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Abstract: This paper addresses the asymptotic tracking problem subjected to linear quadratic constraints for linear discrete-time
systems, where packet dropout occurs in actuating channels. In order to solve this objective control problem, the controller-coding
co-design approach is adopted, i.e., the controller, encoder and decoder are designed for taking full advantage of the network
resource collaboratively, thereby achieving better transmission of control signals. A stabilizability condition in the mean square
sense that reveals the fundamental limitation among the H2 norm of the plant, data arrival rates and coding matrices is first
derived. Then, a solvability condition is conducted to handle the additional stochastic LQ control objective by a modified discrete-
time algebraic Riccati equation, and an iterative algorithm is also given for designing the corresponding state feedback gain and
coding matrices. Relied on such design, the asymptotic tracking constraint is further fulfilled through solving a Sylvester equation,
and the feedforward gain related to tracking is parameterized. Finally, a simulation with the implementation of the design method
on two cooperative robots is included to show the effectiveness of the current results.

1 Introduction

Unlike classical digital control systems, networked control systems
(NCSs) are closed-loop systems where the plants, the sensors, the
actuators and controllers are coordinated through certainform of
communication network. The main features of NCSs are low cost,
high reliability, ease of maintenance and expansion [1–3].Mean-
while numerous special issues on NCSs have been concerned by
many researchers, inspired by wide applications of NCSs in coop-
erative vehicles [4, 5], sensor networks [6, 7], multi-agent systems
[8, 9] and so on. In NCSs, the imperfect communication channels can
introduce various constraints and uncertainties, for instance, packet
dropouts [10, 11], time delays [12, 13], fading [14, 15], limited data
rates [16, 17] and quantization [18, 19], etc.

The stabilization of NCSs with networked constraints and uncer-
tainties is a wildly attentional research field and numerousresults
have been reported in the literatures. For instance, the Lyapunov
function approach is applied in [20] to reach the coarsest quan-
tization density required for the stabilization of the single-input
discrete-time linear time-invariant system with logarithmic quan-
tized state feedback. Authors in [21] consider a stabilization problem
with actuating channel subjecting to packet dropout, and neces-
sary and sufficient conditions are determined in terms of thepacket
dropout probability and the spectral radius of the system matrix.
[22] solves the stabilization problem for single-input system with
both packet dropout and logarithmic quantization and the above-
mentioned problem for single-input single-output system is solved in
[23] by computing two algebraic Riccati equations and an algebraic
Riccati inequality, where the tradeoff between the robust stability
and the robust performance is revealed. Furthermore, [24] gives the
solution for the multi-input multi-output case. The outputregula-
tion problem is considered in a cooperative and distributedscheme
with constraints as switching network topology in [25]. Theregula-
tion problem is alternatively tackled by using input/output weighting
filters, and the classical internal model principle is extended to the
co-called comprehensive admissibility in [26]. Moreover,in order to
find the least total channel capacity achieving stabilization for multi-
input NCSs, the technique of channel resource allocation isproposed

in [27] and it is appealed to deal with the constraints as signal-to-
noise ratio (SNR), logarithmic quantization and fading [28, 29]. For
channel resource allocation, the designers are endowed with the free-
dom to allocate the capacities among different input channels with
the total capacity of the communication network being given. When
it comes to the case where sub-channels’ capacities are assumed to
be fixed static, a coding and controller co-design method is put for-
ward in [30] to obtain the stabilizability condition for multi-input
systems under signal-to-noise ratio constraint.

Linear quadratic (LQ) control has been possessing an indispens-
able role in systems and control theory. Such problem for determin-
istic systems has been extensively investigated, and reaches a mature
state in the 1970s [31]. The optimal control problem for systems sub-
jected to stochastic perturbations and network-induced constraints
has equally received considerable attention from the control com-
munity. For example, [32] addresses the LQ control problem for
networked control systems subjected to data rate constraints, where
a state feedback control scheme is employed in order to achieve the
minimum data rate for mean square stabilization of the system. To
addresses the LQ problem forItô-typestochastic systems with input
delays, Wang and Zhang introduce a forward-backward stochastic
differential equation based approach for obtaining the optimal con-
troller [33]. [34] is concerned with the stochastic LQ control for
Markovian jumping systems by using the averaging approach to
aggregate statesaccording to their jump rates. [35] studies the LQ
performance of systems where control signals are subject topacket
dropout, and both zero-control and hold strategies are discussed.
Authors in [36] study the LQ control problem for discrete-time lin-
ear systems over single packet-dropping link and a controller-coding
co-design method is proposed in order to deal with the lost packet,
where estimates are used to replace the missing measurements.

To the best of authors’ knowledge, the difficulties in designing
NCSs mainly focus on the following aspects. First, analytical solu-
tion to controller synthesis of multi-input NCSs turns out to be
an essentialµ-synthesis problem [24, 28]. Second, controller syn-
thesis problem with multiple coupled factors becomes significantly
complicated and harder to cope with [22, 26]. Finally, it is usu-
ally a considerable and difficult problem to combine the proposed
results with actual application requirements. Motivated by the above
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discussion, in this paper, the stochastic LQ control under asymp-
totic tracking is considered for multi-input-multi-output (MIMO)
discrete-time system with packet dropouts. Inspired by [30], a pair of
linear encoder and decoder is introduced respectively in the transmit-
ting side and the receiving side of the channels in order to take full
advantage of the communication resource and achieve a better signal
transmission. The sufficient conditions are deduced for co-designing
of the controller and the coding matrices such that the tracking prob-
lem is solved and the stochastic LQ performance is guaranteed.
Finally, a simulation with the implementation of the designmethod
on two cooperative robots is included to show the effectiveness of
the current results. The contributions of this paper are briefly dis-
cussed here. In the current tracking problem, multiple constraints
as MIMO lossy channels, LQ performance requirement and coding
strategy are investigated at same time under a unified framework.
As mentioned previously, such multi-objective problem brings con-
siderable difficulties during controller synthesis. This paper presents
a complete solution to aforementioned problem. Moreover, different
from the resource allocation technique reported in [24, 28,29] where
diagonal coding matrices are adopted, full dimensional coding matri-
ces are applied here to achieve less conservative performance of the
closed-loop system.

