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Abstract: This paper addresses the asymptotic tracking problem subjected to linear quadratic constraints for linear discrete-time
systems, where packet dropout occurs in actuating channels. In order to solve this objective control problem, the controller-coding
co-design approach is adopted, i.e., the controller, encoder and decoder are designed for taking full advantage of the network
resource collaboratively, thereby achieving better transmission of control signals. A stabilizability condition in the mean square
sense that reveals the fundamental limitation among the Hs norm of the plant, data arrival rates and coding matrices is first
derived. Then, a solvability condition is conducted to handle the additional stochastic LQ control objective by a modified discrete-
time algebraic Riccati equation, and an iterative algorithm is also given for designing the corresponding state feedback gain and
coding matrices. Relied on such design, the asymptotic tracking constraint is further fulfilled through solving a Sylvester equation,
and the feedforward gain related to tracking is parameterized. Finally, a simulation with the implementation of the design method

on two cooperative robots is included to show the effectiveness of the current results.

1 Introduction

Unlike classical digital control systems, networked cohslystems
(NCSs) are closed-loop systems where the plants, the seriker
actuators and controllers are coordinated through ceftam of
communication network. The main features of NCSs are low, cos
high reliability, ease of maintenance and expansion [1M3jan-

in [27] and it is appealed to deal with the constraints asadito
noise ratio (SNR), logarithmic quantization and fading, [28]. For
channel resource allocation, the designers are endowhdheifree-
dom to allocate the capacities among different input chisnwih
the total capacity of the communication network being givtmen
it comes to the case where sub-channels’ capacities arsadsio
be fixed static, a coding and controller co-design methodiigqr-

while numerous special issues on NCSs have been concerned byvard in [30] to obtain the stabilizability condition for mislnput

many researchers, inspired by wide applications of NCS®ap<
erative vehicles [4, 5], sensor networks [6, 7], multi-aggystems
[8,9] and so on. In NCSs, the imperfect communication chisssn

introduce various constraints and uncertainties, foraimst, packet
dropouts [10, 11], time delays [12, 13], fading [14, 15],ilied data
rates [16, 17] and quantization [18, 19], etc.

The stabilization of NCSs with networked constraints anceun
tainties is a wildly attentional research field and numenasailts
have been reported in the literatures. For instance, th@unav
function approach is applied in [20] to reach the coarsesingqu
tization density required for the stabilization of the $&mput
discrete-time linear time-invariant system with logamiib quan-
tized state feedback. Authors in [21] consider a stabilimgproblem
with actuating channel subjecting to packet dropout, ancksie
sary and sufficient conditions are determined in terms optuket
dropout probability and the spectral radius of the systentrirna
[22] solves the stabilization problem for single-input tgys with
both packet dropout and logarithmic quantization and thevedb
mentioned problem for single-input single-output systesoived in
[23] by computing two algebraic Riccati equations and arlatgic
Riccati inequality, where the tradeoff between the robtebity
and the robust performance is revealed. Furthermore, [245dhe
solution for the multi-input multi-output case. The outpegula-
tion problem is considered in a cooperative and distribstdteme
with constraints as switching network topology in [25]. THegula-
tion problem is alternatively tackled by using input/outpeighting
filters, and the classical internal model principle is egtahto the
co-called comprehensive admissibility in [26]. Moreovemrder to
find the least total channel capacity achieving stabilarator multi-
input NCSs, the technique of channel resource allocatiproigosed
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systems under signal-to-noise ratio constraint.

Linear quadratic (LQ) control has been possessing an iadsp
able role in systems and control theory. Such problem fagrden-
istic systems has been extensively investigated, and esacmature
state in the 1970s [31]. The optimal control problem for egst sub-
jected to stochastic perturbations and network-inducetstcaints
has equally received considerable attention from the obetym-
munity. For example, [32] addresses the LQ control problem f
networked control systems subjected to data rate contstrauhere
a state feedback control scheme is employed in order toacttie
minimum data rate for mean square stabilization of the gysi®
addresses the LQ problem fidd-type stochastic systems with input
delays, Wang and Zhang introduce a forward-backward sticha
differential equation based approach for obtaining thénagdtcon-
troller [33]. [34] is concerned with the stochastic LQ cahtfor
Markovian jumping systems by using the averaging approach t
aggregate statemccording to their jump rates. [35] studies the LQ
performance of systems where control signals are subjgqudtket
dropout, and both zero-control and hold strategies areusissd.
Authors in [36] study the LQ control problem for discreteé lin-
ear systems over single packet-dropping link and a coetratbding
co-design method is proposed in order to deal with the losketa
where estimates are used to replace the missing measuseement

To the best of authors’ knowledge, the difficulties in design
NCSs mainly focus on the following aspects. First, anaftsolu-
tion to controller synthesis of multi-input NCSs turns oot lie
an essentiali-synthesis problem [24, 28]. Second, controller syn-
thesis problem with multiple coupled factors becomes §icamtly
complicated and harder to cope with [22, 26]. Finally, it suu
ally a considerable and difficult problem to combine the ps=ad
results with actual application requirements. Motivatgdhe above



discussion, in this paper, the stochastic LQ control undgmg-
totic tracking is considered for multi-input-multi-outpMIMO)
discrete-time system with packet dropouts. Inspired by, @@air of
linear encoder and decoder is introduced respectivelyeitrémsmit-
ting side and the receiving side of the channels in orderke fall
advantage of the communication resource and achieve a bigftal
transmission. The sufficient conditions are deduced falesigning
of the controller and the coding matrices such that the inggrob-
lem is solved and the stochastic LQ performance is guardntee
Finally, a simulation with the implementation of the desigethod
on two cooperative robots is included to show the effectasnof
the current results. The contributions of this paper areflyridis-
cussed here. In the current tracking problem, multiple tairgs
as MIMO lossy channels, LQ performance requirement anchgpdi
strategy are investigated at same time under a unified frankew
As mentioned previously, such multi-objective problemrmbs con-
siderable difficulties during controller synthesis. Thigpr presents
a complete solution to aforementioned problem. Moreovéfgrént
from the resource allocation technique reported in [24228where
diagonal coding matrices are adopted, full dimensionairgpohatri-
ces are applied here to achieve less conservative perfomdrihe
closed-loop system.

