
are good.

The (random) set of path, is then constructed as follows:
(i) Consider pairs: andz’ such thatist(z, 2') > n/logn. If {} ,,1 <i < n} contains
a good path, choose the first such Foy, otherwise chooss; ..
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(if) Consider pairsr andz’ such thatdist(z, 2') < n/logn. If there is a good vertex
2" € V, such thaddist(z,z”) > n/logn anddist(z”,2') > n/logn, and if there are
good paths, one ify: ,,,1 < i < n} andonein{~., 1 <i<n}, such that the union
of these two good paths is a self avoiding path of length lleasst, select this union as
the path connecting to 2’ in I",, (notice that this is a good path); otherwise chmpis;.

It turns out that thig",, is almost surely good. More precisely, §8¢°° = {I", is good },
n > 1, andQ%°° = liminf,, ., 25°°°.

Proposition 3.4 (Proposition 4.1 ofi[21]) If ¢, > 1 + log 4 thenP(Q%°%°) = 1.

From now on we assume that € 2°°°° so that, for all large enough, I',, is good.
Note that the paths df,, have length smaller than Hencel(3.D) yields

Vg < max, (m()a(@',y) " 30 ml@)m(y)

%v,yBe

2 : 1. 9% - : 1.r* -
R n 5~ min (L7, (x) min (1,737 (3)

- e={z',y’} Il’lin(Tn(’y/),Tn(lC/)) ZB,n

(3.10)

Y,y D€

where the final equality follows fromi (1.B9], (1135) (with = (r*)~!), and [3.1). Also
note that since bad vertices (i.e. vertice§7Q:1) can appear only at the ends of any path,
the paths ofl",, do not contain any edge of the graﬁm(V;). This prompts us to write
/9,1 < max{Ky,, Ko, K3, } wherek, ,,, K, ,,, andiCs ,, are obtained, respectively, by
restricting the maximum if{3.10) to the maximum over edges{«’, '} with 2/ € V',
andy' ¢ V,, 2’ ¢ V, andy € V., andz’ ¢ V, andy’ ¢ V.. To boundk,,, note that
the sum over paths that contain= {z’, v’} reduces to the sum over all paths starting in
x’ that contaire, so that

n®min (1, 7, (2'))

Kin= max Z Ta(y) < nPr,. (3.11)

e:{x/7y/}:x/€V;7yI¢VZ mln(Tn (y/>7 Tn («:C/>)

’yz/7y96

By symmetry of the bound (3.10)5,, < n?r,. Finally, min(7,(y), 7.(z')) > 1/r for
all 2/, ¢ V., andmin (1,77, (z)) min (1,7%7,(y)) < 1forall z,y € V,. Thus

Ksn <n®r;Z5, max |[{yeT,|een}| <n’riZ; (2" + gn/logmy - (3,12)

" eeG(Vn) ’

where we used that the number of paths connecting vertiagistancen/ log n or more
apart is at mos?” ! (see e.g. Example 2.2, p. 45 in Réf.[18] for this well knowmiibd)
whereas, arguing as in Ref. [21] (see Section 4.2.2, pagg 88inumber of paths con-
necting vertices less thaty log n apart and containingis bounded above by the volume
of a hypercube of dimension at mostlog n arounde, and so, is smaller thag¢™/ 5™,
In view of Lemmd_ 3.1l we have that ¢ N 25°°°, for all but a finite number of indices,

Ksn < tnPri(1+o(1)). (3.13)
Collecting our bounds and takiigg = Q2,NQ2*NN°° yields (3.5) and ends the proof[]

Proof of Proposition 331t is well know that for reversible irreducible Markov prases,
bounds on spectral gaps yield bounds on their total variatistance - ||, to stationarity.
For instance, Proposition 3 of Ref. [18] applied}p states that for alk € V,, and all
t>0,

4Py (YVa(t) = ) = mnl-) o, < @ o200, (3.14)

var — ()
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By 3.1), Lemma 31, and(2.B1) of Lemral2.4, @nn Q*, for all but a finite number
of indicesn, sup,,, m,(z) < (2"/ry)efnv2ios2(1+2lgn/n) The claim of Proposition 313
now readily follows from this [(3.14), and Proposition|XBposings, as in[3.6). O

3.2. Hitting time for the stationary chain. Drawing heavily on Aldous and Brown’s
work [2], this section collects results on hitting times fioe proces$, at stationarity. Let

H(A)=inf{t > 0| Y,(t) € A} (3.15)
be the hitting time ofA C V,,. We begin with bounds on the mean valuerbfA).
Lemma 3.5. On(2,, for all but a finite number of indices, forall A C V,,

(1 —nm,(A))? < E. H(A) < Fn
r*nm,(A)(1 — 7 (A) = 1—m(A) — m(A4)

(If dist(Vr, A) > 1, nm,(A) can be replaced by, (A) in the right-hand side).

(3.16)

The next lemma gives bounds on the density functipn(t), t > 0, of H(A) whenY,,
starts in its invariant measure,.

Lemma 3.6. On{2,, for all but a finite number of indices, forall A C V,, and allt > 0,

e (1 i) (1= gin) <40 e ()

The bounds of Lemmia3.6 imply that, 4(t) ~ g Wheni, <t < Er, H(A).

Complementing this, Lemnia3.7 is well suited to dealing vimall” values oft.

Lemma3.7. OnQ*, for all but a finite number of indices, forall A C V,, and allt > 0,

renm,(A)
> (1 — — ] . :
P, (H(A) >t) > (1 —nm,(A))exp < tl = mrn(A)) (3.17)
In particular, for any A and any sequendg such that,,r*nm,(A) — 0 asn — oo,
P, (H(A) <t,) <tyrinm,(A)(1+o(1)). (3.18)

If ACV,\ Vrthefactorn in front of m, (A) in (3.17) and[(3.18) can be suppressed.
The next Corollary is stated for later convenience.

Corollary 3.8. Under the assumptions of Lemmal 3.7 the following holds: Fdi & ¢ <
1, for any sequencg, such that,,r n2="» — 0 asn — oo

P, (H(T,\T2) < t,) < t,rin°2727 (1 + 0(1)), (3.19)
P, (H(T;) <t,) <t,rin27""(1 4 o(1)). (3.20)
We now prove these results, beginning with Lenima 3.7.

Proof of Lemm@ 3]7Write A = B U B whereB = ANV andB° = A\ B. Let B* be

the immersion oB in V¥ (seel(2.10)). Since C B*U B¢, H(A) > H(B* U B°), and
P, (H(A) >t) > P, (H(B*UB®) > t). (3.21)

To bound the right-hand side ¢f (3]121), we use a well know kdweeind on hitting times

for stationary reversible chains taken from Réf. [2] (congbTheorem 3 and Lemma 2
therein) that states that for &ll C V,, and allt > 0,

Py (H(C) > t) > (1 — m,(C)) exp <—t%) (3.22)
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where, for for any two set§' andC such that' N C = 0,

n(C,C) =D ")\ (3.23)

zeC yeC
Let us thus evaluaté (3.23) with = B* U B°. Clearly ¢,(B* U B¢, (B* U B¢)°) <
@n(B*, (B* U BY)°) + q,(B¢, (B* U B°)°). Clearly also, by[(ZI8)A,(z,y) < n~'r* for
anyzr € B¢ and anyy ~ x. Thusg,(B¢, (B* U B°)°) < rrm,(B). Next, by (2.11),
q,(B*, (B*U B)) < r*m,(B*). Thus

gn(B* U B, (B* U BY)°) < 7 [1n(B*) + mn(B°)]. (3.24)
Denoting byC? ,,, the (unique) component db* (see[(2.10)) that containg we have
|B*| < | Usen O o] < |Blmaxqeep |CF ()| Where by [2.117), 02, |C7 )| < n. By

this and[(3.11) we get, (B*) = Z@MB*\ g nZ 7n|B\ = nm,(B). Therefore,

T, (B*UB®) < 7, (B*)+m,(B) < nm,(B)+m,(B°) < nm,(BUB®) = nm,(A). (3.25)
Using [3.25) in the right-and side ¢f(3]124) and pluggingrbsult in [3.22) finally yields
@I17). Clearly, ifA c V, \ V.* then B = () and the right-and side of (3.24) reduces to
Trlmn(0) + 7, (B)] = rmu(A). O
Proof of Corollary(3.8.This follows from [3.8) of Lemm&a3l1[ (2.20), arid (2.21). O
Proof of Lemm& 3]6Proceed as in Lemma 13 of Ref| [2] and use Propoditian 3.2.]

Proof of Lemm@&_315The rightmost inequality is that of Lemma 2 of Refl [2] condin
with Propositior.3.2. Lemma 2 of Ref./[2] also states thatdorC V,, and ¢, (C, C°)
defined as in(3.23),

E., HC) _ 1—m,(C)

> :

1 —7m,(C) = q.(C,C*)
GivenA C V, let B* and B¢ be defined as in the first line of the proof of Lemimd 3.7. Since
H(A) > H(B*U B°), E, H(A) > E,, H(B*U B°). Using [3.26) withC' = B* U B¢,
(3.16) follows from [3.24) and the bound aep(B* U B*) of (3.25). O

3.3. On hitting the top starting in thetop. Let 7° and* be as in[(2.14) and (2.16).

Proposition 3.9. Givene > 0 there exists a subsér C 2 with P (©2°) = 1 such that on
Q2°, for all but a finite number of indices, for all s > 0

T P (H(T \ @) < 5) < sn P rim, (T7). (3.27)

zeTy

(3.26)

The next proposition is a variant of Proposition|3.9 that tegesfor later convenience.

