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INTRODUCTION

While there is as yet no established theory for the description of glasses, a consensus exists that this amorphous state of matter is intrinsically dynamical in nature [START_REF] Duplantier | Glasses and Grains[END_REF], [START_REF] Kurchan | Recent theories of glasses as out of equilibrium systems[END_REF], [START_REF] Goldstein | Viscous liquids and the glass transition: A potential energy barrier picture[END_REF]. Measuring suitable two-time correlation functions indeed reveals that glassy dynamics are history dependent and dominated by ever slower transients: they are aging. The realization in the late 80's that mean-field spin glass dynamics could provide a mathematical formulation for this phenomenon sparked renewed interest in models, such as Derrida's REM and p-spin SK models [START_REF] Derrida | Random-energy model: limit of a family of disordered models[END_REF], [START_REF] Derrida | A generalization of the random energy model which includes correlations between energies[END_REF], whose statics had, until then, been the main focus of attention [START_REF] Bouchaud | Out of equilibrium dynamics in spinglasses and other glassy systems[END_REF]. Despite this, Bouchaud's phenomenological trap models first took the center stage as they succeeded in predicting the power-law decay of two-time correlation functions observed experimentally, even though they did so at the cost of an ad hoc construction and drastically simplifying assumptions [START_REF] Bouchaud | Weak ergodicity breaking and aging in disordered systems[END_REF], [START_REF] Bouchaud | Aging on Parisi's tree[END_REF].

It was not until 2003 that a trap model dynamics was shown to result for the microscopic Glauber dynamics of a (random) mean-field spin glass Hamiltonian, namely, the REM endowed with the so-called Random Hopping dynamics and observed on time-scales near equilibrium [START_REF] Ben Arous | Aging in the random energy model[END_REF][START_REF] Ben Arous | Glauber dynamics of the random energy model. I. Metastable motion on the extreme states[END_REF][START_REF] Ben Arous | Glauber dynamics of the random energy model. II. Aging below the critical temperature[END_REF]. Quite remarkably, the predicted functional form of two-time correlation functions was recovered. Rapid progress followed over the ensuing decade, beginning with [START_REF] Ben Arous | The arcsine law as a universal aging scheme for trap models[END_REF]. The optimal domain of temperature and time-scales were this prediction applies was obtained in Ref. [START_REF] Gayrard | Aging in reversible dynamics of disordered systems. II. Emergence of the arcsine law in the random hopping time dynamics of the REM[END_REF] (almost surely in the random environment except for times scales near equilibrium where the results hold in probability only) and these results were partially extended to the p-spin SK models [START_REF] Ben Arous | Universality of the REM for dynamics of mean-field spin glasses[END_REF], [START_REF] Bovier | Convergence of clock processes in random environments and ageing in the p-spin SK model[END_REF].

The choice of the Random Hopping dynamics, however, clearly favored the emergence of trap models. Just as in trap model constructions, its trajectories are those of a simple random walk on the underlying graph, and thus, do not depend on the random Hamiltonian. This is in sharp contrast with Metropolis [START_REF] Metropolis | Equations of state calculations by fast computing machines[END_REF] dynamics, a choice heralded in the physic's literature as the natural microscopic Glauber dynamics [START_REF] Junier | Microscopic realizations of the trap model[END_REF], whose trajectories are biased against increasing the energy. This dependence on the random Hamiltonian makes the analysis of the two-time correlation functions much harder. This problem was first tackled in [START_REF] Gayrard | Convergence of clock processes and aging in Metropolis dynamics of a truncated REM[END_REF] were a truncated REM is considered, and a natural two-time correlation function is proved to behave as in the Random Hopping dynamics, in the same, optimal range of time-scales and temperatures for which this result holds almost surely in the random environment. In the present paper, we free ourselves of the simplifying truncation assumption and prove that the same result holds true almost surely for the full REM. A recent paper [START_REF] Černý | Aging of the metropolis dynamics on the random energy model[END_REF], by establishing the convergence of a so-called clock process, suggested that this might be the case but failed short of proving aging: the sole clock convergence, indeed, does not suffice to deduce aging, a property of correlation functions.

1.1. Main result. Let us now specify the model. Denote by V n = {-1, 1} n the ndimensional discrete cube and by E n its edge set. The Hamiltonian (or energy) of the REM is a collection of independent Gaussian random variables, (H n (x), x ∈ V n ), satisfying

EH n (x) = 0, EH 2 n (x) = n. (1.1)
The sequence (H n (x), x ∈ V n ), n > 1, is defined on a common probability space denoted by (Ω, F , P). On V n , we consider the Markov jump process (X n (t), t > 0) with rates

λ n (x, y) = 1 n e -β[Hn(y)-Hn(x)] + , if (x, y) ∈ E n , (1.2) 
and λ n (x, y) = 0 else, were a+ = max{a, 0}. This defines the single spin-flip continuous time Metropolis dynamics of the REM at temperature β -1 > 0. Note that the rates are reversible with respect to the measure that assigns to x ∈ V n the mass τ n (x) ≡ exp{-βH n (x)}.

(1.3)

When studying aging the choice of the observation time-scale, c n , is all-important. Given 0 < ε < 1 and 0 < β < ∞, we let c n ≡ c n (β, ε) be the two-parameter sequence defined by 2 εn P(τ n (x) ≥ c n ) = 1.

(1.4) Gaussian tails estimates yield the explicit form

c n = exp nββ c (ε) -(1/2α(ε)) log(β 2 c (ε)n/2) + log 4π + o(1) (1.5) 
where

β c (ε) = √ ε2 log 2, (1.6) α(ε) = β c (ε)/β.
(1.7)

A classical choice of two-time correlation function is the probability C n (t, s) to find the process in the same state at the two endpoints of the time interval [c n t, c n (t + s)],

C n (t, s) ≡ P µn (X n (c n t) = X n (c n (t + s))) , t, s > 0.

(1.8)

Here P µn denotes the law of X n conditional on F (i.e. for fixed realizations of the random Hamiltonian) when the initial distribution, µ n , is the uniform measure on V n .

Theorem 1.1. For all 0 < ε < 1 and all β > β c (ε), for all t > 0 and s > 0, P-almost surely, lim n→∞ P µn (X n (c n t) = X n (c n (t + s))) = sin α(ε)π π t/(t+s) 0 u α(ε)-1 (1-u) -α(ε) du. (1.9)

Remark. We in fact prove the more general statement that (1.9) holds along any n-dependent sequences of the form 0 < ε n ≤ 1-c ′ β n -1 log n+c ′′ n -1 log n where 0 < c ′ , c ′′ < ∞ are constants, that satisfy lim n→∞ ε n = ε, 0 < ε ≤ 1. Relaxation to stationarity is known to occur, to leading order, on time-scales c n of the form (1.5) with ε n = 1 [START_REF] Fontes | The spectral gap of the REM under Metropolis dynamics[END_REF]. At the other extremity, a behavior known as extremal aging is expected to characterize the process on times scales that are sub-exponential in the volume and defined through sequences ε n that decay to 0 slowly enough [START_REF] Bovier | Convergence to extremal processes in random environments and extremal ageing in SK models[END_REF], [START_REF] Ben Arous | Universality and extremal aging for dynamics of spin glasses on subexponential time scales[END_REF]. This will be the object of a follow up paper.

As in virtually all papers on aging, the proof of Theorem 1.1 relies on a two-step scheme that seeks to isolate the causes of aging by writing the process of interest, X n , as an exploration process time-changed by (the inverse of) a clock process. Aging is then linked to the arcsine law for stable subordinators through the convergence of the suitably rescaled clock process to an α-stable subordinator, 0 < α < 1. This is provided that the two-time correlation function at hand can be brought into a suitable function of the clock. Both steps heavily depend on the properties of the exploration process.

While this scheme offers the methodological underpinnings of the analysis of aging, two distinct ways of implementing it, through discrete or continuous time objects, respectively, have emerged from the literature (we refer to the recent papers [START_REF] Gayrard | Convergence of clock processes and aging in Metropolis dynamics of a truncated REM[END_REF], [START_REF] Gayrard | Convergence of clock processes on infinite graphs and aging in Bouchaud's asymmetric trap model on Z d . ALEA[END_REF], and [START_REF] Černý | Aging of the metropolis dynamics on the random energy model[END_REF] for in-depth bibliographies). The first arose from the study of models whose exploration process can be chosen as the simple random walk on the underlying graph. As mentioned earlier, this includes all Random Hopping dynamics and several trap models (e.g. on the complete graph or on Z d ). In physically more realistic dynamics the discrete scheme may quickly become intractable. As shown in Ref. [START_REF] Gayrard | Convergence of clock processes and aging in Metropolis dynamics of a truncated REM[END_REF] for Metropolis dynamics of a truncated REM, the associated exploration process is itself an aging process that presents the same complexity as the original dynamics. A similar situation arises when considering asymmetric trap models on Z d . Initiated in that context, the continuous scheme consists in choosing a (now continuous time) exploration process that mimics the simple random walk.

Prescribing the exploration process completely determines the clock process. Clearly, having efficient tools available to prove their convergence to stable subordinators is essential. Such tools were provided in Ref. [START_REF] Gayrard | Convergence of clock process in random environments and aging in Bouchaud's asymmetric trap model on the complete graph[END_REF] and [START_REF] Bovier | Convergence of clock processes in random environments and ageing in the p-spin SK model[END_REF] for discrete time clock processes in the general setting of reversible Markov jumps processes in random environment on sequences of finite graphs and, more recently, for both discrete and continuous time clock processes of similar Markov jumps processes on infinite graphs [START_REF] Gayrard | Convergence of clock processes on infinite graphs and aging in Bouchaud's asymmetric trap model on Z d . ALEA[END_REF]. These tools both allowed one to improve all earlier results on the Random Hopping dynamics of meanfield models [START_REF] Gayrard | Aging in reversible dynamics of disordered systems. II. Emergence of the arcsine law in the random hopping time dynamics of the REM[END_REF], [START_REF] Bovier | Convergence of clock processes in random environments and ageing in the p-spin SK model[END_REF], [START_REF] Bovier | Convergence to extremal processes in random environments and extremal ageing in SK models[END_REF], turning statements previously obtained in law into almost sure statements in the random environment, and to obtain the first aging results for several two-time correlation functions of asymmetric trap model on Z d [START_REF] Gayrard | Convergence of clock processes on infinite graphs and aging in Bouchaud's asymmetric trap model on Z d . ALEA[END_REF].

In Section 1.2 below we fill the gap left by continuous time clock processes in the case of sequences of finite graphs and, thus, extent the results of Ref. [START_REF] Bovier | Convergence of clock processes in random environments and ageing in the p-spin SK model[END_REF] to that setting. This is perhaps no more than an exercise but the results we present (Theorem 1.2 and Theorem 1.3) are the cornerstone of our approach and, hopefully, of other papers to come. We close this introduction out in Section 1.3 by stating a clock process convergence result for Metropolis dynamics of the REM (Theorem 1.4) that is at the heart of the proof of Theorem 1.1.

Convergence of continuous time clock processes.

We now enlarge our focus to the following abstract setting. Let G n (V n , E n ) be a sequence of loop-free graphs with set of vertices V n and set of edges E n . A random environment is a family of possibly dependent positive random variables, (τ n (x), x ∈ V n ). The sequence (τ n (x), x ∈ V n ), n > 1, is defined on a common probability space denoted by (Ω, F , P). On V n we consider a Markov jump process, (X n (t), t > 0), with initial distribution µ n and jump rates (λ n (x, y)) x,y∈Vn satisfying λ n (y, x) = 0 if (x, y) / ∈ E n and

τ n (x)λ n (x, y) = τ n (y)λ n (y, x) if (x, y) ∈ E n , x = y. (1.10)
Thus X n is reversible with respect to the (random measure) that assigns to x ∈ V n the mass τ n (x). To X n we associate an exploration process Y n . This is any Markov jump process, (Y n (t), t > 0), with state space V n , initial distribution µ n , and jump rates ( λ n (x, y)) x,y∈Vn chosen such that X n and Y n have the same trajectories, that is to say,

λ n (x, y) λ n (x) = λ n (x, y) λ n (x) ∀(x, y) ∈ E n , (1.11) 
where λ -1 n (x) and λ -1 n (x) are, respectively, the mean holding times at x of Y n and X n :

λ n (x) ≡ y:(x,y)∈En λ n (x, y), (1.12 
)

λ n (x) ≡ y:(x,y)∈En λ n (x, y). (1.13)
Then X n and Y n are related to each other through the time change

X n (t) = Y n ( S ← n (t)), t ≥ 0, (1.14) 
where S ← n denotes the generalized right continuous inverse of S n , and S n , the so-called continuous time clock process, is given by

S n (t) = t 0 λ -1 n (Y n (s)) λ n (Y n (s))ds, t ≥ 0. (1.15)
Note that there is considerable freedom in the choice of the exploration process Y n . We will come back to this issue at the end of this subsection and focus, for the time being, on the analysis of the asymptotic behavior of the general clock process (1.15).

For future reference, we denote by F Y the σ-algebra generated by the processes Y n . We write P for the law of the process Y n conditional on the σ-algebra F , i.e. for fixed realizations of the random environment. Likewise we call P the law of X n conditional on F . If the initial distribution, µ n , has to be specified we write P µn and P µn . Expectation with respect to P, P µn , and P µn are denoted by E, E µn , and E µn , respectively.

Our main aim is to obtain simple and robust criteria for the convergence of the (suitably rescaled) clock process (1.15) to a stable subordinator. Since the clock is a doubly stochastic process, the desired convergence mode must be specified. We will ask whether there exist sequences a n and c n that make the rescaled clock process

S n (t) = c -1 n S n (a n t) , t ≥ 0, (1.16) 
converge weakly, as n ↑ ∞, as a sequence of random elements in Skorokhod's space D((0, ∞]), and strive to obtain P-almost sure results in the random environment since such results (also referred to as quenched) contain the most useful information from the point of view of physics.

As for discrete time clock processes [START_REF] Gayrard | Convergence of clock process in random environments and aging in Bouchaud's asymmetric trap model on the complete graph[END_REF], [START_REF] Bovier | Convergence of clock processes in random environments and ageing in the p-spin SK model[END_REF], the driving force behind our approach is a powerful method developed by Durrett and Resnick [START_REF] Durrett | Functional limit theorems for dependent variables[END_REF] to prove functional limit theorems for sums of dependent variables. Clearly this method does not cover the case of our continuous time clock processes. The simple idea (already present in [START_REF] Gayrard | Convergence of clock processes on infinite graphs and aging in Bouchaud's asymmetric trap model on Z d . ALEA[END_REF] ) is to introduce a suitable "blocking" that turns the rescaled clock process (1.16) into a partial sum process to which Durrett and Resnick method can now be applied. For this we introduce a new scale, θ n , and set k n (t) ≡ ⌊a n t/θ n ⌋.

(1.17) The blocked clock process, S b n (t), is defined through

S b n (t) = kn(t) i=1 Z n,i (1.18) 
where, for each i ≥ 1,

Z n,i ≡ c -1 n x∈Vn λ -1 n (x) λ n (x) [ℓ x n (θ n i) -ℓ x n (θ n (i -1))], (1.19) 
and where, for each x ∈ V n ,

ℓ x n (t) = t 0 ½ {Yn(s)=x} ds (1.20)
is the local time at x. The next theorem gives sufficient conditions for S b n to converge. These conditions are expressed in terms of a small number of key quantities. For each t > 0, let

π Y,t n (y) = k -1 n (t) kn(t)-1 i=1 ½ {Yn(iθ)=y} (1.21) 
be the empirical measure on V n constructed from the sequence (Y n (iθ), i ∈ N). For y ∈ V n and u > 0, denote by Q u n (y) ≡ P y (Z n,1 > u) (1.22) the tail distribution of the aggregated jumps when X n (equivalently, Y n ) starts in y. Using these quantities, define the functions

ν Y,t n (u, ∞) ≡ k n (t) y∈Vn π Y,t n (y)Q u n (y), (1.23) 
σ Y,t n (u, ∞) ≡ k n (t) y∈Vn π Y,t n (y) [Q u n (y)] 2 . (1.24)
Observe that the sequence of measures π Y,t n as well as the sequence of functions Q u n (y), y ∈ V n , are random variables on the probability space (Ω, F , P) of the random environment. Thus, the functions ν Y,t n and σ Y,t n also are random variables on that space. We now formulate four conditions for the sequence S b n to converge to a subordinator. These conditions refer to a given sequence of initial distributions µ n , given sequences of numbers a n , c n , and θ n as well as a given realization of the random environment. Condition (A0). For all u > 0,

lim n→∞ P µn (Z n,1 > u) = 0.
(1.25)

Condition (A1).

