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A theory is developed that allows one to model the velocity field of acoustic microstreaming produced by
nonspherical oscillations of an acoustically driven gas bubble. It is assumed that some of the bubble oscillation
modes are excited parametrically and hence can oscillate at frequencies different from the driving frequency.
Analytical solutions are derived in terms of complex amplitudes of oscillation modes, which means that the mode
amplitudes are assumed to be known and serve as input data when the velocity field of acoustic microstreaming
is calculated. No restrictions are imposed on the ratio of the bubble radius to the viscous penetration depth. The
present paper is the first part of our study in which a general theory is developed and then applied to the case that
acoustic microstreaming is generated by the interaction of the breathing mode (mode 0) with a mode of arbitrary
order m � 1. Examples of numerical simulations and a comparison with experimental results are provided.
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I. INTRODUCTION

There are a number of technological, chemical, and
biomedical applications in which steady vortex flows gen-
erated in a liquid by the oscillations of acoustically driven
bubbles play an important role [1]. These applications inspire
a longstanding research interest in the above physical phe-
nomenon commonly known as acoustic microstreaming [2].

First experimental observations of acoustic microstream-
ing induced by gas bubbles were reported by Kolb and Nyborg
[3] and Elder [4]. Early theoretical studies of this phenomenon
are devoted to microstreaming that is produced by the dipole
(translation) and monopole (pulsation) modes as in the cases
of a translating bubble [5] and a bubble both translating
and pulsating [6,7]. In more recent studies, attempts have
been made to consider shape modes of higher order [8–10].
Maksimov [8] derived an asymptotic solution for acoustic
microstreaming generated by a parametrically excited shape
mode of order n � 1, assuming that the amplitude of the
shape mode is much greater than that of the breathing mode
so the contribution of the former to the microstreaming is
dominant. This situation is observed when a millimeter-sized
bubble is driven at a frequency of a few kilohertz [11]. How-
ever, Maksimov’s solution is not valid for microfluidic and
biomedical applications where one has to deal with micron-
sized bubbles driven at high kHz and MHz frequencies
[12,13]. Doinikov and Bouakaz [9] and Spelman and Lauga
[10] developed theories that include modes of all orders, but
their calculations assume that all the modes oscillate at the
same frequency, which means that the parametric generation
of shape modes is ignored. In addition, their theories do not
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allow one to separate contributions of different modes. This
makes it difficult to apply their theories in order to predict
microstreaming in real experimental conditions, such as those
reported by Guédra et al. [14–16], where predominant oscilla-
tory modes are generated parametrically and hence oscillate at
half driving frequency. It should also be emphasized that all of
the above-mentioned studies, except for Ref. [9], assume that
the bubble radius is much greater than the viscous penetration
depth and therefore calculations are performed approximately,
only up to leading terms in the framework of the above-stated
assumption on viscous effects.

The purpose of our study is to develop a theory that allows
one to model the velocity field of acoustic microstream-
ing produced by nonspherical oscillations of a gas bubble,
assuming that some of the oscillation modes are excited
parametrically and oscillate at frequencies different from the
driving frequency at which the breathing mode is excited. Our
derivation provides analytical solutions in terms of complex
amplitudes of oscillation modes. This means that the modal
amplitudes are assumed to be known (for example, because
they are measured experimentally as in Refs. [14–16]) and
therefore they serve as input data when the velocity field of
acoustic microstreaming is calculated. An important feature
of our derivation is that no restrictions are imposed on the
ratio of the bubble radius to the viscous penetration depth. The
complexity of our derivation and the bulkiness of equations
make us divide the description of our results into two parts.
The present paper is the first part of our study, in which
a general theory is developed and then applied to the case
that acoustic microstreaming is generated by the interaction
of the breathing mode (mode 0) with a mode of arbitrary
order m � 1. The second part of our study is presented in the
next paper, which provides solutions for the case of acoustic
microstreaming induced by the translational mode (mode 1)

2470-0045/2019/100(3)/033104(14) 033104-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.033104&domain=pdf&date_stamp=2019-09-10
https://doi.org/10.1103/PhysRevE.100.033104


ALEXANDER A. DOINIKOV et al. PHYSICAL REVIEW E 100, 033104 (2019)

z

x

y

z

(a) (b)

FIG. 1. Geometry of the system under study. (a) Three-
dimensional representation of the zonal spherical harmonics (here
mode 3 is shown), where z is the axis of axial symmetry. (b) Axial
symmetry allows using polar coordinates (r, θ ) to characterize the
bubble interface.

alone and by the interaction of the translational mode with a
mode of arbitrary order m � 2. Both parts provide examples
of numerical simulations and a comparison with experimental
results.

II. THEORY

The geometry of the system under study is depicted in
Fig. 1. We assume that a single gas bubble, suspended in
an infinite liquid, undergoes axisymmetric oscillations in re-
sponse to an imposed acoustic field. The axis z is the axis
of symmetry. The liquid motion is described by the spher-
ical coordinates r and θ whose origin is at the equilibrium
center of the bubble. Our derivation follows the conventional
procedure. We assume that the amplitudes of the bubble os-
cillation modes are small compared to the equilibrium bubble
radius. This assumption allows us to linearize the equations
of liquid motion (Navier-Stokes equations) and to find their
solutions, assuming that the amplitudes of the bubble oscil-
lation modes are given quantities. These solutions give us a
linear time-dependent velocity field produced by the bubble
in the liquid. In the next step, the equations of liquid motion
are written with accuracy up to terms of the second order of
smallness with respect to the linear solutions and averaged
over time. This operation leads to equations that describe the
time-independent velocity field of acoustic microstreaming
produced by the bubble oscillations. Solutions to the above
equations are the ultimate aim of our derivation.

A. Linear solutions

We assume that the bubble oscillation may be decomposed
into N axisymmetric oscillation modes including the radial
pulsation (mode 0), translation (mode 1), and shape modes
(modes of order n > 1). Due to the parametric behavior
of nonspherical bubble dynamics, some of the modes can
oscillate at frequencies different from the driving frequency.
Therefore, in the general case, the bubble surface can be
represented as

rs = R0 +
N∑

n=0

sne−iωnt Pn(μ), (1)

where R0 is the bubble radius at rest, sn is the complex
amplitude of the nth mode, ωn is the angular frequency of the
nth mode, μ = cos θ , and Pn is the Legendre polynomial of
order n. Equation (1) results from the fact that an arbitrary ax-
isymmetric surface can be expanded in Legendre polynomials
[10,17].