The remainder of the paper is organized as follows. Section 2
presents the problem formulation. Section 3 presents the main results
of the considered control problem. The theoretical result is applied
to cooperative robots in Section 4. The notation in this paper is fairly
standard. The superscriptsH andT are the complex conjugate trans-
pose and transpose, respectively. In a symmetric matrix symbol ∗
denotes the symmetric terms. For a real square matrixP , P ≥ 0
(respectivelyP > 0) means thatP is symmetric positive semidefi-
nite (respectively positive definite). The notationE{·}, Tr{·}, ρ{·},
⊗ and⊙ denote the standard expectation operator, trace of a square
matrix, spectral radius, Kronecker product and Hadamard product,
respectively. Moreover,RH2 stands for the space of all strictly
proper and real rational stable matrices.For simplicity, a LTI system

{

x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k) +Du(k),

is denoted byG = (A, B, C, D). Given a transfer functionG(z) ∈
RH2 with dimensionm×m, its H2 norm is defined as‖G‖2 =
√

1
2π

∫π
−π Tr

{

G(ejω)GH(ejω)
}

dω, and the mixed norm for

G(z) is defined as follows‖G‖2,1 =
√

max
1≤j≤m

∑m
i=1 ‖Gij(z)‖

2
2
,

where,Gij(z) denotes the element ofG(z) in ith row andjth col-
umn. ForG(z), the operatorφ{G(z)} is defined asφ{G(z)} =






‖G11‖
2
2 · · · ‖G1m‖22

...
. . .

...
‖Gm1‖

2
2 · · · ‖Gmm‖22






. The matrix 1-norm for P ∈

C
m×n is defined as‖P‖1 = max

1≤j≤m

∑n
i=1 |Pij |. For simplicity,

sometimes the arguments of a function will be omitted when no
confusion can arise.

2 Problem formulation

The overall setup of the control problem is depicted in Fig. 1, where
the controller connects to the discrete-time plant trough encoder,
multiple lossy channels and decoder.

The plant is described by the following discrete-time state-space
representation:

{

x(k + 1) = Ax(k) +Bu(k), x(0) = x0,

z(k) = Cx(k) +Du(k),
(1)

wherex(k) ∈ R
n is the state,u(k) ∈ R

m the control input,z(k) ∈
R
p the controlled output for tracking certain reference. Assume that

the matrix pair(A,B) is stabilizable.

Plant

x(k)
F2

Decoder

Encoder

Channels

v(k)

u(k)

F1 Exo-system
r(k)

+

+

z(k)

Fig. 1: System setup

The control lawv(k) is given by

v(k) = F1r(k) + F2x(k), (2)

whereF1 ∈ R
m×q is the feedforward gain related to the tracking

reference andF2 ∈ R
m×n is the state feedback gain related to the

LQ performance defined later,r(k) ∈ R
q is the state of the following

exo-system:

{

r(k + 1) = Arr(k), r(0) = r0,

zr(k) = Crr(k),
(3)

with zr(k) ∈ R
p being the reference. It is known that the exo-

system is an autonomous system that generates the referencesignal
to be tracked and the disturbance to be rejected. More detailed
descriptions about exo-systems may be found in [37–39].Hence, the
tracking error can be defined as:

e(k) = z(k)− zr(k). (4)

Moreover,l unreliable channels are placed in the path from the
controller to the plant. In some existing results, e.g., [28, 29], the
number of channels is equal to the number of control signals,and
the capacities of each sub-channels subject to certain lower bounds
are assumed to be flexible under total capacity constraint. Instead, in
this paper the capacity of each sub-channel is fixed a priori with
an appropriate coding strategy to improve the efficiency of net-
work resource. Therefore, different from the above works, the lower
bounds of sub-channels’ capacities are decreased, and relatively less
expensive sub-channels may therefore be used. In this case,the num-
ber of channels is assumed to be more than the number of control
signals, i.e.l > m.

Then, a pair of encoderE ∈ R
l×m and decoderD ∈ R

m×l is
introduced on each side of thel channels to give a degree of free-
dom for fully utilizing the resource of all the multiple channels. This
transmission process is specified by the inputv(k) and outputu(k)
as

u(k) = Dα(k)E v(k), (5)

whereα(k) = diag [α1(k), · · · , αl(k)] with αi(k), i = 0, 1, · · · , l
being Bernoulli variables to specify the unreliable transmission pro-
cess of each channel. Hereαi(k) take value in{0, 1} at any time
instantk. αi(k) = 1 indicates that the transmission succeeds, other-
wiseαi(k) = 0. The probability of successful transmission is given
asE{αi(k)} = βi with βi ∈ (0 1). As known, encoder and decoder
are generally viewed as a pair of invertible operators, hence the
design requirement onE andD is to satisfy the following constraint:

DΞE = I, (6)

whereΞ = diag [β1, · · · , βl].
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Combining (1), (3) and (5), the closed-loop system is obtained as:

x(k + 1) = [A+BDα(k)EF2]x(k) +BDα(k)EF1r(k),

e(k) = [C +DDα(k)EF2]x(k) + [DDα(k)EF1 − Cr]r(k).
(7)

Furthermore, we define the cost functionalJ(x, u):

J(x, u) = lim
N→∞

1

N

N−1
∑

k=0

E{xT (k)Qx(k) + uT (k)Ru(k)}, (8)

where the matricesQ ≥ andR > 0. And the following definition is
introduced.

Definition 1. [14] The closed-loop system(7) is said to be mean
square (MS) stable if for any bounded initial statex(0) andr(k) =
0, lim

k→∞
E{x(k)xT (k)} = 0.

Now the problem under consideration is described as follows.

Problem 1. Find the feedforward gainF1, the feedback gainF2

in (2) and a pair of encoderE and decoderD in (5) such that the
closed-loop system(7) meets the following requirements:

• R1 (MS stability): the closed-loop system(7) is MS stable;
• R2 (LQ performance): the cost functional in(8) is minimized
whenr(k) = 0;
• R3 (Tracking performance): for any bounded initial statex(0),
r(0), the tracking error defined in(4) satisfies lim

k→∞
E{e(k)} = 0.

Problem 1 is defined as a multi-objective control problem with the
requirements detailed inR1-R3. In the next section, corresponding
solvability conditions are successively given to fulfill the aforemen-
tioned requirements, and based on them, a complete solutionto
Problem 1 is further presented.