There exists a σ-finite measure ν on (0, ∞) satisfying ∞ 0 (x∧1)ν(dx) < ∞ and such that for all continuity points x of the distribution function of ν, for all t > 0 and all u > 0,

P µn ν Y,t n (u, ∞) -tν(u, ∞) < ǫ = 1 -o(1) , ∀ǫ > 0 . (1.26)

Condition (A2).

For all u > 0 and all t > 0,

P µn σ Y,t n (u, ∞) < ǫ = 1 -o(1) , ∀ǫ > 0 . (1.27) Condition (A3). For all t > 0, lim ǫ↓0 lim sup n↑∞ k n (t) y∈Vn E µn (π Y,t n (y))E y (Z n,1 ½ {Z n,1 ≤ǫ} ) = 0.
(1.28) Theorem 1.2. For all sequences of initial distributions µ n and all sequences a n , c n , and 1 ≤ θ n ≪ a n for which Conditions (A0), (A1), (A2), and (A3) are verified, either P-almost surely or in P-probability, the following holds w.r.t. the same convergence mode:

S b n ⇒ J 1 S ν , (1.29)
where S ν is the Lévy subordinator with Lévy measure ν and zero drift. Convergence holds weakly on the space D([0, ∞)) equipped with the Skorokhod J 1 -topology.

Remark. Note that the theorem is stated for the blocked process S b n rather than the original process S n (defined in (1.16)). This may falsely appear as an undesirable consequence of our techniques. We stress that for applications to correlation functions, one needs statements that are valid in the strong J 1 topology whereas forming blocks is needed in order to make sense of writing J 1 convergence statements in the setting of continuous time clocks.

Remark. Also note that convergence of S b n in the strong J 1 topology immediately implies the strictly weaker result that S n converges to the same limit in the M 1 topology.

As for discrete time clocks of Ref. [START_REF] Bovier | Convergence of clock processes in random environments and ageing in the p-spin SK model[END_REF], our next step consists in reducing Conditions (A1) and (A2) of Theorem 1.2 to (i) a mixing condition for the chain Y n , and (ii) a law of large numbers for the random variables Q n . Again we formulate three conditions for a given sequence of initial distributions µ n , given sequences a n , c n , and θ n , and a given realization of the random environment. Condition (B0). Denote by π n the invariant measure of Y n . There exists a sequence κ n ∈ N and a positive decreasing sequence ρ n , satisfying ρ n ↓ 0 as n ↑ ∞, such that, for all pairs x, y ∈ V n , and all t ≥ 0,

|P x (Y n (t + κ n ) = y) -π n (y)| ≤ ρ n π n (y).
(1.30)

Condition (B1).

There exists a measure ν as in Condition (A1) such that, for all t > 0 and all u > 0,

ν t n (u, ∞) ≡ k n (t) y∈Vn π n (y)Q u n (y) → tν(u, ∞), (1.31) 
Condition (B2). For all t > 0 and all u > 0, Theorem 1.3 is our key tool for proving convergence of blocked clock processes to subordinators. It is of course essential for the success of our strategy that the convergence criteria we obtained be tractable. Going back to (1.11) we thus now ask, in this light, how best to choose the exploration process Y n .

σ t n (u, ∞) ≡ k n (t) y∈Vn π n (y) [Q u n (y)] 2 → 0. ( 1 
A tentative answer to this question is to mimic the exploration process of the Random Hopping dynamics, which means choose Y n such that its invariant measure, π n , is "close" to the uniform measure and its mixing time, κ n , is short compared to that of the process X n . The following class of jump rates, inspired from an ingenious choice made in Ref. [START_REF] Černý | Aging of the metropolis dynamics on the random energy model[END_REF], is intended to favor the emergence of these properties. Given a fresh sequence η n ≥ 0, set

λ n (x, y) = max(η n , τ n (x))λ n (x, y).
(1.34)

One easily checks that (1.11) is verified, that Y n is reversible with respect to the measure

π n (x) = min η n , τ n (x) x∈Vn min η n , τ n (x) ½ {ηn>0} + |V n | -1 ½ {ηn=0} , x ∈ V n , (1.35) 
and that the clock (1.15) becomes

S n (t) = t 0 max η n , τ n (Y n (s)) ds.
(1.36)

Let us discuss the role of η n on the example of Metropolis dynamics of REM. When η n = 0, π n nicely reduces to the uniform measure but the mixing time, κ n , of the resulting exploration process turns out to be of the same order as that of X n , that is to say, of the order of max (x,y) (min (τ n (x), τ n (y))) -1 = e βn √ log 2(1+o(1)) . This leaves little hope that the conditions of Theorem 1.3 can be verified. A moment's thought suffices, however, to see that such a large mixing time is a side effect of the symmetry of the Hamiltonian (1.1). By breaking this symmetry, the term max(η n , τ n (x)) in (1.34) places an η n -dependent cap on κ n (see Section 3.1). One is then left to choose η n small enough so that π n remains close to the uniform measure but large enough so that κ n is kept as small as needed. A similar strategy should hopefully apply to more general mean-field spin glass Hamiltonians.

Remark. We stress that the sole convergence of the clock process does not suffice to deduce aging, namely, the specific power law decay of the two-time correlation function. One still has to solve the problem of reducing the behavior of the two-time correlation function, as n → ∞, to the arcsine law for stable subordinators, and this requires more information on the exploration process than needed to only prove convergence of the clock. Notice also that unlike the discrete time clock process, the continuous time clock process is not a physical time. It thus has no physical meaning on its own. 1.3. Application to Metropolis dynamics of the REM. From that point onwards we focus on Metropolis dynamics of the REM (see (1.1)-(1.2)) started in the uniform measure on V n . Applying the abstract results of Section 1.2 enables us to prove P-almost sure convergence of the blocked clock process S b n (t), defined in (1.18), when the continuous time clock process S n (t), given by (1.15), is chosen as in (1.36).

To sate this result we must specify several quantities: the parameter η n , the time-scales, a n and c n , and the block length, θ n , entering the definitions of S n (t) and S b n (t). We begin by defining a sequence, r ⋆ n , that is ubiquitous throughout the rest of the paper: given β > 0 and a constant c ⋆ > 1 + log 4, we let r ⋆ n ≡ r n (β, c ⋆ ) be the solution of

n c⋆ P(τ n (x) ≥ r ⋆ n ) = 1.
(1.37)

In explicit form

r ⋆ n = exp β 2c ⋆ n log n 1 -log log n 8c⋆ log n (1 + o(1)) .
(1.38)

We now take η n ≡ (r ⋆ n ) -1 in (1.34) which, combined with (1.2), yields

λ n (x, y) = 1 nr ⋆ n min(τ n (y), τ n (x)) min 1 r ⋆ n , τ n (x) , if (x, y) ∈ E n , (1.39) 
and λ n (x, y) = 0 else. The physical observation time-scale, c n , is chosen as in (1.4). It is naturally the same as in the Random Hopping dynamics. On the contrary, the definition of the auxiliary time-scale, a n , contrasts sharply with the simple choice a n = 2 εn made in the Random Hopping dynamics. We here must take

a n = 2 εn /b n (1.40)
where the sequence b n is defined as follows. Recalling (1.6) and (1.7), define

F β,ε,n (x) ≡ x αn(ε)-log x 2nβ 2 1 -log x nββc(ε) -1 , x > 0, (1.41) 
where α n (ε) ≡ (nβ 2 ) -1 log c n , that is, in view of (1.5),

α n (ε) = α(ε) -log(β 2 c (ε)n/2)+log 4π+o(1) 2nββc (ε) 
.

(1.42) Further introduce the random set

T n ≡ x ∈ V n | τ n (x) ≥ c n (n 2 θ n ) -1 . (1.43) 
Then, for ℓ x n as in (1.20), we set

b n ≡ (θ n π n (T n )) -1 x∈Tn E πn [F β,ε,n, (ℓ x n (θ n ))] .
(1.44)

It now only remains to choose the block length θ n . (The notation x n ≪ y n means that the sequences x n > 0 and y n > 0 satisfy x n /y n → 0 as n → ∞.) Theorem 1.4. Given 0 < ε < 1 let θ n be any sequence such that

4 1-α(ε) log r ⋆ n < log θ n ≪ n (1.45)
and let c n and a n be as in (1.4) and (1.40)-(1.44), respectively. Then, for all 0 < ε < 1 and all β > β c (ε), P-almost surely,

S b n ⇒ J 1 V α(ε) (1.46)
where V α(ε) is a stable subordinator with zero drift and Lévy measure ν defined through

ν(u, ∞) = u -α(ε) , u > 0, (1.47) 
and where ⇒ J 1 denotes weak convergence in the space D([0, ∞)) of càdlàg functions equipped with the Skorokhod J 1 -topology.

We again emphasize (see the remark below Theorem (1.2)) that the J 1 convergence statement of Theorem 1.4 is crucial to the control correlation functions. Of course, Theorem 1.4 implies the weaker result that the original (non blocked) clock process (1.16) converges to the same limit in the M 1 topology of Skorokhod. Such a result was proved in Ref. [START_REF] Černý | Aging of the metropolis dynamics on the random energy model[END_REF] (for the clock obtained by taking η n = 1 in (1.36)) albeit only in P-probability and in the restricted domain of parameters β > β c (ε) and 1/2 < ε < 1. As shown in [START_REF] Gayrard | Convergence of clock processes and aging in Metropolis dynamics of a truncated REM[END_REF] (see lemma 2.1) the graph structure of the set T n when 1/2 < ε < 1 reduces to a collection of isolated vertices (no element of T n has a neighbor in T n ) and this considerably simplifies the analysis.

Let us now examine the sequence b n introduced in (1.40) and defined in (1.44). This sequence is a priori random in the random environment and depends on a sequence, θ n , that can itself be chosen within the two widely different bounds of (1.45). The next proposition provides upper and lower bounds on b n that are not affected by the choice of θ n . Proposition 1.5. Given 0 < ε < 1, let c n and θ n be as in Theorem 1.4. Then, there exists a subset Ω ′ ⊆ Ω with P(Ω ′ ) = 1 such that on Ω ′ , for all but a finite number of indices n

n c -(r ⋆ n ) 1+αn(ε)+o(1) -1 ≤ b n ≤ n c + (r ⋆ n ) 1+αn(ε) (1.48)
where 0 < c -, c + ≤ ∞ are numerical constants. Thus lim n→∞ n -1 log a n = ε P-a.s..

Remark.

The definition (1.40)-(1.44) of a n and that of the sequence R N in (2.10) of Ref. [START_REF] Černý | Aging of the metropolis dynamics on the random energy model[END_REF] have an obvious family resemblance. Our control of a n through Proposition 1.5 implies the behavior conjectured in item 4 page 4 of that paper.

Remark. One may wonder whether the lower bound of (1.45) can be improved. The main technical obstacle to doing so is the lower bound on mean hitting times of Lemma 3.5. In particular, trying to improve the bound (3.5) on the spectral gap by choosing η n larger, say as large as 1 as in Ref. [START_REF] Černý | Aging of the metropolis dynamics on the random energy model[END_REF], can at best improve the constant 4

1-α(ε) in front of log r ⋆ n in (1.45).
The rest of the paper is organized as follows. Section 2 is concerned with the properties of the REM's landscape: several level sets that play an important role in our analysis are introduced and their properties collected. Section 3 gathers all needed results on the exploration process Y n . The proof of Theorem 1.4 can then begin. Section 4, 5, and 6 are devoted, respectively, to the verification of Condition (B1), (B2), and (B3) of Theorem 1.3. The proof of Theorem 1.4 is completed in Section 7. Also in Section 7, the link between the blocked clock process of (1.46) and the two-time correlation function (1.8) is made, and the proof of Theorem 1.1 is concluded. An appendix (Section 8) contains the proof of the results of Section 1.2.

LEVEL SETS OF THE REM'S LANDSCAPE: THE TOP AND OTHER SETS

Given V ⊆ V n we denote by G ≡ G(V ) the undirected graph which has vertex set V and edge set

E(G(V )) ⊆ E n consisting of pairs of vertices {x, y} in V with dist(x, y) = 1, where dist(x, x ′ ) ≡ 1 2 n i=1 |x i -x ′ i | is the graph distance on V n .
When dist(x, y) = 1 we simply write x ∼ y. We are concerned with the graph properties of level sets of the form

V n (ρ) = {x ∈ V n | τ n (x) ≥ r n (ρ)} (2.1)
where, given ρ > 0, the threshold level r n (ρ) is the sequence defined through

2 ρn P(τ n (x) ≥ r n (ρ)) = 1. (2.2)
Observe that V n (ρ) can uniquely be decomposed into a collection of subsets

V n (ρ) = ∪ L l=1 C n,l (ρ), C n,l (ρ) ∩ C n,k (ρ) ∀1 ≤ l = k ≤ L, L ≡ L n (ρ), (2.3) 
such that each graph G(C n,l (ρ)) is connected but any two distinct graphs G(C n,l (ρ)) and G(C n,k (ρ)) are disconnected. With a little abuse of terminology we call the sets C n,l (ρ) the connected components of the graph G(V n (ρ)). As ρ decreases from ∞ to 0, the set V n (ρ) grows and the graph G(V n (ρ)) potentially acquires new edges. It is known [START_REF] Bollobás | On the evolution of random Boolean functions[END_REF] that the size of the largest connected component C n,l (ρ) undergoes a transiton near the critical value ρ c ≈ log n n log 2 , with a unique "giant" component of size O(n -1 2 n ) emerging slightly below this value. As ρ decreases the small components merge into the giant one, and total connectedness is achieved for ρ slightly smaller than n -1 . One may naturally think of the connected components C n,l (ρ) before criticality as containing distinct "valleys" of the REM's energy landscape, the level of emergence of the totally connected giant component then being a "ground level" connecting the local valleys.

We now introduce several sets that play key roles in our analysis. • The sets V ⋆ n and V ⋆ n (of valleys and hills). Let c ⋆ be as in (1.37) and set

ρ ⋆ n ≡ c ⋆ log n n log 2 . (2.4) Thus, taking ρ = ρ ⋆ n in (2.1)-(2.3), r ⋆ n ≡ r n (ρ ⋆ n ) and the set V ⋆ n ≡ V n (ρ ⋆ n ) decomposes into V ⋆ n = ∪ L ⋆ l=1 C ⋆ n,l , C ⋆ n,l ∩ C ⋆ n,k ∀l = k, L ⋆ ≡ L n (ρ ⋆ n ), (2.5) 
where the C ⋆ n,l are the connected components of the graph G(V n (ρ ⋆ n )). According to our earlier picture they contain "valleys" of the landscape. Since H n (x) is symmetrical the set

V ⋆ n ≡ V n (ρ ⋆ n ) = x ∈ V n | τ -1 n (x) ≥ r ⋆ n (2.6) obtained from V n (ρ ⋆ n ) by substituting -H n (x) for H n (x) in (1.
3) has the same random graph properties as V ⋆ n but now contains "hills". As in (2.5) we write

V where C ⋆ n,l are the connected components of the graph G(V n (ρ ⋆ n )). With this definition (1.39) becomes λ n (x, y) = 1 n e -β max(Hn(y),Hn(x)) , if x / ∈ V ⋆ n , 1 nr ⋆ n e -β[Hn(y)-Hn(x)] + , if x ∈ V ⋆ n .
(2.8) Furthermore, by (1.12), denoting by

∂A = {x ∈ V n | dist(x, A) = 1} the outer boundary of A ⊂ V n , we have that for all x ∈ ∂V ⋆ n , λ n (x) = y∈(V ⋆ n ) c λ n (x, y) + (nr ⋆ n ) -1 ½ {x∈V ⋆ n } + τ n (x)n -1 ½ {x∈(V ⋆ n ) c } |∂x ∩ V ⋆ n |. (2.9)
Hence, conditional on V ⋆ n , the mean holding time at x ∈ (V ⋆ n ) c does not depend on the variables {τ n (y), y ∈ V ⋆ n } but only depends on the variables {τ n (y), y

∈ (V ⋆ n ) c }. • Immersions in V ⋆ n . Given any subset A ⊂ V ⋆ n we call the immersion of A in V ⋆ n and denote by A ⋆ the set A ⋆ ≡ ∪ L ⋆ l=1 A ⋆ n,l , A ⋆ n,l = C ⋆ n,l , if C ⋆ n,l ∩ A = ∅, ∅,
else.