It is assumed that |sn|/R0 � 1. The values of sn and ωn are
considered as known quantities. They are measured experi-
mentally and serve as input data in our study. Note also that in
the general case, ωn is different from the resonant frequency
of the monopole bubble pulsation.

Considering that the bubble radius is small compared to
the sound wavelength, the liquid compressibility can be ne-
glected. The linearized equations of an incompressible vis-
cous liquid are given by [18]

∇ · v1 = 0, (2)

∂v1

∂t
= − 1

ρ
∇p1 + ν�v1, (3)

where v1 and p1 are the first-order liquid velocity and pres-
sure, respectively, ρ is the constant liquid density, ν = η/ρ

is the kinematic liquid viscosity, and η is the dynamic liquid
viscosity.

A solution for v1 is sought as

v1 = ∇ϕ1 + ∇ × ψ1, (4)

where ϕ1 and ψ1 are the scalar and the vector velocity poten-
tials, respectively.

In view of axial symmetry, the liquid velocity has only r
and θ components. This fact allows us to take expressions for
ϕ1 and ψ1 in the following form:

ϕ1 = ϕ1(r, θ, t ), (5)

ψ1 = ψ1(r, θ, t )eε, (6)

where eε is the unit azimuth vector.
Substitution of Eq. (4) into Eq. (2) results in

�ϕ1 = 0, (7)

where � denotes the Laplace operator. A solution to Eq. (7),
in view of Eq. (1), is given by

ϕ1 =
N∑

n=0

ane−iωnt

(
R0

r

)n+1

Pn(μ), (8)

where an is a constant coefficient to be found. The fact that
Eq. (8) satisfies Eq. (7) can be checked by direct substitution.

Applying the curl operator to both sides of Eq. (3) and
substituting Eq. (4) for v1, one obtains(

� − 1

ν

∂

∂t

)
ψ1 = 0. (9)

In view of Eqs. (1) and (6), a solution to Eq. (9) is given by

ψ1 = eε

N∑
n=1

bne−iωnt h(1)
n (knr)P1

n (μ), (10)
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where h(1)
n is the spherical Hankel function of the first kind, P1

n
is the associated Legendre polynomial of the first order, kn =
(1 + i)/δn, where δn = √

2ν/ωn is the viscous penetration
depth at frequency ωn, and bn is a constant coefficient to be
found.

The components of v1 are calculated by

v1r = − 1

R0

N∑
n=0

(n + 1)e−iωnt

[
an

(
x̄n

xn

)n+2

+nbn
x̄n

xn
h(1)

n (xn)

]
Pn(μ), (11)

v1θ = 1

R0

N∑
n=1

e−iωnt

{
an

(
x̄n

xn

)n+2

−bn
x̄n

xn

[
h(1)

n (xn) + xnh(1)/
n (xn)

]}
P1

n (μ), (12)

where xn = knr, x̄n = knR0, and h(1)/
n (xn) = dh(1)

n (xn)/dxn.
Note that when calculating Eqs. (11) and (12), we have used
mathematical properties of Pn(μ) and P1

n (μ) [19,20].
To find an and bn, boundary conditions at the bubble

surface are applied. The boundary condition for the first-order
liquid velocity requires that the normal component of v1 at
r = R0 be equal to the normal component of the velocity of
the bubble surface. This condition is written as

v1r |r=R0 = drs

dt
= −i

N∑
n=0

ωnsne−iωnt Pn(μ). (13)

Note that the velocity of the driving acoustic wave is neglected
in Eq. (13) because it is assumed small compared to the
velocity of the scattered wave, and the translational velocity
of the bubble is considered with respect to the velocity of the
driving wave.

Substitution of Eq. (11) into Eq. (13) yields

a0 = iR0ω0s0, (14)

an + nh(1)
n (x̄n)bn = iR0ωnsn

n + 1
for n � 1. (15)

The choice of the second boundary condition depends on
the behavior of the gas-liquid interface. If we deal with a
gas bubble without a shell or contamination on the gas-liquid
interface, we can apply the condition of slippage [21]. This
condition assumes that on the bubble surface the tangential
stress vanishes,

σrθ = η

(
1

r

∂v1r

∂θ
+ ∂v1θ

∂r
− v1θ

r

)
= 0 at r = R0, (16)

where σrθ denotes the first-order tangential stress [18]. Since
in our experiments we deal with pure gas bubbles, we apply
Eq. (16).

Substitution of Eqs. (11) and (12) into Eq. (16) provides

2(n + 2)an + [
(n − 1)(n + 2)h(1)

n (x̄n) − x̄2
nh(1)//

n (x̄n)
]
bn

= 0 for n � 1. (17)

From Eqs. (15) and (17) it follows that

an = iR0ωnsn
[
x̄2

nh(1)//
n (x̄n) − (n − 1)(n + 2)h(1)

n (x̄n)
]

(n + 1)
[
x̄2

nh(1)//
n (x̄n) + (n2 + 3n + 2)h(1)

n (x̄n)
]

for n � 1, (18)

bn = 2iR0(n + 2)ωnsn

(n + 1)
[
x̄2

nh(1)//
n (x̄n) + (n2 + 3n + 2)h(1)

n (x̄n)
]

for n � 1. (19)

Equations (14), (18), and (19) express the linear velocity
potentials in terms of the complex amplitudes of the bubble
oscillation modes. They will be used below as input data in
the equations of acoustic streaming.

B. Equations of acoustic streaming

Taking the nonlinear incompressible Navier-Stokes equa-
tions [18] up to second-order terms with respect to the linear
solutions and averaging over time, one obtains

∇ · 〈v2〉 = 0, (20)

η�〈v2〉 − ∇〈p2〉 = ρ〈v1 · ∇v1〉, (21)

where 〈v2〉 and 〈p2〉 are the time-averaged second-order
velocity and pressure, respectively, and 〈〉 means the time
average.

To satisfy Eq. (20) and the condition of axial symmetry,
〈v2〉 is defined by

〈v2〉 = ∇ × 〈ψ2〉 (22)

with

〈ψ2〉 = 〈ψ2(r, θ )〉eε. (23)

Calculating the curl of both sides of Eq. (21) and substitut-
ing Eq. (22), one obtains

�2〈ψ2〉 = −1

ν
∇ × 〈v1 · ∇v1〉. (24)

Equation (24) recovers the vorticity equation derived by West-
ervelt for the case of solenoidal first-order motion [22]; see
Eq. (17) in his work.