The remainder of the paper is organized as follows. Section 2

presents the problem formulation. Section 3 presents tirenmnesults
of the considered control problem. The theoretical resu#tpplied
to cooperative robots in Section 4. The notation in this papfairly
standard. The superscriptsandT are the complex conjugate trans-
pose and transpose, respectively. In a symmetric matrixbeym
denotes the symmetric terms. For a real square matri’ > 0
(respectivelyP > 0) means thaf is symmetric positive semidefi-
nite (respectively positive definite). The notatiB-}, Tr{-}, p{-},

" (k)
Channels > Decoder u(): Plant
N
x(k)
V(k) v+ FZ D
Encoder |« () (k)
T F| [«—1 Exo-system

Fig. 1: System setup

The control lawv (k) is given by

v(k) = Fir(k) + Fax(k), 2

where I} € R™*? is the feedforward gain related to the tracking
reference and, € R™*" is the state feedback gain related to the
LQ performance defined latef(k) € R? is the state of the following
exo-system:

with z-(k) € RP being the reference. It is known that the exo-
system is an autonomous system that generates the refaignaé

r(k+1) = Arr(k), r(0) =ro,

3
zr(k) = Crr(k), @)

® and® denote the standard expectation operator, trace of a squaré¢o be tracked and the disturbance to be rejected. More ddtail

matrix, spectral radius, Kronecker product and Hadamaodyut,

respectively. MoreoverRH, stands for the space of all strictly

proper and real rational stable matricEer simplicity, a LTI system
z(k + 1) = Az(k) + Bu(k),

{ y(k) = Cxz(k) + Du(k),

isdenoted by> = (A, B, C, D). Given atransfer functiot¥(z) €
RHs with dimensionm x m, its Ha norm is defined a§G/||2 =

\/% JT. Tr{G(ei*)GH (e7w)} dw, and the mixed norm for
G(z) is defined as followd|G|2,1 = \/ max >.iv, [|Giji(2)]13,
1<<m

where,G;;(z) denotes the element 6f(z) in ' row and;*" col-
umn. ForG(z), the operatorp{G(z)} is defined asp{G(z)} =
G113 IG1mll3

. The matrix 1-norm for P e

IGm 113 G 13
C™*™ is defined ag|P|j1 = max Y., |P;;|. For simplicity,
1<j<m

sometimes the arguments of a function will be omitted when no
confusion can arise.

2 Problem formulation
The overall setup of the control problem is depicted in Figvhere
the controller connects to the discrete-time plant trougboder,
multiple lossy channels and decoder.

The plant is described by the following discrete-time styiace
representation:

{

wherez (k) € R" is the stateu(k) € R™ the control inputz(k) €
RP the controlled output for tracking certain reference. Assuhat
the matrix pair( A, B) is stabilizable.

z(k + 1) = Az(k) + Bu(k), z(0) = o,
z(k) = Cz(k) + Du(k),

@)

descriptions about exo-systems may be found in [37—-39LElehe
tracking error can be defined as:

e(k) = z(k) = zr (k). (4)

Moreover,l unreliable channels are placed in the path from the
controller to the plant. In some existing results, e.g., [28], the
number of channels is equal to the number of control sigraild,
the capacities of each sub-channels subject to certairr loawends
are assumed to be flexible under total capacity constraistedd, in
this paper the capacity of each sub-channel is fixed a prigh w
an appropriate coding strategy to improve the efficiency eff n
work resource. Therefore, different from the above worlks,lower
bounds of sub-channels’ capacities are decreased, atideBldess
expensive sub-channels may therefore be used. In thistbasaym-
ber of channels is assumed to be more than the number of tontro
signals, i.el > m.

Then, a pair of encodef € R**™ and decode®z € R™*! is
introduced on each side of tliechannels to give a degree of free-
dom for fully utilizing the resource of all the multiple chagls. This
transmission process is specified by the inpit) and outputu(k)
as

u(k) = Qa(k)Ev(k), (5)
wherea(k) = diag [a1(k), - - -, oq(k)] with o;(k), i =0,1,--- 1
being Bernoulli variables to specify the unreliable trarssion pro-
cess of each channel. Hesg (k) take value in{0, 1} at any time
instantk. o; (k) = 1 indicates that the transmission succeeds, other-
wise a; (k) = 0. The probability of successful transmission is given
asE{a;(k)} = B; with 8; € (01). As known, encoder and decoder
are generally viewed as a pair of invertible operators, &ethe
design requirement ofi andZ is to satisfy the following constraint:

9=E =1, (6)

where= = diag 31, - - -

Bl
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Combining (1), (3) and (5), the closed-loop system is olet@dias:

z(k+1) = [A+ BYa(k)&EFalz(k) + BZ2a(k)EFir(k),
e(k) = [C 4+ DPa(k)EFrlx(k) + [DPa(k)EF; — C’T]TEI;:)).

Furthermore, we define the cost functioddl, u):

N—-1

Ty = Jim = 3" BT (B)Qe(k) +uT (WRu(k), (@)

k=0

where the matrice® > andR > 0. And the following definition is
introduced.