(2.10)

Thus the sets A ⋆ n,l are the valleys C ⋆ n,l that contain at least one element of A. Clearly,

V ⋆ n ∩ V ⋆ n = ∅.
Hence by (2.8), immersed sets have the property that

λ n (x, y) ≤ n -1 r ⋆ n for all x ∼ y such that x ∈ A ⋆ , y / ∈ A ⋆ or y ∈ A ⋆ , x / ∈ A ⋆ . (2.11)
• The top, T n , and the associated sets T ⋆ n , T • n and I ⋆ n . Given a sequence δ n ↓ 0 as n ↑ ∞, set ε n ≡ εδ n and let the top be the set

T n ≡ V n (ε n ) (2.12)
obtained by taking ρ = ε n in (2.3). (δ n will later be chosen so that the definitions (2.12) and (1.43) of T n coincide.) T n contains the top of the order statistics or the τ n (x)'s, whence its name. Since ρ ⋆ n ≪ ε n , T n ⊂ V ⋆ n , and so T n can be immersed in V ⋆ n . According to (2.10) we write

T ⋆ n ≡ ∪ L ⋆ l=1 T ⋆ n,l . (2.13) To each x ∈ T n corresponds a unique index 1 ≤ l ≡ l(x) ≤ L ⋆ such that x ∈ T ⋆ n,l(x)
. Of course a given valley T ⋆ n,l may contain several vertices of T n . A set that is of special importance in the sequel is the subset T • n of vertices of T n that are alone in their valley,

T • n ≡ x ∈ T n | T ⋆ n,l(x) ∩ T n = {x} . (2.14)
This in particular implies that

T • n ⊆ {x ∈ V n | τ n (x) ≥ r n (ε n ), ∀ y∼x τ n (y) < r n (ε n )}. (2.15)
Finally, define

I ⋆ n ≡ {x ∈ V n | τ n (x) ≥ r n (ε n ), ∀ y∼x (r ⋆ n ) -1 < τ n (y) < r ⋆ n } ⊆ T • n . (2.16) This is the largest subset of T • n such that dist (V ⋆ n ∪ V ⋆ n ), I ⋆ n ≥ 2.
Most of the content of the next three lemmata is taken from [START_REF] Gayrard | Convergence of clock processes and aging in Metropolis dynamics of a truncated REM[END_REF]. The first lemma gives estimates on the size of various sets.

Lemma 2.1.

There exists Ω ⋆ ⊂ Ω with P (Ω ⋆ ) = 1 such that on Ω ⋆ , for all but a finite number of indices n,

|V ⋆ n | = 2 n n -c⋆ (1 + o(n -c⋆ )) and |V ⋆ n | = 2 n n -c⋆ (1 + o(n -c⋆ )), (2.18) |T n | = 2 n(1-εn) (1 + O(n2 -nεn/2 )), (2.19) |T • n | = 2 n(1-εn) (1 + O(n2 -nεn/2 )), (2.20) |T n \ T • n | ≤ n 4 2 n(1-2εn) (1 + o(1)), (2.21) |I ⋆ n | = 2 n(1-εn) (1 -2n -c⋆+1 (1 + o(1)), (2.22) |T • n \ I ⋆ n | = 2n -c⋆+1 2 n(1-εn) (1 + o(1)). (2.23)
Finally, introducing the set

M n ≡ {x ∈ V n | τ n (x) > τ n (y) for all y ∼ x} (2.24)
of local minima of the Hamiltonian,

|V ⋆ n ∩ M n | = 0. (2.25)
and (2.22). It only remains to prove (2.24). For this note that

x ∈ V ⋆ n ∩ M n if and only if τ n (x) ≤ (r ⋆ n ) -1 and τ n (y) < τ n (x) for all y ∼ x. Thus P |V ⋆ n ∩ M n | ≥ 1 ≤ x∈Vn P τ n (x) ≤ (r ⋆ n ) -1 , ∀ y∼x τ n (y) < (r ⋆ n ) -1 (2.26) = 2 n n -c⋆ n -c⋆ n (2.27)
which is summable. Thus, by Borel-Cantelli Lemma, there exists a set of full measure such that on that set, for all but a finite number of indices,

|V ⋆ n ∩ M n | = 0.
The second lemma expresses the function r n (ρ) defined through (2.2). Lemma 2.2 (Lemma 2.3 of [START_REF] Gayrard | Convergence of clock processes and aging in Metropolis dynamics of a truncated REM[END_REF]). For all ρ > 0, possibly depending on n, and such that ρn ↑ ∞ as n ↑ ∞,

r n (ρ) = exp nββ c (ρ) -(β/2β c (ρ)) log(β 2 c (ρ)n/2) + log 4π + o(β/β c (ρ)) . (2.28) Corollary 2.3. Set x n = δ n /ε and assume that x n ↓ 0 as n ↑ ∞ and e nββc(ε)x ≫ r ⋆ n . Then r n (ε n )/r n (ε) = exp -nββ c (ε)x 1 + x 2 + O(x 2 ) . (2.29)
The third and last lemma states needed bounds, in particular, on the maximal jump rate.

Lemma 2.4 (Lemma 2.4 of [24]

). There exists a subset Ω 0 ⊆ Ω with P Ω 0 = 1 such that on Ω 0 , for all but a finite number of indices n the following holds:

e -β min{max(Hn(y),Hn(x)) | (x,y)∈En} ≤ e βn √ log 2(1+2 log n/n log 2) ≡ nν n , (2.30) e -β min{Hn(x) | x∈Vn} ≤ e βn √ 2 log 2(1+2 log n/n) .
(2.31) Thus, max (x,y)∈En λ n (x, y) ≤ ν n .

PROPERTIES OF THE EXPLORATION PROCESS Y n

In this Section we establish the properties of the exploration process needed in the rest of the paper. By (1.35) with η n ≡ (r ⋆ n ) -1 and (2.6), the invariant measure π n of Y n can be written as

π n (x) = ½ {x / ∈V ⋆ n } + r ⋆ n τ n (x)½ {x∈V ⋆ n } Z β,n , x ∈ V n (3.1)
where

Z β,n ≡ |V n \ V ⋆ n | + x∈V ⋆ n r ⋆ n τ n (x).
Lemma 3.1. On Ω ⋆ , for all but a finite number of indices n,

2 n (1 -n -c⋆ (1 + o(n -c⋆ )) ≤ Z β,n ≤ 2 n . (3.2) Therefore, if A is any of the sets T n , T • n , T n \ T • n , I ⋆ n or T • n \ I ⋆ n in (2.19)-(2.23), π n (A) = |A|2 -n (1 + o(1)) (3.3) whereas for any x ∈ V n , π n (x) ≤ 2 -n (1 + o(1)). (3.4)
Proof. Since {x ∈ V 3.1. Spectral gap and mixing condition. Denote by L n the Markov generator matrix of Y n (that is, the matrix with off-diagonal entries λ n (x, y) and diagonal entriesλ n (x)), and by 0 = ϑ n,0 < ϑ n,1 ≤ • • • ≤ ϑ n,2 n -1 the eigenvalues of -L n . P (Ω 1 ) = 1 such that, on Ω 1 , for all but a finite number of indices n,

1/ϑ n,1 ≤ 5 2 n 2 r ⋆ n (1 + o(1)) ≡ κn (3.5)
As a direct consequence on Proposition 3. 

|P x (Y n (t + κ n ) = y) -π n (y)| ≤ ρ n π n (y), (3.7) 
where κ n is given by (3.6) and ρ n < e -n .

Proof of Proposition 3.2. The proof of (3.5) relies on a well known Poincaré inequality, taken from [START_REF] Diaconis | Geometric bounds for eigenvalues of Markov chains[END_REF] (see Proposition 1' p. 38), applied to the stochastic matrix P n = I +ν -1 n L n where I denotes the identity matrix and ν n is defined in Lemma 2.4. By Lemma 2.4, on Ω 0 , for all n large enough, max (x,y)∈En

λ n (x, y) ≤ ν n < ∞. (3.8) 
Thus, on Ω 0 , for large enough n, the entries p n (x, y) of P n obey 0 ≤ p n (x, y) ≤ 1 and y∈Vn p n (x, y) = 1. The Poincaré inequality of interest now reads as follows. For each pair of distinct vertices x, y ∈ V n , choose a path γ x,y going from x to y in the graph G(V n ). Paths may have repeated vertices but a given edge appears at most once in a given path. Let Γ n denote such a collection of paths (one for each pair {x, y}). Then

1/ϑ n,1 ≤ ν -1 n max e ρ -1 n (e) γx,y∋e |γ x,y | π n (x)π n (y), (3.9) 
where the max is over all edges e = {x ′ , y ′ } of G(V n ), ρ n (e) ≡ π n,l (x ′ ) p n (x ′ , y ′ ), and the summation is over all paths γ x,y in Γ n that pass through e.

The quality of the bound (3.9) now depends on making a judicious choice of the set of paths Γ n . We adopt the following clever choice made in Ref. [START_REF] Fontes | The spectral gap of the REM under Metropolis dynamics[END_REF]. Given i ∈ {1, . . . n} and given two vertices x and x ′ ∈ V n such that

x i = x ′ i , let γ i x,
x ′ be the path obtained by going left to right cyclically from x to x ′ , successively flipping the disagreeing coordinates, starting from the i-th coordinate. Set

Γ i n = γ i x,x ′ , x, x ′ ∈ V n , 1 ≤ i ≤ n.
These paths are ordered in an obvious way. Given x, x ′ and γ x,x ′ , let γ x,x ′ be the set of vertices visited by the path γ x,x ′ , and let γ int x,x ′ = γ x,x ′ \ {x, x ′ } be the subset of "interior" vertices. We next split the set of vertices V n into good ones and bad ones. Recalling (2.7), we say that a vertex is good if it does not belong to V ⋆ n ; otherwise it is bad. We say that a path γ is good if all its interior points γ int are good, and that a set of paths is good if all its elements are good.

The (random) set of path Γ n is then constructed as follows: (i) Consider pairs x and x ′ such that dist(x, x ′ ) ≥ n/ log n. If {γ i x,x ′ , 1 ≤ i ≤ n} contains a good path, choose the first such for Γ n ; otherwise choose γ 1

x,x ′ .

(ii) Consider pairs x and x ′ such that dist(x, x ′ ) < n/ log n. If there is a good vertex x ′′ ∈ V n such that dist(x, x ′′ ) ≥ n/ log n and dist(x ′′ , x ′ ) ≥ n/ log n, and if there are good paths, one in γ i x,x ′′ , 1 ≤ i ≤ n and one in γ i x ′′ ,x ′ , 1 ≤ i ≤ n , such that the union of these two good paths is a self avoiding path of length less than n, select this union as the path connecting x to x ′ in Γ n (notice that this is a good path); otherwise choose γ 1

x,x ′ . It turns out that this Γ n is almost surely good. More precisely, set

Ω GOOD n = {Γ ′ n is good }, n ≥ 1, and Ω GOOD = lim inf n→∞ Ω GOOD n . Proposition 3.4 (Proposition 4.1 of [21]). If c ⋆ > 1 + log 4 then P Ω GOOD = 1.
From now on we assume that ω ∈ Ω GOOD so that, for all large enough n, Γ n is good. Note that the paths of Γ n have length smaller than n. Hence (3.9) yields

1/ϑ n,1 ≤ n max e={x ′ ,y ′ } π n (x ′ ) λ n (x ′ , y ′ ) -1 γx,y∋e π n (x)π n (y) = max e={x ′ ,y ′ } n 2 min(τ n (y ′ ), τ n (x ′ )) γx,y∋e min (1, r ⋆ n τ n (x)) min (1, r ⋆ n τ n (y)) Z β,n (3.10)
where the final equality follows from (1.39), (1.35) (with η n ≡ (r ⋆ n ) -1 ), and (3.1). Also note that since bad vertices (i.e. vertices of

V n 2 min 1, r ⋆ n τ n (x ′ ) min(τ n (y ′ ), τ n (x ′ )) γ x ′ ,y ∋e π n (y) ≤ n 2 r n . (3.11)
By symmetry of the bound (3.10), K 2,n ≤ n 2 r n . Finally, min(τ n (y ′ ),

τ n (x ′ )) ≥ 1/r ⋆ n for all x ′ , y ′ / ∈ V ⋆ n and min (1, r ⋆ n τ n (x)) min (1, r ⋆ n τ n (y)) ≤ 1 for all x, y ∈ V n . Thus K 3,n ≤ n 2 r ⋆ n Z -1 β,n max e∈G(Vn) |{γ ∈ Γ n | e ∈ γ}| ≤ n 2 r ⋆ n Z -1 β,n (2 n-1 + 2 2n/ log n ), (3.12) 
where we used that the number of paths connecting vertices at distance n/ log n or more apart is at most 2 n-1 (see e.g. Example 2.2, p. 45 in Ref. [START_REF] Diaconis | Geometric bounds for eigenvalues of Markov chains[END_REF] for this well known bound) whereas, arguing as in Ref. [START_REF] Fontes | The spectral gap of the REM under Metropolis dynamics[END_REF] (see Section 4.2.2, page 934), the number of paths connecting vertices less than n/ log n apart and containing e is bounded above by the volume of a hypercube of dimension at most n/ log n around e, and so, is smaller than 2 2n/ log n . In view of Lemma 3.1 we have that on Ω ⋆ ∩ Ω GOOD , for all but a finite number of indices n,

K 3,n ≤ 1 2 n 2 r ⋆ n (1 + o(1)). (3.13) 
Collecting our bounds and taking Ω 1 = Ω 0 ∩Ω ⋆ ∩Ω GOOD yields (3.5) and ends the proof.

Proof of Proposition 3.3. It is well know that for reversible irreducible Markov processes, bounds on spectral gaps yield bounds on their total variation distance • var to stationarity. For instance, Proposition 3 of Ref. [START_REF] Diaconis | Geometric bounds for eigenvalues of Markov chains[END_REF] applied to Y n states that for all x ∈ V n and all t > 0, 4 [START_REF] Aldous | Inequalities for rare events in time-reversible Markov chains. I. In Stochastic inequalities[END_REF], this section collects results on hitting times for the process Y n at stationarity. Let

P x (Y n (t) = •) -π n (•) 2 var ≤ 1-πn(x) πn(x) e -2tϑ
H(A) = inf{t ≥ 0 | Y n (t) ∈ A} (3.15)
be the hitting time of A ⊆ V n . We begin with bounds on the mean value of H(A).

Lemma 3.5. On Ω 1 , for all but a finite number of indices n, for all

A ⊆ V n , ( 1 
-nπ n (A)) 2 r ⋆ n nπ n (A)(1 -π n (A)) ≤ E πn H(A) 1 -π n (A) ≤ κn π n (A) . (3.16 
)

(If dist(V ⋆ n , A) > 1, nπ n (A)
can be replaced by π n (A) in the right-hand side). The next lemma gives bounds on the density function h n,A (t), t > 0, of H(A) when Y n starts in its invariant measure, π n . Lemma 3.6. On Ω 1 , for all but a finite number of indices n, for all A ⊆ V n and all t > 0,

1 E πn H(A) 1 - κn E πn H(A) 2 1 - t E πn H(A) ≤ h n,A (t) ≤ 1 E πn H(A) 1 + κn 2t .
The bounds of Lemma 3.6 imply that h n,A (t) ≈

1

Eπ n H(A) when κn ≪ t ≪ E πn H(A). Complementing this, Lemma 3.7 is well suited to dealing with "small" values of t. Lemma 3.7. On Ω ⋆ , for all but a finite number of indices n, for all A ⊆ V n and all t > 0,

P πn (H(A) > t) ≥ (1 -nπ n (A)) exp -t r ⋆ n nπ n (A) 1 -nπ n (A)
.

(3.17)

In particular, for any A and any sequence t n such that t n r ⋆ n nπ n (A) → 0 as n → ∞,

P πn (H(A) ≤ t n ) < t n r ⋆ n nπ n (A)(1 + o(1)). ( 3 

.18)

If A ⊂ V n \ V ⋆ n the factor n in front of π n (A) in (3.17) and (3.18) can be suppressed. The next Corollary is stated for later convenience. Corollary 3.8. Under the assumptions of Lemma 3.7 the following holds: For all 0 < ε < 1, for any sequence t n such that

t n r ⋆ n n2 -nεn → 0 as n → ∞ P πn (H(T n \ T • n ) ≤ t n ) ≤ t n r ⋆ n n 5 2 -2nεn (1 + o(1)), (3.19) 
P πn (H(T • n ) ≤ t n ) ≤ t n r ⋆ n n2 -nεn (1 + o(1)). (3.20) 
We now prove these results, beginning with Lemma 3.7.

