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A Coupled Friction-Poroelasticity Model of Chimneying Shows 
that Confined Cells Can Mechanically Migrate Without Adhesions

Solenne Mondésert-Deveraux1, *, Rachele Allena2 and Denis Aubry1

Abstract: Cell migration is the cornerstone of many biological phenomena such as can-
cer metastasis, immune response or organogenesis. Adhesion-based motility is the most 
renown and examined motility mode, but in an adhesion-free confined environment or sim-
ply to achieve a higher migration speed, cells can adopt a very interesting bleb-based migra-
tion mode called “chimneying”. This mode rests on the sharp synchronization between the 
active contraction of the cells uropod and the passive friction force between the cell and the 
confining surface. In this paper, we propose a one dimensional poroelastic model of chim-
neying which considers the active strains of the cell, but, as an improvement with respect 
to our previous works, the synchronization between such strains and the friction forces de-
veloped by the cell and necessary to move forward is self-determined. The present work 
allows to deepen our knowledge on chimneying which is still poorly understood from a 
mechanical point of view. Furthermore, our results emphasize the key role of poroelastic-
ity in bleb formation and give new insights on the location and the time-synchronization of 
the friction force. Further development of this exploratory work could provide a major tool 
to test hypotheses beforehand and thus focus future experiments on mechanically relevant 
ones.
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1 Introduction
Cells can adapt their motility strategy. Cell motility is a fundamental mechanism involved 
in several biological phenomena such as bone remodelling, immune response and tumoro-
genesis. Different modes of motility exist, such as flagellar motility [Silflow and Lefebvre 
(2001)], gliding [Kappe, Buscaglia, Bergman et al. (2004)], swarm-ing [Henrichsen 
(1972)], mesenchymal [Chhabra and Higgs (2007); Van Haastert (2011)] or amoeboid 
motility [Charras and Paluch (2008)]. Some cells are able to switch from 
mesenchymal (F-actin driven pseudopods) to amoeboid (myosin-driven blebs) migration 
as a reaction to various environments, such as an increased confinement [Ibo, Srivastava, 
Robinson et al. (2016)]. Mesenchymal motility is based on a tight synchronization 
between the protrusion-contraction movement of the cell and the adhesion forces exerted by 
the cell on the substrate and necessary to anchor and move forward. In three-dimensional 
(3D) confined environments and in the absence of adhesion/traction forces, some cells such 
as cancer cells are able to adopt an amoeboid mode of invasion forming bleb-like constric-
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tion rings (i.e. membrane protrusions without cytoskeletal elements such as actin filaments)
[Wolf, Mazo, Leung et al. (2003); Liu, Le Berre, Lautenschlaeger et al. (2015)] and 
bypassing the requirement for ExtraCellular Matrix (ECM) degradation [Sahai and 
Marshall (2003); Friedl (2004)], as it occurs during mes-enchymal migration. In this 
specific case, the cell migrates through a traction-independent mechanism named 
“chimneying” because of its resemblance with a technique used by alpinists to climb 
up rock clefts [Paluch and Raz (2013)]. In fact, the cell generates push-ing 
forces perpendicular to its membrane [Malawista, de Boisfleury Chevance and Boxer 
(2000); Lämmermann, Bader, Monkley et al. (2008)] and the result-ing friction is 
sufficient to ensure the forward movement and may be enhanced by blebbing into 
gaps and pores within the ECM. This last migration mode is the main focus of this 
paper.
The importance of interstitial fluid flow in cells. The specificity of bleb-based chimneying 
migration lies in the ability of the cell to move without the formation of adhesions between 
the cell and its surrounding and in the absence of actin polymerization. Without two key 
features of classical mesenchymal migration, one may wonder: What is the motor of 
such migration mechanism? Some migration modes have been found to be driven by 
intra-cellular pressure instabilities [Petrie, Koo and Yamada (2014)], or fluid exchanges 
between the cell and its environment [Stroka, Jiang, Chen et al. (2014)], thus 