Definition 1. [14] The closed-loop systelf7) is said to be mean
square (MS) stable if for any bounded initial stat@®) andr(k) =
0, lim E{z(k)zT (k)} = 0.

c— 00

Now the problem under consideration is described as follows

Problem 1. Find the feedforward gairfy, the feedback gairks
in (2) and a pair of encode#’ and decoderZ in (5) such that the
closed-loop systelfY) meets the following requirements:

e R1 (MS stability): the closed-loop systdi) is MS stable;

e R2 (LQ performance): the cost functional i{8) is minimized

whenr(k) = 0;

e R3 (Tracking performance): for any bounded initial stat€0),

r(0), the tracking error defined i4) satisfiesklim E{e(k)} = 0.
— 00

Problem 1 is defined as a multi-objective control problenilie
requirements detailed iR1-R3. In the next section, corresponding
solvability conditions are successively given to fulfileteforemen-
tioned requirements, and based on them, a complete soltdion
Problem 1 is further presented.

3 Main results

3.1 MS stabilization

In this subsection, we are focused on MS stabilization. kot
words, we consider Problem 1 with the requiremeRts and R3
being removed.

Theorem 1. R1 in Problem1 is satisfied, if there exidf € RIX™
with UTU =1, X >0, W >0, and Y such that the following
conditions hold

T 1
{vwv™} < e )
WY
{ X ] >0, (20)
X AX+BY B
£ X 0 |>0 (11)
* * I

Then the state feedback gafh in (2), encoderg and decodet” in
(5) are constructed respectively as

=YX ! (12)
& ="y, 9 =vuT="12 (13)

with = = diag [81, - , B].

The following lemmas are introduced here for the derivatbn
Theorem 1.
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Lemma 1. [14] Given an internally stable syste@i with dimension
p X p and a structured random process

A(k) = diag [A1(K), -, Ap(K)],

such thatE{A;(k)} =0, E{A?(k)} =77, i =1,2,--- ,p, then
the feedback interconnection in Fig.is MS stable if and only
if the following condition holdsp{p{G}®} < 1, where & =

diag [7—12,-~~ ,Tg .

AN

A

Y

G

Fig. 2: System with stochastic perturbation

Lemma 2. Given an internally stable syste with dimension
p % p, there holdsp{¢{G}} = inf |D~'GD|3,,, whereD is a
diagonal matrix with all diagonal elements being positive.
Proof: As represented by Lemma 2.2 in [40], for nonnegative matrix
M, there holds

p{M} = inf [|D™ ' MD],

for 1 < p < co. Thus, there holds

p(9(G)} = inf [D~6(G)D1,
and by the definition of - ||2,1, there holds

1D~ $(@)Dly = IDGD3 1.
Then it is observed that

p{#(G)} = inf [P GDI3,1.

Now, we are in the position to prove Theorem 1.

Proof of Theoreni.:
Note that for the Bernoulli process; (k) mentioned in (5) § =
1,2,---,1, we have

E{ai(k)} = 8 # 0, B{(ea(k) = 8)°} = Bi(1 = Ba).
Setting new random variables ag(k) = [«; (k) — 3;]/5;, yields
E{i(k)} =0, B{¢} (R)} = 57" — 1,
i =1,2,---,1. Then the closed-loop system in (7) is rewritten as
2(k+1) = (A + BF, + BIE®(k)EFy)a(k),
where= = diag 31, - - -

, Bi], (k) = diag [¢1(k), - -+, ¢y(k)].



The above closed-loop system can be rewritten as:

2(k +1) = (A+ BFy)a(k) + B2=Zw(k),
y(k) = & Faa(k),
w(k) = D(k)y(k).

Then it can be seen as the interconnection of two parts ir2Rigth
G = (A+ BF,y, BYZE, £F5, 0), A(k) = ®(k),

where the systery is stable with (11) holding.

With the help of Lemma 1, it is easy to indicate that the clesed

loop system (7) is MS stable if there exists a feedback gainan
encoder/decoder pa#f and 7 such that

p{TF*} <1 (14)

whereT = ¢(T'( )) T(z) = EFy(2] — A— BFy)"'B9E, § =

1
diag (871 = 1)F,--, (7 = 1)}
Next, we will show that under the conditions (9)-(11), (14)ds
with Fy, & and Z given in (12) and (13). To this end;(z) is first
rewritten as

m|»—A N

T(z) == Y2UFy(2I — A— BF,) " 'BUTEY?,
Then, itis observed by Lemma 2 that
o7} = inf D' 1(z) 3D
D 2,1
Next, we will show
722 —1 _ 2
w1 < o <

with D being selected @& = =—1/2

_ 2
By the definition, El/QT(z)BE_l/QH2  can be rewritten as

e,
= max 2= |7 {B”_I/QTH(eJ“’) T()EBY dw
fmax{BU (277[ TH (eI T (e]“’)dw) UTB}

whereT (z) = Fy(zI — A — BF»)B satisfying

s
o | T dw = Ff Wors
T

with W being the solution to equation
(A+ BF)"Wy(A+ BFy) =Wy + BB =0.  (15)
By Schur complement, (11) and (12) indicate that
(A+ BF)'X(A+BF,) — X + BB <0,
and (10) and (12) indicate that
W > Ff XF.