Proof of Lemma 3.7.

Write A = B ∪ B c where B = A ∩ V ⋆ n and B c = A \ B. Let B ⋆ be the immersion of B in V ⋆ n (see (2.10)). Since A ⊆ B ⋆ ∪ B c , H(A) ≥ H(B ⋆ ∪ B c ), and 
P πn (H(A) > t) ≥ P πn (H(B ⋆ ∪ B c ) > t). (3.21)
To bound the right-hand side of (3.21), we use a well know lower bound on hitting times for stationary reversible chains taken from Ref. [START_REF] Aldous | Inequalities for rare events in time-reversible Markov chains. I. In Stochastic inequalities[END_REF] (combine Theorem 3 and Lemma 2 therein) that states that for all C ⊆ V n and all t > 0,

P πn (H(C) > t) ≥ (1 -π n (C)) exp -t q n (C, C c ) 1 -π n (C) (3.22)
where, for for any two sets C and C such that C ∩ C = ∅,

q n (C, C) ≡ x∈C y∈ C π n (x) λ n (x, y). (3.23)
Let us thus evaluate (3.23) with

C = B ⋆ ∪ B c . Clearly q n (B ⋆ ∪ B c , (B ⋆ ∪ B c ) c ) ≤ q n (B ⋆ , (B ⋆ ∪ B c ) c ) + q n (B c , (B ⋆ ∪ B c ) c ).
Clearly also, by (2.8), λ n (x, y) ≤ n -1 r ⋆ n for any x ∈ B c and any y ∼ x. Thus q n (B c ,

(B ⋆ ∪ B c ) c ) ≤ r ⋆ n π n (B c ). Next, by (2.11), q n (B ⋆ , (B ⋆ ∪ B c ) c ) ≤ r ⋆ n π n (B ⋆ ). Thus q n (B ⋆ ∪ B c , (B ⋆ ∪ B c ) c ) ≤ r ⋆ n [π n (B ⋆ ) + π n (B c )]. (3.24) 
Denoting by C ⋆ n,l(x) the (unique) component of B ⋆ (see (2.10)) that contains x, we have Proof of Lemma 3.6. Proceed as in Lemma 13 of Ref. [START_REF] Aldous | Inequalities for rare events in time-reversible Markov chains. I. In Stochastic inequalities[END_REF] and use Proposition 3.2.

|B ⋆ | ≤ | ∪ x∈B C ⋆ n,l(x) | ≤ |B| max x∈B |C ⋆ n,l(x) |
(B ⋆ ) = Z -1 β,n |B ⋆ | ≤ nZ -1 β,n |B| = nπ n (B). Therefore, π n (B ⋆ ∪B c ) ≤ π n (B ⋆ )+π n (B c ) ≤ nπ n (B)+π n (B c ) ≤ nπ n (B ∪B c ) = nπ n (A).
Proof of Lemma 3.5. The rightmost inequality is that of Lemma 2 of Ref. [START_REF] Aldous | Inequalities for rare events in time-reversible Markov chains. I. In Stochastic inequalities[END_REF] combined with Proposition 3.2. Lemma 2 of Ref. [START_REF] Aldous | Inequalities for rare events in time-reversible Markov chains. I. In Stochastic inequalities[END_REF] also states that for C ⊆ V n and q n (C, C c ) defined as in (3.23), 3.3. On hitting the top starting in the top. Let T • n and I ⋆ n be as in (2.14) and (2.16). Proposition 3.9. Given ǫ > 0 there exists a subset Ω • ⊂ Ω with P (Ω • ) = 1 such that on Ω • , for all but a finite number of indices n, for all s > 0

E πn H(C) 1 -π n (C) ≥ 1 -π n (C) q n (C, C c ) . ( 3 
|T • n | -1 x∈T • n P x (H(T • n \ x) ≤ s) ≤ sn c⋆+3 r ⋆ n π n (T • n ). (3.27)
The next proposition is a variant of Proposition 3.9 that we state for later convenience.

Proposition 3.10. Under the assumptions and with the notation of Proposition 3.9, on Ω • , for all but a finite number of indices n, for all s > 0

|T • n \ I ⋆ n | -1 x∈T • n \I ⋆ n P x (H(I ⋆ n ) ≤ s) ≤ sn 2 r ⋆ n π n (I ⋆ n )(1 + o(1)). (3.28)
Proof of Proposition 3.9. A key ingredient of the proof is an explicit expression of the density function h x n,A (t), t ≥ 0, of the hitting time H(A) when Y n starts in x ∈ A c ≡ V n \ A. We first state this expression in full generality as given in [START_REF] Keilson | Markov chain models-rarity and exponentiality[END_REF] (see Section 6.2, p. 83). Consider the stochastic matrix P n = ( p n (x, y)) defined above (3.8). Denote by Q n = (q n (x, y)) the matrix with entries q n (x, y) : A c × A c → R given by q n (x, y) = p n (x, y). This is the sub-matrix of P n on A c × A c . Thus Q n is sub-stochastic. Similarly, denote by R n = (r n (x, y)) the sub-matrix of P n on A c × A. Let 1 A be the vector of 1's on A and let δ x be the vector on A c taking value 1 at x and zero else. Then, for all x ∈ A c ,

h x n,A (t) = ν n ∞ k=0 (ν n t) k k! e -νnt δ x , Q k n R n 1 A , t ≥ 0, (3.29) 
where (•, •) denotes the inner product in R |A c | . Consequently, for all s > 0,

P x (H(A) ≤ s) = s 0 ν n ∞ k=0 (ν n t) k k! e -νnt δ x , Q k n R n 1 A dt. (3.30) 
For later reference we also denote by (h x n,y,A (t)) y∈A the vector whose components are, for each y ∈ A, the joint density that A is reached at time t, and that arrival to that set occurs in state y, namely, h x n,y,A (t) is defined as in (3.29) substituting δ y for 1 A therein; as a result h x n,A (t) = y∈A h x n,y,A (t). Returning to (3.27), a first order Tchebychev inequality yields, for all ǫ > 0

P x∈T • n P x (H(T • n \ x) ≤ s) ≥ ǫ ≤ ǫ -1 E x∈T • n P x H T ⋆ n \ T ⋆ n,l(x) ≤ s ≡ ǫ -1 W n , (3.31) 
where

T ⋆ n ≡ ∪ L ⋆ l=1 T ⋆ n,l is defined in (2.13) and 1 ≤ l(x) ≤ L ⋆ denotes the (unique) index such that T ⋆ n,l(x) ∩ T • n = {x} in (2.14). By (3.30) with A = T ⋆ n \ T ⋆ n,l(x) , W n = x∈Vn s 0 dt ∞ k=1 (ν n t) k k! e -νnt W n,k (x) (3.32) 
where

W n,k (x) ≡ E ½ {x∈T • n } ν n δ x , Q k n R n 1 T ⋆ n \T ⋆ n,l (x) 
.

(3.33)

Note that the term k = 0 is zero. For k ≥ 1 the matrix term in (3.33) reads,

½ {x∈T • n } ν n δ x , Q k n R n 1 T ⋆ n \T ⋆ n,l(x) = ½ {x∈T • n } y∈(T ⋆ n \T ⋆ n,l(x) ) c q (k) n (x, y) z∈T ⋆ n \T ⋆ n,l(x)
ν n r n (y, z)

(3.34) where q (k) n (x, y) denotes the entries of Q k n . By (2.11), for all y ∈ (T ⋆ n \ T ⋆ n,l(x) ) c , z∈T ⋆ n \T ⋆ n,l(x) ν n r n (y, z) = z∈T ⋆ n \T ⋆ n,l(x) λ n (y, z) ≤ n -1 r ⋆ n z∈T ⋆ n \T ⋆ n,l (x) 
½ {z∼y} . 

W n,k (x) ≤ r ⋆ n n E E ½ {x∈T • n } y∈(T ⋆ n \T ⋆ n,l(x) ) c q (k) n (x, y) z∈T ⋆ n \T ⋆ n,l(x) ½ {z∼y} V ⋆ n (3.36)
where

E[• | V ⋆ n ] denotes the conditional expectation given a realization of the set V ⋆ n = ∪ L ⋆ l=1 C ⋆ n,l (see (2.5
)), namely, expectation with respect to the measure

P(• | V ⋆ n ) = P(• ∩ {∀ 1≤l≤L ⋆ ∀ x∈C ⋆ n,l τ n (x) ≥ r ⋆ n } ∩ {∀ x∈C ⋆ n,0 τ n (x) < r ⋆ n }) P({∀ 1≤l≤L ⋆ ∀ x∈C ⋆ n,l τ n (x) ≥ r ⋆ n } ∩ {∀ x∈C ⋆ n,0 τ n (x) < r ⋆ n }) , (3.37) 
where we set

C ⋆ n,0 ≡ V n \ V ⋆ n for simplicity. Thus V n = ∪ 0≤l≤L ⋆ C ⋆ n,l and C ⋆ n,l ∩ C ⋆ n,l ′ = ∅ for all 0 ≤ l = l ′ ≤ L ⋆ ,
so that if L i ⊂ {0, . . . , L ⋆ }, i = 1, . . . , j, is a collection of disjoint sets, functions f i of the variables {τ n (x), x ∈ ∪ l∈L i C ⋆ n,l }, i = 1, . . . , j, are independent under the conditional law (3.37). Observe now that conditional on V ⋆ n the entries of the matrix Q n are functions of the variables {τ n (y), y ∈ (T ⋆ n \ T ⋆ n,l(x) ) c } only: for off-diagonal entries, i.e. for q n (x, y) with x = y, this is an immediate consequence of (2.8); for diagonal entries, i.e. q n (x, x) = 1ν -1 n λ n (x), this claim follows from (1.12) and (2.8) if x / ∈ ∂V ⋆ n and from (2.9) and (2.8) if x ∈ ∂V ⋆ n (the boundary set ∂A of A is defined above (2.9)). Next, observe that the sum over y ∈ (T ⋆ n \ T ⋆ n,l(x) ) c in (3.36) can be restricted to the sum over y ∈ ∂V ⋆ n ⊆ C ⋆ n,0 and use the definition of T ⋆ n (see (2.13)) to write

y∈(T ⋆ n \T ⋆ n,l(x) ) c q (k) n (x, y) z∈T ⋆ n \T ⋆ n,l(x) ½ {z∼y} = x 1 ∈Vn • • • x k-1 ∈Vn y∈∂V ⋆ n z∼y 0≤l 1 ≤L ⋆ C ⋆ n,l 1 ∩x 1 =∅ • • • 0≤l k-1 ≤L ⋆ C ⋆ n,l k-1 ∩x k-1 =∅ 1≤l =l(x)≤L ⋆ C ⋆ n,l ∩z =∅ q n (x, x 1 ) . . . q n (x k-1 , y)½ {∀ x ′ 1 ∈C ⋆ n,l 1 \{x} τn(x ′ 1 )<rn(εn)} . . . . . . ½ {∀ x ′ k-1 ∈C ⋆ n,l k-1 \{x} τn(x ′ k-1 )<rn(εn)} ½ {∃ z ′ ∈C ⋆ n,l τn(z ′ )≥rn(εn)} . (3.38) Since ½ {∀ z ′ ∈C ⋆ n,l \{x} τn(z ′ )<rn(εn)} ½ {∃ z ′ ∈C ⋆ n,l
τn(z ′ )≥rn(εn)} = 0 for all l = l(x), the sums over l in (3.38) can be restricted to 1 ≤ l = l(x), l 1 , . . . , l k-1 ≤ L ⋆ . We may now multiply 

(z ′ ), z ′ ∈ C ⋆ n,l } being independent of the variables {τ n (x ′ ), x ′ ∈ ∪ 0≤l ′ =l≤L ⋆ C ⋆ n,l ′ },
they can be integrated out first, yielding, for all y ∈ ∂V ⋆ n z∼y 1≤l =l(x),l 1 ,...,l k-

1 ≤L ⋆ C ⋆ n,l ∩z =∅ P ∃ z ′ ∈C ⋆ n,l τ n (z ′ ) ≥ r n (ε n ) V ⋆ n (3.39) ≤ n max 1≤l =l(x),l 1 ,...,l k-1 ≤L ⋆ |C ⋆ n,l |2 -(εn-ρ ⋆ n )n (3.40) ≤ n 2 2 -(εn-ρ ⋆ n )n , (3.41) 
where we used in (3.40) that the sum over l contains at most one term while the sum over z contains at most n terms. Eq. (3.41) then follows from (2.17) and so, is valid on Ω ⋆ for all large enough n. This bound is uniform in y ∈ ∂V ⋆ n . Therefore, using (3.41) in (3.38) and re-summing, (3.36) becomes

W n,k (x) ≤ r ⋆ n n n 2 2 -(εn-ρ ⋆ n )n E E ½ {x∈T • n } y∈∂V ⋆ n q (k) n (x, y) V ⋆ n (3.42) ≤ r ⋆ n n n 2 2 -(εn-ρ ⋆ n )n P(x ∈ T • n ) (3.43)
where we used in (3.43) that since Q n is sub-stochastic, y∈∂V ⋆ n q (k) n (x, y) ≤ 1 for all x. Now, by (2.14) and (2.2), P(x ∈ T

• n ) ≤ P(τ n (x) ≥ r n (ε n )) = 2 -εnn . Thus W n,k (x) ≤ r ⋆ n n2 -2εnn 2 ρ ⋆ n n = n c⋆+1 r ⋆ n 2 -2εnn . (3.44)
The last equality is (2.4). Using this bound in (3.32) finally yields that on Ω ⋆ , for all large enough n, 1)) for all but a finite number of indices n. Hence

W n = x∈Vn θn 0 dt ∞ k=1 (ν n t) k k! e -νnt S n,k (x) ≤ θ n n c⋆+1 r ⋆ n 2 n 2 -2εnn . ( 3 
(T • n ) = 2 -nεn (1 + o(
P |T • n | -1 x∈T • n P x H(T ⋆ n \ T ⋆ n,l(x) ) ≤ s ≥ ǫ ≤ ǫ -1 sn c⋆+1 r ⋆ n π n (T • n )(1 + o(1)). Choosing ǫ = n 2 n c⋆+1 r ⋆ n π n (T • n )
, the claim of the proposition follows from Borel-Cantelli Lemma.

Proof of Proposition 3.10. This is a rerun of the proof of Proposition 3.9.

Rough bounds on local times.

Lemma 3.11. For all 0 ≤ α ≤ 1, all x ∈ V n , and all s > 0,

E x [ℓ x n (s)] α ≥ ( λ -1 n (x)) α Γ(1 + α)[1 -c 1 exp(-c 2 s λ n (x))] + s α exp(-s λ n (x)) (3.46) where 0 < c 1 , c 2 < ∞ are constants, and if moreover sr ⋆ n nπ n (x) → 0 as n → ∞, E x [ℓ x n (s)] α ≤ (1 + o(1)) κ α n + ½ {s>κn} s α (s -κ n )r ⋆ n nπ n (x) . (3.47) 
Proof of Lemma 3.6. The lower bound follows from the trite observation that ℓ x n (s) is at least as large as the minimum between the first jump of Y n and s, that is,

ℓ x n (s) ≥ λ -1 n (x)e 1 ½ s> λ -1 n (x)e 1 + s½ s≤ λ -1 n (x)e 1 , (3.48) 
where e 1 is an exponential random variable of mean one. Thus

E x [ℓ x n (s)] α ≥ E x λ -1 n (x)e 1 ½ s> λ -1 n (x)e 1 α + s α E x ½ s≤ λ -1 n (x)e 1 α . (3.49) 
Explicit calculations yield

E x λ -1 n (x)e 1 ½ s> λ -1 n (x)e 1 α ≥ ( λ -1 n (x)) α Γ(1 + α)[1 -c 1 exp(-c 2 s λ n (x))] (3.50) 
for some constants 0 < c 1 , c 2 < ∞. Eq. (3.46) now readily follows. To get an upper bound write

E x [ℓ x n (s)] α ≤ κ α n if s ≤ κ n . Otherwise write E x [ℓ x n (s)] α ≤ E x κ n + s κn ½ {Yn(s)=x} ds α (3.51) ≤ (1 + ρ n )E πn κ n + s-κn 0 ½ {Yn(s)=x} ds α (3.52)
where the last line follows from Proposition 3.3 and the Markov property. Next,

E πn κ n + s-κn 0 ½ {Yn(s)=x} ds α ≤ E πn κ α n ½ {H(x)>s-κn} + s α ½ {H(x)≤s-κn} ≤ κ α n + s α P πn (H(x) ≤ s -κ n ) ≤ κ α n + s α (s -κ n )r ⋆ n nπ n (x)(1 + o(1)), (3.53) 
the last inequality being (3.18) of Lemma 3.7. Eq. (3.47) is proved.