The vector equation (24) can be transformed (see Appendix
A) to an equation for the scalar quantity 〈ψ2〉, which was
introduced by Eq. (23):(

�rθ − 1

r2sin2θ

)2

〈ψ2〉

= 1

2νr
Re

{
∂

∂r

[
rv1r

(
�rθψ

∗
1 − ψ∗

1

r2sin2θ

)]

+ ∂

∂θ

[
v1θ

(
�rθψ

∗
1 − ψ∗

1

r2sin2θ

)]}
. (25)
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Here, Re means “the real part of,” the asterisk denotes
the complex conjugate, and the operator �rθ is defined by
Eq. (A9) in Appendix A.

C. Equations of microstreaming produced by modes n and m

Time averaging leads to the result that nonzero contri-
butions to acoustic streaming can come either from pairs
of modes that oscillate at the same frequency or from the
interaction of a mode with itself. Let us assume that modes
n and m oscillate at the same frequency and apply Eq. (25) to
these two modes. This means that we assume

ψ1 = ψ1n + ψ1m, v1 = v1n + v1m, ωn = ωm. (26)

In this case, Eq. (9) gives �ψ1 = −k2
nψ1, which, upon substi-

tuting into Eq. (A11), leads to

�rθψ1 − ψ1

r2sin2θ
= −k2

nψ1. (27)

On substitution of Eq. (27), Eq. (25) reduces to(
�rθ − 1

r2sin2θ

)2

〈ψ2〉

= 1

2νr
Re

{
k2

n

[
∂ (rv1rψ

∗
1 )

∂r
+ ∂ (v1θψ

∗
1 )

∂θ

]}
, (28)

where we have used the fact that k2∗
n = −k2

n .
Equations (26) suggest that 〈ψ2〉 in Eq. (28) can be divided

into three parts:

〈ψ2〉 = 〈
ψnm

2

〉 + 〈
ψnn

2

〉 + 〈
ψmm

2

〉
, (29)

where 〈ψnm
2 〉 is produced by the interaction of modes n and m,

〈ψnn
2 〉 is produced by mode n alone, and 〈ψmm

2 〉 is produced
by mode m alone. It follows from Eq. (28) that the terms of
Eq. (29) should obey the following equations:

(
�rθ − 1

r2sin2θ

)2〈
ψnm

2

〉 = 1

2νr
Re

{
k2

n

[
∂

∂r
(rv1nrψ

∗
1m + rv1mrψ

∗
1n) + ∂

∂θ
(v1nθψ

∗
1m + v1mθψ

∗
1n)

]}
, (30)(

�rθ − 1

r2sin2θ

)2〈
ψnn

2

〉 = 1

2νr
Re

{
k2

n

[
∂

∂r
(rv1nrψ

∗
1n) + ∂

∂θ
(v1nθψ

∗
1n)

]}
. (31)

The equation for 〈ψmm
2 〉 is obtained replacing n by m in Eq. (31).

Substituting the explicit expressions for ψ1n, ψ1m, and the velocity components into Eqs. (30) and (31), we obtain final
equations for the terms of Eq. (29):

(
�rθ − 1

r2sin2θ

)2〈
ψnm

2

〉 = n + 1

2νr2
Pn(μ)P1

m(μ)Re

{
kn

2anb∗
m

(
x̄n

xn

)n+1[
(n + 1)h(1)

m (xn) − xnh(1)/
m (xn)

]∗

− nkn
2bnb∗

m

[
xnh(1)/

n (xn)h(1)∗
m (xn) + x∗

nh(1)
n (xn)h(1)/∗

m (xn)
]}

+ m + 1

2νr2
Pm(μ)P1

n (μ)Re

{
kn

2amb∗
n

(
x̄n

xn

)m+1[
(m + 1)h(1)

n (xn) − xnh(1)/
n (xn)

]∗

− mkn
2bmb∗

n

[
xnh(1)/

m (xn)h(1)∗
n (xn) + x∗

nh(1)
m (xn)h(1)/∗

n (xn)
]}

−
√

1 − μ2

2νr2

[
P1

n (μ)P1
m(μ)

]/
Re

{
b∗

mk2
nh(1)∗

m (xn)

[
an

(
x̄n

xn

)n+1

− bn
[
h(1)

n (xn) + xnh(1)/
n (xn)

]]

+ b∗
nk2

nh(1)∗
n (xn)

[
am

(
x̄n

xn

)m+1

− bm
[
h(1)

m (xn) + xnh(1)/
m (xn)

]]}
, (32)

(
�rθ − 1

r2sin2θ

)2〈
ψnn

2

〉 = n + 1

2νr2
Pn(μ)P1

n (μ)

(
x̄n

xn

)n+1

Re
{
kn

2anb∗
n

[
(n + 1)h(1)

n (xn) − xnh(1)/
n (xn)

]∗}

−
√

1 − μ2

νr2
P1

n (μ)P1/
n (μ)Re

{
k2

nh(1)∗
n (xn)

[
anb∗

n

(
x̄n

xn

)n+1

− bnb∗
nxnh(1)/

n (xn)

]}
. (33)

In the next section, Eq. (32) will be applied to the case n = 0. In the second part of our study, Eqs. (32) and (33) will be
applied to the case n = 1.

D. Microstreaming produced by modes 0 and m

The mathematical complexity of Eqs. (32) and (33) makes it difficult to solve them at arbitrary values of n and m. To make the
problem amenable to analytical solution, we consider an important practical case where acoustic microstreaming is generated as
a result of the interaction of mode 0 with a mode of order m � 1.
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FIG. 2. Comparison of the present model to the models of Longuet-Higgins [7] and Spelman and Lauga [10] for the linear liquid velocity
produced by the translational motion of the bubble. Left column: r dependence of the radial linear velocity. Right column: r dependence of
the tangential linear velocity. The subfigures compare the behavior of the velocity components given by the three models at increasing values
of the liquid viscosity: (a, b) η = 0.001 Pa s; (c, d) η = 0.01 Pa s; (e, f) η = 0.1 Pa s. Distinctions between the models increase with increasing
ratio δ0/R0.