According to lll. C in [41], it can be concluded that

1 (™ _ .
W > FQTXFQ > FQTWOFQ = 2—J TH(er)T(er)dw.
Tr —T

Therefore, it can be concluded with (9) that

H~1/2T 53—1/2“

= max {ﬂU (% [ TH(ej“’)T(ej“’)dw) UTB}
< mZaX{BU (W) UTB}“_
< 1.

i

Then, it is clear that

[1]

21/27(2)3 4/2“2

Consequently, (14) holds. Therefore, the closed-loopesy«) is
MS stable.
O

It can be seen from the proof that the controller synthesiblpm
of multi-input NCSs with packet dropout turns out to be @rob-
lem. Compared with the resource allocation technique dpgea
[24, 28, 29], where diagonal coding matrices are adoptdidiifnen-
sional coding matrices are applied here to achieve lessoats/e
performance. However, the solvability conditions (9))(fiven in
Theorem 1 result in a nonlinear matrix inequality probleme@an
of course take a specifi¢ to render the problem convex. However,
proceeding with a specifi€/ may lead to a conservative synthe-
sis. Therefore, an iterative algorithm for finding a lessssymative
solution will be given in the subsection 3. 3.

3.2 Linear quadratic MS stabilization

In this subsection, we are concerned with LQ performanceukis
stability, that is, Problem 1 with the requiremé®8 being removed.
Before proceeding, we rewrite the closed-loop system (T wi
r(k) been removed as
z(k+1) = Az(k) + BZZ[I + ®(k)]|& Fax(k), (16)
where<1>(k) = diag [¢1(k), - -
i=1,2,--

s o1(R)], di(k) = [ (k) —

,1. And the control law (k) is rewritten as

Bil/ Bi,

v(k) = Fax(k).

Theorem 2. R1 and R2 in Problem1 are satisfied if there exist
solution P > 0 and U € R™*™ with UTU = I to the following
modified discrete-time algebraic Riccati equation (MDARE)

P=ATPA+ Q- ATPBUT=2S'=2uBTPA,  (17)

where
S—[(EHE+ %) 0 (R+=UBTPBUTES)],
Y =diag[f1(1—61), -+, 81— 5],
= =diag[B1,---, 6],

‘H denotes a constant matrix with all elements being 1. Then the

feedback gairfy is given by

“lz:yBT pa, (18)

Wl
M1

F=-U"zZ
the encoder and decoder are given as

&=="?y, g=vT="1/2 (19)
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Proof: First let us consider the MS stability of the closed-loopteys
(7) with the feedback gaify given in (18), encodef’ and decoder
2 given in (19). To this end, we define

Viz(k)] = Tr{B{z(k)zT (k)} P}.
For the closed-loop system
xz(k +1) = Az(k) + BZE[I + ©(k)|& Fax(k),
it can be concluded that

Viz(k+1)]
=Tr{E{z(k + 1)z (k + 1)} P}
=Tr{E{z(k)z” (k)[(A + BZEEF,)T P(A+ BZEEF,)]}}
+ Tr{E{z(k)z” (k) (B2E® (k)& Fy)T P(BZZ®(k)EFy)]}}
=Tr{E{z(k)z" (k)} AT PA)]}
+Tr{E{z(k)z” (k)}(EF) TS (ER)],
whereS = [(EHE +¥) @ (22 UBT PBUT=2))].
Substituting (17), (18) and (19) into the above formulaldge
Viz(k+1)]
=V [z(k)] - Tr{E{z(k)z" (k)}Q}
- Tr{E{e(k)a” (k)}(EF2) T [(EHE + 3) © R (6 F2)]}
<Viz(k)].

Therefore, lim E{xz(k)z” (k)} = 0, which indicates that the

closed-loop sy;tgom (7) is MS stable.
For further considering the functiondlz, «) in (8), we define

e | @7e(k)
1) = R%u(k)}
Noticing
aw=| , QW }
Rz P=(1 + ®(k))& Fax(k)
there holds

21 (K) |1 + Va(k + 1) = Vi (k)
=27 (k)Quz(k) + vT (k)6T22T RZEEV(K)
+ 0T (k)@ (k)T 29T R9EED (k)v(k)
+ 20T (k)6T292T RP2ED (k)v(k)
+ 2T (k) AT PAz(k) + 0T (k)6T22" BT PB2E& (k)
+oT (k)@ (k)eT=9T BT PB2ES® (k)v (k)
+ 22T (k) AT PBZEE (k) + 227 (k) AT PBZEE D (k)o(k)
+ 20T (k)eT29" BT PB2E6® (k)v(k) — 2T (k)P (k).

Note that the random variabie(k) is independent of the control
law v(k), which is a static linear function of the staték). Hence,
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taking expectations from both sides, together with (1®8ldg

E{llz1(k)[*} + E{Vi(k + 1)} - E{Vi(k)}
—E{(6Fox (k) SEFn(k)}

+E{eT (k) ATPBUT=2S ' 22 UBT PAJ2(k)}

+ E{227 (k) [AT PBUTE32)6 Fy (k).

whereS = [(ZHE + ) © (R + 22 UBT PBUTZ7)). There holds

J(z,u)

=E{]|=1(k)|I*}
N-1

. 1 T T
= Jim — ];OE[;E (K)Qx(k) +u' (k)Ru(k)]

_ _ 2
Hz% [EFs + EflaéUBTPA]xH + 2] Pao.
€
Itis easy to conclude thak(z, «) is minimized if
&Ry = -5 '=3UBT PA.

Noticing that7=& = I, & ==~ /?U and2 = UT="/2, mul-

tiply 2= at both sides of the above equation and the state feedback

1

gain P is given by, = —~U =25 122U BT PA. 0

The MDARE (17) in Theorem 2 is solvable, if the closed-loop
system (7) is MS stabilizable via state feedback [29, 42F vell
known that solving modified Riccati equation in the stocltastt-
ting with close-form solution is still an open problem [22]4To be
worse, the MDARE (17) also includes the mattix which makes
the corresponding solvability condition even harder. Ig@lthm 1,
we propose an iterative method for numerical solution to NRBA
(17) with a fixedU' matrix.