Proposition 3.10. Under the assumptions and with the notation of Propositi&h&n2°,
for all but a finite number of indices, for all s > 0

TN S PU(H(I) < 5) < sn®ima(I)(1+0(1).  (3.28)
x€T\I}
Proof of Proposition 3J9A key ingredient of the proof is an explicit expression of the
density function:; ,(t), t > 0, of the hitting timeH/ (A) whenY,, starts inzx € A° =
V, \ A. We first state this expression in full generality as givef28] (see Section 6.2,

p. 83). Consider the stochastic mati = (5, (z,y)) defined above(38). Denote by
Qn = (¢u(z,y)) the matrix with entriegy, (z,y) : A° x A° — R given byg,(z,y) =
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Pn(z,y). This is the sub-matrix oP, on A¢ x Ac. Thus(@,, is sub-stochastic. Similarly,

denote byR,, = (r,,(z, y)) the sub-matrix o5, on A° x A. Let1, be the vector of’s on
A and let), be the vector omi© taking value 1 at: and zero else. Then, for alle A€,

[e’¢) nt k
B a(t) = va ) %e‘”’” (0s, QERL4), >0, (3.29)
k=0 ’

where(-, -) denotes the inner product ®“‘/. Consequently, for al > 0,

° C (Vnt)k

P (HA) <s)= [ vn)_ o e (6., Q¥ R, 14) dt. (3.30)

For later reference we also denote(y, , 4(t)),ca the vector whose components are, for
eachy € A, the joint density that! is reached at time and that arrival to that set occurs

in statey, namely;; | 4(t) is defined as ir(3.29) substitutingfor 1, therein; as a result

hﬁ,A(t) = EyeA hfb,y,A(t)-
Returning to[(3.27), a first order Tchebychev inequalitydsefor alle > 0

P (S, ere Po (H(TE \2) < 5) > e] < 'R [ZMS P, (H(T; \ T} ) < s)}
='W, (3.31)

whereT; = U, Ty, is defined in[(Z18) and < {(z) < L* denotes the (unique) index
suchthatl;y, N1, = {z}in (2.14). By [3.3D) withA = T\ T}, ),

° - (Vnt)k —V,
W, = Z/o dtZTe "Wok(z) (3.32)
TEVn k=1
where
War(®) = E [Lergyva (00, Qs Rl . )| (3:33)

Note that the ternk = 0 is zero. Fork > 1 the matrix term in[(3.33) reads,
]l{xeT;j}Vn (5% QfLRang\T;’l(w)> = ]l{xeT;j} Z q1(1k) ('Tu y) Z VnTn(y, Z)

yG(T;:\T;’l(x))C zGT,’;\T;’l(x)
(3.34)

whereq” (z, y) denotes the entries ¢f*. By (2.11), for ally € (T* \ T i)’
Z Vnrn(ya Z) = Z Xn(ya Z) < n—lrz Z ]]-{zwy}- (335)

ZeT;\T;,l(z) ZeT;\T;,l(z) ZeT;\T;,l(z)

Therefore, inserting (3.85) i0 (3.84), (3133) yields
T
E |:IL{$€T,‘§} Z QgC) (l‘, y) Z IL{zwy}

YE(TINT 1(z))° €T 1)

Whi(r) < —E (3.36)

3 |5k

V|

whereE[- | V] denotes the conditional expectation given a realizatiothefsetV* =
Ule*lC;l (seel(2.b)), namely, expectation with respect to the measur
P(- N {Vi<icrVaeor ,mo(x) 2 13} N {Vaecr ;To(z) <17}

P(-|V*) = , 3.37
V) = B iz Voo @) = 1} N e @ < i) D)
where we seC} , =V, \ V; for simplicity. ThusV,, = Uy<;<.-Cy;, andC;; N Cy,

;= @
n,l
forall0 <[ #10' < L* sothatifl; C {0,...,L*},i=1,...,7,Iis acollection of disjoint
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sets, functiong; of the variables[r,,(v),r € Ujc,,C;; }, 4 = 1,...,j, are independent
under the conditional law_(3.87). Observe now that condala)n V> the entries of the
matrix ), are functions of the variablgs:,(y), y € (T, \ T);,,)°} only: for off-diagonal
entries, i.e. fog, (x, y) with = # y, this is an immediate consequencelof|(2.8); for diagonal
entries, i.eq,(r,z) =1 — u;lxn(:c), this claim follows from[(1.12) and (2.8) if ¢ oV *
and from [2.9) and (218) if € oV* (the boundary seiA of A is defined abové (2.9)).
Next, observe that the sum ovee (T;\ T}, )¢ in (3.36) can be restricted to the sum
overy € 9V;x C C; , and use the definition dF* (seel(2.1B)) to write

Yoo dP@y) DY Ly

YETINTY 1)) €TI0

T1€Vn Tp—1EVn yEOV,x zrvy 0K <L* 0<lp_1<L* 1<IA(z) S L* (338)
C* . Nz#£D c* Nzp_1#0 Cx Nz#0
n,ly oly,_q k-1 n,l

Qn(% xl) cee Qn(xk—la )]]-{V ’EC* \{x}rn(x’l)<rn(6n)} v

ﬂ{vw;ﬁleo;wl\{w}mm;_l)w(an)}ﬂ{ﬂz/ec;’lm@/)zm(en)}-

Sincelyy recs oy y<raen} LEseor )2y = 0 forall [ # I(x), the sums over

[ in (3.38) can be restricted tb < 7é l(x),ly,..., k1 < L*. We may now multiply
(8.38) byl (,croy and take the conditional expectation The varialjlegz’), 2" € C};}
being independent of the variablés, ('), " € Up<r2<1-C;,  }, they can be mtegrated
out first, yielding, for ally € oV*

S0 PRl 2 |V (3.39)

zrvy 1<UAN(@),lq el SL*

C;;”Tz;éw
< max |C% |27 En=Prin (3.40)
1<IA (), l1 0 L1 <L* ’
< p22=(En—rn)n (3.41)

where we used i (3.40) that the sum olrepntains at most one term while the sum over
z contains at most terms. Eq.[(3.41) then follows frorh (2]17) and so, is validdrfor

all large enough. This bound is uniform iny € 0V,*. Therefore, usind(3.41) in_(3.38)
and re-summing[(3.86) becomes

Won(z) < 2n?2-Cnmping E[ﬂ{mem} > q@(z,y)]V;} (3.42)
n yeoVyr
< Inp2o—Enrinp(y € T°) (3.43)
n

where we used i (3.43) that singk, is sub-stochasticy _, . qﬁf)(x, y) < 1forall x
Now, by (2.14) and.(212)P(z € T?) < P(7,(x) > rp(e,)) = 27", Thus

Wi k() < rpn2 2 2omn — potlprg=2enm, (3.44)
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The last equality id(214). Using this bound [n (3.32) finaliglds that orY*, for all large
enoughn,

fn > vpt ko . B
Wn = Z /0 dtz( k') e VntSn,k(x) S ennc*+1rn2n2 25nn' (345)

It only remains to observe that bl (2120) and [3.3) of Leninfy 8n Q*, 7,(7T7) =
27" (1 + o(1)) for all but a finite number of indices. Hence

P 17517 Saery Pe (HT\ Tiy) < ) 2 ] < € lont i, (1)1 + o(1).

Choosings = n?n“*!r*x,(T7), the claim of the proposition follows from Borel-Cantelli
Lemma. U

Proof of Propositio 3.10This is a rerun of the proof of Propositidn B.9. O

3.4. Rough bounds on local times.
Lemma3.1l. Forall0 < a <1,allz € V,,andalls > 0,
E, [2(s)] = N (2)*T(1 4 )1 — ¢; exp(—cashn ()] + 5% exp(—sAn(z)) (3.46)
where0 < ¢y, ¢y < oo are constants, and if moreover)nr,(z) — 0 asn — oo,
B, [£(9)]" < (14 0(1)) [ + Tgusn5%(s — fn)rynma(2)] (3.47)

Proof of Lemm& 316The lower bound follows from the trite observation tliats) is at
least as large as the minimum between the first jumy,ands, that is,

r(s) > )\;1(1’)61 13>X;1(x)e1 + Sﬂng;l(x)elv (3.48)
wheree; is an exponential random variable of mean one. Thus
E,[(2(s)]" > E, [X;1($)6115>X;1(g¢)e1} + s*FE, |:]]_8§’5\’;1($)61i| . (3.49)
Explicit calculations yield
E, X1 (2)e 13>X;1(x)e1] > (A H(@)°T(1+ @)1 — e exp(—casA,(2))]  (3.50)

for some constant8 < c¢;,c; < oco. EQ. [3.46) now readily follows. To get an upper
bound writeF,, [¢%(s)]* < k% if s < k,,. Otherwise write

E.[62(s)]* < E, [%n + f:n ]]-{Yn(s)zx}ds:| (3.51)
< (U p) By [+ Jy ™ Livi(oy=ay | (3.52)
where the last line follows from Propositiobn B.3 and the Markroperty. Next,

Er, [ﬁn + ﬂ{Yn<s>:m}d8]a < Br, (R L{a@)>s—ra} T 5" Ui <s—na)
< Ko+ 5Py, (H(z) < s —Ky) (3.53)
< Ko+ 8%(s — kp)ranmu(x) (1 + o(1)),
the last inequality being (3.18) of Lemma3.7. Eq. (8.47)rsvpd. O
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4. VERIFICATION OF CONDITION (B1)

In this section we prove a strong law of large number for thefion !, (u, oo) defined
in (I.31). Recall that for* defined in[(1.3[7), we take, = (r*)~! in (1.34), (1.3b), and
(1.36). Then by[(1.18)-(1.19), (1.22), and (1.34),

v (4, 00) = k() Py, ( /0 " ax (car™) ™, €3 7 (Ya(s))) ds > u) (4.1)

wherem, is the invariant measure (1135) B, 6, is the block length of the blocked clock
processl(1.18%,(t) = |ant/0,], and, giverd < ¢ < 1, ¢, anda,, are defined in(1]4) and
(1.40)-[1.4%), respectively. By Theorém1163,anda,, must obey

Ln4T;(1 +o(1))] = kn <0, < an, (4.2)
where the left-most equality i5 (3.6). Further recall froec®n[2 that fop} as in [2.4),
P KL ey =€ — Op. (4.3)

(Recall that) < z, < y, means that,/y, — 0 asn — co.) From now on we take,
such thap™» = (n26,)*® i.e.