3 Main results

3.1 MS stabilization

In this subsection, we are focused on MS stabilization. In other
words, we consider Problem 1 with the requirementsR2 andR3
being removed.

Theorem 1. R1 in Problem1 is satisfied, if there existU ∈ R
l×m

with UTU = I , X > 0, W > 0, and Y such that the following
conditions hold

{

UWUT
}

ii
<

1

β−1
i − 1

, (9)

[

W Y
∗ X

]

> 0, (10)





X AX +BY B
∗ X 0
∗ ∗ I



 > 0. (11)

Then the state feedback gainF2 in (2), encoderE and decoderD in
(5) are constructed respectively as

F2 = Y X−1, (12)

E = Ξ−1/2U, D = UTΞ−1/2, (13)

withΞ = diag [β1, · · · , βl].

The following lemmas are introduced here for the derivationof
Theorem 1.

Lemma 1. [14] Given an internally stable systemG with dimension
p× p and a structured random process

∆(k) = diag [∆1(k), · · · ,∆p(k)] ,

such thatE{∆i(k)} = 0, E{∆2
i (k)} = τ2i , i = 1, 2, · · · , p, then

the feedback interconnection in Fig.2 is MS stable if and only
if the following condition holdsρ{φ{G}Φ} < 1, where Φ =

diag
[

τ21 , · · · , τ
2
p

]

.

G

yw

Fig. 2: System with stochastic perturbation

Lemma 2. Given an internally stable systemG with dimension
p× p, there holdsρ{φ{G}} = inf

D
‖D−1GD‖22,1, whereD is a

diagonal matrix with all diagonal elements being positive.

Proof: As represented by Lemma 2.2 in [40], for nonnegative matrix
M, there holds

ρ{M} = inf
D

‖D−1MD‖p,

for 1 ≤ p ≤ ∞. Thus, there holds

ρ{φ(G)} = inf
D

‖D−1φ(G)D‖1,

and by the definition of‖ · ‖2,1, there holds

‖D−1φ(G)D‖1 = ‖D−1GD‖22,1.

Then it is observed that

ρ{φ(G)} = inf
D

‖D−1GD‖22,1.

�

Now, we are in the position to prove Theorem 1.

Proof of Theorem1:
Note that for the Bernoulli processαi(k) mentioned in (5) ,i =

1, 2, · · · , l, we have

E{αi(k)} = βi 6= 0, E{(αi(k)− βi)
2} = βi(1− βi).

Setting new random variables asφi(k) = [αi(k)− βi]/βi, yields

E{φi(k)} = 0, E{φ2
i (k)} = β−1

i − 1,

i = 1, 2, · · · , l. Then the closed-loop system in (7) is rewritten as

x(k + 1) = (A+BF2 +BDΞΦ(k)EF2)x(k),

whereΞ = diag [β1, · · · , βl], Φ(k) = diag [φ1(k), · · · , φl(k)].

IET Research Journals, pp. 1–11
c© The Institution of Engineering and Technology 2015 3



The above closed-loop system can be rewritten as:

x(k + 1) = (A+BF2)x(k) +BDΞw(k),

y(k) = EF2x(k),

w(k) = Φ(k)y(k).

Then it can be seen as the interconnection of two parts in Fig.2 with

G = (A+BF2, BDΞ, EF2, 0), ∆(k) = Φ(k),

where the systemG is stable with (11) holding.
With the help of Lemma 1, it is easy to indicate that the closed-

loop system (7) is MS stable if there exists a feedback gainF2, an
encoder/decoder pairE andD such that

ρ{T̃ β̄2} < 1 (14)

whereT̃ = φ(T (z)), T (z) = EF2(zI − A−BF2)
−1BDΞ, β̄ =

diag
[

(β−1
1

− 1)
1

2 , · · · , (β−1

l − 1)
1

2

]

.
Next, we will show that under the conditions (9)-(11), (14) holds

with F2, E andD given in (12) and (13). To this end,T (z) is first
rewritten as

T (z) = Ξ−1/2UF2(zI − A−BF2)
−1BUTΞ1/2.

Then, it is observed by Lemma 2 that

ρ{T̃ β̄2} = inf
D

∥

∥

∥D
−1T (z)β̄D

∥

∥

∥

2

2,1
.

Next, we will show

ρ{T̃ β̄2} ≤
∥

∥

∥
D−1T (z)β̄D

∥

∥

∥

2

2,1
< 1,

with D being selected asD = Ξ−1/2.

By the definition,
∥

∥

∥
Ξ1/2T (z)β̄Ξ−1/2

∥

∥

∥

2

2,1
can be rewritten as

∥

∥

∥
Ξ1/2T (z)β̄Ξ−1/2

∥

∥

∥

2

2,1

= max
i

1
2π

∫π
−π

{

β̄Ξ−1/2TH(ejw)ΞlT (e
jw)Ξl

−1/2β̄
}

ii
dw

= max
i

{

β̄U
(

1
2π

∫π
−π T̄H(ejw)T̄ (ejw)dw

)

UTβ̄
}

ii
.

whereT̄ (z) = F2(zI −A−BF2)B satisfying

1

2π

∫π
−π

T̄H(ejw)T̄ (ejw)dw = FT
2 W0F2

with W0 being the solution to equation

(A+BF2)
TW0(A+BF2)−W0 +BBT = 0. (15)

By Schur complement, (11) and (12) indicate that

(A+BF2)
TX(A+BF2)−X +BBT < 0,

and (10) and (12) indicate that

W > FT
2 XF2.

According to III. C in [41], it can be concluded that

W > FT
2 XF2 > FT

2 W0F2 =
1

2π

∫π
−π

T̄H(ejw)T̄ (ejw)dw.

Therefore, it can be concluded with (9) that

∥

∥

∥Ξ1/2T (z)β̄Ξ−1/2
∥

∥

∥

2

2,1

= max
i

{

β̄U
(

1
2π

∫π
−π T̄H(ejw)T̄ (ejw)dw

)

UTβ̄
}

ii

< max
i

{

β̄U (W )UTβ̄
}

ii
< 1.

Then, it is clear that

ρ{T̃ β̄2} ≤
∥

∥

∥Ξ
1/2T (z)β̄Ξ−1/2

∥

∥

∥

2

2,1
< 1.