pointing out the importance to take intra-cellular fluid flow into account when 
dealing with cell mechanics. In fact, the pressure instabilities and the resulting interstitial 
fluid flow are what drives the formation of a bleb [Maugis, Brugués, Nassoy et al. (2010)].
Bleb-based chimneying migration. Bleb-based migration takes its source in the poroelas-
tic properties of the cytoplasm [Zhou, Martinez and Fredberg (2013); Arroyo and Trepat 
(2017)]. The life cycle of a bleb can fall into three steps: initiation, growth and retraction 
[Charras and Paluch (2008)]. An increase in the intra-cellular hydrostatic pressure, cou-
pled with a local weakening of the actin cortex underlying the membrane, can lead to the 
initiation and the growth of a bleb, while the repairing of the actin cortex forces the bleb to 
retract. Chimneying is much less studied and described in the literature than mesenchymal 
migration. Hence, many hypotheses are made but not yet confirmed on the transloca-
tion process. In this type of migration strategy, some experimental works have shown a 
sharp decrease, or a complete lack, of integrin-mediated adhesions [Lämmermann, Bader, 
Monkley et al. (2008)]. If the cell does not adhere to the substrate, it should oscillate 
around a stable position, unless another force enables it to move forward. One strong 
hypothesis is that the cell “pushes” against the confining surface, which gen-erates 
sufficient friction for it to “stick” to the wall [Hawkins, Piel, Faure-Andre et al. 
(2009)]. Then, a fine synchronization between the “stick-slip” phases and the life cycle of 
the bleb is necessary for the cell to have a net forward motion.
Poroelastic models in biology. Cell modeling is not the first field of biomechanics getting 
into poroelasticity. Such models have been used to model soft tissues [Pena, Bolton and 
Pickard (1998)], bone [Cowin (1999)], blood vessels [Thiriet (2007)], ECM [Vuong, Rauch 
and Wall (2017)], cell nucleus [Cao, Moeendarbary, Isermann et al. (2016)] as well as cell 
cytoplasm [Taber, Shi, Yang et al. (2011); Strychalski, Copos, Lewis et al. (2015); 
Ghosh, Ozcelikkale, Dutton  et al.  (2016)]. The cell cytoplasm is often modeled as a visco-
elastic medium [Karcher, Lammerding, Huang et al.  (2003); Deveraux, Allena and Aubry
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(2017)], but the relevance of interstitial fluid flow makes us question this assumption and 
a poroelastic representation appears as more suited for bleb-based chimneying. Indeed, 
cell rheology is often explained through viscosity while the poroelasticity theory appears 
to be more fitted [Moeendarbary, Valon, Fritzsche et al. (2013); Wei, Lan, Liu et al. 
(2016)]. Among the previously cited poroe-lastic cell models, Strychalski et al. tackled 
the issue of cell blebbing and cell crawling [Strychalski, Copos, Lewis et al. (2015)] and 
Taber et al. [Taber, Shi, Yang et al. (2011)] presented a very interesting model of confined 
actin-polymerization-based migra-tion. Some models for cell blebbing exist without 
considering poroelasticity [Lim, Koon and Chiam (2013); Woolley, Gaffney and Goriely 
(2017)], but bleb-based chimneying in-cluding poroelasticity has not yet been studied.
The proposed model. The challenge in bleb-based chimneying is to capture the very fine 
synchronization between the friction force with the confining surface and the bleb cycle. 
In this respect, the present paper proposes a one-dimensional (1D) Finite Elements (FE) 
model of a poroelastic cell. The model revolves around three main ingredients: the con-
stitutive relationship of the material, the active strain-as developed in previous models 
[Deveraux, Allena and Aubry (2017); Aubry, Thiam, Piel et al. (2014); Allena and 
Aubry (2012b); Allena (2013); Allena and Aubry (2012a); Allena (2014); Allena, Aubry 
and Sharpe (2013)]-solely at the rear of the cell and the Coulomb’s friction force between 
the cell and the confining surface. Our goal is to explore a rarely studied motility mode 
and to show that, in terms of cell-environment interaction, the laws of mechanics alone 
are surprinsingly sufficient to enable a net forward motion in a non-adhesive migration. 
Hence, we chose not to model one specific cell phenotype but to develop a generic model 
that could later on be further enriched to fit a specific cellular type.