VERIFICATION OF CONDITION (B1)

In this section we prove a strong law of large number for the function ν t n (u, ∞) defined in (1.31). Recall that for r ⋆ n defined in (1.37), we take η n ≡ (r ⋆ n ) -1 in (1.34), (1.35), and (1.36). Then by (1.18)-(1.19), (1.22), and (1.34),

ν t n (u, ∞) = k n (t)P πn θn 0 max (c n r ⋆ n ) -1 , c -1 n τ n (Y n (s)) ds > u (4.1)
where π n is the invariant measure (1.35) of Y n , θ n is the block length of the blocked clock process (1.18), k n (t) = ⌊a n t/θ n ⌋, and, given 0 < ε < 1, c n and a n are defined in (1.4) and (1.40)-(1.44), respectively. By Theorem 1.3, θ n and a n must obey

⌊n 4 r ⋆ n (1 + o(1))⌋ ≡ κ n ≤ θ n ≪ a n , (4.2) 
where the left-most equality is (3.6). Further recall from Section 2 that for ρ ⋆ n as in (2.4),

ρ ⋆ n ≪ ε n ≡ ε -δ n . (4.3) 
(Recall that 0 < x n ≪ y n means that x n /y n → 0 as n → ∞.) From now on we take δ n such that 2 nδn = (n 2 θ n ) α(ε) , i.e.

δ n ≡ 1 nβ 2ε log 2 log n 2 θ n . (4.4)
Thus, given 0 < ε < 1 and β > 0, all sequences except θ n are determined.

Proposition 4.1. Given 0 < ε < 1 and β > 0 let the sequences c n and a n be defined as in (1.4) and (1.40)- (1.44), respectively, and let θ n be such that

(r ⋆ n ) 4 ≪ θ 1-α(ε) n , (4.5) n -1 log θ n ≪ 1. (4.6)
Then, for all 0 < ε < 1 and β > 0, P-almost surely,

lim n→∞ ν t n (u, ∞) = tu α(ε) , ∀ t > 0, u > 0. (4.7)
Remark. Eq. (4.6) implies that δ n ≪ 1 and that θ n ≪ c n for all ε > 0. In view of (1.38), (3.5), (4.4) and (3.6), (4.6) also implies that

c 0 n c 1 κc 2 n κ c 3 n (r ⋆ n ) c 4 θ c 5 n ≪ 2 εn and c 0 n c 1 κc 2 n κ c 3 n (r ⋆ n ) c 4 θ c 5 n ≪ 2 εnn (4.8)
for all ε > 0 and any choice of constants 0 ≤ c i < ∞.

Remark. In order to guarantee strict equivalence of the definitions (1.43) and (2.12) of the set T n when δ n is given by (4.4), we should replace the term c n (nθ n ) -1 in (1.43) by

c n exp -log(n 2 θ n ) 1 + (1 + o(1))(2nββ c (ε)) -1 log(n 2 θ n ) (4.9)
(see Corollary 2.3). We didn't state this precise formula to keep the presentation simple.

The rest of the section is organized as follows. In Section 4.1 we show that ν t n (u, ∞) can be reduced to the quantity ν 

Preparations.

To begin with, we bring the function ν t n (u, ∞) given in (4.1) into a form amenable to treatment. Let T n be as in (2.12). For all 0 < ε < 1 and δ n as in (4.4),

0 ≤ θn 0 max (c n r ⋆ n ) -1 , c -1 n τ n (Y n (s)) ½ {Yn(s) / ∈Tn} ds ≤θ n r n (ε n ) r n (ε) ≤ n -2 (4.10)
as follows from (2.29). Hence visits of Y n outside the set T n only yield a negligible contribution to the event in (4.1), implying that

νt n (u, ∞) ≤ ν t n (u, ∞) ≤ νt n u -n -2 , ∞ (4.11) 
where

νt n (u, ∞) ≡ k n (t)P πn θn 0 c -1 n τ n (Y n (s))½ {Yn(s)∈Tn} ds > u . (4.12)
Our next step consists in reducing visits to T n in νt n (u, ∞) to visits to the subset T • n defined in (2.14). Set 

νt n (u, ∞) ≡ k n (t)P πn θn 0 c -1 n τ n (Y n (s))½ {Yn(s)∈T • n } ds > u . ( 4 
|ν t n (u, ∞) -νt n (u, ∞)| ≤ 2k n (t)θ n r ⋆ n n 5 2 -2nεn (1 + o(1)). (4.14)
Proof of Lemma 4.2. Decomposing the event appearing in the probability in (4.12) according to whether 

{H(T n \ T • n ) ≤ θ n } or {H(T n \ T • n ) > θ n }, ( 4 
(H(T • n )) is a |T • n |- dimensional vector, (h n,x ) x∈T •
n , whose components are, for each x ∈ T • n , the joint density that T • n is reached at time v, and that arrival to that set occurs in state x,

P πn (H(T • n ) ≤ s, Y n (H(T • n )) = x) = s 0 h n,x (v)dv. (4.15)
For this vector of densities we have

x∈T • n ∞ 0 h n,x (v)dv = 1, (4.16) 
and, denoting by

h n,T • n the density of H(T • n ), h n,T • n = x∈T • n h n,x . (4.17)
In the notation of Section 3. 

νt n (u, ∞) = k n (t) x∈T • n θn 0 h n,x (v)P x θn-v 0 c -1 n τ n (Y n (s))½ {Yn(s)∈T • n } ds > u dv. (4.18)
Denote by Q u,v n (x) the probability appearing in (4.18). Notice that Y n starts in x ∈ T • n and further decompose this probability according to whether {H(T

• n \ x) ≤ θ n -v} or {H(T • n \ x) > θ n -v}, that is, write Q u,v n (x) ≡ Q u,v n (x) + Q u,v n (x), Q u,v n (x) = P x θn-v 0 c -1 n τ n (Y n (s))½ {Yn(s)∈T • n } ds > u, H(T • n \ x) ≤ θ n -v , (4.19) Q u,v n (x) = P x θn-v 0 c -1 n τ n (Y n (s))½ {Yn(s)∈T • n } ds > u, H(T • n \ x) > θ n -v , (4.20)
and split (4.18) accordingly. Clearly, for all v > 0

Q u,v n (x) ≤ P x (H(T • n \ x) ≤ θ n ) . (4.21)
This and the bound

θn 0 h n,x (v)dv ≤ P πn (H(x) ≤ θ n ) (that follows from (4.15)), yield k n (t) x∈I • n θn 0 h n,x (v) Q u,v n (x)dv (4.22) ≤ k n (t) x∈T • n P πn (H(T • n ) ≤ θ n , Y n (H(T • n )) = x)P x (H(T • n \ x) ≤ θ n ) (4.23) ≤ ν t n (4.24)
where 

ν t n ≡ k n (t) x∈T • n P πn (H(x) ≤ θ n )P x (H(T • n \ x) ≤ θ n ) . ( 4 
(T • n )r ⋆ n = n 1+2α(ε) r ⋆ n θ 1+α(ε) n 2 -nε (1 + o(1)
), wich decays to zero as n diverges by (4.6) (see also (4.8)). We may thus use (3.18) of Lemma 3.7 to bound the term P πn (H(x) ≤ θ n ) in (4.25), and by this and (3.3) we get that on Ω ⋆ , for all large enough n,

ν t n ≤ k n (t)θ n nπ n (T • n )r ⋆ n (1 + o(1))|T • n | -1 x∈T • n P x (H(T • n \ x) ≤ θ n ) . ( 4 

.27)

The lemma now follows from Proposition 3.9.

Consider now the contribution to (4.18) coming from (4.20). By definition,

Q u,v n (x) = P x c -1 n τ n (x)ℓ x n (θ n -v) > u, H(T • n \ x) > θ n -v . (4.28) Thus ν t n (u, ∞) (4.29) ≡ k n (t) x∈T • n θn 0 h n,x (v) Q u,v n (x)dv (4.30) = k n (t) x∈T • n θn 0 h n,x (v)P x c -1 n τ n (x)ℓ x n (θ n -v) > u, H(T • n \ x) > θ n -v dv.(4.31) Setting ν •,t n (u, ∞) ≡ k n (t) x∈T • n θn 0 h n,x (v)P x c -1 n τ n (x)ℓ x n (θ n -v) > u dv, (4.32) we have ν •,t n (u, ∞) -w t n (u, ∞) ≤ ν t n (u, ∞) ≤ ν •,t n (u, ∞) (4.33)
where

w t n (u, ∞) ≡ k n (t) x∈T • n θn 0 h n,x (v)P x c -1 n τ n (x)ℓ x n (θ n -v) > u, H(T • n \ x) ≤ θ n -v dv ≤ k n (t) x∈T • n θn 0 h n,x (v)P x (H(T • n \ x) ≤ θ n -v) dv ≤ ν t n . (4.34)
Inserting our bounds in (4.18), we finally get that for all u > 0

ν •,t n (u, ∞) -νt n (u, ∞) ≤ ν t n . (4.35)
Our aim now is to prove almost sure convergence of ν •,t n (u, ∞). To do so we will need certain properties a sequence, b • n , associated to the sequence b n , that we now define. 

Properties of the sequences b n and b

• n . For F β,ε,n (x) as in (1.41) define b • n ≡ (θ n π n (T • n )) -1 x∈T • n θn 0 h n,x (v)E x [F β,ε,n (ℓ x n (θ n -v))]dv. ( 4 
Set I n (a, b) = (θ n π n (T • n )) -1 x∈T • n J x n (a, b), J x n (a, b) = b a h n,x (v)E x [F β,ε,n (ℓ x n (θ n -v))]dv, (4.37) 
and given Then, on Ω 1 ∩ Ω • ∩ Ω ⋆ , for all but a finite number of indices n,

0 < ζ n < θ n split b • n into b • n = I n (0, κ n ) + I n (κ n , θ n -ζ n ) + I n (θ n -ζ n , θ n ).
I n (0, κ n ) I n (κ n , θ n -ζ n ) ≤ θ -1 n κn κ 1+αn(ε) n (nr ⋆ n ) 1+αn(ε)+o(1) , (4.39) 0 ≤ (b n -b • n )/b • n ≤ n(r ⋆ n ) 1+αn(ε)+o(1) κ 1+αn(ε) n 2 -nεn , (4.40) 
and the right-hand sides of (4.39) and (4.40) decay to zero as n diverges. Furthermore

κ -1 n (r ⋆ n ) -{αn(ε)+o(1)} ≤ b • n ≤ (1 + o(1))nr ⋆ n κ αn(ε) n . ( 4 

.41)

Proof of Lemma 4.4. We first prove a lower bound on I n (κ n , θ nζ n ). For this write

J x n (κ n , θ n -ζ n ) ≥ J x n,1 ≡ θn-ζn κn h n,x (v)E x [F β,ε,n (ℓ x n (θ n -v))½ {ζn<ℓ x n (θn-v)≤θn} ]dv. Since F β,ε,n (x) = (1 + o(1))x αn(ε)+o(1) for all ζ n < x ≤ θ n , J x n,1 ≥ (1 + o(1)) θn-ζn κn h n,x (v)E x [ℓ x n (θ n -v)] αn(ε)+o(1) (1 -½ {ℓ x n (θn-v)<ζn} )dv ≡ J x n,3 -J x n,4 (4.42) 
where we used the left-most inequality in (4.74) to relax the constraint ℓ x n (θ nv) ≤ θ n . Let us bound J x n,3 for x ∈ I ⋆ n . Note that by (2.16) and (2.8)

(r ⋆ n ) -1 ≤ λ n (x) ≤ r ⋆ n , ∀x ∈ I ⋆ n . (4.43) 
Thus, setting ζ ′ n ≡ nr ⋆ n , it follows from (3.46) of Lemma 3.11 that for all x ∈ I ⋆ n ,

J x n,3 ≥ c 3 ( λ -1 n (x)) αn(ε)+o(1) θn-ζ ′ n κn h n,x (v)dv (4.44) 
for some numerical constant 0 < c 3 < ∞. Summing over x, wet get

x∈T • n J x n,3 ≥ x∈I ⋆ n J x n,3 ≥ c 3 (r ⋆ n ) -{αn(ε)+o(1)} x∈I ⋆ n θn-ζ ′ n κn h n,x (v)dv (4.45)
where the last sum in the right-hand side of (4.45) is equal to

P πn (κ n < H(I ⋆ n ) < θ n -ζ ′ n , H(I ⋆ n ) < H(T • n \ I ⋆ n )). (4.46) 
Decomposing this probability into

p 1 -p 2 ≡ P πn (κ n < H(I ⋆ n ) < θ n -ζ ′ n )-P πn (κ n < H(I ⋆ n ) < θ n -ζ ′ n , H(I ⋆ n ) > H(T • n \I ⋆ n ))
we have, by Lemma 3.6 and (3.16), whenever

θ n r ⋆ n nπ n (I ⋆ n ) → 0, p 1 ≥ κ-1 n θ n π n (I ⋆ n )(1 -θ -1 n ζ ′ n )(1 + o(1)) = κ-1 n θ n π n (I ⋆ n )(1 + o(1)) (4.47) 
where the last equality follows from (4.5). To get an upper bound on p 2 , write

p 2 ≤P πn (H(T • n \ I ⋆ n ) < κ n ) + P πn (H(T • n \ I ⋆ n ) < H(I ⋆ n ) < θ n ) ≡ p 3 + p 4 . (4.48) 
By (3.18),

p 3 ≤ κ n r ⋆ n nπ n (T • n \ I ⋆ n )(1 + o(1)
), whereas proceeding as in (4.22)-(4.25),

p 4 ≤ x∈T • n \I ⋆ n P πn (H(x) ≤ θ n )P x (H(I ⋆ n ) ≤ θ n ) (4.49) = n 3 (θ n r ⋆ n ) 2 π n (T • n \ I ⋆ n )π n (I ⋆ n )(1 + o(1)) (4.50) 
where the last equality follows from (3.18) and (3.28). By (2.22), (2.23), and (3.3), on Ω ⋆ and for large enough n, π n (

I ⋆ n ) = 2 -nεn (1 -n -c⋆ (1 + o(1))) and π n (T • n \ I ⋆ n ) = n -c⋆+1 2 -nεn (1 + o(1)) (thus in particular, π n (I ⋆ n )/π n (T • n ) = 1 + o(1)
). In view of this, (4.5), and (4.6), one checks that θ n r ⋆ n nπ n (I ⋆ n ) → 0 (as requested above (4.47)) and that p 2 = o(p 1 ). Thus p 1p 2 = p 1 (1 + o(1)) and by this, (4.47), and (4.45),

(θ n π n (T • n )) -1 x∈T • n J x n,3 ≥ κ-1 n (r ⋆ n ) -{αn(ε)+o(1)} (1 + o(1)). (4.51) 
Turning to J x n,4 we have

x∈T • n J x n,4 ≤ (1 + o(1))ζ αn(ε)+o(1) n x∈T • n θn-ζn κn h n,x (v)dv, (4.52) 
where the last sum is equal to

P πn (κ n < H(T • n ) < θ n -ζ n ).
Since by Lemma 3.6 and (3.16), P πn (κ n < H(T

• n ) < θ n -ζ n ) ≤ (1 + o(1))r ⋆ n nθ n π n (T • n ), we get (θ n π n (T • n )) -1 x∈T • n J x n,4 ≤ (1 + o(1))nr ⋆ n ζ αn(ε)+o(1) n . ( 4 

.53)

Proof of Proposition 4.5. We assume throughout that ω ∈ Ω ⋆ . A key ingredient of the proof is the observation that the generator L n of Y n is independent of the values of the Hamiltonian at its local minima. More precisely, recalling the definition of the set, M n , of local minima from (2.24), it follows from (2.8) and (2.25) that on Ω ⋆ , for all n large enough, for all x ∈ M n , and y ∼ x,

λ n (x, y) = n -1 τ n (y) and λ n (y, x) = n -1 τ n (y), if y / ∈ V ⋆ n , n -1 , if y ∈ V ⋆ n , (4.63) 
(note that if x ∈ M n and y ∼ x then y / ∈ M n ). Hence the law of Y n does not depend on the τ n (x)'s in M n (but it does depend on M n ). Now by (2.15),

T • n ⊆ M n ∩ T n ⊆ M n . (4.64) 
Furthermore, one easily checks that P • in (4.60) is the product measure

P • (∩ x∈T • n {τ n (x) ∈ •}) = x∈T • n P(τ n (x) ∈ •, τ n (x) ≥ r n (ε n )) P(τ n (x) ≥ r n (ε n )) . (4.65) 
Consequently, for fixed

T • n , the collection {X n (x), x ∈ T • n }, X n (x) ≡ θn 0 h n,x (v)P x c -1 n τ n (x)ℓ x n (θ n -v) > u n dv, (4.66) 
viewed as a collection of r.v.'s on the sub-sigma field

F • n = σ({τ n (x), x ∈ T • n })
, forms a collection of independent random variables under P • (that of course still depend on the variables τ n (x) in (T • n ) c ). The proof now hinges on a simple mean and variance argument. We deal with the variance first. By (4.32) and (4.66),

E • ν •,t n (u n , ∞) = k n (t) x∈T • n E • X n (x), (4.67) 
and by independence

E • (ν •,t n (u n , ∞) -E • ν •,t n (u n , ∞)) 2 ≤ k 2 n (t) x∈T • n E • (X n (x)) 2 . (4.68) 
Note that since

X n (x) ≤ θn 0 h n,x (v)dv ≤ P πn (H(x) ≤ θ n ) ≤ θ n r ⋆ n n2 -n (1 + o(1)), (4.69) 
(the last inequality is (3.18) combined with (3.3)) then

k 2 n (t) x∈T • n E • (X n (x)) 2 ≤ t(2 εn /b • n )r ⋆ n n2 -n (1 + o(1))E • ν •,t n (u n , ∞), (4.70) 
where we used that for

a n = 2 εn /b • n , θ n k n (t) = θ n ⌊t(2 εn /b • n )/θ n ⌋ = t(2 εn /b • n )(1 + o(1)
). Inserting (4.70) in (4.68), a second order Tchebychev inequality then yields (4.61).