Algorithm 1

Step 1: give the number of iteratio¥; . Setk = 0 and the initial
conditionP(0) = 0.

Step 2: solve conditions (9)-(11) and obtain a feasible imafr
Step 3: update’ (k) as

Plk+1)=ATP(k)A+Q — ATPBUT=25"'22UBT PA,
with £ = [(EHE+ %) @ (R+ =" 2UBTPBUTE?)).

Step 4: sek = k + 1, go to Steps 3. If P11 — Pyl < ewith e
being a small positive number, stopAf> Ny, stop.

3.3 Additional asymptotic tracking

In this subsection, a sufficient condition is given for degig the
feedforward gainF} in (2) such that the tracking requiremeRS
defined in Problem 1 is fulfilled.



Theorem 3. R3 in Problem1l is satisfied if there exist matrices,
andY;- such that the following Sylvester equation holds:

X’!'A’I' - AX’I' + BYYM

(20)
0=CX, + DY, — C;.
Moreover, the feedforward gaif; is given as:
F1 :YT*FQXT7 (21)

where F; is any feedback gain that ensures the MS stability of the
closed-loop systelfY).

Proof: Substitute (21) into (20), yields

X, A, = (A+ BFy)X, + BFy,
0= (C+ DFy)X, + DFy — Cy.

(22)

By definingz(k) = z(k) — X,r(k) for the closed-loop system
(7), itis observed that
z(k+1) — Xpr(k+1)
=Acx(k) + Ber(k) — Xer(k+ 1)
=(A + BFy)x(k) + BFyr(k) + B22® (k)& Fax(k)
+ B2E® (k)& Fyr(k) — Xr Arr(k),
whereA. = A+ BPa(k)EFs, Be = BZa(k)EF.
Substituting (21) and (22) into the above formula, yields
z(k+1)
=z(k+1)— Xrr(k+1)
=(A+ BFy)(z(k) — Xyr(k)) + BZ2®(k)& Fox(k)
+ BZZ®(k)&Fir(k)
=(A+ B%a(k)EF2)z(k) + (BZE®(k)EYr)r(k).
Note thatE{[BZ=Z®(k)&Yr|}r(k) = 0, thenklim E[z(k)] = 0.
According to (6) and:(k) defined in (7) o
Jim Ele(k)]
:klim E[(C+ DZa(k)EFo)x(k) + (—Cr + DDa(k)E Fr)r(k)]
:kli)rr;oE[(C + DFy)xz(k) + (—Cr + DFy)r(k))].
By definingz(k) = z(k) — Xrr(k),
lem Ele(k)] :klim E[(C + DFy)x(k) — (C + DF2) Xrr(k)

= lim E[(C + D)z (k)]

+ lim E[(CX, + DF2 X, + DFy — Cy)r(k)].
k—o0
Note that lim E[z(k)] = 0 and
k—o0
CX; 4+ DFy X+ DF) —Cr =0

according to (22). Thuslimy_,E[e(k)] =0 and the tracking
requirementR3 in Problem 1 is satisfied.
O

Theorem 3 presents the condition for satisfying the requart
R3 in Problem 1. The corresponding feedforward gaingiven in

(21) is structured withX,., Y, and F», among whichFy is the feed-
back gain related to MS stability of the closed-loop syst@jnafid

can be previously computed by Theorem 1 or Theorem 2. So far,
all the conditions needed to solve the Problem 1 have alrbadp
presented. Therefore, the following complete conditiogiven for
solving the Problem 1.

Theorem 4. The Probleml is solvable if there exist matricéd$
R>X™ satisfyingUTU =1, X >0, W >0,Y, P> 0, X, Yy,
such that the condition®)-(11), (17) and (20) hold. Then the feed-
forward gain F} is given in(21), the feedback gai is given in
(18), the encoder’ and decode” are given in(19).

Proof: The proof can be obviously obtained by combination of
Theorem 1, Theorem 2 and Theorem 3. |

Theorem 4 is a synthesis of Theorem 1-3, which gives a com-
plete solution to Problem 1. In other words, the controlletammed
by Theorem 4 can achieve minimum LQ performance under MS sta-
bilization whenr (k) = 0. At the same time, when(k) # 0, it can
also fulfill asymptotic tracking for reference generated-by).

In the section 3.2, a simple and efficient Algorithm 1 is pded
to solve the MDARE (17) provided in Theorem 2. However, the
certain solution of MDARE (17) by directly applying a specit’
matrix may lead to a conservative synthesis. Therefore tema-i
tive process taking benefits from Theorems 1 and Theorems 2 is
proposed in this subsection to design iteratively the mdtriand
feedback gairF in order to reduce the conservatism of the results.

Algorithm 2

Step 1: give the number of iteratia¥i; . Seti = 0, k = 0. Get a
feasibleU by solving inequalities (9)-(11).

Step 2: compute MDARE (17) with/ in Step 1 by Algorithm 1
and structure the feedback gdih as in (18).

Step 3: calculatéV; by solving equation (15) witl¥, in Step 2
and sefV = W;.

Step 4: findU = U(0),U(1),--- ,U(N) satisfying (9) withiW’
in Step3andset=0,j =0, P(0) =0.1f N =0, stop.

Step 5: updaté®(k) as Step 3 in Algorithm 1 with/ = U(c).