1 2e
nB '\ log2
Thus, giver) < ¢ < 1 andg > 0, all sequences excefyt are determined.

On log (n29n) . (4.4)

Proposition 4.1. Given0 < ¢ < 1 andp > 0 let the sequences, anda,, be defined as in
(1.4) and [1.4D)E(1.44), respectively, anddetbe such that

(r)* < 6", (4.5)
n~tlogh, < 1. (4.6)

Then, for all0 < ¢ < 1 andj > 0, P-almost surely,
lim v (u,00) = tu®®, Vit >0,u>0. (4.7)

n—oo

Remark.Eq. (4.6) implies tha#,, < 1 and thatd,, < ¢, for all ¢ > 0. In view of (1.38),
(3.8), [4.2) and(316)[(4l.6) also implies that

con Rz R3 (rr)400 < 27 and con® Rz k3 (ry )4l <« 25 (4.8)
for all ¢ > 0 and any choice of constaris< ¢; < co.

Remark.In order to guarantee strict equivalence of the definitiindl) and[(2.12) of the
setT;, whend, is given by [4.4), we should replace the tetpind,,) ! in (L43) by

Cp €XP {— log(n?6,,) [1 + (14 0(1))(2nBB(c))* log(n29n)] } (4.9)
(see Corollary 2]3). We didn't state this precise formulldep the presentation simple.

The rest of the section is organized as follows. In Sedtidwe show that/ (u, oo)
can be reduced to the quantity’(u, oo) defined in[(4.3R). In Sectidn 4.2 we prove upper
et lower bounds on a sequenég, defined a$,, with 77 substituted fof;,, and show that
b, andbS behave in the same way to leading order. In Se¢tioh 4.3 we geow (u, 0o)
concentrates around its mean value when choasjng 2" /b;.. The proof of Proposition
4.7 is finally completed in Sectidn 4.2.
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4.1. Preparations. To begin with, we bring the function! (u, oc) given in (4.1) into a
form amenable to treatment. L&t be as in[(2.12). For all < ¢ < 1 andJ,, as in [4.4),

On
0< / max ((Cnr;;)fl, C;LlTn(Yn(S))) Liy, (s)gr.yds Senrn((in)) <n”? (4.10)
0 n

as follows from [(2.20). Hence visits af, outside the set,, only yield a negligible con-
tribution to the event if (4]1), implying that

Ut (1, 00) < v (u,00) < 7, (u —n~2, 00) (4.12)

where
On
7 (u,00) = ky(t) Py, (/ (Yo (8) Ly, (s)er,yds > u) : (4.12)
0

Our next step consists in reducing visitsltpin 7 (u, oo) to visits to the subsét® defined

in (2.14). Set

On
! (u,00) = kn(t) Py, (/ ¢ 0 (Yo (8) Ly (s)eToyds > u) : (4.13)
0

Lemma4.2. Assume thai(416) holds. Then @h, for all but a finite number of indices,
7! (1, 00) — 7! (1, 00)| < 2k, (£)0,r5n272" (1 4 o(1)). (4.14)

Proof of Lemma_4]2Decomposing the event appearing in the probability in (at2ord-
ing to whethed{ H (T, \ T2) < 0,} or {H(T,,\ ) > 6,.}, (4.13) follows from [(3.19) of
Corollary[3.8 applied with,, = 0,,, which is licit by virtue of [4.6) (see alsb (4.8)). O

We next decomposk (4.]13) according to the hitting tiBA€]), and hitting placeY,,(H (7)),
of the set7};. The density of the joint distribution of/ (77) andY,,(H(T?)) is a|Ty|-
dimensional vector(h,, . ).cr-, Whose components are, for eacke 777, the joint density
that7? is reached at time, and that arrival to that set occurs in state

Po (H(T?) < 5, Ya(H(TE)) = ) = / a0} (4.15)

For this vector of densities we have
> / b B (V) dv = 1, (4.16)
zeTe V0
and, denoting by, r- the density off{ (T7,),
hoge = Y . (4.17)

xzeTy

In the notation of Section 3.3 (see the paragraph bélow)(Bi30. = >° ., 7 (y)%), . 1o
where, fory € 772, hi,x,T;; = J,. From this and the strong Markov property it follows that

7 On—v
! (u,00) = k() Z / Bz (V) Py </ 0 (Yo () Ly, (s)erords > u) dv.
0 0

xeTy?

(4.18)
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Denote byQ, “(x) the probability appearing ifi (4.118). Notice thgt starts inz € T7°
and further decompose this probability according to whef#&(7° \ =) < 6, — v} or

{H(T°\ z) > 6, — v}, thatis, writeQ " (z) = Q"*(z) + Q¥*(x),

0, —v
Qe (z) =P, </ crlen(Yn(s))]l{y"(s)eTg}ds >u, HT) \ z) <6, — v) , (4.19)
0

§v(z) = P, ( / e (V) Lpyaiwrcasyds > w TS\ 2) > 6 — v) . (4.20)
and split[(4.18) ac(z:ordingly. Clearly, for all> 0
Qu'(x) < Py (H(T3\ ) < 6,) . (4.21)
This and the bound” %, . (v)dv < Py, (H(z) < 0,) (that follows from [4.15)), yield

O
Z/ o (0)Q%" (x)dv (4.22)

zely
Z P, (H(T}) < 0,, Yo (H(TY)) = 2) P, (H(T; \ z) < 6,)  (4.23)
<7, (4.24)
where
L=k Z Py, (H(z) < 6,) Py (H(T \ ) < 6,). (4.25)

Lemma4.3. Assume thatj@lB) holds. Then @n, for all but a finite number of indices,
7 < k(D0 (0,m, (T2)r%) (14 0(1)). (4.26)

Proof of Lemm&4I3By (3.3), (2.20), [(4.8B) and_(4.4), oft*, for all large enough.,
O, (TO)rr = nlt2e@prglt*Eo=ne(1 4 5(1)), wich decays to zero as diverges
by (4.8) (see alsd (4.8)). We may thus uke (B.18) of Lerhmh @.Bound the term
P, (H(x) <#6,)in (4.25), and by this and (3.3) we get that@n for all large enough,

Uy < ke (8)0nmm, (T3)r7n (1 + o(W)| T3 |1 2o e P (H(T \ @) < 0,,). (4.27)
The lemma now follows from Propositién 3.9. O
Consider now the contribution tb (4]18) coming frdm (4.28Y.definition,
Q“”( )=P, (c (@) 05 (0, —v)>u,H(Tfl’\x)>8n—U). (4.28)
Thus
U (u, 00) (4.29)
en
Z/ .2 (V) Q" (@)dv (4.30)
xeT?
en
= k,(t) Z / P (V) Py () 7 (@) €2 (0, — v) > w, H(T \ ©) > 6,, — v) dv.(4.31)
xeT? 0
Setting
Gn
vt (u, 00) = ki (t) Z / P (V) Py (€ 7 (@) €20, — v) > ) d, (4.32)
0
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we have
vy (1, 00) — wy,(u, 00) < 7, (u, 00) < v (u, 00) (4.33)
where
On
w! (u,0) = ky, Z/ _— (¢ (@) 05 (0, — v) > u, H(T \ z) < 6,, —v) dv
zeTy
On
Z/ na(V) Py (H(T; \ @) < 0, — v)dv <7, (4.34)
€Ty

Inserting our bounds in_(4.1.8), we finally get that foraft 0
vt (u, 00) — 74 (1, 00)| < 7, (4.35)

Our aim now is to prove almost sure convergencedfu, oo). To do so we will need
certain properties a sequenég, associated to the sequerigethat we now define.