Consequently, (14) holds. Therefore, the closed-loop system (7) is
MS stable.

�

It can be seen from the proof that the controller synthesis problem
of multi-input NCSs with packet dropout turns out to be aµ prob-
lem. Compared with the resource allocation technique appealed in
[24, 28, 29], where diagonal coding matrices are adopted, full dimen-
sional coding matrices are applied here to achieve less conservative
performance. However, the solvability conditions (9)-(11) given in
Theorem 1 result in a nonlinear matrix inequality problem. One can
of course take a specificU to render the problem convex. However,
proceeding with a specificU may lead to a conservative synthe-
sis. Therefore, an iterative algorithm for finding a less conservative
solution will be given in the subsection 3. 3.

3.2 Linear quadratic MS stabilization

In this subsection, we are concerned with LQ performance under MS
stability, that is, Problem 1 with the requirementR3 being removed.

Before proceeding, we rewrite the closed-loop system (7) with
r(k) been removed as

x(k + 1) = Ax(k) +BDΞ[I + Φ(k)]EF2x(k), (16)

whereΦ(k) = diag [φ1(k), · · · , φl(k)], φi(k) = [αi(k)− βi]/βi,
i = 1, 2, · · · , l. And the control lawv(k) is rewritten as

v(k) = F2x(k).

Theorem 2. R1 and R2 in Problem1 are satisfied if there exist
solution P > 0 and U ∈ R

l×m with UTU = I to the following
modified discrete-time algebraic Riccati equation (MDARE)

P =ATPA+Q− ATPBUTΞ
1

2 Σ̄−1Ξ
1

2 UBTPA, (17)

where

Σ̄ = [(ΞHΞ + Σ)⊙ (R+ Ξ
1

2 UBTPBUTΞ
1

2 )],

Σ = diag [β1(1− β1), · · · , βl(1− βl)] ,

Ξ = diag [β1, · · · , βl] ,

H denotes a constant matrix with all elements being 1. Then the
feedback gainF2 is given by

F2 =− UTΞ
1

2 Σ̄−1Ξ
1

2 UBTPA, (18)

the encoder and decoder are given as

E = Ξ−1/2U, D = UTΞ−1/2. (19)
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Proof:First let us consider the MS stability of the closed-loop system
(7) with the feedback gainF2 given in (18), encoderE and decoder
D given in (19). To this end, we define

V [x(k)] = Tr{E{x(k)xT (k)}P}.

For the closed-loop system

x(k + 1) = Ax(k) +BDΞ[I + Φ(k)]EF2x(k),

it can be concluded that

V [x(k + 1)]

=Tr{E{x(k + 1)xT (k + 1)}P}

=Tr{E{x(k)xT (k)[(A+BDΞEF2)
TP (A+BDΞEF2)]}}

+ Tr{E{x(k)xT (k)[(BDΞΦ(k)EF2)
TP (BDΞΦ(k)EF2)]}}

=Tr{E{x(k)xT (k)}ATPA)]}

+ Tr{E{x(k)xT (k)}[(E F2)
T Σ̂−1(EF2)]},

whereΣ̂ = [(ΞHΞ +Σ) ⊙ (Ξ
1

2UBTPBUTΞ
1

2 )].
Substituting (17), (18) and (19) into the above formula, yields

V [x(k + 1)]

=V [x(k)]− Tr{E{x(k)xT (k)}Q}

− Tr{E{x(k)xT (k)}[(E F2)
T [(ΞHΞ + Σ)⊙R]−1(EF2)]}

<V [x(k)].

Therefore, lim
k→∞

E{x(k)xT (k)} = 0, which indicates that the

closed-loop system (7) is MS stable.
For further considering the functionalJ(x, u) in (8), we define

V1[x(k)] = xT (k)Px(k),

z1(k) =

[

Q
1

2 x(k)

R
1

2 u(k)

]

.

Noticing

z1(k) =

[

Q
1

2 x(k)

R
1

2 DΞ(I +Φ(k))EF2x(k)

]

,

there holds

‖z1(k)‖
2 + V1(k + 1)− V1(k)

=xT (k)Qx(k) + vT (k)E TΞD
TRDΞE v(k)

+ vT (k)Φ(k)E TΞD
TRDΞEΦ(k)v(k)

+ 2vT (k)E TΞD
TRDΞEΦ(k)v(k)

+ xT (k)ATPAx(k) + vT (k)E TΞD
TBTPBDΞE v(k)

+ vT (k)Φ(k)E TΞD
TBTPBDΞEΦ(k)v(k)

+ 2xT (k)ATPBDΞE v(k) + 2xT (k)ATPBDΞEΦ(k)v(k)

+ 2vT (k)E TΞD
TBTPBDΞEΦ(k)v(k)− xT (k)Px(k).

Note that the random variableΦ(k) is independent of the control
law v(k), which is a static linear function of the statex(k). Hence,

taking expectations from both sides, together with (17), yields

E{‖z1(k)‖
2}+ E{V1(k + 1)} − E{V1(k)}

=E{(EF2x(k))
T Σ̄EF2x(k)}

+ E{xT (k)[ATPBUTΞ
1

2 Σ̄−1Ξ
1

2UBTPA]x(k)}

+ E{2xT (k)[ATPBUTΞ
1

2 ]EF2x(k)}.

whereΣ̄ = [(ΞHΞ +Σ) ⊙ (R+ Ξ
1

2UBTPBUTΞ
1

2 )]. There holds

J(x, u)

=E{‖z1(k)‖
2}

= lim
N→∞

1

N

N−1
∑

k=0

E[xT (k)Qx(k) + uT (k)Ru(k)]

=
∥

∥

∥
Σ̄

1

2 [EF2 + Σ̄−1Ξ
1

2UBTPA]x
∥

∥

∥

2

ǫ
+ xT0 Px0.

It is easy to conclude thatJ(x, u) is minimized if

EF2 = −Σ̄−1Ξ
1

2UBTPA.