Setting n = 0 in Eq. (32), we obtain(
�rθ − 1

r2sin2θ

)2〈
ψ0m

2

〉
= − R0

2νr3
P1

m(μ)Re
{
k2

0a∗
0bm

[
h(1)

m (k0r) − k0rh(1)/
m (k0r)

]}
.

(34)

Solving Eq. (34) requires cumbersome calculations. There-
fore, they are performed in Appendix B. As a result, the
solution of Eq. (34) is found to be

〈
ψ0m

2

〉 = −R0

2ν
P1

m(μ)Re{k0a∗
0bmFm(k0r)}, (35)

where the function Fm(k0r) is defined by Eq. (B12). Equation
(35) leads to the following expressions for the components of
the Eulerian streaming velocity:〈

v0m
2r

〉 = m(m + 1)R0

2νr
Pm(μ)Re{k0a∗

0bmFm(k0r)}, (36)

〈
v0m

2θ

〉 = R0

2νr
P1

m(μ)Re{k0a∗
0bm[Fm(k0r) + k0rF /

m (k0r)]},
(37)

where the function F /
m (k0r) is defined by Eq. (B21).

In the process of calculating Eqs. (36) and (37), we have
also obtained the Stokes drift velocity [7]. Its components
are given by Eqs. (B32) and (B33). The summation of the
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Eulerian streaming velocity and the Stokes drift velocity
provides the Lagrangian streaming velocity, which makes our
derivation complete. A MATLAB code for the calculation of the
Eqs. (36), (37), (B32), and (B33) is provided as Supplemental
Material [23].

E. Comparison with previous theories

Streaming produced by modes 0 and 1 was first derived
by Longuet-Higgins [7]. This case was later included in the
arbitrary-mode analysis performed by Spelman and Lauga
[10]. Before comparing our results to the above studies, it
is worth noting that in both of them the physical situation is
different from ours. Both studies assume that the bubble is
fixed while the liquid oscillates about it, whereas we assume
that the bubble is moving while the liquid at infinity is at
rest. This means that, in their case, at infinity the amplitude
of the first-order liquid velocity tends to a nonzero constant,
as expressed by a term with r2 dependence in the linear stream
function �10

(LH) derived by Longuet-Higgins,

�10
(LH)(r, μ) =

[
1

2

(
r2− 1

r

)
+ B

α2

1

r
+ C

α2

(
1+ 1

αr

)
e−α(r−1)

]

× (1 − μ), (38)

where α = (1 + i)R0/δ, and B, C are coefficients given in
Ref. [7]. This r2 term then leads to a term with r−3 dependence
in the Stokes drift velocity (see Eq. (8.16) of Ref. [7]).
As far as linear solutions are concerned, the two physically
different situations lead to mathematically identical equations.
However, for second-order solutions, that is not the case.
This is seen, for example, if one compares the Stokes drift
given by Longuet-Higgins and Eqs. (B32) and (B33) of our
study: the r−3 dependence obtained by Longuet-Higgins is
impossible if the liquid is at rest at infinity. Therefore, our
results for streaming produced by modes 0 and 1 cannot be
transformed to those of Longuet-Higgins. The same is true
when our work is compared to that of Spelman and Lauga
[10], who derived the full microstreaming velocity account-
ing for arbitrary axisymmetric shape modes using the same
mathematical approach as Longuet-Higgins [7]. Analysis of
the 0–1 interaction performed by Spelman and Lauga [10]

leads to the following linear stream function:

�10
(SL)(r, μ) = D0(1 − μ) − 1

2

[
B1

√
r

α2
K 3

2
(αr) + D1

r

]

×
√

1 − μ2P1
1(μ), (39)

where α = (1 + i)/δ, Kn(x) is the modified Bessel function
of the second kind of order n, and B0, B1, D1 are coefficients
given in Ref. [10]. This stream function also leads to a con-
stant linear velocity at infinity through the term D0(1 − μ).

Before we go to comparing streaming velocities, it is
instructive to compare the linear velocities given by our
approach, which impose no restrictions on the viscous pen-
etration depth, with those given by Longuet-Higgins’ and
Spelman and Lauga’s approaches based on the approximation
of a thin viscous boundary layer. This comparison gives
an idea of a range within which the approximation of a
thin viscous boundary layer is valid. In order to allow the
comparison, we have eliminated the r2 term in Eq. (38) and
the term D0(1 − μ) in Eq. (39). Numerical simulations were
performed for the radial and tangential velocity components
at various values of the liquid viscosity. In experiments on
bubble dynamics, water-glycerin mixtures are used, so the
liquid viscosity can vary from 0.001 Pa s (pure water) to
1.48 Pa s (pure glycerin). We made calculations for viscosities
within this range at R0 = 50 µm and f = 50 kHz. The results
are presented in Fig. 2. Note that the velocity components are
normalized by the factor ω0|s1|.

Figure 2 shows that at η = 0.001 Pa s (water), a difference
between the predictions of the models is insignificant.
The radial velocities are identical, and the tangential ones
demonstrate a small distinction. However, when the liquid
viscosity (and accordingly, the ratio of the viscous penetration
depth δ0 to the bubble radius R0) is increased, a quite
considerable difference between the tangential velocities
appears, though the value of the viscosity is still small
compared to the viscosity of glycerin. The variation of the
liquid viscosity affects the tangential velocity more strongly
than the radial one because the latter obeys the no-penetration
boundary condition at the bubble surface, which acts in
both perfect and viscous liquid, whereas the tangential

Longuet-Higgins

Present model

η = 0.001 Pa s
δ0/R0 = 0.05

r/R0 r/R0

−2

−1.6

−1.2

−0.8

−0.4

0
1 2 3 4 5vL

r (r)

−5

−4

−3

−2

−1

0
1 2 3 4 5vL

θ (r)

(a) (b)

FIG. 3. The r dependence of the radial (a) and tangential (b) components of the Lagrangian streaming velocity given by Longuet-Higgins’
theory [7] and the present model for modes 0 and 1.
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FIG. 4. Comparison of the present model to the theory of Spelman and Lauga [10] for the linear liquid velocity produced by mode 4 at
various values of the liquid viscosity. Left column: r dependence of the radial linear velocity. Right column: r dependence of the tangential
linear velocity. Upper line: η = 0.001 Pa s. Middle line: η = 0.01 Pa s. Bottom line: η = 0.1 Pa s.

velocity obeys the boundary condition of zero tangential
stress at the bubble surface, which appears only in a viscous
liquid. Therefore, the difference between the models, which
increases with increasing viscosity, has a stronger effect on
the tangential velocity, as Fig. 2(f) demonstrates.