To estimate 4.67) we first use Fubini to write,

E • ν •,t n (u n , ∞) in (
E • X n (x) = θn 0 h n,x (v)E x P • c -1 n τ n (x)ℓ x n (θ n -v) > u n dv. (4.71) 
Denoting by P x the law of the single variable τ n (x),

P • c -1 n τ n (x)ℓ x n (θ n -v) > u = P x (c -1 n τ n (x)ℓ x n (θ n -v) > u n , τ n (x) ≥ r n (ε n )) P x (τ n (x) ≥ r n (ε n )) (4.72) = P x (c -1 n τ n (x)ℓ x n (θ n -v) > u n ) P x (τ n (x) ≥ r n (ε n )) (4.73) 
where (4.73) follows from the definition of c n (see (1.4)), the a priory bound

ℓ x n (θ n -v) ≤ θ n -v ≪ c n , 0 ≤ v ≤ θ n , (4.74) 
and the fact that δ n in (4.4) in chosen in such a way that θ n r n (ε n )r -1 n (ε) ≤ n -2 ↓ 0 as n ↑ ∞ (see the last inequality in (4.10)). Using classical estimates on the asymptotics of gaussian integrals (see e.g. [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] p. 932), Lemma 2.2, and again the definition of c n , simple calculations yield that for all 0 < u < ∞ and 0 ≤ v < θ n , (4.73) is equal to

(1 + o(1))F β,ε,n ℓ x n (θn-v) un P (τ n (x) > c n ) P(τ n (x) ≥ r n (ε n )) (4.75)
where F β,ε,n (x) is defined in (1.41). Furthermore, by (1.4),

2 εn P(τ n (x) ≥ c n ) = 1 whereas by (2.2), (2.20), and (3.3) 
, P(τ n (x) ≥ r n (ε n )) = π n (T • n )(1 + o(1)
). In view of this and (4.36) we get, combining (4.75), (4.71), (4.67), and using the a priori bound (4.74) that

E • ν •,t n (u n , ∞) = (1 + o(1))k n (t)θ n (b • n /2 εn ) I (0,θn) (u n ) I (0,θn) (1) (4.76) 
where for w > 0

I (a,b) (w) = x∈T • n θn 0 h n,x (v)E x F β,ε,n ℓ x n (θn-v) w
½ {a≤ℓ x n (θn-v)<b} dv. (4.77) To evaluate the ratio in (4.76) set 0 < ζ n ≡ e -n 9/10 ↓ 0 and split the integral in

I (0,θn) (u n ) into I (0,θn) (u n ) ≡ I (0,ζn) (u n )+I (ζn,θn) (u n ). Note that n -1 | log ζ n | = n -1/10 , n -1 (log ζ n ) 2 = n 4/5
, while for all u > 0, n -1 log u n ↓ 0, n -1 (log u n ) 2 ↓ 0 as n ↑ ∞. Using that F β,ε,n (x) is increasing on the domain (0, ζ n /u n )

I (0,ζn) (u n ) ≤ F β,ε,n ζn un P πn (H(T • n ) < θ n ) (4.78)
where

F β,ε,n ζn un = e o(1) log un F β,ε,n (ζ n )F β,ε,n (u -1 n ) and F β,ε,n (ζ n
) ≤ e -αn(ε)n 9/10 -n 4/5 /2β 2 . By this, (3.18), the lower bound (4.41) on b • n , and our assumptions on u n ,

I (0,ζn) (u n ) I (0,θn) (1) = e o(1) log un F β,ε,n (u -1 n )F β,ε,n (ζ n )nκ n (r ⋆ n ) 1+αn(ε)+o(1) → 0 (4.79)
as n → ∞. Next, since n -1 log l ↓ 0 as n ↑ ∞ for all ζ n ≤ l ≤ θ n we have, using (4.74),

I (ζn,θn) (u n ) I (0,θn) (1) = e o(1) log un F β,ε,n (u -1 n ) 1 - I (0,ζn) (un) I (0,θn) (1) 
→ u -α(ε) (4.80)

as n → ∞ for all u > 0. Inserting (4.79) and (4.80) in (4.76), choosing a n = 2 εn /b • n , and passing to the limit n → ∞ finally gives (4.62). The proof of the lemma is done. The assumption that a n = 2 εn /b n in (4.1) can thus be replaced by a n = 2 εn /b • n . Consider now (4.61) and note that by (4.41), (3.6), (1.38), and (4.6) (see also (4.8)), for all 0 < ε < 1,

(2 εn /b • n )r ⋆ n n 3 2 -n ≤ κ n (r ⋆ n ) 1+αn(ε)+o(1) n 3 2 nε 2 -n → 0 (4.81)
as n → ∞. Thus, by Proposition 4.5 and Borel-Cantelli Lemma we get that for all u > 0 and all t > 0, lim n→∞ ν •,t n (u, ∞) = tu α(ε) Palmost surely. (4.82)

In the same way we get that for all u > 0 and all t > 0, lim n→∞ ν 

νt n (u, ∞) -ν •,t n (u, ∞) (4.84) ≤ t(b • n ) -1 [2r ⋆ n n 5 θ n 2 -nε+2δnn + n c⋆+4 2 nε (θ n π n (T • n )r ⋆ n ) 2 ](1 + o(1)) (4.85) ≤ 2tn c⋆+4(1+αn(ε)) (r ⋆ n ) αn(ε)+2+o(1) κ n θ 2+2α(ε) n 2 -nε (1 + o(1)) (4.86)
where the last inequality follows from (4.41), (2.20), (4.3), and (4.4). Since κ n ≤ θ n , (4.6) (see also (4.8)) implies that (4.86) decays to zero as n → ∞. From this and (4.82) we get that for all u > 0 and all t > 0, lim n→∞ νt n (u, ∞) = tu α(ε) P-almost surely. One proves in the same way that for all u > 0 and all t > 0, lim n→∞ νt n (un -2 , ∞) = tu α(ε) P-almost surely. Therefore, by (4.11), for all u > 0 and all t > 0, lim n→∞ ν t n (u, ∞) = tu α(ε) Palmost surely. (4.87) Since ν t n is increasing both in t and u and since its limit continuous in those two variables, (4.87) implies that P-almost surely, 

lim n→∞ ν t n (u, ∞) = tu α(ε) , ∀ u > 0, t > 0. ( 4 
σ t n (u, ∞) ≡ k n (t) y∈Vn π n (y) P y θn 0 max (c n r ⋆ n ) -1 , c -1 n τ n (Y n (s)) ds > u 2
(5.1) decays to zero as n diverges. We prove in this section that this holds true P-almost surely. Proposition 5.1. Under the assumptions of Proposition 4.1, for all 0 < ε < 1 and β > 0, P-almost surely, lim

n→∞ σ t n (u, ∞) = 0, ∀ t > 0, u > 0. (5.2)
As in the proof of Proposition 4.1 we first bring σ t n (u, ∞) into a suitable form. Proceeding as in (4.11)-(4.12), we first write

σt n (u, ∞) ≤ σ t n (u, ∞) ≤ σt n (u -n -2 , ∞) (5.3) 
Lemma 5.3. Assume that (4.6) holds. Then Ω ⋆ , for all but a finite number of indices n,

0 ≤ σt n (u, ∞) -σ t n (u, ∞) ≤ 3k n (t)n c⋆+4 (θ n π n (T • n )r ⋆ n ) 2 (1 + o(1)).
(5.15)

Proof of Lemma 5.3. As in the proof of Lemma 5.2, the proof of Lemma 5.3 relies on the observation that since 0 ≤ R u n (y), R u n (y) ≤ 1 in (5.13) for all y ∈ V n , then by (5.9),

0 < σt n (u, ∞) -σ t n (u, ∞) ≤ 3k n (t) y∈Vn π n (y) R u n (y) (5.16) = 3k n (t) x∈T • n θn 0 h n,x (v) Q u,v n (x)dv ≤ 3 ν t n .
(5.17)

The equality in (5.17) follows from the identity h n,x (v) = y∈Vn π n (y)h y n,x (v), and the final inequality is (4.24). The claim of the lemma now follows from Lemma 4.3.

We now need an upper bound on σ t n (u, ∞). For this we proceed as in (4.31)-(4.33) and write that 0 ≤ σ t n (u, ∞) ≤ σ •,t n (u, ∞) where, by analogy with (4.33),

σ •,t n (u, ∞) = k n (t) y∈Vn π n (y) x∈T • n θn 0 h y n,x (v)P x c -1 n τ n (x)ℓ x n (θ n -v) > u dv 2
(5.18) Again, the quantity in between the square brackets is in [0, 1]. Thus, splitting the integral into the sum of the integrals over [0, κ n ] and [κ n , θ n ], we get, using (5.9) and reasoning as in (5.16)-(5.17),

σ •,t n (u, ∞) ≤ 3η •,t n (u, ∞) + η •,t n (u, ∞) (5.19) where η•,t n (u, ∞) ≡ k n (t) x∈T • n κn 0 h n,x (v)P x c -1 n τ n (x)ℓ x n (θ n -v) > u dv, (5.20) 
η •,t n (u, ∞) ≡ k n (t) y∈Vn π n (y) x∈T • n θn κn h y n,x (v)P x c -1 n τ n (x)ℓ x n (θ n -v) > u dv 2 .
(5.21)

The next two propositions bound (5.20) and (5.21) in terms of the quantities ν •,t n (u n , ∞) and E • ν •,t n (u n , ∞) defined in (4.32) and (4.67), respectively. Proposition 5.4. Choose a n = 2 εn /b • n in (1.17). Then, for any sequence u n > 0 such that 0 < uu n < n -1 and all u > 0,

P η•,t n (u n , ∞) ≥ tE • ν •,t n (u n , ∞)n 2 θ -1 n κn κ 1+αn(ε) n (nr ⋆ n ) 1+αn(ε)+o(1) ≤ n -2 .
(5.22) Proposition 5.5. On Ω ⋆ ∩ Ω 1 , for all but a finite number of indices n and all u > 0, 

η •,t n (u, ∞) ≤ ν •,t n (u, ∞)θ n r ⋆ n n2 -nεn (1 + o(1)). ( 5 
(u n , ∞) ≥ ǫ ≤ ǫ -1 E E • η•,t n (u n , ∞) . (5.24) Note that E • η•,t n (u, ∞) only differs from the term E • ν •,t n (u n , ∞) of
E • η•,t n (u n , ∞) = t(1 + o(1))E • ν •,t n (u n , ∞) I n (0, κ n ) I n (0, θ n ) (5.25)
where I n (a, b) is defined above (4.37). Eq. (4.39) of Lemma 4.4 was designed precisely to control the ratio in (5.25). Namely, on Ω • ∩ Ω ⋆ , for all but a finite number of indices n, (1) .

I n (0, κ n ) I n (0, θ n ) ≤ I n (0, κ n ) I n (κ n , θ n -ζ n ) ≤ θ -1 n κn κ 1+αn(ε) n (nr ⋆ n ) 1+αn(ε)+o
(5.26)

The combination of (5.24), (5.25), and (5.26) gives (5.22). The proof is complete.

Proof of Proposition 5.5. To prove (5.23) first observe that

x∈T • n θn κn h y n,x (v)P x c -1 n τ n (x)ℓ x n (θ n -v) > u dv ≤ P y (κ n < H(T • n ) ≤ θ n ) (5.27) ≤ (1 + o(1))P πn (H(T • n ) ≤ θ n )(5.
28) where the last line follows from Proposition 3.3 and the Markov property, and is valid on Ω 1 , for all but a finite number of indices n. Applying this bound to one of the two square brackets in (5.21) and using (4.32) to bound the remaining term, we get, under the same assumptions as above, that

η •,t n (u, ∞) ≤ (1 + o(1))ν •,t n (u, ∞)P πn (H(T • n ) ≤ θ n ).
(5.29)

Using Corollary (3.20) to bound the last probability yields the claim of the proposition.

We are now ready to complete the Proof of Proposition 5.1. Recall from the proof of Proposition 4.1 that on

Ω 1 ∩ Ω • ∩ Ω ⋆ a n = 2 εn /b n = 2 εn /b • n (1 + o(1)
) for large enough n and consider (5.22). By (4.5),

n 2 θ -1 n κn κ 1+αn(ε) n (nr ⋆ n ) 1+αn(ε)+o(1)
↓ 0 as n ↑ ∞ and by (4.62), for all u > 0 and t > 0 lim n→∞ E • ν •,t n (u n , ∞) = tu α(ε) . Thus, by Proposition 5.4 and Borel-Cantelli Lemma we get that for all u > 0 and t > 0, lim n→∞ η•,t n (u, ∞) = 0 Palmost surely.