Noticing thatDΞE = I , E = Ξ−1/2U andD = UTΞ−1/2, mul-
tiply DΞ at both sides of the above equation and the state feedback
gainF2 is given byF2 = −UTΞ

1

2 Σ̄−1Ξ
1

2UBTPA. �

The MDARE (17) in Theorem 2 is solvable, if the closed-loop
system (7) is MS stabilizable via state feedback [29, 42]. Itis well
known that solving modified Riccati equation in the stochastic set-
ting with close-form solution is still an open problem [29, 42]. To be
worse, the MDARE (17) also includes the matrixU , which makes
the corresponding solvability condition even harder. In Algorithm 1,
we propose an iterative method for numerical solution to MDARE
(17) with a fixedU matrix.

Algorithm 1

Step 1: give the number of iterationN1. Setk = 0 and the initial
conditionP (0) = 0.

Step 2: solve conditions (9)-(11) and obtain a feasible matrix U .

Step 3: updateP (k) as

P (k + 1) = ATP (k)A+Q− ATPBUTΞ
1

2 Σ̄−1Ξ
1

2 UBTPA,

with Σ̄ = [(ΞHΞ + Σ)⊙ (R +Ξ− 1

2 UBTPBUTΞ
1

2 )].

Step 4: setk = k + 1, go to Steps 3. If‖Pk+1 − Pk‖ < ǫ with ǫ
being a small positive number, stop. Ifk > N1, stop.

3.3 Additional asymptotic tracking

In this subsection, a sufficient condition is given for designing the
feedforward gainF1 in (2) such that the tracking requirementR3
defined in Problem 1 is fulfilled.
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Theorem 3. R3 in Problem1 is satisfied if there exist matricesXr

andYr such that the following Sylvester equation holds:

XrAr = AXr +BYr,

0 = CXr +DYr − Cr.
(20)

Moreover, the feedforward gainF1 is given as:

F1 = Yr − F2Xr, (21)

whereF2 is any feedback gain that ensures the MS stability of the
closed-loop system(7).

Proof: Substitute (21) into (20), yields

XrAr = (A+BF2)Xr +BF1,

0 = (C +DF2)Xr +DF1 − Cr.
(22)

By defining x̄(k) = x(k)−Xrr(k) for the closed-loop system
(7), it is observed that

x(k + 1)−Xrr(k + 1)

=Acx(k) +Bcr(k)−Xrr(k + 1)

=(A+BF2)x(k) +BF1r(k) +BDΞΦ(k)EF2x(k)

+BDΞΦ(k)EF1r(k)−XrArr(k),

whereAc = A+BDα(k)EF2, Bc = BDα(k)EF1.
Substituting (21) and (22) into the above formula, yields

x̄(k + 1)

=x(k + 1)−Xrr(k + 1)

=(A+BF2)(x(k)−Xrr(k)) +BDΞΦ(k)E F2x(k)

+BDΞΦ(k)EF1r(k)

=(A+BDα(k)EF2)x̄(k) + (BDΞΦ(k)E Yr)r(k).

Note thatE{[BDΞΦ(k)E Yr]}r(k) = 0, then lim
k→∞

E[x̄(k)] = 0.

According to (6) ande(k) defined in (7)

lim
k→∞

E[e(k)]

= lim
k→∞

E[(C +DDα(k)E F2)x(k) + (−Cr +DDα(k)E F1)r(k)]

= lim
k→∞

E[(C +DF2)x(k) + (−Cr +DF1)r(k)].

By definingx̄(k) = x(k)−Xrr(k),

lim
k→∞

E[e(k)] = lim
k→∞

E[(C +DF2)x(k)− (C +DF2)Xrr(k)

+ (C +DF2)Xrr(k) + (−Cr +DF1)r(k)]

= lim
k→∞

E[(C +DF2)x̄(k)]

+ lim
k→∞

E[(CXr +DF2Xr +DF1 −Cr)r(k)].

Note that lim
k→∞

E[x̄(k)] = 0 and

CXr +DF2Xr +DF1 − Cr = 0

according to (22). Thus,limk→∞E[e(k)] = 0 and the tracking
requirementR3 in Problem 1 is satisfied.

�

Theorem 3 presents the condition for satisfying the requirement
R3 in Problem 1. The corresponding feedforward gainF1 given in

(21) is structured withXr , Yr andF2, among whichF2 is the feed-
back gain related to MS stability of the closed-loop system (7) and
can be previously computed by Theorem 1 or Theorem 2. So far,
all the conditions needed to solve the Problem 1 have alreadybeen
presented. Therefore, the following complete condition isgiven for
solving the Problem 1.

Theorem 4. The Problem1 is solvable if there exist matricesU ∈
R
l×m satisfyingUTU = I , X > 0, W > 0, Y , P > 0, Xr , Yr,

such that the conditions(9)-(11), (17) and (20) hold. Then the feed-
forward gainF1 is given in(21), the feedback gainF2 is given in
(18), the encoderE and decoderD are given in(19).

Proof: The proof can be obviously obtained by combination of
Theorem 1, Theorem 2 and Theorem 3. �

Theorem 4 is a synthesis of Theorem 1-3, which gives a com-
plete solution to Problem 1. In other words, the controller obtained
by Theorem 4 can achieve minimum LQ performance under MS sta-
bilization whenr(k) = 0. At the same time, whenr(k) 6= 0, it can
also fulfill asymptotic tracking for reference generated byr(k).

In the section 3.2, a simple and efficient Algorithm 1 is provided
to solve the MDARE (17) provided in Theorem 2. However, the
certain solution of MDARE (17) by directly applying a specific U
matrix may lead to a conservative synthesis. Therefore, an itera-
tive process taking benefits from Theorems 1 and Theorems 2 is
proposed in this subsection to design iteratively the matrix U and
feedback gainF2 in order to reduce the conservatism of the results.

Algorithm 2

Step 1: give the number of iterationN1. Seti = 0, k = 0. Get a
feasibleU by solving inequalities (9)-(11).

Step 2: compute MDARE (17) withU in Step 1 by Algorithm 1
and structure the feedback gainF2 as in (18).

Step 3: calculateWi by solving equation (15) withF2 in Step 2
and setW = Wi.

Step 4: findU = U(0), U(1), · · · , U(N) satisfying (9) withW
in Step 3 and setc = 0, j = 0, P (0) = 0. If N = 0, stop.

Step 5: updateP (k) as Step 3 in Algorithm 1 withU = U(c).