Step 6:sek = k + 1, and go to Step 5. IfP(k + 1) — P(k)| <
e with ¢ being a small positive number, sef = P(k + 1), U;
U(e),j=j+1,c=c+1,k=0andgoto Step5. Ik > Ny,
setk =0,c=c+ landgoto Step5. I = N, goto Step 7.

Step 7: find the matri¥’;- that minimizinng(O)Pj* z(0), where
j* =1,2,--- ,jandsetPi = Pj*,Ui = Uj*.

Step 8: if ‘xT(O)(Pi — P,_1)2(0)|| < ¢ with ¢ being a small
positive number, obtain the feedback gaimwith P = P;, U =
U, as in (18), stop.

Step 9: sef =i + 1, go to Step 3.

4 Application

In this section, the main results proposed in section 3 isieghpo
a cooperative control platform with two robots to show thecfic
co-design process and to verify the effectiveness of thdtees
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4.1 Platform description

As depicted in Fig. 3, the control platform consists of twojgera-
tive mobile robots, one camera and a supervisor. The obgesfithis
platform is to drive the two cooperative tank-like mobilédots in
order to complete tasks such as manipulating a load too asnine
and heavy for only one of the robots. The supervisor can nmeaise
absolute position and velocity of each robot thanks to cametith-
out delays and communicate control signals to each robotigfr a
wireless protocol.

B
- Camera
[ ¢
6
R;
Yip— =
VG E’MX’;
v /1 G S Wireless "é‘ 77777
P \]NEtWOrZCJ/
A~
Supervisor

0 X, Xg X P

Fig. 3: Setup of the cooperative control platform

The control objectives for the platform depicted in Fig. 3 e
formulated as follows:

e The barycente€(x; y¢) of the two robots must be driven along
a pre-defined path.

e A constant interdistancel between the two robots must be
ensured. The interdistancekis defined here as the euclidian norm
between centers obobot1 (z1; y1) androbot2 (z2; y2) as

rg = (xl + $2)/2,
ya = (Y1 +2)/2,

d= \/(171 —22)% 4 (y1 — y2)%.

To feet with (23), the control objectives can be defined tghou
the 4 following signals to be controlled

(23)

g = (r1 +2)/2,

ya = (Y1 +y2)/2,
Ay =21 — 22,
Ay =Yl —Y2.

The reference trajectory can be generated directly by a huma
joystick by using some robotic trajectory generation altfans, etc.
The trajectory generator provides a vector sigiaias:

2 (k) = g (k) yi (k) AT (k) AGT ()T

4.2 Control strategy formulation

The whole control implementation is depicted in Fig. 4. The t
robots with their local feedback linearization law are settee plant.
The camera send the measured absolute position and vedbeiygh
robot to the supervisor with a sampling period tuned at OThe
controller implemented by the supervisor consists of dcsfaed-
back gainF, and a static feedforward gaify generating the control
signalsvy, v, v3 andvy to drive the two robots.

The four control signals, vs, v3 and v, are firstly encoded
and then transmitted vid= 6 independent wireless lossy chan-
nels. After transmission, the signals are decoded and setitet
two robots, respectively. The encoder (static maftix R6X4) can
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Fig. 4: Control implementation for the robots platform

be implemented directly in the supervisor, or locally in tierd-
ware transmitter. The decoder (static matzixe R**%) should be
implemented separately in the two robots as following ed).(2

9 = {@1} 9y € R26_ gy € R2XS,

P (24)

Each robot can be modeled by a classic kinematic unicyclesmod

i = 05 cos(0;),
Ui = 0;sin(0;),
0; = mi,
8i = i-

where (z;; y;) are the position of theobot;, ¢; and 0; its veloc-

ity and its angular orientatior(z;; ;) its velocity on(Oz) and

(Oy) axle in the framgO, z,y), 0; its angular velocityy;, v; the

plant input of the robot, i = 1,2. In each robot a classical lin-

earizing feedback control law is implemented [43], leading new

input-output mapping (see Fig. 3) based on two decoupledjiator
ifaf =1/s%,

chains.
Robb"™ =
' { yifa? =1/,

The two new control inputs for each robds;; a?) are homoge-
neous to the acceleration of the robot. Finally, withouirtgkinto
consideration the decoder; embedded in each robot, the plant
model, after exact discretizationBtamp = 0.1s, is given by

Tp = Apxp + Bpup, (25)

with

T . . . . 1T
Tp = [r1 @1 9191 T2 T2 Y2 9],

T 1T
Up “4}

Ap:diag[A1,~~~ ,144]7 Bp :diag[b1,~~- 71)4]7
1 01 0.005] .
= {0 1] b= {0.100} 0=1,2,3,4.

Such sampling perio@sq:mnp leads to a good compromise between
the dynamic of the robots, and the capacities of the supmr@igdeo
tracking algorithm in particular) and of the wireless piaib(e.g.
Zigbee or Bluetooth).