(5.30)

Turning to (5.23) and invoking (4.6) (see also (4.8)), it follows from Proposition 5.4 that for all 0 < ε < 1 and for all u > 0 and t > 0, lim n→∞ η where

M n (Y n (s)) = max ((c n r ⋆ n ) -1 , c -1 n τ n (Y n (s))).
The Lemma below is central to the proof. Lemma 6.2. There are constants K, K ′ < ∞ such that for α n (ε) as in (1.42) and any sequence ǫ n > 0 such that iα -1 c (ε) -1 -log ǫn nββc(ε) > 0 where i = 1 in (6.2) and i = 2 in (6.3), we have, for all large enough n, 

E2 εn c -1 n τ n (x)½ {c -1 n τn(x)≤ǫn} ≤ K ǫ 1-αn(ε)-log ǫn 2nβ 2 n α -1 c (ε) -1 -log ǫn nββc(ε) , (6.2) 
E 2 εn c -1 n τ n (x)½ {c -1 n τn(x)≤ǫn} 2 ≤ K ′ ǫ 2-αn(ε)-log ǫn 2nβ 2 n 2α -1 c (ε) -1 -log ǫn nββc(ε) . ( 6 
(Y n (s)) ≤ (c n r ⋆ n ) -1 + c -1 n τ n (Y n (s)
) and that the contribution to (6.1) coming from the term (c n r ⋆ n ) -1 if or order o(1). Indeed by (1.17), (1.40), the lower bound on b n obtained by combining (4.41) and (4.40), the expression (1.5) of c n , the expression (3.6) of κ n , and the fact, that follows from (1.6), that

2 n = e nβ 2 c (ε)/2 , k n (t)θ n (c n r ⋆ n ) -1 ≤ 2tn 4 (r ⋆ n ) αn(ε)+o(1) e nβ 2 c (ε)/2 e -nββc(ε)(1+o(1)) (6.4) 
and so, for all 0 < ε < 1 and β > β c (ε), by virtue of (4.6) (see also (4.8)) For T n as in (2.12) with δ n given by (4.4), set

k n (t)θ n (c n r ⋆ n ) -1 ≤ 2tn 4 (r ⋆ n ) αn(ε)+o(1) e -nβ 2 c (ε)(1+o( 1 
S (1) n,ǫ (t) ≡ k n (t)E πn θn 0 c -1 n τ n (Y n (s))½ {Yn(s)∈Tn} ½ { θn 0 c -1
n τn(Yn(s))ds≤ǫ} ds, (6.7)

S (2) n,ǫ (t) ≡ k n (t)E πn θn 0 c -1 n τ n (Y n (s))½ {Yn(s) / ∈Tn} ½ { θn 0 c -1
n τn(Yn(s))ds≤ǫ} ds. (6.8)

To bound S

n,ǫ (t) simply note that, using (3.4),

S (2) n,ǫ (t) ≤ k n (t)E πn θn 0 c -1 n τ n (Y n (s))½ {τn(Yn(s))≤rn(εn)} ds (6.9) ≤ k n (t)θ n 2 -n (1 + o(1)) x∈Vn c -1 n τ n (x)½ {τn(x)≤rn(εn)} . (6.10) 
Take ǫ n = c -1 n r n (ε n ) and note that by (2.29), the definition of c n , and (4.6),

-(nββ c (ε)) -1 log ǫ n = o(1) and n 2(1+c⋆6 2 /α(ε)) θ n -1 ≤ ǫ n ≤ (n 2 θ n ) -1 . (6.11)
Thus, by Lemma 6.2 and a first order Tchebychev inequality, for all large enough n,

P S (2) n,ǫ (t) ≥ n 2 tb -1 n (c -1 n r n (ε n )) 1-α(ε)+o(1) ≤ n -2 K ′′ (6.12)
for some constant K ′′ > 0. Using the upper bound on ǫ n of (6.11) and the lower bound on b n of Lemma 4.4 obtained by combining (4.41) and (4.40),

n 2 b -1 n (c -1 n r n (ε n )) 1-α(ε)+o(1) ≤ n 2 κ n (r ⋆ n ) αn(ε)+o(1) n 2 θ n -1+α(ε)+o(1) → 0 (6.13)
as n → ∞ by (4.5). Hence by (6.12), (6.13), and Borel-Cantelli Lemma, for all ǫ > 0, lim n→∞ S (2) n,ǫ (t) = 0, Palmost surely. (6.14) To deal with S

n,ǫ (t) we further decompose it into S

n,ǫ (t) = S

n,ǫ (t) + S

n,ǫ (t), where

S (3) n,ǫ (t) ≡ k n (t)E πn θn 0 c -1 n τ n (Y n (s))½ {Yn(s)∈T • n } ½ { θn 0 c -1
n τn(Yn(s))ds≤ǫ} ds, (6.15) 

S (4) n,ǫ (t) ≡ k n (t)E πn θn 0 c -1 n τ n (Y n (s))½ {Yn(s)∈Tn\T • n } ½ { θn 0 c -1 n τn(Yn(s))ds≤ǫ} ds. (6.16) Since S (4) n,ǫ (t) is non zero only if the event {H(T n \ T • n ) ≤ θ n } occurs, S (4) n,ǫ (t) ≤ ǫk n (t)E πn ½ {H(Tn\T • n )≤θn} . ( 6 
c -1 n τ n (Y n (s))½ {Yn(s)∈A} = x∈A c -1 n τ n (x)ℓ x n (θ n ) for any A ⊆ V n , S (3) 
n,ǫ (t) ≤ S (5) n,ǫ (t

) ≡ k n (t)E πn x∈T • n c -1 n τ n (x)ℓ x n (θ n )½ { x∈T • n c -1 n τn(x)ℓ x n (θn)≤ǫ} . (6.20)
With the notation of (4.15)-(4.17),

S (5) n,ǫ (t) = k n (t) y∈T • n θn 0 dvh n,y (v)E y x∈T • n c -1 n τ n (x)ℓ x n (θ n -v)½ { x∈T • n c -1 n τn(x)ℓ x n (θn-v)≤ǫ} .
We further split the sum over x above into x = y and x = y. The latter contribution is

S (6) n,ǫ (t) ≡ k n (t) y∈T • n θn 0 dvh n,y (v)E y x∈T • n \y c -1 n τ n (x)ℓ x n (θ n -v)½ { x∈T • n c -1 n τn(x)ℓ x n (θn-v)≤ǫ} .
Observing that

E y x∈T • n \y c -1 n τ n (x)ℓ x n (θ n -v)½ { x∈T • n c -1 n τn(x)ℓ x n (θn-v)≤ǫ} ≤ ǫP y (H(T • n \ y) ≤ θ n ), (6.21) 
yields the bound S

n,ǫ (t) ≤ ǫ ν t n where ν t n is defined in (4.25). Thus by Lemma 4.3, reasoning as in the paragraph below (4.86), we get that for all ǫ > 0 lim n→∞ S (6) n,ǫ (t) = 0, Palmost surely. (6.22) It remains to bound S

n,ǫ (t) -S

n,ǫ (t). For this we write S

n,ǫ (t) -S

n,ǫ (t) ≤ S

n,ǫ (t) where S (7) n,ǫ (t) ≡ k n (t)

y∈T • n θn 0 dvh n,y (v)E y c -1 n τ n (y)ℓ y n (θ n -v)½ {c -1 n τn(y)ℓ x n (θn-v)≤ǫ} . (6.23)
Let us now establish that for b • n as in (4.36), S

n,ǫ (t) obeys the following Lemma 6.3. Let the sequences a n , c n , θ n be as in Proposition 6.1. Then, under the assumptions and with the notation of Proposition 4.5,

P • S (7) n,ǫ (t) -E • S (7) n,ǫ (t) > tǫ 1/2 n2 -n(1-ε)/2 ≤ n -2 (1 + o(1)) (6.24)
for all ǫ > 0, and lim ǫ→0 lim n→∞ E • S (7) n,ǫ (t) = 0. (6.25)

Proof of lemma 6.3. The proof closely follows that of Proposition 4.5. We only point out the main differences. The random variables (4.66) are now replaced by where P y denotes the law of τ n (y) and where ǫ n ≡ ǫ n (y) = ǫ/ℓ y n (θ nv). Using (6.2) if ℓ y n (θ nv) > ǫe -nββc(ε)(α -1 c (ε)-1) and using that if ℓ y n (θ nv) ≤ ǫe -nββc(ε)(α -1 c (ε)-1) then E y ℓ y n (θ nv)E y c -1 n τ n (y)½ {c -1 n τn(y)≤ǫn} ≤ ǫe -nββc(ε)(α -1 c (ε)-1) c -1 n e nβ 2 /2 , (

X n (y) ≡ θn 0 dvh n,y (v)E y c -1 n τ n (y)ℓ y n (θ n -v)½ {c -1 n τn(y)ℓ y n (θn-v)≤ǫ} (6.26) and E • S (7) n,ǫ (t) = k n (t) y∈T • n E • X n (y). ( 6 
we readily see that E • S (7) n,ǫ (t) ≤ C 1 t Using (3.20) and proceeding as in (6.4) to bound k n (t), the second summand is bounded above by C 5 te -n(β 2 -β 2 c (ε))/2 κ n n αn(ε)/2+1 (r ⋆ n ) 1+αn(ε)+o(1) → 0 (6.32) as n → ∞ by virtue of (3.6), (1.38), and the assumption that β > β c (ε) where 0 < ε < 1. Note in particular that lim n→∞ α n (ε) = α(ε) < 1. Hence, inserting (6.31) and (6.32) in (6.29) and passing to the limit lim ǫ→0 lim sup n→∞ E • S (7) n,ǫ (t) = 0, ∀t > 0. (6.33)

This proves (6.25). Turning to the variance we have, as in (4.68), by independence, that V • (S (7) n,ǫ (t)) ≡ E • (S (7) n,ǫ (t) -E • S (7) n,ǫ (t)) 2 ≤ k 2 n (t)

y∈T • n E • (X n (y)) 2 . (6.34)
Proceeding as in the proof of (6.29) but using (6.3) and the line below (6.30), we get that V • (S (7) n,ǫ (t)) ≤ C 6 t 2 ǫ 2-αn(ε)-log ǫ ) ≤ θ n ), and proceeding as in (6.32), the second summand is bounded above by C 9 t 2 ǫn αn(ε)/2 n 2 κ n (r ⋆ n ) 1+αn(ε)+o(1) 2 θ n e -nβc(ε)(β-βc(ε)) 2 -n . (6.36)

Since by assumption β > β c (ε) and 0 < ε < 1, (4.6) (see also (4.8)) enables us to conclude that on Ω ⋆ , for all large enough n, V • (S (7) n,ǫ (t)) ≤ C 10 t 2 ǫ2 -n(1-ε) . (6.37)

This yields (6.24) and concludes the proof of the Lemma.

Arguing as in the proof of Proposition 4.1 that b n = b • n (1 + o(1)) on Ω 1 ∩ Ω • ∩ Ω ⋆ for all large enough n, it follows from Lemma 6.3 and Borel-Cantelli Lemma that lim ǫ→0 lim n→∞ S (5) n,ǫ (t) -S (6) n,ǫ (t) = 0, Palmost surely. (6.38)

Collecting (6.14), (6.19), (6.22) and (6.38) yields (6.6). The proof of Proposition 6.1 is complete. where the last line is (2.18). Thus (7.1) is an immediate consequence of Proposition (4.1). One readily checks that the assumptions on a n , c n , and θ n of the theorem imply that the conditions (4.5) and (4.6) of Proposition (4.1) are verified. The proof of 1.4 is complete.

Proof of Theorem 1.1. Reasoning as in the proof of Theorem 1.4, we may assume that the process starts in its invariant measure π n . The main idea behind the proof is now classical. Suppose that P πn (A n (t, s)) = P πn ({R n ∩ (t, t + s) = ∅}) + o(1) (7.4) where A n (t, s) ≡ {X(c n t) = X(c n (t + s))} and where R n denotes the range of the rescaled blocked clock process S b n (t). Then Theorem 1.1 is a direct consequence of Theorem 1.4 and the arcsine law for stable subordinators. We refer to Ref. [START_REF] Gayrard | Convergence of clock process in random environments and aging in Bouchaud's asymmetric trap model on the complete graph[END_REF] for a detailed proof of this statement (see the proof of Theorem 1.6 therein) and focus on establishing (7.4). For k ≥ 1 and Z n,i as in (1.19) set

B k = k i=1 Z n,i < t, k+1
i=1 Z n,i > t + s . where convergence is almost sure in the random environment as follows from Theorem 1.4, and where δ can be made as small as desired by taking T large enough. Therefore 0 ≤ P πn ({R n ∩ (t, t + s) = ∅}) -P πn ∪ 1≤k≤kn(T ) B k ≤ δ.

Note that the event B k is non empty if and only if the increment Z n,k+1 straddles over the interval (t, t + s). To show that (7.4) holds it now suffices to establish the following two facts: Fact 1. Almost surely in the random environment, with overwhelming probability, nonempty events B k , k ≤ k n (T ), are produced by visits of the process Y n to the set T • n and, more precisely, by (many) visits of the process to one and the same element of T • n , no other element of T • n being visited in the time interval (t, t + s). This implies that P-a.s. for all large enough n. Note next that reasoning as in (6.17)-(6.19), on Ω • ∩ Ω ⋆ ,

P πn ∪ 1≤k≤kn(T ) (B k ∩ {H k (T n \ T • n ) ≤ θ n }) ≤ k n (T )P πn (H k (T n \ T • n ) ≤ θ n ) → 0

  (3.25) Using(3.25) in the right-and side of (3.24) and plugging the result in(3.22) finally yields (3.17). Clearly, if A ⊂ V n \ V ⋆ n then B = ∅ and the right-and side of (3.24) reduces tor ⋆ n [π n (∅) + π n (B c )] = r ⋆ n π n (A). Proof ofCorollary 3.8. This follows from (3.3) of Lemma 3.1, (2.20), and (2.21).

. 26 )

 26 Given A ⊆ V n let B ⋆ and B c be defined as in the first line of the proof of Lemma 3.7. Since H(A) ≥ H(B ⋆ ∪ B c ), E πn H(A) ≥ E πn H(B ⋆ ∪ B c ). Using (3.26) with C = B ⋆ ∪ B c , (3.16) follows from (3.24) and the bound on π n (B ⋆ ∪ B c ) of (3.25).

( 3 .

 3 38) by ½ {x∈T • n } and take the conditional expectation. The variables {τ n

3 (

 3 see the paragraph below (3.30)) h n,x = y∈Vn π n (y)h y n,x,T • n where, for y ∈ T • n , h y n,x,T • n = δ y . From this and the strong Markov property it follows that

  .36) Thus b • n is nothing but b n (see (1.44)) with T • n substituted for T n . The next lemma collects properties of the sequences b n and b • n needed in the verification of both Condition (B1) and (B2).

Lemma 4 . 4 .

 44 Assume that (4.5) and (4.6) hold. Let ζ n > 0 be a sequence satisfying n -1 | log ζ n | ≪ 1, and κn (r ⋆ n ) 1+αn(ε)+o(1) ζ αn(ε)+o(1) n ↓ 0 as n ↑ ∞. (4.38)

4. 4 .

 4 Proof of Proposition 4.1. By (4.6), (4.3)-(4.4), and the bound κ n ≤ θ n , (4.40) implies that on Ω 1 ∩ Ω • ∩ Ω ⋆ , for large enough n, b n = b • n (1 + o(1)).

( 4 .

 4 67) in that the integral in (5.20) is over [0, κ n ] instead of [0, θ n ]. Taking a n = 2 εn /b • n , a simple adaptation of the proof of (4.62) (see (4.71)-(4.80)) yields

Proposition 6 . 1 .

 61 Under the assumptions of Proposition 4.1, for all 0 < ε < 1 and all β > β c (ε), P-almost surely, lim ǫ↓0 lim sup n↑∞ k n (t)E πn θn 0 M n (Y n (s))½ { θn 0 Mn(Yn(s))ds≤ǫ} = 0, ∀t > 0. (6.1)

- 1 n

 1 ))/2 → 0 (6.[START_REF] Ben Arous | Glauber dynamics of the random energy model. I. Metastable motion on the extreme states[END_REF] as n → ∞. To prove Proposition 6.1 it thus suffices to establish that P-almost surely, n τ n (Y n (s))½ { θn 0 c τn(Yn(s))ds≤ǫ} = 0, ∀t > 0.(6.6)

ǫ 1 -log ǫ nβ 2 1

 12 αn(ε)-log ǫ 2nβ 2 b • n θ n π n (T • n ) y∈T • n θn 0 dvh n,y (v)E y F β,ε,ǫ,n (ℓ y n (θ nv)) + C 2 ǫn αn(ε)/2 e -nβ 2 /2 k n (t)(π n (T • n )) -1 P πn (H(T • n ) ≤ θ n ) (6.29)where here and below C i > 0, i = 1, 2, . . . are constants, and for F β,ε,n as in (1.41),F β,ε,ǫ,n (z) = F β,ε,n (z) z -log z nββc(ε) α -1 c (ε) -1 -log ǫ nββc(ε) + log z nββc(ε) ½ z>ǫe -nββc(ε)(α -1 c (ε)-1) . (6.30)By the leftmost inequality of (4.74) and (4.6),F β,ε,ǫ,n (z) ≤ C 3 F β,ε,n (z).Thus, by (4.36), the first summand in (6.29) is bounded above by C 4 tǫ 1-αn(ε)-log ǫ 2nβ 2 . (6.31)

2 + C 7 0 dvh n,y (v) 2 .