Step 6: setk = k + 1, and go to Step 5. If|P (k + 1) − P (k)| <
ǫ with ǫ being a small positive number, setPj = P (k + 1), Uj =
U(c), j = j + 1, c = c+ 1, k = 0 and go to Step 5. Ifk > N1,
setk = 0, c = c+ 1 and go to Step 5. Ifc = N , go to Step 7.

Step 7: find the matrixPj∗ that minimizingxT (0)Pj∗x(0), where
j∗ = 1, 2, · · · , j and setPi = Pj∗ , Ui = Uj∗ .

Step 8: if
∥

∥

∥
xT (0)(Pi − Pi−1)x(0)

∥

∥

∥
< ǫ with ǫ being a small

positive number, obtain the feedback gainF2 with P = Pi, U =
Ui as in (18), stop.

Step 9: seti = i+ 1, go to Step 3.

4 Application

In this section, the main results proposed in section 3 is applied to
a cooperative control platform with two robots to show the specific
co-design process and to verify the effectiveness of the results.
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4.1 Platform description

As depicted in Fig. 3, the control platform consists of two coopera-
tive mobile robots, one camera and a supervisor. The objective of this
platform is to drive the two cooperative tank-like mobile robots in
order to complete tasks such as manipulating a load too cumbersome
and heavy for only one of the robots. The supervisor can measure the
absolute position and velocity of each robot thanks to cameras with-
out delays and communicate control signals to each robot through a
wireless protocol.

x

y

0 x2x1 xG

y2

y1

yG
G

d e

R1

R2

φ

Supervisor

Camera

Wireless

Network

δ1

θ1

θ2

δ2

Fig. 3: Setup of the cooperative control platform

The control objectives for the platform depicted in Fig. 3 can be
formulated as follows:

• The barycenterG(xG; yG) of the two robots must be driven along
a pre-defined path.
• A constant interdistanced between the two robots must be
ensured. The interdistanced is defined here as the euclidian norm
between centers ofrobot1 (x1; y1) androbot2 (x2; y2) as















xG = (x1 + x2)/2,

yG = (y1 + y2)/2,

d =
√

(x1 − x2)2 + (y1 − y2)2.

(23)

To feet with (23), the control objectives can be defined through
the 4 following signals to be controlled























xG = (x1 + x2)/2,

yG = (y1 + y2)/2,

∆x = x1 − x2,

∆y = y1 − y2.

The reference trajectory can be generated directly by a human
joystick by using some robotic trajectory generation algorithms, etc.
The trajectory generator provides a vector signalX as:

X (k) = [xrefG (k) yrefG (k) ∆ref
x (k) ∆ref

y (k)]T

4.2 Control strategy formulation

The whole control implementation is depicted in Fig. 4. The two
robots with their local feedback linearization law are set as the plant.
The camera send the measured absolute position and velocityof each
robot to the supervisor with a sampling period tuned at 0.1s.The
controller implemented by the supervisor consists of a static feed-
back gainF2 and a static feedforward gainF1 generating the control
signalsv1, v2, v3 andv4 to drive the two robots.

The four control signalsv1, v2, v3 and v4 are firstly encoded
and then transmitted vial = 6 independent wireless lossy chan-
nels. After transmission, the signals are decoded and sent to the
two robots, respectively. The encoder (static matrixE ∈ R

6×4) can

Robot1

Robot2

Feedback

linearization 

Feedback

linearization

θ2,v2

.  .  

θ1,v1

.  .  
Plant

θ1,v1

    

θ2,v2

    

x1,y1    
Sampler 1

(0.1s)

Sampler 2

(0.1s)

v1

v2
v3

v4

Encoder

Channel 1

Channel 6

  
  

α1(k)

α6(k)

  
  

Decoder1

Decoder2

F2

Exo

system
F1

Supervisor

wfb

wff

  
  

u1,u2

    

u3,u4

    

Decoder

x1,y1
.  .  

x2,y2

x2,y2
.  .  

Holder1

Holder2

r

p p

p p

Fig. 4: Control implementation for the robots platform

be implemented directly in the supervisor, or locally in thehard-
ware transmitter. The decoder (static matrixD ∈ R

4×6) should be
implemented separately in the two robots as following eq. (24).

D =

[

D1

D2

]

,D1 ∈ R
2×6,D2 ∈ R

2×6. (24)

Each robot can be modeled by a classic kinematic unicycle model























ẋi = δi cos(θi),

ẏi = δi sin(θi),

θ̇i = ηi,

δ̇i = γi.

where(xi; yi) are the position of theroboti, δi and θi its veloc-
ity and its angular orientation,(ẋi; ẏi) its velocity on (Ox) and
(Oy) axle in the frame(O, x, y), θ̇i its angular velocity,ηi, γi the
plant input of the roboti, i = 1, 2. In each robot a classical lin-
earizing feedback control law is implemented [43], leadingto a new
input-output mapping (see Fig. 3) based on two decoupled integrator
chains.

Roblini =

{

xi/a
x
i = 1/s2,

yi/a
y
i = 1/s2.

The two new control inputs for each robots(axi ; a
y
i ) are homoge-

neous to the acceleration of the robot. Finally, without taking into
consideration the decoderDi embedded in each robot, the plant
model, after exact discretization atTsamp = 0.1s, is given by

ẋp = Apxp +Bpup, (25)

with

xTp = [x1 ẋ1 y1 ẏ1 x2 ẋ2 y2 ẏ2]
T ,

uTp =
[

up
1
up
2
up
3
up
4

]T
=

[

ax1 ay
1
ax2 ay

2

]T
,

Ap = diag [A1, · · · , A4] , Bp = diag [b1, · · · , b4] ,

Ai =

[

1 0.1
0 1

]

, bi =

[

0.005
0.100

]

, i = 1, 2, 3, 4.

Such sampling periodTsamp leads to a good compromise between
the dynamic of the robots, and the capacities of the supervisor (video
tracking algorithm in particular) and of the wireless protocol (e.g.
Zigbee or Bluetooth).

The standard model defined in (1) is linked to the discretize plant
model (25), and the matrices for the output regulation problem are
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defined as

A = Ap, B = Bp,

C =









0.5 0 0 0 0.5 0 0 0
0 0 0.5 0 0 0 0.5 0
1 0 0 0 −1 0 0 0
0 0 1 0 0 0 −1 0









, D = 0.