When considering the Lagrangian streaming velocity for
the 0–1 interaction, we compare our results only to those of
Longuet-Higgins (Eqs. (9.1) and (9.2) of Ref. [7]), as the
model of Spelman and Lauga [10] leads to the same result
for the lowest-order Lagrangian streaming in the limit of
small viscosity. The calculations were made at the following
values of physical parameters: ρ = 1000 kg/m3, η = 0.001
Pa s, R0 = 50 μm, and f = 50 kHz. The phase shift between
the modes was set to π/2. The velocities are normalized by
the factor ω0|s0||s1|/R0. Figure 3 shows the r dependence of

the velocity components. As one can see, our theory predicts
higher velocity amplitudes. However, it should be emphasized
once again that Fig. 3 in fact compares two different physical
cases.

In order to illustrate the interaction between the radial
mode and a surface mode with n > 1 oscillating at the
same frequency, our model is compared to that of Spel-
man and Lauga [10]. First, the evolution of the r depen-
dence of the radial and tangential linear velocities is shown
in Fig. 4 for increasing values of the liquid viscosity and
the ratio of the viscous penetration depth to the bubble
radius. While both models show similar behavior for low
viscosity, a considerable difference arises for higher vis-
cosities. Figure 5 compares the components of the La-
grangian streaming velocity given by our model and that of
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FIG. 5. The r dependence of the radial (a) and tangential (b) components of the Lagrangian streaming velocity given by the theory of
Spelman and Lauga [10] and the present model for modes 0 and 4.

Spelman and Lauga [10] at η = 0.001 Pa s. As in the case
0–1, our model predicts streaming velocities with higher
amplitudes.

III. NUMERICAL AND EXPERIMENTAL RESULTS

Figure 6 presents examples of numerical streamline pat-
terns produced by modes 0–1, 0–2, 0–3, and 0–4. The
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FIG. 6. Numerical examples of streamline patterns produced by various mode pairs: (a) pair 0–1, (b) pair 0–2, (c) pair 0–3, and (d) pair 0–4.
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FIG. 7. Dependence of the Eulerian streaming velocity components on the distance from the bubble surface at various values of the phase
shift φ between the modes: (a, b) modes 0 and 2, (c, d) modes 0 and 4.

simulations were made at the following values of physical pa-
rameters: ρ = 1000 kg/m3, η = 0.001 Pa s, f = 50 kHz, and
R0 = 100 μm. In order to eliminate from consideration the
magnitudes of the modes |s0| and |sm|, the streaming velocity
was normalized and made dimensionless by multiplying it by
the factor R0/(ω0|s0||sm|). The phase shift between modes 0
and 1 is set to π/2. For the other mode pairs, the phase shift
is zero. Figure 6 shows the streamlines of the Lagrangian
velocity. As one can see, main vortices look like lobes whose
number equals 2m.

Equations (36) and (37) show that the r dependence and
the θ dependence of the streaming velocity components can
be separated. The θ dependence is determined by the angular
functions Pm(μ) and P1

m(μ). The remaining terms in Eqs. (36)
and (37) determine the r dependence. According to this fact,
Fig. 7 shows the r dependence of the Eulerian streaming ve-
locity components at various values of the phase shift between
involved modes. It will be recalled that the velocity compo-
nents are scaled by the factor indicated above. Figures 7(a)
and 7(b) illustrate the case of modes 0 and 2. Figures 7(c) and
7(d) illustrate the case of modes 0 and 4. In both cases, the
amplitude of the streaming velocity increases considerably as
the phase shift φ varies from zero to π/2. Another observation
is that the velocity amplitude decays within a short distance
from the bubble surface, especially at φ = 0.

In order to illustrate experimentally these theoretical find-
ings, one needs to observe the microstreaming around a free
(far from boundaries) nonspherically oscillating gas bubble
and to capture both its interface dynamics and the fluid veloc-
ity. Such experimental challenge has been recently overcome
and is explained in greater detail elsewhere [24,25]. A short
summary of the relevant points is given in the following. The
experiments rely on the trapping of micrometric bubbles in
a 31.25-kHz standing wave field established within an 8-cm

cubic water tank (see Fig. 8). Gas bubbles are induced by
short laser pulses and then moved towards pressure antinodes
according to acoustic radiation (primary Bjerknes) force. To
activate a surface mode, it is necessary to reach bubble size
and exceed an acoustic pressure threshold at which the surface
instability may develop. The radius of each laser-nucleated
bubble lies in the range 20–40 µm. If desired, a trapped bubble
can be grown by multiple coalescences. The coalescence is
used as a trigger for nonspherical oscillation when the bubble
is driven at sufficiently high acoustic pressure amplitude.

water tank

pulsed laser

US transducer

ultrafast
camera

LED source

CW laser

laser sheet

particles
fluorescent

Microstreaming

visualization
Bubble generation

FIG. 8. Schematic representation of the experimental setup in-
cluding (right part) the system for bubble generation and the ultra-
sound transducer and (left part) devices for microstreaming visu-
alization. Both bubble dynamics and particle motions are recorded
with a high-speed camera illuminated by a LED source (for bubble
dynamics) or a laser sheet (for capturing fluorescent particle motion).
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FIG. 9. (a) Snapshot series of the bubble dynamics on one
acoustic period corresponding to a bubble of equilibrium radius
R0 = 53.9 μm driven by a 31.25-kHz ultrasound field at acoustic
amplitude Pa = 25.9 kPa and excited at mode 4. The time interval
between two successive snapshots is 5.55 µs (image size 160 × 160
µm). (b) Streak photography of the resulting microstreaming pattern
(image size 460 × 460 µm). (c) Theoretical streamline pattern.