The standard model defined in (1) is linked to the discretiaatp
model (25), and the matrices for the output regulation mwbére

= [uf b uf uf]" = [af af a5 a§])"

I

A;



defined as For Theorem 1, the matri& ™ ° is given as:

A=Ay, B=B, —0.2823 —-0.4024 -0.5113 —0.2098
' ’ —0.4515 —0.1390  0.5950 0.3477
gMS _ —0.6033 —0.0440 0.2043 —0.0217

—0.3672  0.7786 —0.3976  0.2797
—0.4164 —0.3496 —0.3614 —0.0106

05 0 0 005 0 0 0 —0.2103  0.2973  0.2327  —0.8696
SR
o 0 1 0 0 0 -1 0 Then the feedback gai’® associated to the matrigZ™* is
- obtained by solving (9)-(11) as:
4.3 Trajectory tracking problem formulation FMS = diag[f1,- -, f4],
The trajectory tracking problem is considered here andréfisrmu- with
lated to fit with the theoretical results proposed in thisgrap
In this simulation, the reference trajectoty(k) for the gravity
center is a circle with radius 10 meters, and the robots should fr="J2=fs=fs=[-03397 —11151].
travel around this trajectory with a fixed interdistance2et, at a
fixed velocity of1m/s. The travel period is thus arouitd.8s. This The feedforward gair™® corresponding ta™S and UM is
leads in discrete-time to obtained by Theorem 3 as:
ra (k) = 10sin(0.17k /20), 1.2341  2.9099
. MS 3.6374 —0.9873
(k) = Corh) yG (k) = 10cos(0.17k/20), 26) 77 = 110007 2.3808
! AL(k) = 2sm(0 17k /20), 2.9761 —0.8078
ks
Ay (k) = 2cos(0.17k/20). For the simulation, a unit step signal¢) is added to the position

of robot 1 (stater; in (25)) from time30s to 42s to simulate some
The 4 reference signals are clearly coupled, thus a discrete kind of disturbance factors. The initial positions of rotiaind robot
time state-space representation based on (3) can be desigtie 2 are(0,11) and(0, 9) respectively, and the two robots are asked to
parameters follow a circular trajectory with diameteiOm, a inter-distance of 2
meters and a fixed velocitym /s.
Based onF!®, UMS and FM*, Fig. 5 shows the tracking
T 2
4. — 099995 —0~00800] o — {0 0 0 2 performance and the evolution of the tracking error.
! 0.01250  0.99995 ! 8§ 0 —-16 0| -

Error of distance
2 Error of center

4.4  Numerical results O Robot 1
O Robot2

. . . . . t Reference for G
In this subsection, some Matlab simulations are consid&rethe 1 — — — Trajectory of G

above mentioned platform. The robots with their local feskolin-
earization are modeled according to (25). The MIMO chaniels 101 ,/f: &
modeled with data arrival ratgg = 0.9, 8o = 0.7, 83 = 0.5, 84 =
0.5, 85 = 0.3, B = 0.1. 5t

To feet with the theoretical results proposed in sectiorhBed
different control strategies are considered for the roptatform in
this subsection:

y (m)
y (m)

o
e PTTT T

(4]
£

e 1. the controller se{F» = F3/% U = UM® F = FM%) is \ A
obtained thanks to Theorem 1 and Theorem 3 without consigleri \;, S
the LQ performance requwemefm dop WD ‘ ‘
o 2. the set(F, = F, Ql =UulQl = FlLQl) and (Fp = -10 0 10 0 20 40 60
LQ2 U =U2 F F Q ) corresponding to two different x(m) t(s)

welghtlng parameters for LQ functional (8) are obtained hgdrem
4 with a specifidJ;

o 3.theset§f, = FITl U=UT p = F[TY, (k= F{T2,
U =U'"? F, = F{"?) are obtained by solving Theorem 4 with  As depicted in Fig. 5, the séMS, M5 FMS) can ensure

Fig. 5: Tracking performance without LQ performance

different weighting parameter_s for LQ functional (8), ahe itera-  an acceptable tracking performance. However, the two sobat
tive design method proposed in Algorithm 2 is adopted tocedhe decoupled due to the diagonal feedback g@ﬁs Therefore, when
conservatism of the results. the robot 1 affected by the disturbance, the robot 2 will espond

accordingly as shown in Fig. 5. This problem will be solvedtie
MS stabilization next part by further considering the LQ performariee.

In this part, the MS stabilization feedback gaiy = FQMS is Linear quadratic MS stabilization
designed for the cooperative robots platform by Theoremthowuit

considering the LQ performance, and the correspondlngdeadrd In this part, Theorem 4 is adopted to solve the tracking mlbior
gainFy = F1 is computed by Theorem 3. Wn‘ﬁz andF , the cooperative robots platform and the LQ performance fisicio
a simulation is introduced to show the tracking performambme ered. To this end, two different sets of parameters are akforehe
cooperative robots. cost functional (8) as:
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1. Case 1: more weighting on center error as:

Q1 = ¢Tdiag [100,100,1,1]C, Ry = I.

2. Case 2: more weighting on distance error as:

Q2 = cTdiag[1,1,100,100] C, Ry = I.

For the specificU matrix given asU"?! = yr@2? =
the set(FL9 U9 KF9') associated to weighting matrices
(Q1,R1) as well as the se(tFQLQQ, ULQQ,KILQQ) associated to
weighting matrice$Q2, R2) are obtained by solving Theorem 4:

UI\/[S

O Robotl Error of distance
151 O Robot2 Error of center
— — — Reference for | 0.6
— — — Trajectory of G

N os
1071 4’7——‘ s

IO

Co \ls

N

y (m)
(5]
S
ﬂ“é

“YdYdacaadd

-~

o
P
.= Ses

9,

&
.o

bbb ,A
N e, e /o
NG K

o
10f e~ — o
a0 angue®

P
A

°

A
\"n,,

ce caaade

<
S

y (m)