4.2. Properties of the sequences b, and b. For Fjs . ,.(z) as in [1.41) define

b = (B (T)) Z/H" (V) B[ Fs .o (€5 (6 — 0))]do. (4.36)

€Ty
Thusb; is nothing bub,, (seel(1.44)) witil > substituted fofl},. The next lemma collects
properties of the sequencgs andb; needed in the verification of both Condition (B1)
and (B2). Sef,(a.b) = (0uma(T2)) ™ Xere T2 (a,b),
b
T2 0.0 = [ ho0) Bl B 6, — o))l (4.37)

and giverd < ¢, < 0, splitdS into b = Z,,(0, k) + Z, (K, O — Co) + (05 — (s 0r)-
Lemma 4.4. Assume thaf(4l5) and (4.6) hold. Let> 0 be a sequence satisfying

n~Ylog (.| < 1, and i, (r)tren@Fe@eantelteV) | 0 agn 4t oo. (4.38)
Then, or(2; N Q° N Q*, for all but a finite number of indices,
zn<in(,0:n)<n> < 0, Rrey o ) ren ), (4.39)
0 < (by — by) /b5, < m(ryy)HemE@tel g an(@gmnen, (4.40)
and the right-hand sides df (4/39) arid (4.40) decay to zero diserges. Furthermore
po L () ~len@FeMY < e < (1 4 o(1))nrkr2n ), (4.41)

Proof of Lemma 4]4We first prove a lower bound db, (., 6, — (). For this write

On—Cn
jrf('%na n—Cn) > n, o1 = / hn,m(U)Eﬂt [Fﬁ,em(“gi(en - U))H{Cnd%(@nfv)gé)n}]dv'

SinceFs. ,(z) = (1+ o(1))z*E+W forall ¢, < x < 6,

0n—Cn
jril > (1+ 0(1))/ hn,m(v)Exwi(en - U)]a"(8)+0(1)(1 - l{fﬁ(Gn*vKCn})dv

_ 7z x
= jn,B T Ynd

(4.42)
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where we used the left-most inequality [n (4.74) to relaxdbmestraintt*(6,, — v) < 6,,.
Let us bound7;7, for = € I;. Note that by[(2.16) and (2.8)

(r* )P < Aa(z) < 7%, Vxell. (4.43)
Thus, setting,! = nr?, it follows from (3.46) of Lemm&3.11 that for all € I*,
- On—Cl,
Trs > c3(A, (x))om @) / Pz (V) dv (4.44)

for some numerical constaft< c; < co. Summing over:, wet get

DT =Y Tig > cg(rg) @t 3 / _C/ (4.45)

zeTR zely zely
where the last sum in the right-hand side[of (4.45) is equal to
P (kn < H(I}) < 6,—C H(IX) < H(T\I)). (4.46)
Decomposing this probability into
p1=p2 = Pr (kn < H(I}) < 00=C,)=Pr (k0 < H(L}) < 6,—C,, H(L}) > H(T\I7))
we have, by Lemma3.6 and (3116), whene¥et:nr,, (I*) — 0,
pr = Ry Onma(L) (1 = 0,7, ) (1 + 0(1)) = iy 0nma (1) (1 + 0(1)) (4.47)
where the last equality follows frorh (4.5). To get an uppeaurmbonp,, write
p2 <Pr (H(Ty \ I7) < kin) + Pr,(H(T;\ I7) < H(I}) < 0n) = ps+pa. (4.48)

By B.18),p3 < knrinm, (TS \ I¥)(1 + o(1)), whereas proceeding as in(4.22)-(4.25),

pa< Y Pr(H(z) < 0,)P (H(IY) < 0,) (4.49)
x€TI\I%
= (0,5 (TS \ L) ma (1) (1 + 0(1)) (4.50)

where the last equality follows frond (3]18) arid (3.28). BY2@), (2.28), and(313), on
Q* and for large enough, =, (1) = 27" (1 — n=(1 + o(1))) andm, (T \ I}) =
n¢T127men (1 + o(1)) (thus in particulars, (I¥) /7,(T2) = 1 + o(1)). In view of this,
(4.8), and[(4.B), one checks that*nm,(I*) — 0 (as requested abovie (4147)) and that
po = o(p1). Thusp; — pe = p1(1 + o(1)) and by this,[(4.47), and (4.45),

(Ouma(T)) S T2y = iy () O WH (1 4 o(1)). (4.51)

xeT?

Turning toJ,7, we have

D TE < (14 o(1))gam e Z/ (4.52)

zeT? zeT?
where the last sum is equal 1 (x, < H(T:) < 6, — (,). Since by Lemm&a3l6 and
@I8),P,, (k, < H(TS) < 0, — ) < (1 + 0(1))rind,m,(T2), we get

O (T)) ™D Tty < (L4 o(1))mrpgan@te), (4.53)

z€eTyR
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At this point we may observe that the right-most conditio@i88) is tailored to guarantee

that_ o Tis > >, cre Ty Hence, coIIectlng our bounds,
1+o0(1
Ly (Fins O = Gn 05 (6, — ))& (4,54
(= ) = s Z/ B0, — )] (454
> firl(pr)~lonte o1} (4.55)

We now prove an upper bound @ (0, «,,). Using thatFs . ,(z) < (1 + o(1))z©
for all 0 < z < 6, together with[(3.47) of Lemnia3.111 (which By (4.6) andi(34)dit),

TE0, k) < (1+ 0(1))m5n<€>/ P (v)dv. (4.56)
0
Summing over € T°° and using[(3.20) and (4.6) to bound the resulting probahilit
T5(0, kn) < (14 o(1))nrsg, rlton(), (4.57)
One proves in the same way that
77(0,6,) < (14 o(1))nrikon® [1 4 6y ©r*ng, @ (5)2_”} : (4.58)

where by [4.6) the term in square brackets (that comes fr4 XBis equal td + o(1).

Combining [4.57) and(4.55) provds (4.39). Sifcér,, 0, — ¢,) < b = Z,(0,6,),
(4.58) and[(4.58) yield, respectively, the lower and uppmrhrls of Kﬂll) It remains to

prove [4.40). By definition (seé_(1144), (4136), and the sda@mark below(4]7) on the
definition of 7,)

| To|bn, — |T7,|b;, = 2n0;1 Z E., [Fﬂ,a,n(“gﬁ(en))] : (4.59)

€T \T2

Conditioning on the time of the first visit to, and proceeding as in (4)57)-(4158) to bound
the expectation starting in, By, [Fs..(tZ(6,))] < (1 + o(1)) Py, (H(z) < 6,)k3".
From this and[BA8)|T;,|b, — [T2[62 < (1 + o(1))rin2"m, (T, \ T2)ka"). Now by
@19)-[221),|T,.| = |T2|(1 + o(1)) and |T,, \ T2| = |T°|n*27""(1 + o(1)). Hence
b, — b2 < (1+0(1))n° r*n%"(‘s)Z nen - Combining this and (4.55) yields (4140). The proof
of Lemmdﬂ is now complete.

Proof of Propositiof 1J5This is a straightforward consequence[of (#.40), (4.48, am
sumptions of[(1.45), and (1.138).

4.3. Concentration of v2(u,o0). Let us now focus on the term’!(u, oo) of (4.32).
Recall the definitions of,(¢) andb;, from (1.17) and((4.36), respectively.

Proposition 4.5. Chooser,, = 2°"/b¢ in k,(t) and assume that (4.6) holds. Li¥tdenote
the law of the collectiodr,(x),z € T2} conditional onT?,

P°(Ngere{n(x) € -}) = P(Mzere{mn(z) € -} | T7,). (4.60)
Then, for any sequeneg, > 0 such that) < u — u,, < n~! and allu > 0 andt > 0,
P° ( >, 00) — E°vp (u,, 00)| > n\/tEnEol/fL’t(un, oo)) <n*(1+o0(1)) (4.61)

wherez,, = (2°"/bS )nrx2~™ and

lim E°v2* (uy,, 00) = tu™®). (4.62)

n—oo
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Proof of Propositio 45We assume throughout that € Q*. A key ingredient of the
proof is the observation that the generafgr of Y,, is independent of the values of the
Hamiltonian at its local minima. More precisely, recallitigg definition of the setM,,,

of local minima from [(2.214), it follows from[(2]8) and (2]28&)at onQ2*, for all n large
enough, for alke € M,,, andy ~ =,

-1

- B ~ n_lTn s if an
mezn%w>mmm%w=b Ve e

(note that ifr € M,, andy ~ z theny ¢ M,,). Hence the law ot,, does not depend on
ther, (z)’s in M,, (but it does depend am,,). Now by (2.15),
> C M, NT, CM,. (4.64)

Furthermore, one easily checks ti#atin (4.60) is the product measure

B (s ) € ) = [[ Tt S om 2 &l g 6

veTe P(7.(z) > rn(en))

Consequently, for fixed?, the collection{ X,,(z),z € T},

Xn(x) = /09n P (V) Py (' 70 () €2 (0, — v) > ) do, (4.66)

viewed as a collection of r.v.'s on the sub-sigma fi#lfl = o({7,(z),z € T;}), forms

a collection of independent random variables urigfefthat of course still depend on the
variablesr, (z) in (7}7)¢). The proof now hinges on a simple mean and variance argument
We deal with the variance first. By (4)32) aind (4.66),

BV (un, 00) = k(1) Y E° X, (), (4.67)
xeT?
and by independence
E° (12" (ty,, 00) — Eovot (uy,, 00))* < K2 (t Z E°(X. : (4.68)
zeTy?
Note that since
Gn
X, (z) < / T ()dv < Po (H(2) < 0,) < Our*n2"(1+ o(1),  (4.69)
0
(the last inequality i9 (3.18) combined with (B.3)) then
() ) B (X () < 427 /b5 )rin27" (1 + o(1))E°vg (u,, 00), (4.70)
z€eTyR

where we used that far, = 25" /b2, 0,,k,,(t) = 0,,|t(2° /%) /0., ] = (2" /b2)(1 + o(1)).
Inserting [(4.70) in[(4.68), a second order Tchebychev inbtythen yields[(4.611).
To estimateE° v (u,,, 00) in (4.67) we first use Fubini to write,

On
E° X, (x) = /0 P, (0) B, P (¢ 7 (2) 05 (6, — v) > wy,) d. (4.71)
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Denoting byP” the law of the single variable, (),
P (¢, 7 (2) 02 (0, — v) > Uy, Tn(2) > T0(E0))

P° (¢, 7 ()05 (6, — v) > u) = Pe(r(2) > ro(e) (4.72)
_ P (e ()02 (0, — v) > uy) 4.73
P (7 (2) > ra(en)) 4.73)

where [4.7B) follows from the definition ef, (see[(1.4)), the a priory bound
Cl,—0) <0, —v<cy, 0<v<0,, (4.74)

and the fact thaf,, in (4.4) in chosen in such a way th@jr, (), '(c) < n2? | 0 as
n 1 oo (see the last inequality i (4.10)). Using classical estéma@n the asymptotics of
gaussian integrals (see elg. [1] p. 932), Lemima 2.2, ana dgaidefinition of,,, simple
calculations yield that for al) < u < co and0 < v < 6,,, (4.73) is equal to