Indeed, the coalescence process leads to a highly initial de-
formed bubble shape, appearing as an initial condition for
surface instabilities. According to the value of the equilib-
rium coalesced bubble radius, the present experimental setup
allows triggering modes 2, 3, or 4. Of interest is that those
nonspherical oscillations are obtained in a steady-state regime
[26], allowing the development of time-stable microstream-
ing. For each investigated bubble, both the interface dynamics
and the induced microstreaming are alternatively captured
by a high-speed camera. According to the coalescence tech-
nique, the symmetry axis of the nonspherical oscillations is
controlled by the direction of the bubble impact prior to the

coalescence. This allows characterizing accurately the bubble
interface dynamics in the plane of the camera. The bubble
interface can then be decomposed onto a set of Legendre poly-
nomials according to the theoretical assumption expressed
by Eq. (1). This decomposition results in the description
of the temporal evolution of the radial, R(t), and surface,
an(t ), mode amplitudes. To verify the developed theory, we
use these experimentally obtained modal amplitudes as input
parameters in the developed analytical model. Consequently,
the obtained streaming pattern can be compared to the exper-
imentally observed one. As nonspherical oscillations exhibit
a parametric behavior, surface mode oscillations are usually
oscillating at half the driving frequency when a given mode
number is excited on its first parametric resonance. In order to
achieve a 0 − m interaction at the same frequency, one needs
to excite a surface mode on its second parametric resonance.
Such experimental cases, for which the predominant mode
oscillates at the same frequency as the radial mode, are those
of mode 4 in our configuration.

Figure 9 presents the experimental and numerical results
corresponding to a bubble of radius R0 = 53.9 μm, driven
at the acoustic amplitude Pa = 25.9 kPa. The microstreaming
pattern, Fig. 9(b), consists of eight lobes with almost an
identical radial extension for each of them. The modal decom-
position reveals a predominant fourth mode whose amplitude
is measured to be |s4| = 13 μm, in addition to the radial
mode whose amplitude is about |s0| = 6 μm. The phase shift
between mode 0 and 4 is found to be φ04 = −0.95π . All
other modal contents are negligible (it was verified that |sn| <

3 μm for n �= 0, 4); hence the microstreaming is theoretically
generated by the interaction of mode 0 and 4 with the two
contributions 0–4 and 4–4. We recall that the n-n interaction,
governed by Eq. (33), is out of the scope of this paper. We
therefore compare the experimental results of the streamline
pattern to the theoretical one when considering only the 0–4
interaction. When applying the experimental parameters |s0|,
|s4|, and φ04 for the theoretical modeling, the corresponding
numerical streamline pattern is presented in Fig. 9(c). This
pattern also presents eight lobes with an identical radial
extension for each of them and shows satisfying agreement
with the experimental case.

IV. CONCLUSIONS

In the present paper, a theory has been developed that al-
lows one to model the velocity field of acoustic microstream-
ing produced by nonspherical oscillations of an acoustically
driven gas bubble. The theory assumes that some of the bubble
oscillation modes are excited parametrically and oscillate at
frequencies that can be different from the driving frequency.
Analytical solutions are derived in terms of complex ampli-
tudes of oscillation modes, which means that the mode ampli-
tudes are assumed to be known and serve as input data when
the velocity field of acoustic microstreaming is calculated. No
restrictions are imposed on the ratio of the bubble radius to
the viscous penetration depth. The present paper describes the
first part of the study in which a general theory is developed
and then applied to the case that acoustic microstreaming is
generated by the interaction of the breathing mode (mode 0)
with a mode of arbitrary order m � 1. Numerical simulations
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of streamline patterns show good qualitative agreement with
experimental observations.

The developed theory does not consider azimuthal modes,
which may appear at shape oscillations of high order due
to fluctuations. The occurrence of azimuthal modes breaks
the axial symmetry of the problem and makes its analytical
consideration much more complicated. A development of the
theory in this direction is very challenging and could be the
subject of further studies.
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APPENDIX A: DERIVATION OF EQ. (25)

We wish to show how Eq. (25) is derived from Eq. (24).
By substituting Eq. (4) into the right-hand side of Eq. (24),

we obtain

∇ × 〈v1 · ∇v1〉 = ∇ × 〈(∇ϕ1) · ∇(∇ × ψ1)

+ (∇ × ψ1) · ∇∇ϕ1

+ (∇ × ψ1) · ∇(∇ × ψ1)〉. (A1)

We then use the following vector identity [19]:

a · ∇b + b · ∇a = ∇(a · b) − a × (∇ × b) − b × (∇ × a),
(A2)

in which we set a = ∇ϕ1, b = ∇ × ψ1 and substitute the
result into Eq. (A1). We obtain

∇ × 〈v1 · ∇v1〉 = ∇ × 〈−(∇ϕ1) × [∇ × (∇ × ψ1)]

+ (∇ × ψ1) · ∇(∇ × ψ1)〉. (A3)

It follows from Eq. (6) that ∇ · ψ1 = 0. Therefore, the
following identity is valid [19]:

∇ × (∇ × ψ1) = ∇∇ · ψ1 − �ψ1 = −�ψ1. (A4)

Substitution of Eq. (A4) into Eq. (A3) yields

∇ × 〈v1 · ∇v1〉 = ∇ × 〈(∇ϕ1) × �ψ1

+ (∇ × ψ1) · ∇(∇ × ψ1)〉. (A5)

With the help of Eq. (A2), in which a = b = ∇ × ψ1, and
Eq. (A4), Eq. (A5) is transformed to

∇ × 〈v1 · ∇v1〉 = ∇ × 〈(∇ϕ1) × �ψ1−(∇ × ψ1)

× [∇ × (∇ × ψ1)]〉
= ∇ × 〈(∇ϕ1) × �ψ1 + (∇ × ψ1) × �ψ1〉
= ∇ × 〈v1 × �ψ1〉. (A6)

Substitution of Eq. (A6) into Eq. (24) results in

�2〈ψ2〉=−1

ν
∇ × 〈v1 × �ψ1〉=

1

2ν
Re{∇ × [(�ψ∗

1 ) × v1]},
(A7)

where Re means “the real part of” and the asterisk denotes the
complex conjugate.