 2702 n θ n ) 2 π n (T • n ) y∈T • n θn 0 dvh n,y (v)E y F β,ε,ǫ,n (ℓ y n (θ nv)) ǫn αn(ε)/2 e -nββc(ε) k 2 n (t)θ π n (T • n ) y∈T • n θnFrom the boundθn 0 dvh n,y (v)E y F β,ε,ǫ,n (ℓ y n (θ nv)) ≤ (1 + o(1)) θn 0 dvh n,y (v)θ αn(ε) n ≤ (1 + o(1))θ αn(ε) n P πn (H(y) ≤ θ n ) and(3.18), (4.41), we get that on Ω ⋆ , for all but a finite number of indices n, the first summand is bounded above byC 8 t 2 ǫ 2-αn(ε)-log ǫ 2nβ 2 nκ n θ αn(ε) n (r ⋆ n ) 1+αn(ε)+o(1) 2

7 . 4 Proof of Theorem 1 . 4 .

 7414 PROOF OF THEOREM 1.1 AND THEOREM 1.By Proposition(3.3), Proposition (4.1), Proposition (5.1) and Proposition (6.1), under the assumptions of Proposition (4.1) and Proposition (6.1), Conditions (B0), (B1), (B2), and (B3) of Theorem 1.3 are satisfied P-a.s.. It remains to check Condition (A0), i.e. to prove that P-a.s., for all u > 0,lim n→∞ P µn (Z n,1 > u) = 0 (7.1)whereZ n,1 = θn 0 max ((c n r ⋆ n ) -1 , c -1 n τ n (Y n (s)))ds and µ n is the uniform measure on V n . By (3.3) and (3.4)P µn (Z n,1 > u) ≤ (1 + o(1))P πn (Z n,1 > u) + x∈V ⋆ n µ n (x)P x (Z n,1 > u) (7.2) ≤ (1 + o(1))P πn (Z n,1 > u) + n -c⋆ (1 + o(1))(7.3) 

(7. 5 )

 5 Then by(1.18), {R n ∩ (t, t + s) = ∅} = {∪ k≥1 B k }. Furthermore, for any T > 0,P πn ∪ k>kn(T ) B k ≤ P πn S b n (T ) < t -→ n→∞ P V α(ε) (T ) < t ≤ δ (7.6)

. 8 )Fact 2 .

 82 P πn A n (t, s) ∩ {∪ 1≤k≤kn(T ) B k } ≥ P πn ∪ 1≤k≤kn(T ) B k + o(1) (7If B k and B ′ k , 1 ≤ k = k ′ ≤ k n (T ), are two non-empty events then, almost surely in the random environment they are produced by visits to two distinct elements of T • n with overwhelming probability. This implies that P-a.s.

P

  πn A n (t, s) ∩ (∩ 1≤k≤kn(T ) B c k ) → 0, n → ∞ (7.9) Combining (7.7),(7.8), and (7.9) then establishes that|P πn (A n (t, s)) -P πn ({R n ∩ (t, t + s) = ∅})| ≤ δ + o(1) (7.10)which is tantamount to(7.4).The proofs of Facts 1 and 2 mostly use information already obtained in the course of the verification of Conditions (B1)-(B3). We present them succinctly below, beginning with the proof of Fact 1. Fix 0 < T < ∞ and assume that the assumption of Proposition (4.1) are satisfied. Let H k (A) = inf{t ≥ θ n k | Y n (t) ∈ A} be the first hitting time of A ⊆ V n after time θ n k. Note first that B k = B k ∩ {Z n,k+1 > s} and thus, by (4.10), P πn ∪ 1≤k≤kn(T ) (B k ∩ {H k (T n ) > θ n }) = 0 (7.11)

  Under the assumptions of Proposition 3.2, on Ω 1 , for all but a finite number of indices n, for all β > 0, allpairs x, y ∈ V n , and all t ≥ 0,

	2, Condition (B0) of Theorem 1.3 is satisfied
	P-almost surely with e.g.	
	κ n ≡ ⌊n 4 r ⋆ n (1 + o(1))⌋.	(3.6)
	Proposition 3.3.	

  By (3.1), Lemma 3.1, and (2.31) of Lemma 2.4, on Ω 0 ∩ Ω ⋆ , for all but a finite number of indices n, sup z∈Vn π -1 n (z) ≤ (2 n /r ⋆ n )e βn √ 2 log 2(1+2 log n/n) . The claim of Proposition 3.3 now readily follows from this, (3.14), and Proposition 3.2, choosing κ n as in (3.6). 3.2. Hitting time for the stationary chain. Drawing heavily on Aldous and Brown's work

n,1 . (3.14)

  where by (2.17), on Ω ⋆ , |C ⋆ n,l(x) | ≪ n. By this and (3.1) we get π n

  .14) follows from (3.19) of Corollary 3.8 applied with t n = θ n , which is licit by virtue of (4.6) (see also(4.8)).

	We next decompose (4.13) according to the hitting time, H(T • n ), and hitting place, Y n (H(T • n )), of the set T •

n . The density of the joint distribution of H(T • n ) and Y n

  .23) 

	Proof of Proposition 5.4. As in the proof of Proposition 4.5 denote by P • the law of the
	collection {τ n (x), x ∈ T • n } conditional on T • n . By a first order Tchebychev inequality, P η•,t n

  .3) Proof of Lemma 6.2. Using standard estimates on the asymptotics of Gaussian integrals (see e.g.[START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] p. 932) the claimed result follows from straightforward computations.Proof of Proposition 6.1. We assume throughout that ω ∈ Ω 1 ∩ Ω • ∩ Ω ⋆ and that n is as large as desired. Note that M n

  .17) Using assertion (ii) of Corollary 3.8 with t n = θ n as in the proof of Lemma 4.2, we get, assuming (4.6), that on Ω ⋆ , for all but a finite number of indices n,

	S (4) n,ǫ (t) ≤ ǫk n (t)θ n r ⋆ n n2 -2nεn (1 + o(1)), Proceeding as in (6.13) to bound b n , (4.6) (see also (4.8)) guarantees that for all ǫ > 0 (6.18)
		lim n→∞	S (4) n,ǫ (t) = 0, P -almost surely.	(6.19)
	Using next that	θn 0	

  .27) Proceeding as in (4.72)-(4.74) to deal with the conditional expectation and using thatP(τ n (x) ≥ r n (ε n )) = π n (T • n )(1 + o(1)) (see the paragraph below (4.75)), we get (v)E y ℓ y n (θ nv)E y c -1 n τ n (y)½ {c -1

	E • S (7) n,ǫ (t) =	k n (t)(1 + o(1)) π n (T • n )	y∈T • n	0	θn	dvh n,y

n τn(y)≤ǫn}

  2 -n . (6.35) Using the bound y∈T •

n θn 0 dvh n,y (v) 2 ≤ sup y∈T • n P πn (H(y) ≤ θ n )P πn (H(T • n

⋆ n ≡ V n (ρ ⋆ n ) = ∪ L ⋆ l=1 C ⋆ n,l , C ⋆ n,l ∩ C ⋆ n,k ∀l = k, L ⋆ ≡ L n (ρ ⋆ n ),(2.7)

≤ |C ⋆ n,l | ≤ {ρ ⋆ n [1 -2c -1 ⋆ (1 + O(log n/n))]} -1 , 1 ≤ l ≤ L ⋆ .(2.17)The same bounds hold replacing C ⋆ n,l by C ⋆ n,l and L ⋆ by L ⋆ in (2.17). Furthermore,

Proof of Lemma 2.1. Recall that by assumption c ⋆ > 1 + log 4 > 2. Eq. (2.17) is (2.9) of Lemma 2.2 of Ref.[START_REF] Gayrard | Convergence of clock processes and aging in Metropolis dynamics of a truncated REM[END_REF]. That the same bound holds for |C ⋆ n,l | follows by symmetry of H n . The estimate (2.18) on |V ⋆ n | is (2.11) of Ref. [24] and the estimate on |V ⋆ n | follows again by symmetry of H n . Eq. (2.19) and (2.22) are proved, respectively, as (2.11) of and (2.10) of Ref. [24]. The proof of (2.21) is a simple adaptation of the proof of lemma 7.1 of Ref. [24]. Clearly, (2.20) follows from (2.19) and (2.21), and (2.23) follows from (2.20)

⋆ n } = {r ⋆ n τ n (x) ≤ 1}, |V n \ V ⋆ n | ≤ Z β,n ≤ |V n \ V ⋆ n | + |V ⋆ n | ≤ 2 n . Eq. (3.2) then follows from (2.18) of Lemma 2.1. Eq. (3.4) is then immediate and (3.3) follows from the fact that A ∩ V ⋆ n = ∅ for each of the mentioned sets.

n ) can appear only at the ends of any path, the paths of Γ n do not contain any edge of the graph G n (V ⋆ n ). This prompts us to write 1/ϑ n,1 ≤ max{K 1,n , K 2,n , K 3,n } where K 1,n , K 2,n , and K 3,n are obtained, respectively, by restricting the maximum in (3.10) to the maximum over edges e = {x ′ , y′ } with x ′ ∈ V ⋆ n and y ′ / ∈ V ⋆ n , x ′ / ∈ V ⋆ n and y ′ ∈ V ⋆ n , and x ′ / ∈ V ⋆ n and y ′ / ∈ V ⋆ n .To bound K 1,n note that the sum over paths that contain e = {x ′ , y ′ } reduces to the sum over all paths starting in x ′ that contain e, so that K 1,n = max e={x ′ ,y ′ }:x ′ ∈V ⋆ n ,y ′ / ∈V ⋆ n

At this point we may observe that the right-most condition in (4.38) is tailored to guarantee that x∈T • n J x n,3 ≫ x∈T • n J x n,4 . Hence, collecting our bounds, (1) (4.54)

≥ κ-1 n (r ⋆ n ) -{αn(ε)+o(1)} . (4.55)

We now prove an upper bound on I n (0, κ n ). Using that F β,ε,n (x) ≤ (1 + o(1))x αn(ε) for all 0 < x ≤ θ n together with (3.47) of Lemma 3.11 (which by (4.6) and (3.4) is licit), One proves in the same way that

where by (4.6) the term in square brackets (that comes from (3.47)) is equal to 1 + o(1). Combining (4.57) and (4.55) proves (4.39). Since

.55) and (4.58) yield, respectively, the lower and upper bounds of (4.41). It remains to prove (4.40). By definition (see (1.44), (4.36), and the second remark below (4.7) on the definition of T n )

Conditioning on the time of the first visit to x, and proceeding as in (4.57)-(4.58) to bound the expectation starting in Proof of Proposition 1.5. This is a straightforward consequence of (4.40), (4.41), the assumptions of (1.45), and (1.38). 

Concentration of ν

Then, for any sequence u n > 0 such that 0 < uu n < n -1 and all u > 0 and t > 0,

where 

Proof of lemma 5.2. As in the Proof of Lemma 4.2 we decompose the event appearing in the probability in (5.4) according to whether

)

we write σt

In the same way write σt n (u, ∞) = k n (t) y∈Vn π n (y)[q 1 (y) + q2 (y)] 2 where q1 (y) and q2 (y) are defined as in (5.7) and (5.8), respectively, substituting

Applying (5.9) to the terms [q 1 (y)+q 2 (y)] 2 and [q 1 (y)+q 2 (y)] 2 , and observing that q 2 2 = q2 2 , we get

(5.11)

The Lemma now follows from (3.19) of Corollary 3.8.

We continue our parallel with the proof of Proposition 4.1 and decompose (5.5) according to the hitting time and hitting place of the set T • n . We slightly abuse the notation of Section 3 (see the paragraph below (3.30)) and denote by h y n,x (instead of h y n,x,T • n ) the joint density that T • n is reached at time t, and that arrival to that set occurs in state x, given that the process starts in y. As already observed (see the paragraph below (4.17)), h n,x = y∈Vn π n (y)h y n,x . Proceeding as in (4.18)-(4.20) we then get

where, using (4. [START_REF] Duplantier | Glasses and Grains[END_REF]) and (4.20),

By analogy with (4.30) we also set

(5.14)

The next lemma plays the role of Lemma 4.3.

as n → ∞ by virtue of (4.6). Hence on Ω • ∩ Ω ⋆ , for all large enough n,

This means that for B k to be non-empty, the increment Z n,k+1 must be produced by visits of Y n to T • n , and T • n only. To prove that all these visits, if there are several of them, must be to a single vertex it suffices to show that as n → ∞,

where

where ν T n is defined in (4.25) and bounded in Lemma 4.3. Reasoning as in the paragraph below (4.86) then yields that under the assumptions (4.5) and (4.6), on Ω • ∩ Ω ⋆ , lim n→∞ ν T n = 0. Fact 1 is now proved. Fact 2 will be established if we can prove that as n → ∞,

where

.17) To prove this observe that the event in (7.16) can be written as

) Thus, by the Markov property we have, using the notation of (4.15)-(4.17) and the bound

To proceed, we split the domain of integration into [0,

Using that by Proposition 3.3, on Ω 1 , for all n large enough,

, the contribution coming from this domain is at most

where we used (3.20) with t n = θ n (which is licit as we many times saw) and (3.18) with t n = θ n k n (T ), which is licit provided that θ n k n (T )r ⋆ n n2 -n → 0 as n → ∞, and this is guaranteed by our assumptions on a n . Indeed, proceeding as in the proof of Proposition 4.1 (see (4.81) and the paragraph above) we get that on

by (4.4), (3.3), and (2.20), and we get that on Ω • ∩ Ω ⋆ ∩ Ω 1 , (7.20) is bounded above by

and by (4.6) this decays to zero as n → ∞ for all 0 < ε < 1.

Consider next the domain [θ nκ n , θ n ] and note that since

the corresponding contribution is bounded above by k n (T )P πn (θ n -

By the upper bound of (3.6) and the lower bound of (3.5), on Ω ⋆ , for all but a finite number of indices n, this is in turn bounded above by

as n → ∞, where we again used that 2 nδn = (n 2 θ n ) α(ε) by (4.4) whereas 0 < α(ε) < 1

by assumption; the final convergence then follows from (4.5). Combining the conclusions of (7.21) and (7.24) we get that on

This concludes the proof of Fact 2. The proof of Theorem 1.1 is now complete.

APPENDIX: PROOF OF THEOREM 1.2 AND THEOREM 1.3

Proof of Theorem 1.2. The proof closely follows that of Theorem 1.2 of Ref. [START_REF] Bovier | Convergence of clock processes in random environments and ageing in the p-spin SK model[END_REF]. Throughout we fix a realization ω ∈ Ω of the random environment but do not make this explicit in the notation. We set

Condition (A0) ensures that S b n -S b n converges to zero, uniformly. Thus we must show that under Conditions (A1), (A2), and (A3),

For this we rely on Theorem 1.1 of Ref. [START_REF] Bovier | Convergence of clock processes in random environments and ageing in the p-spin SK model[END_REF]. (This result is itself a specialized form of Theorem 4.1 of Ref. [START_REF] Durrett | Functional limit theorems for dependent variables[END_REF] suited to the present setting.) Namely, we want to show that Conditions (A1), (A2), and (A3) imply the conditions of Theorem 1.1 of Ref. [START_REF] Bovier | Convergence of clock processes in random environments and ageing in the p-spin SK model[END_REF].

To this end let {F n,i , n ≥ 1, i ≥ 0} be the array of sub-sigma fields of F Y defined (with obvious notation) through F n,i = σ (Y n (s), s ≤ θ n i), for i ≥ 0. Note that for each n and i ≥ 1, Z n,i is F n,i measurable and F n,i-1 ⊂ F n,i . Next observe that by the Markov property and the fact that, for all i ≥ 1 and y ∈ V n , P y (Z n,i > u) = P y (Z n,1 > u),

In view of this, (1.21), (1.22), and (1.23)

and in view of (1.24)

From (8.4) and (8.5) it follows that Conditions (A1) and (A2) of Theorem 1.2 are exactly the conditions of Theorem 1.1 of Ref. [START_REF] Bovier | Convergence of clock processes in random environments and ageing in the p-spin SK model[END_REF]. Similarly Condition (A3) is condition (1.9). Therefore the conditions of Theorem 1.1 of Ref. [START_REF] Bovier | Convergence of clock processes in random environments and ageing in the p-spin SK model[END_REF] are verified, and so S b n ⇒ J 1 S ν in D([0, ∞)) where S ν is a subordinator with Lévy measure ν and zero drift.

The proof of Theorem 1.3 centers of the Proposition 8.1. Assume that Condition (B1) is satisfied. Then, choosing θ n ≥ κ n , the following holds for all initial distributions µ n : for all t > 0, all u > 0, and all ǫ > 0,

and

Proof of Proposition 8.1. We assume throughout that θ n ≥ κ n . To prove (8.7), simply note that by a first order Tchebychev inequality

where we used in the last line that by (1.30),