4.3 Trajectory tracking problem formulation

The trajectory tracking problem is considered here and it isreformu-
lated to fit with the theoretical results proposed in this paper.

In this simulation, the reference trajectoryzr(k) for the gravity
centerG is a circle with radius 10 meters, and the robots should
travel around this trajectory with a fixed interdistance of2m, at a
fixed velocity of1m/s. The travel period is thus around62.8s. This
leads in discrete-time to

zr(k) = Crr(k) =























xrG(k) = 10sin(0.1πk/20),

yrG(k) = 10cos(0.1πk/20),

∆r
x(k) = 2sin(0.1πk/20),

∆r
y(k) = 2cos(0.1πk/20).

(26)

The 4 reference signals are clearly coupled, thus a discrete-
time state-space representation based on (3) can be designed with
parameters

Ar =

[

0.99995 −0.00800
0.01250 0.99995

]

, Cr =

[

0 10 0 2
8 0 −1.6 0

]T

.

4.4 Numerical results

In this subsection, some Matlab simulations are consideredfor the
above mentioned platform. The robots with their local feedback lin-
earization are modeled according to (25). The MIMO channelsis
modeled with data arrival ratesβ1 = 0.9, β2 = 0.7, β3 = 0.5, β4 =
0.5, β5 = 0.3, β6 = 0.1.

To feet with the theoretical results proposed in section 3, three
different control strategies are considered for the robotsplatform in
this subsection:

• 1. the controller set(F2 = FMS
2 , U = UMS , F1 = FMS

1 ) is
obtained thanks to Theorem 1 and Theorem 3 without considering
the LQ performance requirementR2;
• 2. the set(F2 = FLQ1

2
, U = ULQ1, F1 = FLQ1

1
) and (F2 =

FLQ2

2
, U = ULQ2, F1 = FLQ2

1
) corresponding to two different

weighting parameters for LQ functional (8) are obtained by Theorem
4 with a specificU ;
• 3. the sets(F2 = F IT1

2 , U = UIT1, F1 = F IT1
1 ), (F2 = F IT2

2 ,
U = UIT2, F1 = F IT2

1 ) are obtained by solving Theorem 4 with
different weighting parameters for LQ functional (8), and the itera-
tive design method proposed in Algorithm 2 is adopted to reduce the
conservatism of the results.

MS stabilization

In this part, the MS stabilization feedback gainF2 = FMS
2 is

designed for the cooperative robots platform by Theorem 1 without
considering the LQ performance, and the corresponding feedforward
gainF1 = FMS

1 is computed by Theorem 3. WithFMS
2 andFMS

1 ,
a simulation is introduced to show the tracking performanceof the
cooperative robots.

For Theorem 1, the matrixUMS is given as:

UMS =















−0.2823 −0.4024 −0.5113 −0.2098
−0.4515 −0.1390 0.5950 0.3477
−0.6033 −0.0440 0.2043 −0.0217
−0.3672 0.7786 −0.3976 0.2797
−0.4164 −0.3496 −0.3614 −0.0106
−0.2103 0.2973 0.2327 −0.8696















.

Then the feedback gainFMS associated to the matrixUMS is
obtained by solving (9)-(11) as:

FMS
2 = diag [f1, · · · , f4] ,

with

f1 = f2 = f3 = f4 =
[

−0.3397 −1.1151
]

.

The feedforward gainFMS corresponding toFMS andUMS is
obtained by Theorem 3 as:

FMS
1 =







1.2341 2.9099
3.6374 −0.9873
1.0097 2.3808
2.9761 −0.8078






.

For the simulation, a unit step signalw(t) is added to the position
of robot 1 (statex1 in (25)) from time30s to 42s to simulate some
kind of disturbance factors. The initial positions of robot1 and robot
2 are(0, 11) and(0, 9) respectively, and the two robots are asked to
follow a circular trajectory with diameter10m, a inter-distance of 2
meters and a fixed velocity1m/s.

Based onFMS
2 , UMS and FMS

1 , Fig. 5 shows the tracking
performance and the evolution of the tracking error.
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Fig. 5: Tracking performance without LQ performance

As depicted in Fig. 5, the set(FMS
2 , UMS , FMS

1 ) can ensure
an acceptable tracking performance. However, the two robots are
decoupled due to the diagonal feedback gainFMS

2 . Therefore, when
the robot 1 affected by the disturbance, the robot 2 will not respond
accordingly as shown in Fig. 5. This problem will be solved inthe
next part by further considering the LQ performanceR2.

Linear quadratic MS stabilization

In this part, Theorem 4 is adopted to solve the tracking problem for
the cooperative robots platform and the LQ performance is consid-
ered. To this end, two different sets of parameters are defined for the
cost functional (8) as:
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1. Case 1: more weighting on center error as:

Q1 = CT diag [100, 100, 1, 1]C,R1 = I.

2. Case 2: more weighting on distance error as:

Q2 = CT diag [1, 1, 100, 100]C,R2 = I.

For the specificU matrix given asULQ1 = ULQ2 = UMS ,
the set(FLQ1

2
, ULQ1,KLQ1

1
) associated to weighting matrices

(Q1, R1) as well as the set(FLQ2

2
, ULQ2,KLQ2

1
) associated to

weighting matrices(Q2, R2) are obtained by solving Theorem 4:

FLQ1

2
=





















−2.7396 0.0344 −1.6725 0.0975
−2.0847 0.1264 −0.6345 0.1643
0.2188 −3.1688 −0.1692 −1.2658
0.1356 −2.4344 0.0313 −0.6619
−1.6302 0.0840 −2.8591 −0.2314
−0.6324 0.0440 −2.1721 −0.1826
0.3509 −2.1336 −0.4160 −1.6617
0.1770 −0.7053 −0.1918 −1.3351





















T

,

FLQ1

1
=







−2.7036 36.0047
53.7705 −3.5574
8.2581 35.1215
28.7722 −0.7348






,

FLQ2

2
=





















−1.8522 −0.1214 1.2829 0.5351
−1.6998 −0.1218 0.6285 0.2763
−0.2653 −1.5930 0.3348 0.0889
−0.1290 −1.5037 0.1945 0.0404
1.2526 0.1468 −1.9160 −0.5503
0.6270 0.1852 −1.7560 −0.2897
0.3319 0.8771 −0.3924 −0.5732
0.2661 0.0798 −0.2818 −1.0543





















T

,

F
LQ2

1
=







1.2361 7.2705
9.4861 −1.2535
0.7370 2.4018
4.0478 −1.4697






.