The Laplace operator � [19] can be represented as follows:

� = �rθ + 1

r2sin2θ

∂2

∂ε2
, (A8)

where

�rθ = 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
. (A9)

The use of Eq. (23) and the fact that ∂2eε/∂ε2 = −eε gives

�2〈ψ2〉 = eε

(
�rθ − 1

r2sin2θ

)2

〈ψ2〉. (A10)

Applying Eq. (A8) to ψ1 and using Eq. (6), we obtain

�ψ1 = eε

(
�rθψ1 − ψ1

r2sin2θ

)
. (A11)

With the help of Eq. (A11), the right-hand side of Eq. (A7) is
transformed as follows:

∇ × [(�ψ∗
1 ) × v1]

= ∇ ×
[(

�rθψ
∗
1 − ψ∗

1

r2sin2θ

)
eε × (v1rer + v1θ eθ )

]

= ∇ ×
[(

�rθψ
∗
1 − ψ∗

1

r2sin2θ

)
(v1reθ − v1θ er )

]

= eε

r

{
∂

∂r

[
rv1r

(
�rθψ

∗
1 − ψ∗

1

r2sin2θ

)]

+ ∂

∂θ

[
v1θ

(
�rθψ

∗
1 − ψ∗

1

r2sin2θ

)]}
. (A12)

Substituting Eqs. (A10) and (A12) into Eq. (A7) leads to
Eq. (25).

APPENDIX B: SOLUTION OF EQ. (34)

For the sake of simplicity, let us denote x = x0 = k0r. It is
also convenient to express the differential operator acting on
〈ψ0m

2 〉 in Eq. (34) in terms of x and μ = cos θ by

D = �rθ − 1

r2sin2θ
= k2

0

x2

[
∂

∂x

(
x2 ∂

∂x

)

+ (1 − μ2)
∂2

∂μ2
− 2μ

∂

∂μ
− 1

1 − μ2

]
. (B1)

As a result, Eq. (34) takes the form:

D2
〈
ψ0m

2

〉 = −R0

2ν
P1

m(μ)Re

{
k5

0a∗
0bm

h(1)
m (x) − xh(1)/

m (x)

x3

}
.

(B2)

The right-hand side of Eq. (B2) suggests that a solution can
be sought in the following form:

〈
ψ0m

2

〉 = −R0

2ν
P1

m(μ)Re{k0a∗
0bmFm(x)}, (B3)

where Fm(x) is a function to be found. Substitution of Eq. (B3)
into Eq. (B2) results in

D2
[
P1

m(μ)Fm(x)
] = k4

0P1
m(μ)

h(1)
m (x) − xh(1)/

m (x)

x3
. (B4)
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Since P1
m(μ) obeys the equation [20]

(1 − μ2)P1//
m (μ) − 2μP1/

m (μ) +
[

m(m + 1) − 1

1 − μ2

]

× P1
m(μ) = 0, (B5)

the action of the operator D2 on the product P1
m(μ)Fm(x)

results in

D2[P1
m(μ)Fm(x)

]
= k4

0P1
m(μ)

[
d4Fm

dx4
+ 4

x

d3Fm

dx3
− 2m(m + 1)

x2

d2Fm

dx2

+ m(m + 1)(m2 + m − 2)

x4
Fm

]
. (B6)

Substitution of Eq. (B6) into Eq. (B4) gives an equation
for Fm(x),

d4Fm

dx4
+ 4

x

d3Fm

dx3
− 2m(m + 1)

x2

d2Fm

dx2

+ m(m + 1)(m2 + m − 2)

x4
Fm = Gm(x), (B7)

where

Gm(x) = h(1)
m (x) − xh(1)/

m (x)

x3
= (m + 2)h(1)

m (x) − xh(1)
m−1(x)

x3
.

(B8)

Equation (B7) can be solved by the method of variation
of parameters, also known as the Lagrange method [27].
According to this method, we first need to find solutions to a
homogeneous equation that corresponds to the left-hand side
of Eq. (B7),

d4Fm

dx4
+ 4

x

d3Fm

dx3
− 2m(m + 1)

x2

d2Fm

dx2

+ m(m + 1)(m2 + m − 2)

x4
Fm = 0. (B9)

Partial solutions are sought as xλ. Substitution of xλ into
Eq. (B9) leads to a polynomial of fourth order in λ,

λ(λ − 1)(λ − 2)(λ + 1) − 2m(m + 1)λ(λ − 1)

+ m(m + 1)(m2 + m − 2) = 0. (B10)

The roots of Eq. (B10) are −(m + 1),−(m − 1), m, m + 2.
Therefore, the general solution of Eq. (B9) is written as

Fm(x) = C1m

xm+1
+ C2m

xm−1
+ C3mxm + C4mxm+2, (B11)

where Cnm are constants.

To find the solution of Eq. (B7), we set Cnm to be functions
of x,

Fm(x) = C1m(x)

xm+1
+ C2m(x)

xm−1
+ C3m(x)xm + C4m(x)xm+2.

(B12)

According to the method of variation of parameters [27],
Cnm(x) should obey the following equations:

C/

1my1 + C/

2my2 + C/

3my3 + C/

4my4 = 0

C/

1my/

1 + C/

2my/

2 + C/

3my/

3 + C/

4my/

4 = 0

C/

1my//

1 + C/

2my//

2 + C/

3my//

3 + C/

4my//

4 = 0

C/

1my///

1 + C/

2my///

2 + C/

3my///

3 + C/

4my///

4 = Gm(x). (B13)

Here, the prime denotes the derivative with respect to x and
the functions yn are given by

y1 = x−(m+1), y2 = x−(m−1), y3 = xm, y4 = xm+2.

(B14)

Equations (B13) are a system of algebraic equations in the
unknowns C/

nm(x). We need to calculate these unknowns and
then to integrate them over x. Doing so, we obtain

C1m(x) = C1m0 − 1

2(2m + 1)(2m + 3)

∫ x

x̄0

Gm(s)sm+4ds,

(B15)

C2m(x) = C2m0 + 1

2(2m − 1)(2m + 1)

∫ x

x̄0

Gm(s)sm+2ds,

(B16)

C3m(x) = C3m0 − 1

2(2m − 1)(2m + 1)

∫ x

x̄0

Gm(s)s3−mds,

(B17)

C4m(x) = C4m0 + 1

2(2m + 1)(2m + 3)

∫ x

x̄0

Gm(s)s1−mds,

(B18)

where x̄0 = k0R0 and Cnm0 are constants to be determined by
boundary conditions.