P (1.(x) > ¢,)
(Tu(x) = Tn(En))
whereFj . ,(z) is defined in[(1.411). Furthermore, by (1.2),P(7,,(z) > ¢,) = 1 whereas

by (2.2), [2.20), and(3I3P(7,.(x) > ru(en)) = mo(T2)(1 + o(1)). In view of this and
(4.38) we get, combinind (4.75), (4]71), (4.67), and ushegd priori bound (4.74) that

(14 0(1)) Fe (S222) o (4.75)

I n
B (t, 00) = (1 + 0(1))kn ()0, (b /25”)M (4.76)
L0,6,)(1)
where forw > 0
Gn
Iap(w) = / e (V) Ee [Fp e (BC) [ Lasaz 0umyanydv. (477)

zeTy

To evaluate the ratio i (4.76) st ¢, = e """ | 0 and split the integral irI(OQ (1)
iNto Z(0 0, (tn) = Lo.c) (Un)+1(c, 00 (un). Notethatu ™| log (,| = n=/10 n (logC )2 =
n*/>, while for allu > 0, n~'logu, | 0, n"*(logu,)? | 0 asn 1 oo. Using thatFs . ,,(z)
is increasing on the domai®, ¢,,/u,,)

I((]v<n)(un) S Fﬁvavn(%)Pﬂn (H(Tn(?) < 0”) (478)

whereFy ... (=) = "5 Fy o (Ga) Fpeon(uy ) @NAES 20 (o) < om0/,
By this, (3.18), the lower bound{441) op, and our assumptions an,

I n
Toanlla) _ sy ) By calGumsarig #0050 (@.79)
T0,0,)(1)

asn — oo. Next, sincen!logl | 0 asn 1 oo for all ¢, <1 < 6, we have, usind (4.74),

L0 (Un) 1) 10 ) Lioeon ()
—omrniy 7 pold)logun n(u> [1 _ M] - —a(e) 4.80
[(079n)(1) ‘ senltin’) T(0,6,,)(1) u ( )

asn — oo for all w > 0. Inserting [4.70) and (4.80) i0_(4.176), choosing= 2" /b7, and
passing to the limit. — oo finally gives [4.62). The proof of the lemmais done. [
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4.4. Proof of Proposition (4.1l By (4.6), (4.3){4.4), and the boung, < 6,,, (4.40) im-
plies that o2, N Q° N Q*, for large enough, b, = b: (1 4 o(1)). The assumption that

a, = 2°"/b, in @) can thus be replaced by = 2" /b°. Consider now[(4.61) and note
that by [4.41),[(316)[(1.38), and (4.6) (see alsal(4.8)y)afbd < ¢ < 1,

(27 /) rin2™ < gy (1) PHamE)tolllp3gneg—n (4.81)
asn — oo. Thus, by Proposition 4.5 and Borel-Cantelli Lemma we gat for all w > 0

and allt > 0,
lim v (u, 00) = tu®® P — almost surely (4.82)

n—oo

In the same way we get that for all> 0 and allt > 0,

lim 2% (u, 00) = tu®® P — almost surely (4.83)

n—oo

Next, by Lemmad 412, Lemma4.3, arid (4.35) we have thafgnfor all but a finite
number of indices:,

|77, (u, 00) = vyt (u, 00) | (4.84)
< H(b2) T 2rE N0, 27200 o pestione (9w (T2)r*)?](1 + o(1)) (4.85)
< 2tnc*+4(1+a"(€))(T;)a”(€)+2+0(1)Hn9721+2a(8)2_n8<1 + O(l)) (486)

where the last inequality follows froh (4.41]), (21 20), (4 &nd (4.4). Since,, < 6, (4.6)
(see alsd(4]8)) implies that (4186) decays to zero as co. From this and[(4.82) we get

that for allu > 0 and allt > 0, lim,,_, 7, (u, 00) = tu®) P-almost surely. One proves in
the same way that for all > 0 and allt > 0, lim,, ,, 7 (v — n72, 00) = tu®) P-almost
surely. Therefore, by (4.11), for all > 0 and allt > 0,

lim v (u,00) = tu®® P — almost surely (4.87)

n—oo

Since/!, is increasing both in andw and since its limit continuous in those two variables,
(4.87) implies thaP-almost surely,
lim v (u,00) = tu®®, Yu>0,t>0. (4.88)
n—oo

The proof of Proposition 411 is done.

5. VERIFICATION OF CONDITION (B2)

By (1.18)-[1.19),[(1.22), and (1.B4), Condition (B2) In32) states that
On
ot (u,00) = ky(t) Z Tn(Y) {Py (/0 max ((c,r}) 7", ey ' 1o (Ya(s))) ds > u)}

YEVn

2

(5.1)
decays to zero as diverges. We prove in this section that this holds Pugmost surely.

Proposition 5.1. Under the assumptions of Propositionl4.1, for@k ¢ < 1 andg > 0,
P-almost surely,

lim of (u,00) =0, Vt>0,u>0. (5.2)

n—o0

As in the proof of Proposition 4.1 we first bring (u, o) into a suitable form. Proceed-
ing as in[4.11){(4.12), we first write

&;(ua OO) < O';(u, OO) < &Z(U - 77,_2

00) (5.3)
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where

5t (1, 00) = kalt) 3 Tuly) {Py ( /0 " e (Ya(5) Loy d > u)} 2, (5.4)

YEVn

and next reduce visits t, in (5.4) to visits to visits t@°, just as in LemmAa 4]2. Set
2

st =0 X malo) [B ([ o) nerds = )| - 69)

YyEVn
Lemma5.2. Assume thai(416) holds. Then @h, for all but a finite number of indices,
|5t (u, 00) — &L (u, 00)| < 6k, (£)0,n 2272 (1 + o(1)). (5.6)

Proof of lemm&&5I]2As in the Proof of Lemm&_ 4]2 we decompose the event appearing i
the probability in[(5.4) according to whethgH (T, \ T7?) < 6,,} or not, that is, setting

a(y) = P (Jy" e ma(Ya(s) Lvuweryds > w, HT,\TE) < 6,),  (5.7)
@ (y) = (fO” e (Yo (8) Ly syemnyds > u, H(T, \ Tyy) > Gn), (5.8)

we writed), (u, 00) = kn(t) 3,y Tn(y)q1(y)+¢2(y)]*. Inthe same way write], (u, co) =

kn(t) 22,ev, ™ (W)@ (y) + d2(y)]* whereg, (y) andg,(y) are defined as if(5.7) arld (5.8),
respectively, substituting® for 7,,. Note that

[21 + 2] < 3wy + 235, 0< 2,20 < 1. (5.9)

Applying (5.9) to the term§;; (y)+q2(v)]? and[q, (v)+¢(y)]?, and observing that = 73,
we get

|67, (1, 00) = &%, (1, 00)| < Bkn(t) D mu(y) (a1 (y) + @i (y)) (5.10)
YEVn
< 6k (1) P, (H (T, \ T5) < 0,): (5.11)
The Lemma now follows froni(3.19) of Corollary 3.8. O

We continue our parallel with the proof of Propositionl4.Xd atecomposd (5.5) ac-
cording to the hitting time and hitting place of the &€t We slightly abuse the notation
of Section 3 (see the paragraph below (8.30)) and denotg byinstead ofh;, 7o) the
joint density that7’? is reached at time, and that arrival to that set occurs in state
given that the process startsygn As already observed (see the paragraph belowl(4.17)),

Poa = D ey, Tn(y)hY .. Proceeding as in(4.118)-(4120) we then get
o1 (1,00) = k() D muly) [Row)]’ (5.12)

YyEVn

where, using((4.19) and (4.20),

On R _ ~
> / ) (@2 (@) + Q2 (@) o = Fry) + Ry, (6.19)
By analogy with [QIED) we also set
5t (u,00) = k(1) > maly) [Re(y)]”. (5.14)
YyEVn

The next lemma plays the role of Lemial4.3.
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Lemma5.3. Assume thaf(416) holds. Thex, for all but a finite number of indices,
0 < &t (u,00) — &% (1, 00) < 3kn(t)nT4 (0,7, (T2)7)? (1 + 0(1)). (5.15)

Proof of Lemm&X5I3As in the proof of Lemm&asl2, the proof of Leminal5.3 relies an th
observation that sind@ < R!(y), R"(y) < 1in (5.13) for ally € V,,, then by [5.D),

0 < 07, (u, 00) =7, (u, 00) < Bku(t) Y mn(y) Ri(y) (5.16)
YEVn
On
DY / e (0)QY (x)dv < 30E.  (5.17)
€Ty
The equality in[(5.117) follows from the identity, .(v) = > o), ™ (y)hi ,(v), and the

final inequality is[(4.24). The claim of the lemma now follofmsm Lemmd_ 4.B. O

We now need an upper bound 6f)(u, oo). For this we proceed as in (4131)-(4.33) and
write that0 < &% (u, 00) < o>*(u, 00) where, by analogy witH(4.33),
2

On
Z/ (' (@) 2 (0, — v) > u) dv

xeTy?
(5.18)
Again, the quantity in between the square brackets |8,i. Thus, splitting the integral
into the sum of the integrals ové, ,,| and[x,,, 8,,], we get, using(5]9) and reasoning as

in (5.16)-(5.17),

o2 (u, 00) = ky( 7Tn [
yevn

opt(u, 00) < 305 (u, 00) + 5t (u, 00) (5.19)
where

1ot (u, 00) = ky(t) Z / Pz (V) Py (c L ()62 (6, — v) > u) dv, (5.20)

2

Z / (¢ (@) i (60, — v) > u) dv | (5.21)

xeT?