-10 -5 0 5 10

0 20 40 60

x (m) t(s)
27396 0.0344  —1.6725 00975717 Fig. 6: Tracking performance with LQ performance to Case 1
—2.0847 0.1264 —0.6345 0.1643
0.2188 —3.1688 —0.1692 —1.2658
pLQ1 _ 0.1356  —2.4344 0.0313 —0.6619
2 ~ | —1.6302 0.0840 —2.8591 —0.2314| O Robot1 -
—0.6324 0.0440 —2.1721 —0.1826 O Robot2 Error of dtance
0.3509 —2.1336 —0.4160 —1.6617 157 it
L 0.1770 —0.7053 —0.1918 —1.33514 0.8
I, 06
R Q\v 0.4
—2.7036  36.0047 E L | E o2
pLe1 _ 53.7705 —3.5574 > ‘1" > 5
1 | 8.2581 35.1215 |’ f 02
28.7722 —0.7348 7
v -0.4
%500 & - -06
\Té‘iy‘ 0.8 ‘ ‘
r—1.8522 —0.1214 1.2829  0.5351 77 0 5 o 5 10 0 2 20 0
—1.6998 —0.1218 0.6285 0.2763 x (m) t(s)
—0.2653 —1.5930 0.3348 0.0889 . . .
FLQ2 _ —0.1290 —1.5037 0.1945  0.0404 Fig. 7: Tracking performance with LQ performance to Case 2
2 | 1.2526 0.1468 —1.9160 —0.5503|
0.6270 0.1852 —1.7560 —0.2897
0.3319 0.8771 —0.3924 —0.5732 IT1 prIT1 RIT1 IT2 ¢7IT2 IT2
L 0.2661  0.0798 —0.2818 —1.0543] éa(slg% ar’erbtai’nI;h ag: for Casel andF3 "=, U, 1177 for
r—2.9862 0.0577 —2.2707 0.3126 7
1.2361  7.2705 —2.0796 0.0544 —1.0517 0.2310
pl@2 _ 94861 —1.2535 0.2290 —3.2311 —0.0816 —2.1212
1 0.7370  2.4018 rr1 | 0.0630 —2.3418 —0.0654 —0.8447
4.0478  —1.4697 R = —2.2135 —-0.0252 —3.1356  0.0977 ’
—1.0488 —0.0626 —2.2072 —0.0391
The Fig. 6 and Fig. 7 show the tracking performance and 0.3696  —2.0695 —0.0726 —3.3194
the evolution of the tracking error for the simulation with L 0.2338  —0.8421 —0.0476 —2.3821]
(FLQY @l pL@ly and(FF@2 rh@? FLQ?) respectively.
Compared with Fig. 5, we can see in Fig. 6 that the two robots
cooperate to minimize the error between the center of roaots
the reference trajectory. Therefore, when robot 1 movewaruat, 04756 0.3525 —0.2949  0.7469
robot 2 moves inward correspondingly to reduce the centar.er 03994 —0.5220 —0.6550 —0.2430
On the contrary, we can see in Fig. 7 that the two robots ceoper T _0.2469 —0.6592 0.3571 0.2601
ate to minimize the distance error. Therefore, when robototen U = _0'4012 0 :',)929 _(') 1963 _(') 5330
outward, robot 2 moves outward correspondingly. For bathut- 70.4326 0.1196 0 4352 70.0938
tions, we can see that a better cooperation can be achievedihyg _0:4530 _(')_0127 0:3887 _0:1501
the LQ performance into consideration, and the impact déa#ht
weighting can be clearly seen.
Less conservative solution
—2.6140 42.3516
In this part, Algorithm 2 is applied to reduce the consesratof the g1 | 540542 —2.9927
results obtained by Theorem 4. The less conservative sokiti’ ! 4.6939  42.3949 |
andU'T? are computed by the Algorithm 2. By solving Theorem 52.8992  —5.9123
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OO  Robot 1 0.4 Error of distance
T [0 Robot2 Error of center
r—1.8739 0.0791 1.6055 —0.04677 10} ’,9 — — — Reference for G
—1.6072  0.0644  0.8574  —0.0240 o [ == Traectory of 6
0.0890 —2.0718 —0.0244  1.4986 / N
piT2 _ | 00649  —1.8398  0.0015  0.7777 spodld \ﬂ,
2 7| 14554  —0.0433 —2.1979 0.0333 | ° 8 it
0.8499  0.0006 —1.9238 —0.0018 £, e ‘l:: £
—0.0667 1.4724  0.0247 —2.1361 O I THI I
L—0.0250 0.7764  —0.0022 —1.9095] ‘,3\“..‘ ,:',’v;’
5 “{t‘ Da',/"'
\\“\,%' oa"dﬁ/ ,”b
03321 0.4088  0.7094 —0.4485 T N
—0.3162 —0.4452 0.5267  0.6500 o
IT2 —0.3013  0.6568 —0.1845 0.4510 — ‘ ‘
U™"=|_04313 —04338 —0.1275 —0.4144] R R
—0.5817 0.0651 —0.2971 —0.0319
—0.4178 —0.1044 —0.2841 0.0116 Fig. 8: Tracking performance of extended results in [30]

MS stable. To further consider the LQ performance objectiveew

condition is proposed that gives a way for the controlletisgsis for

minimizing the stochastic LQ criterion under the MS stapition-

straint. Finally, a Sylvester equation is appealed for theratotic

tracking issue and the resulting feedforward gain is stmect. To

. . verify the effectiveness of the proposed method, an exal 0
The average tracking errors of one hundred sets of stocteast: cooglerative robots in included.plt ig worth noting that tirreetmc?é?ay

ulation with different choice of £, U, F) are given in Table L1t s of great importance in analysis and design of NCSs and 6ne o

can be seen in Table 1 that compared with the given matfi”, our future research topics is to include network-inducdeydia the

the iterative solutior/’"" by solving Algorithm 2 greatly reduces  present framework.

the center error by3.9% and also reduces the distance error by

13.6%. And compared with the given matrid “??, the iterative

solutionU 772 reduces the center error and distance errorb9% 6 References
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