To apply the boundary conditions, we first calculate the
components of the Eulerian streaming velocity by using
Eq. (B3):〈

v0m
2r

〉 = −1

r

∂

∂μ

(〈
ψ0m

2

〉√
1 − μ2

)
= m(m + 1)R0

2νr
Pm(μ)Re{k0a∗

0bmFm(x)}, (B19)

〈
v0m

2θ

〉 = −1

r

∂

∂x

(
x
〈
ψ0m

2

〉)
= R0

2νr
P1

m(μ)Re
{
k0a∗

0bm
[
Fm(x) + xF /

m (x)
]}

. (B20)

With the help of the first equation of system (B13), F /
m (x) is

calculated from Eq. (B12) as

F /
m (x) = −(m + 1)

C1m(x)

xm+2
− (m − 1)

C2m(x)

xm

+ mC3m(x)xm−1 + (m + 2)C4m(x)xm+1. (B21)
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The condition of zero streaming velocity at infinity requires
that Fm(x)/r → 0 for r → ∞, which leads to

C3m0 = 1

2(2m − 1)(2m + 1)

∫ ∞

x̄0

Gm(s)s3−mds, (B22)

C4m0 = − 1

2(2m + 1)(2m + 3)

∫ ∞

x̄0

Gm(s)s1−mds. (B23)

In order to calculate C1m0 and C2m0, boundary conditions at the
bubble surface should be applied. Equations (B19) and (B20)
give the components of the Eulerian streaming velocity. To
apply the boundary conditions at the bubble surface, we need
to know the Lagrangian streaming velocity, which is defined
by

vL = 〈v2〉 + vS, (B24)

where vS is the Stokes drift velocity given by [7]

vS =
〈( ∫

v1dt · ∇
)

v1

〉
. (B25)

For modes n and m with ωn = ωm, Eq. (B25) gives

vnm
S = 1

2ωn
Re{[i(v1n + v1m) · ∇](v1n + v1m)∗}. (B26)

We need the Stokes drift velocity that is caused by the
interaction of modes 0 and m. Therefore, we set n = 0 in
Eq. (B26) and keep only cross terms. We also take into
account that v10θ = 0 and ∂v10r/∂θ = 0; see Eqs. (11) and
(12). As a result, the components of v0m

S are found from
Eq. (B26) to be

v0m
Sr = 1

2ω0
Re

{
iv10r

∂v∗
1mr

∂r
+ iv1mr

∂v∗
10r

∂r

}
, (B27)

v0m
Sθ = 1

2ω0
Re

{
iv10r

∂v∗
1mθ

∂r
− iv10rv

∗
1mθ

r

}
. (B28)

With the help of Eqs. (11) and (12), one obtains

v0m
Sr = m(m + 1)R0

2ω0r4
Pm(μ)Re

{
ia∗

0am

(
x̄0

x

)m+1

− ia∗
0bm

[
h(1)

m (x) + xh(1)/
m (x)

]}
, (B29)

v0m
Sθ = − R0

2ω0r4
P1

m(μ)Re

{
i(m + 3)a∗

0am

(
x̄0

x

)m+1

− ia∗
0bm

[
2h(1)

m (x) − x2h(1)//
m (x)

]}
. (B30)

From Eqs. (18) and (19) it follows that for m � 1,

am = x̄2
mh(1)//

m (x̄m) − (m − 1)(m + 2)h(1)
m (x̄m)

2(m + 2)
bm. (B31)

Substituting Eq. (B31) into Eqs. (B29) and (B30) and keeping in mind that in our case km = k0, one finally obtains

v0m
Sr = m(m + 1)R0

2ω0r4
Pm(μ) Re

{
ia∗

0bm

[
x̄2

0h(1)//
m (x̄0) − (m − 1)(m + 2)h(1)

m (x̄0)

2(m + 2)

(
x̄0

x

)m+1

− h(1)
m (x) − xh(1)/

m (x)

]}
, (B32)

v0m
Sθ = R0

2ω0r4
P1

m(μ) Re

{
ia∗

0bm

[
2h(1)

m (x) − x2h(1)//
m (x) − (m + 3)

[
x̄2

0h(1)//
m (x̄0) − (m − 1)(m + 2)h(1)

m (x̄0)
]

2(m + 2)

(
x̄0

x

)m+1
]}

. (B33)

Now we can apply the boundary conditions at the bubble surface. Rallabandi et al. [28] have shown that for arbitrary surface
periodic deformations, both normal velocity component and tangential stress of the Lagrangian streaming vanish at the mean
position of the interface. This means that the following equations are valid:

v0m
Lr = 〈

v0m
2r

〉 + v0m
Sr = 0 at r = R0, (B34)

1

r

∂v0m
Lr

∂θ
+ ∂v0m

Lθ

∂r
− v0m

Lθ

r
= 0 at r = R0. (B35)

Substituting Eqs. (B19), (B20), (B32), and (B33) into Eqs. (B34) and (B35), with the help of Eqs. (B12) and (B21), after a
cumbersome but straightforward calculation, one obtains

C1m0 + x̄2
0C2m0 = Am, (B36)

m(m + 2)C1m0 + (m2 − 1)x̄2
0C2m0 = Bm, (B37)

where Am and Bm are calculated by

Am = −C3m0x̄2m+1
0 − C4m0x̄2m+3

0 − x̄m−2
0

2

[
(m + 1)h(1)

m (x̄0) + 2x̄0h(1)/
m (x̄0) − x̄2

0h(1)//
m (x̄0)

m + 2

]
, (B38)

Bm = (1 − m2)C3m0x̄2m+1
0 − m(m + 2)C4m0x̄2m+3

0 − x̄m−2
0

2

[
x̄3

0h(1)///
m (x̄0) − (m + 3)(m + 5)

m + 2
x̄2

0h(1)//
m (x̄0)

+ (m − 1)(m + 2)x̄0h(1)/
m (x̄0) + (m + 1)(m2 + 4m + 1)h(1)

m (x̄0)

]
. (B39)
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It follows from Eqs. (B36) and (B37) that

C1m0 = Bm − (m2 − 1)Am

2m + 1
, (B40)

C2m0 = m(m + 2)Am − Bm

(2m + 1)x̄2
0

. (B41)

To sum up, we have shown that the solution of Eq. (34) is given by Eq. (B3), which in turn leads to Eqs. (B19) and (B20), which
give the Eulerian streaming velocity. We have calculated all the quantities which appear in the above equations. In the course of
this calculation, we have also calculated the Stokes drift velocity, which, when being added to the Eulerian streaming velocity,
gives the Lagrangian streaming velocity.
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