! (u,00) = ka(t) Y mly [
yEVn

The next two propositions bound (5]120) ahd (5.21) in termthefquantities/>* (u,,, co)
andE°v2 (u,, oo) defined in[(4.3R) and (4.67), respectively.
Proposition 5.4. Chooses,, = 2°"/b;, in (1.117). Then, for any sequengg > 0 such that
0<u—u,<ntandallu >0,
P (ﬁ;’t(un, ) > tE° v (u,, oo)nQH;lfin/{;jLa"(‘g) (nT:L)Ha"(‘SHO(l)) <n7% (5.22)
Proposition 5.5. OnQ* N 4, for all but a finite number of indices and allu > 0,
not(u, 00) < vt (u, 00)0,rin27 " (1 + o(1)). (5.23)

Proof of Propositio 54 As in the proof of Proposition 4.5 denote By the law of the
collection{r,(x),z € T} conditional onl;;. By a first order Tchebychev inequality,

P (ﬁg’t(un, o0) > e) < e 'E [EOﬁZ’t(un, oo)] ) (5.24)
Note thatE°7°*(u, oo) only differs from the termE° v (u,,, oo) of (4.61) in that the inte-
gral in (5.20) is ovef0, x,] instead of|0, §,,]. Takinga,, = 2" /b, a simple adaptation of
the proof of [4.6PR) (se¢ (4.71)-(4180)) yields
7
E°70" (1, 00) = (1 + o(1))E° v (uy,, 00) (0, fin)

7In(07 ) (5.25)
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whereZ,(a, b) is defined above (4.37). Eq.(4139) of Lemmal 4.4 was desigrezigely
to control the ratio in[(5.25). Namely, aef N Q*, for all but a finite number of indices,

Z,(0, Kn) Z,(0, k) L
n\Y, 'vn < n\Y, 'vn < 0 n +an(€) * 1+Oén(€)+o(1). 526
Z.(0,60,) — Z.(kn,0n —Cn) — " KnkK, (nry) ( )

The combination of (5.24)[ (5.25), arid (5.26) givies (b.22)e proof is complete. [
Proof of Proposition 5/5To prove [5.2B) first observe that

Z /9n hY (V) Py () 7 () 05 (6 — v) > u) dv < Py(k, < H(T) < 6,,) (5.27)

" < (1+ o(1)) Py, (H(TY) < 6,)(5.28)

where the last line follows from Propositidbn B.3 and the Markroperty, and is valid on
4, for all but a finite number of indices. Applying this bound to one of the two square
brackets in[(5.21) and using_(4]132) to bound the remaining,teve get, under the same
assumptions as above, that

' (u,00) < (14 0(1)v," (u,00) P, (H(T) < 6,). (5.29)
Using Corollary [(3.20) to bound the last probability yiektie claim of the proposition.
0

We are now ready to complete the

Proof of Propositio 5J1Recall from the proof of Propositidn 4.1 that én N Q° N OQ*
a, = 2°"/b, = 2°"/b°(1 + o(1)) for large enough and consider[(5.22). By (4.5),
n20 Rt O (npx)Hen@+e) | 0 asn 4 oo and by [@.6R), for alkk > 0 andt > 0
limy, o0 E°v2* (1, 00) = tu™®). Thus, by Proposition 5.4 and Borel-Cantelli Lemma we
get that for alku > 0 andt > 0,

Tim 7ot (u,00) = 0 P — almost surely (5.30)

Turning to [5.2B8) and invokingd (4.6) (see al§g {4.8)), ildals from Proposition 514 that
forall0 < e < 1 and for allu > 0 andt > 0,

lim 7o' (u,00) =0 P — almost surely (5.31)
n—o0

Hence by[(5.19), for all. > 0 andt > 0,
lim 0°*(u,00) =0 P — almost surely (5.32)
n—oo

From there on the proof is a rerun of the proof of Proposifidihwith Lemma5.2 and
Lemmal5.8 playing the role of Lemnia 4.2 and Lenima 4.3, reedet We omit the
details. 0

6. VERIFICATION OF CONDITION (B3)

By (1.18)-[1.20),[(1.22), and_(1.B4), Condition (B3) [n33) will be verified if we can
establish that:

Proposition 6.1. Under the assumptions of Propositionl4.1, for@lk ¢ < 1 and all
B > B.(¢), P-almost surely,

On

leiﬁ)l liI:Lszlp kn(t)Ex, i Mn(Yn(s))]l{foen Mo (Va(s)ds<ey = 05 VE>0. (6.1)
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whereM,,(Y,,(s)) = max ((c, 7)™, ¢, ' 1 (Yo (5)))-
The Lemma below is central to the proof.

Lemma 6.2. There are constant&’, K’ < oo such that fora,,(¢) as in (1.42) and any
sequence, > 0 such thatia_!(e) — 1 — nlggf(’;) > 0 wherei = 1in (6.2) andi = 2 in
(6.3), we have, for all large enough

1—om (e)—1o8en

€n 2n32
E2°"c, 17, (7)1 <K (6.2)
n 'n {enlm(z)<en} = 1 1 _ _logen ?
acte) = 1= 255
1 L, o
E (2%* 7o) Lo ) <K . (6.3)
n ‘n cn Tn(x)<en} = 1 1 _ _logen
2a51(e) = 1 = 35545

Proof of Lemma_6l2Using standard estimates on the asymptotics of Gaussiegrais
(see e.g.]1] p. 932) the claimed result follows from stréhgward computations. [

Proof of Propositiol 611 We assume throughout thate ©; N Q° N Q* and thatn is as
large as desired. Note thatl,,(Y,,(s)) < (c,r) ™' + ¢, ' 7, (Y, (s)) and that the contribu-
tion to (6.1) coming from the terrtr,,r*) ! if or ordero(1). Indeed by[(1.17)[{1.40), the
lower bound orb,, obtained by combinind (4.41) and (4140), the expressids) @f. c,,,
the expressioi (3.6) of,, and the fact, that follows fromi{1.6), thait = ™% ()/2,

and so, foralh < e < 1 andg > f.(¢), by virtue of [4.6) (see alsd (4.8))
b ()0, (cr) 1 < 2m ()0 (oD gmnBE()1te()/2 _y (6.5)

asn — oo. To prove Proposition 6.1 it thus suffices to establish thatmost surely,

On
1 .
161%11?:@31)]{: n(t )E,T"/O ¢, Tn(Ya(s))L V(Y (s))ds<e} = 0, Vt>0. (6.6)

ForT, as in [2.1R) withy,, given by [4.4), set

On
Sn%e) (t) = kn(t>E7rn / C;LlTn(Yn( ))]l{Y (s)eTn }]l{f9n el Yn(s))dsge}d‘s’ (6.7)
0

On
SCU(t) = kn(t)Exr, / Cn Ta(Ya(8)) Ly gt L pom ot (vi(syas<y @5+ (6.8)
0

To boundS.’! (t) simply note that, using(3.4),

Gn
SP(t) < kn(t)En, / T (Y () L (v (5) < (e0)} 08 (6.9)
0
< kp(8)0,27" D)) e (@) Ly @) <o)} (6.10)
TEVy,

Takee,, = ¢, 'r,(g,) and note that by (2.29), the definition of, and [4.6),
9 —1
— (nBBe(e)) " loge, = o(1) and (HQ(HC*G /O‘(e)mn) <e, < (n%0,)7 (6.11)

Thus, by Lemma 612 and a first order Tchebychev inequalityalidarge enough,
P (8( )(t) > 0ty (e rn(en)) O W) < 2K (6.12)
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for some constank™ > 0. Using the upper bound ax) of (6.11) and the lower bound on
b, of Lemmd4.%4 obtained by combinirig (4141) ahd (4.40),

2b (C rn(gn))lfa(E)JrO(l) < ’I’L2/‘€n(7“ ) n(€)+o(1 ( 20 ) I+a(e)+o(1) =0 (613)
asn — oo by (4.5). Hence by[(6.12), (6.1.3), and Borel-Cantelli Lemfoaall ¢ > 0,
lim S (t) =0, P — almost surely. (6.14)
n— o0 ’

To deal withS'" (t) we further decompose it ints." (t) = S (¢) + S{"(t), where

O
SO = hl0Br, [ G YD e e iz s (6.19)

On
ST(:}E (t) = kn(t)Eﬂ'n / C;LTn(Yn(s))]]-{yn(S)ETn\Tg}IL{fOen C;lTn(Yn(S))dSSE}dS' (616)
0

Sinces) (t) is non zero only if the everdtH (T, \ 7)) < 6,,} occurs,
SU(t) < ek (t) Er, Liner,\1s)<6,)- (6.17)

Using assertion (ii) of Corollary 3.8 with, = 6,, as in the proof of Lemm@a 4.2, we get,
assuming[(4J6), that on*, for all but a finite number of indices,

SW(t) < ek (t)0rin272mm (1 + 0(1)), (6.18)
Proceeding as in(6.13) to bouhg (4.6) (see alsd (4.8)) guarantees that foeall 0
lim S (t) =0, P — almost surely. (6.19)
n— 00 ’
Using next thatfoe" c*lrn(Yn(s))IL{yn(s)eA} = erA A1, (2)z(0,,) forany A C V),
87(1:2( ) < 8(5 (t) Er, Z Cn Tn )1{2 19 S Tn (@)t (0n) <€} (6.20)
xzeTy?
With the notation of[(4.15)-(4.17),
Gn
Z / dvhy, (v Z ¢ ()00, U)H{ZIGT;; e Yo ()02 (Br—v) <e} -
yeT? z€T?