The Fig. 6 and Fig. 7 show the tracking performance and
the evolution of the tracking error for the simulation with
(FLQ1

2
, ULQ1, FLQ1

1
) and(FLQ2

2
, ULQ2, FLQ2

1
), respectively.

Compared with Fig. 5, we can see in Fig. 6 that the two robots
cooperate to minimize the error between the center of robotsand
the reference trajectory. Therefore, when robot 1 moves outward,
robot 2 moves inward correspondingly to reduce the center error.
On the contrary, we can see in Fig. 7 that the two robots cooper-
ate to minimize the distance error. Therefore, when robot 1 moves
outward, robot 2 moves outward correspondingly. For both simula-
tions, we can see that a better cooperation can be achieved bytaking
the LQ performance into consideration, and the impact of different
weighting can be clearly seen.

Less conservative solution

In this part, Algorithm 2 is applied to reduce the conservatism of the
results obtained by Theorem 4. The less conservative solutionsUIT1

andUIT2 are computed by the Algorithm 2. By solving Theorem
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Fig. 6: Tracking performance with LQ performance to Case 1
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Fig. 7: Tracking performance with LQ performance to Case 2

4, (F IT1
2 , UIT1, F IT1

1 ) for Case1 and(F IT2
2 , UIT2, F IT2

1 ) for
Case2 are obtained as:

F IT1
2 =





















−2.9862 0.0577 −2.2707 0.3126
−2.0796 0.0544 −1.0517 0.2310
0.2290 −3.2311 −0.0816 −2.1212
0.0630 −2.3418 −0.0654 −0.8447
−2.2135 −0.0252 −3.1356 0.0977
−1.0488 −0.0626 −2.2072 −0.0391
0.3696 −2.0695 −0.0726 −3.3194
0.2338 −0.8421 −0.0476 −2.3821





















T

,

UIT1 =















−0.4756 0.3525 −0.2949 0.7469
−0.3994 −0.5220 −0.6550 −0.2430
−0.2469 −0.6592 0.3571 0.2601
−0.4012 0.3929 −0.1263 −0.5330
−0.4326 0.1196 0.4352 −0.0938
−0.4530 −0.0127 0.3887 −0.1501















,

F IT1
1 =







−2.6140 42.3516
54.0542 −2.9927
4.6939 42.3949
52.8992 −5.9123






,
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F IT2
2 =





















−1.8739 0.0791 1.6055 −0.0467
−1.6072 0.0644 0.8574 −0.0240
0.0890 −2.0718 −0.0244 1.4986
0.0649 −1.8398 0.0015 0.7777
1.4554 −0.0433 −2.1979 0.0333
0.8499 0.0006 −1.9238 −0.0018
−0.0667 1.4724 0.0247 −2.1361
−0.0250 0.7764 −0.0022 −1.9095





















T

,

UIT2 =















−0.3321 0.4088 0.7094 −0.4485
−0.3162 −0.4452 0.5267 0.6500
−0.3013 0.6568 −0.1845 0.4510
−0.4313 −0.4338 −0.1275 −0.4144
−0.5817 0.0651 −0.2971 −0.0319
−0.4178 −0.1044 −0.2841 0.0116















,

F IT2
1 =







0.6232 5.9630
9.3562 −1.4436
0.8339 1.6239
2.6789 −0.5191






.

The average tracking errors of one hundred sets of stochastic sim-
ulation with different choice of(F1, U, F2) are given in Table 1. It
can be seen in Table 1 that compared with the given matrixULQ1,
the iterative solutionUIT1 by solving Algorithm 2 greatly reduces
the center error by63.9% and also reduces the distance error by
13.6%. And compared with the given matrixULQ2, the iterative
solutionUIT2 reduces the center error and distance error by17.2%
and 22%, respectively. Therefore, it is clear that Algorithm 2 can
reduce the conservatism of the results by iterative computation of
coding matrixU . It is observed from Table 1 that the controller syn-
thesis and coding design (equivalently channel design) areof equal
importance for such network-based systems, which indeed reveals
that the fusion of control theory (cybernetics) [44] and information
theory [45] takes a crucial role in the analysis and synthesis of NCSs.

Table 1 Tracking errors

Strategy xT
0
Px0 Average error Average error

of center (m) of distance (m)

MS stabilization - 1.9934 3.9880
Case 1 (with ULQ1) 65488 0.8344 2.0884
Case 1 (with UIT1) 42341 0.3014 1.8041
Case 2 (with ULQ2) 59172 1.4403 0.5545
Case 2 (with UIT2) 35277 1.1918 0.4323

For comparisons, The MS stabilization results in [30] is extended
to the tracking problem by the design method proposed in thispaper.
In other words, a MS stabilizing feedback gainF2 is obtained by the
design method appealed in [30] and the corresponding feedforward
gainF1 is computed by Theorem 3. Fig. 8 shows the tracking perfor-
mance and the evolution of the tracking error. As depicted inFig. 8,
the two robots are decoupled and the tracking performance isnot as
satisfied as the iterative solutions given by Theorem 4 in this paper.

5 Conclusion

In this paper, stochastic LQ control problem under asymptotic track-
ing for linear discrete-time systems with lossy channels. In order to
solve this problem, the co-design approach of controller, encoder
and decoder is adopted. A theorem that reveals the fundamental
limitation among theH2 norm of the plant, data arrival rates and
coding matrices is first derived such that the closed-loop system is
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Fig. 8: Tracking performance of extended results in [30]

MS stable. To further consider the LQ performance objective, a new
condition is proposed that gives a way for the controller synthesis for
minimizing the stochastic LQ criterion under the MS stability con-
straint. Finally, a Sylvester equation is appealed for the asymptotic
tracking issue and the resulting feedforward gain is structured. To
verify the effectiveness of the proposed method, an exampleof two
cooperative robots in included. It is worth noting that the time delay
is of great importance in analysis and design of NCSs and one of
our future research topics is to include network-induced delay in the
present framework.
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