We further split the sum over above intar = y andx # y. The latter contribution is

On
)=k Z/ dvhy, (v Z Cngn(x)gfL(en—U)]l{zxeTﬁcglm(x)eg(en—v)gg}-

yely mGT;f\y
Observing that
E, Z e () 6 (O )ﬂ{zleTo el ()t (00 —vy<ey < EPY(H (T \'y) < 6n), (6.21)
z€TR\y

yields the bound%)(¢) < it wherer is defined in[Z.25). Thus by Lemrha#.3, reason-
ing as in the paragraph belolw (4186), we get that foe all 0

lim S (t) =0, P — almost surely. (6.22)
n— o0 ’

It remains to bound”) (¢) — S (¢). For this we writeS{) () — S (t) < S (¢) where

Gn
)= ka(t) ) / A0y (0) By () O — V)1t i 00 —y<ey- (6:23)

yeTy
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Let us now establish that féf as in [436)s.") (t) obeys the following

Lemma 6.3. Let the sequences,, c,, 0, be as in Propositioi 611. Then, under the
assumptions and with the notation of Proposifion 4.5,

P (|8 (t) — E°STY(t)| > te'/*n2 =92} < n=2(1 4 o(1)) (6.24)
forall e > 0, and
lim lim E°S{")(t) = 0. (6.25)
e—0n—o0 )

Proof of lemma 6)3The proof closely follows that of Proposition #.5. We onlyiqamut
the main differences. The random variables (4.66) are nplaced by

On,
X,(y) = / dvhy, (V) By o (y) 4 (6, — V)L o ()8 (6 —0)<c} (6.26)
0
and
E°S{(t) = kn(t) 3 yers E°Xn(y). (6.27)

Proceeding as in_(4.V2)-(4]74) to deal with the conditicegbectation and using that
P(7,(z) > rn(en)) = m(T2)(1 4 o(1)) (see the paragraph below (4.75)), we get

1+ 0(1 on
SlIC LA 5™ [ ot (0) By 200 = DB ) 1
0

T (T37) I

whereP? denotes the law of,(y) and where:,, = €, (y) = €/¢%(0,, — v). Using [6.2) if
09(8,, — v) > ee e (©)-1) and using that it¥ (6, — v) < ee e )1 then

B0 = 0B ()L it ) € 6O O D12 (6.28)

we readily see that

E°S\)(t) =

1—am ()~ 5225

E°ST) (1) < it

On _
e m Z /0 Avhy, (V) EyFp ¢ cn(02(0, —v))

= (6.29)
+ Coen® E2e P R (4) (10 (T3)) ™ P, (H(T) < 6,)
where here and below; > 0,7 = 1,2,... are constants, and fdf; . ,, as in [1.41),
1::;26 1 log 2z
i ~ nBB(e)
— log e logz_ "~ {z>ee—nBBe(@) ez (-1
o M6~ - G gy j

By the leftmost inequality of {Z.74) anf(@.&s.. ..(z) < CsFs..(2). Thus, by [436),
the first summand i (6.29) is bounded above by

log e

Cyte' ™o 2057 (6.31)

Using (3.20) and proceeding as in(6.4) to boun), the second summand is bounded
above by

Fieen(2) = Fgon(2) (6.30)

Cte (B =02EN/2 g pan(@)/241 () Than(@)to(l) (6.32)

n

asn — oo by virtue of (3.6), [(1.3B), and the assumption that (.(¢) where0 < ¢ < 1.
Note in particular thatim,, ., a,,(¢) = a(e) < 1. Hence, insertind (6.31) and (6132) in
(6.29) and passing to the limit

lim lim sup EOST(LQ (t)=0, Vt>D0. (6.33)

=0 nooo



AGING IN METROPOLIS DYNAMICS OF THE REM: A PROOF 35

This proves[(6.25). Turning to the variance we have, as B8} by independence, that
Vo(STU(t)) = B2 (ST(1) —E°ST (1) < ki(t) Y E*(Xa(y))*. (6.34)

yeTy
Proceeding as in the proof ¢f (6129) but using(6.3) and tietielow [6.30), we get that

g,an(e),m

2nﬁ2 2

Vo(ST(1) < Cot*

o 2 (] " by (0) By B (1260 — )

yeTy
2

K2(t)0 On
+ Crenon(©)/2gmnBbe(e) Tni/— (/ dvhy, (v ) .
7 7Tn<TT(;) yeZTS 0 731( )
From the bound)” dvh,, ,(v) E, Fp c.cn(€4(0, — v)) < (1 +0(1)) [;" dvhw(v)eﬁ"(s) <

(1+0(1))05" 9P, (H(y) < 6,) and [3.18),[[Z.41), we get that 61t for all but a finite
number of indices:, the first summand is bounded above by

__loge
2nﬁ2 (

Cut?€™ 720 (g, 920 O (1) L@ +o)) 2 g n (6.35)

n

Using the bound” . (" dvhay(v))* < sup,ere Pr, (H(y) < 0,)Pr, (H(TY) < 6,),
and proceeding as ii(B]SZ), the second summand is bounded b

Cot2enc @2 (2, () Hon(@+o(D)? g o=nBe(e)(B—Fc(@)gn, (6.36)

Since by assumptiof > f(.(¢) and0 < ¢ < 1, (4.8) (see alsd_(4.8)) enables us to
conclude that of2*, for all large enough,

Vo(ST(t)) < Crot?e2 079, (6.37)
This yields [6.24) and concludes the proof of the Lemma. O

Arguing as in the proof of Proposition 4.1 thgt= b (1 + o(1)) on 2y N Q° N Q* for
all large enough, it follows from Lemmd_ 6.8 and Borel-Cantelli Lemma that

lim lim (89 () —SY(t)) =0, P — almost surely. (6.38)
e—~+0n—o0 ) ’

Collecting [6.14),[(6.19) [ (6.22) and (6]38) yields {6.8he proof of Propositioh 611 is
complete. O

7. PROOF OFTHEOREM[I.JAND THEOREM[I.4

Proof of Theorerh 114By Proposition[(3.8), Proposition (4.1), Propositibn jsad Propo-
sition (6.1), under the assumptions of Propositlonl (4.1) Rroposition[(6.]1), Conditions
(B0O), (B1), (B2), and (B3) of Theorem 1.3 are satisfigd.s.. It remains to check Condi-
tion (A0), i.e. to prove thaP-a.s., for allu > 0,

lim P, (Zy1 >u) =0 (7.1)
n—oo

whereZ,, ; = fO‘g” max ((c,r) 7L, e 17,(Y,(s))) ds andp, is the uniform measure ow,.
By (3.3) and[(3.4)

P (Zpi>u) < (L40(1)Pr,(Zng > w) + 32 v in(@) Po(Zpa > u) (7.2)

< (1+0(1)Pr,(Zpy > u) +n (1 +0(1)) (7.3)

where the last line i$ (2.18). Thus (I7.1) is an immediate equnence of Propositioh (4.1).
One readily checks that the assumptionsignc,,, andé,, of the theorem imply that the
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conditions[(4.5) and (4l.6) of Propositidn (4.1) are verifigthe proof of 1.4 is complete.
[

Proof of Theorern_1]1Reasoning as in the proof of Theorém]| 1.4, we may assume that th
process starts in its invariant measure The main idea behind the proof is now classical.
Suppose that

Pr, (An(t,s)) = Pr, (RN (tt+8) =0}) + 0o(1) (7.4)
where A, (t,s) = {X(cnt) = X(cu(t + s))} and whereR,, denotes the range of the
rescaled blocked clock proces%(¢). Then Theoreri 111 is a direct consequence of The-
orem[1.4 and the arcsine law for stable subordinators. Ve tefRef. [23] for a detailed
proof of this statement (see the proof of Theorem 1.6 thgmaid focus on establishing
(Z4). Fork > 1andZ, ; as in [1.19) set

B = {Xh Zui < X Zui > 45} (7.5)
Then by (L.IB){R, N (t,t + s) # 0} = {Ux>1Bx}. Furthermore, for an§" > 0,
Pr, (Uksin(myBr) < Pr, (SY(T) < 1) — P (Vo) (T) <t) <6 (7.6)

where convergence is almost sure in the random environnsefallaws from Theorem
[1.4, and wheré can be made as small as desired by takirlgrge enough. Therefore

0< Pr, {Ru N (t,t+5) = 0}) = Pr, (Ur<kskn @ Bi) < 0. (7.7)

Note that the evenB; is non empty if and only if the incremet, ;. ;, straddles over

the interval(¢, t + s). To show that[(7]4) holds it now suffices to establish theofeihg
two facts:
Fact 1. Almost surely in the random environment, with overwhelmprgbability, non-
empty event®3;, k£ < k,(T'), are produced by visits of the processto the setl;> and,
more precisely, by (many) visits of the process to one ands#éime element of 7, no
other element of ? being visited in the time intervat, ¢t + s). This implies thatfP-a.s.

P7rn (An(t, S) N {Ulgkgkn(T)Bk}) > Pﬂ" (Ulgkgkn(T)Bk) + 0(1) (78)

Fact 2. If B, andB;, 1 < k # k' < k,(T'), are two non-empty events then, almost surely
in the random environment they are produced by visits to tistratt elements of ;; with
overwhelming probability. This implies th&ta.s.

Pr, (An(t, ) N (Mi<k<kanyBi)) =0, n— o0 (7.9)
Combining [7.7),[(Z18), and(7.9) then establishes that
| Pr, (An(t,8)) = Pr, RN (L, t 4 5) = 0})] < 0+ o(1) (7.10)

which is tantamount td (7.4).

The proofs of Facts 1 and 2 mostly use information alreadgiobtl in the course of the
verification of Conditions (B1)-(B3). We present them sactly below, beginning with
the proof of Fact 1. FiX < 7' < oo and assume that the assumption of Proposifion (4.1)
are satisfied. LeH;(A) = inf{t > 0,k | Y,.(t) € A} be the first hitting time oA C V,
after timed, k. Note first that3;, = B, N {Z,, x+1 > s} and thus, by[(4.10),

Pr. (Urckzrn ) (Be N {HK(T,) > 6,})) =0 (7.11)
for all large enough. Note next that reasoning as [n (6.17)-(6.19) {tm Q*,
Pr, (Uicksrnm) (B N {HW(Tu \ T7) < 00})) < kn(T) Pr, (He(Tp \ Ty) < 6,) — 0

n
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asn — oo by virtue of (4.6). Hence of° N Q*, for all large enough,
P, (Ulgkgkn(T)Bk)
=Pr, (Urgizka ) (Be N {HW(T,) < 00} N {HW(T,\ Ty) > 0a)}) +0(1).

This means that foB), to be non-empty, the increme#t, .., must be produced by visits
of Y, to T?, andT; only. To prove that all these visits, if there are severaheht, must
be to a single vertex it suffices to show thatas> oo,

P = Pr, (Urker, (B 0 {HW(TE) < 0,3 N C(Ya(H(TP))) =0, (7.13)
where
Co(Ya(Hi(Ty))) = {inf{t > Hy(Ty) | Ya(t) € T\ Yo(Hi(T3))} < 60,}.  (7.14)
Now,
Pn = Pr, (Ui<<in 1) Ysere (Be N {H(Tyy) < 0, Yo (H(T5)) = 2} N Cp(x))
<o

where! is defined in[[4.25) and bounded in Lemmal4.3. Reasoning dseipara-
graph below[(4.86) then yields that under the assumptlof® éhd [(4.6), orf2° N Q*,
lim,, ,, I = 0. Fact 1 is now proved.

Fact 2 will be established if we can prove thatas; oo,

Pn = Pr, (Urcisn,or) {HW(TY) < 00} N Do (Ya(Hi(T7))))) — 0, (7.16)
where
D, (Yo (Hi(T3))) = {inf{t > (k + 1)0, | Ya(t) = Ya(Hi(T5))} < 0,k,(T)}.  (7.17)
To prove this observe that the event[in (7.16) can be written a
Users Uyery ({Hi(T3) < On, Yn(Hp(T7)) = 2} N {Yn(0n(k + 1)) = y} N Dy ()

Thus, by the Markov property we have, using the notatiofh d5%(4.17) and the bound
Py (H(z) < 0, (kn(T) — (k+ 1)) < P, (H(z) < 0nkn(T)),

e O3S / Aol (0) Py (Y6, — ) = ) P, (H(z) < 0,k (T))

1<k<kn(T) z€T2 yeT?

(7.12)

(7.15)

To proceed, we split the domain of integration ifiod,, — ,,) U [0,, — k,, 0,]. Using that
by Proposition 3.3, of2y, for all n large enoughP, (Y,,(6, — v) = y) = m.(y)(1 + o(1))
forallv € [0, 60, — k,), the contribution coming from this domain is at most

+om) 3 / A0hna(0) S 7y Py (H(2) < 0kn(T)) (7.18)

1<k<kn(T) €Ty yGTO
< (L+ 0o(1)kn(T) Pr,(H(T}) < 0,) sup Pr, (H(y) < 0nkn(T)) (7.19)
< (14 0(1)) (Oukn(T)rin2™™)? 20, (T7) (7.20)

where we used(3.20) with, = 6,, (which is licit as we many times saw) arid (3.18) with
tn, = 0,k,(T), which is licit provided that, k, (T)rin2™" — 0 asn — oo, and this is
guaranteed by our assumptions@n Indeed, proceeding as in the proof of Proposition
4.1 (seel(4.81) and the paragraph above) we get th@t onQ* N €2, for large enough,

Onkin(T)rin2 ™" < ki (rk) 1 FenEFepo==2n _ g (7.21)
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asn — oo forall 0 < e < 1. Since furthermor@™r,, (T°) = (1 + o(1))20-9" (n24,,)*
by (4.4), [3.8), and(2.20), and we get that@hn Q* N Q;, (Z.20) is bounded above by

(14 0(1)) (u () Hen©4e0n)? (526, )2 2=, (7.22)

n

and by [4.6) this decays to zeromas—+ oo forall 0 < ¢ < 1.
Consider next the domaif,, — x,, 6,,] and note that since

D P (Yol —v) = y) By (H(x) < 0,k (T)) < 1 (7.23)

the corresponding contribution is bounded aboveépy") Py, (0, — k, < H(T?) < 6,).
By the upper bound of(3.6) and the lower bound ofl(3.5)0nfor all but a finite number
of indicesn, this is in turn bounded above by

n1+2an(5)0;(1—a(5))/{i(rz)l—kan(a)—ko(l) -0 (724)
asn — oo, where we again used th2t™» = (n26,)*® by (@2) wherea$ < a(e) < 1

by assumption; the final convergence then follows frbm| (4C®mbining the conclusions
of (Z.21) and[(Z.24) we get that 6t N Q* N O,

lim p, = 0. (7.25)
n—oo
This concludes the proof of Fact 2. The proof of Theotem 1ribis complete. O

8. APPENDIX. PROOF OFTHEOREM[I.ZAND THEOREM[1.3

Proof of Theorerh 112The proof closely follows that of Theorem 1.2 of Réf.[13].rdhgh-
out we fix a realizatiow € €2 of the random environment but do not make this explicit in
the notation. We set R

Sh(t) = S4(t) — Zu. (8.1)
Condition (A0) ensures thaf® — §3 converges to zero, uniformly. Thus we must show
that under Conditions (A1), (A2), and (A3),

St =, S, (8.2)

For this we rely on Theorem 1.1 of Ref. [13]. (This result &eif a specialized form of
Theorem 4.1 of Ref [20] suited to the present setting.) Ngnwee want to show that
Conditions (A1), (A2), and (A3) imply the conditions of Them 1.1 of Ref.[[18].

To this end let{F,,;,n > 1,7 > 0} be the array of sub-sigma fields & defined
(with obvious notation) througlf,,; = o (Y,.(s), s < 6,7), for i > 0. Note that for each
nand: > 1, Z,, ; is F,,; measurable and,,;_; C F,,;. Next observe that by the Markov
property and the fact that, for al> 1 andy € V,,, P, (Z,.; > u) = Py(Z,1 > u),

Pun (Zni > 0| Faim) = Y Ly (im0oy=n) Py(Zaa > w). (8.3)
YEVn
In view of this, [1.21),[(1.22), and_(1.23)
o (£)
> Pu (Zni > | Foior) = v} (u,00), (8.4)
=2

and in view of [1.24)
kn(t)
> [P (Zni > 0| Fain)) = 0w, 0). 8.5)

=2
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From (8.4) and[(8]5) it follows that Conditions (A1) and (Af)Theoreni 1.2 are exactly
the conditions of Theorem 1.1 of Ref. [13]. Similarly Conalit (A3) is condition (1.9).

Therefore the conditions of Theorem 1.1 of Ref.[[13] arefiextj and so§3 =75 S, In
D([0,00)) whereS, is a subordinator with Lévy measureand zero drift. O

The proof of Theorern 113 centers of the

Proposition 8.1. Assume that Condition (B1) is satisfied. Then, choo8ing «,, the
following holds for all initial distributiong.,,: for all ¢ > 0, all w > 0, and alle > 0,

P, (vt (u, 00) = vl (u,00)| > €) < 5e? [,on (v, (u, oo))2 + ot (u, oo)] , (8.6)

and
P, (o' (u,00) > €) < e (1 + pn)ot,(u, 00). (8.7)

Proof of Propositiol 8]11We assume throughout thét > «,. To prove [(8.7), simply
note that by a first order Tchebychev inequality

P, (00" (w,00) 2 €) < € kalt) Zyey, B (m' W) Qi) (8.8)
< €Y1+ py)at(u,00), (8.9)

where we used in the last line that by (1.30),
| B (T () = m(9)] < puTia(y)- (8.10)

Turning to [8.6), a second order Chebychev inequality gield
P,un (‘Vr)z/7t(u7 OO) - V;(uv OO)‘ > 6)
2
< 2By, [kalt) Loy, (731(0) — maly)) Qv)]
= ey, Lyev, Qu(@)Qu(y) T T Ayleyy) (8.1D)

where
Aij(z,y) = Py, (Ya(ibn) = 2, Yo (500) = y) + mu(2)m0(y) (8.12)
— T (Y) P, (Ya(i0n) = ) — mn(2) P, (Ya(30,) = y) -
Using again[(1.31) yields
P4+ pn) 0 (2) T (y), if i # j,
1A (z,y)] < €1+ po)mu(z) + (1 +2p,)72(2), ifi=jand z =y, (8.13)
0 else.

Thus [8.11) is bounded above by

bt ) [ 30 )QU)] + @24 300ka(1) 3 ) QU (8.19)

YEVn YEVn

Since by assumptiop, | 0 asn 1 oo, (8.14) is tantamount to the right-hand side[of(8.6).
Proposition 8.1 is proven. O

Proof of Theorerh 113The proof of Theorem 113 is now immediate: Condition (B2) eom
bined with the conclusions of Propositioni8.1 implies bathditions (A1) and (A2), and
Condition (B3) combined witH (8.10) implies Condition (A3) O
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