2 The poroelastic model
We first write all the equations of the model in 2D in order to stay close to our previously 
developed models, and will proceed to the 1D reduction on the final equations only.

2.1 Global equations of the model

The cell cytoplasm can be considered as a porous material-made of the cytoskeleton, as 
well as all the organelles present there-infiltrated with interstitial fluid. In such a config-
uration, two sorts of fluid-solid interactions may occur. First, a fluid-to-solid interaction 
takes place when a fluid displacement or an evolution of the intra-cellular pressure induce a 
variation of the cytoplasm volume. Second, a solid-to-fluid interaction may occur when the 
mechanical stresses applied to the cell provoke an evolution of the intra-cellular pressure 
and a displacement of the fluid. Our poroelastic approach is based on the theory developed 
by Terzaghi in 1936 for geomechanics [Terzaghi (1936)], and taken one step further, for 
numerical purposes, by Zienkiewicz [Zienkiewicz (1999)]. We consider that the total stress 
in the material is the superposition of the effective stress and the stress due to the fluid 
pressure. The effective stress is the Cauchy stress in the dry solid, which then follows the 
typical stress-strain relationship. As for the pressure, if we freeze the system at a certain 
time and measure the pressure inside the fluid, the difference between the total stress and 
the effective stress is the stress exerted by the fluid pressure on the system. In this 
framework, the total Cauchy stress σ is defined as:



σ = σ′ − pfI (1)

where σ′ is the effective stress in the solid part, pf is the hydrostatic fluid pressure, and I is 
the identity matrix. Biot models usually found in the literature [Taber, Shi, Yang et al. 
(2011); Strychalski, Copos, Lewis  et al. (2015)] offer refined considerations, but the 
approach in Eq. 1 is accurate enough for our purpose.
The motor of cell blebbing lies in the high contractility of the cell rear, the uropod 
[Lorentzen, Bamber, Sadok  et al. (2011)]. As in previous works [Aubry, Thiam, Piel et al. 
(2014); Deveraux, Allena and Aubry (2017)], we model this contractility as an active strain 
through the decomposition of the deformation gradient tensor F as follows:

F = FeFa (2)

with Fe and Fa the elastic and active deformation gradient tensors, respectively. The defor-
mation gradient is defined as F  = I+Dpu, where Dpu is the gradient of the displacement 
u with respect to the initial configuration p . From here on, we put ourselves in the small 
deformation hypothesis. Indeed, although the overall strain of the cell is not small, it may 
be considered as the combination of successive small deformations, thus making such a 
hypothesis acceptable. We can assume that Fa is close to the identity and thus approximate 
it by Fa = I + ωa + εa where ωa is the anti-symmetric part of Fa that defines the rotation 
and εa is the symmetric part of Fa that defines the strain.
From Eq. (2), we can then write:

Fe = F .F−1
a = (I + Dxu)(I− ωa − εa) (3)

Thus, the Green-Lagrange tensor Ee defined as E = 1
2(F T .F − I) reads:

Ee =
1

2
[(I− ωa − εa)T (I + Dxu)T (I + Dxu)(I− ωa − εa)− I]

=
1

2
(Dxu + Dxu

T − (ωa + ωTa − 2εa)

(4)

The cell’s strain is defined as ε = 1
2(Dxu + Dxu

T ) and, in the hypothesis of small defor-
mations, we eventually come up with:

εe = ε− εa (5)

with εe and εa the elastic and the active cell strains, respectively.
Then, the constitutive mechanical law reads:

σ′ = λTr(ε− εa)I + 2µ(ε− εa) (6)

with λ and µ the Lamé coefficients of the solid part, defined as λ = Eν
(1+ν)(1−2ν) and

µ = E
2(1+ν) , where E and ν are the Young modulus and the Poisson’s ratio of the solid

phase, respectively and Tr the trace operator.



If the cell is confined i n a  horizontal m icro-channel, we can assume t hat t he role of the 
gravity will be minimal. Experimental work moreover proved that gravity does not influ-
ence the active mechanism of cell spreading in a micro-pillars assay [Pan, Yan, Peng et al. 
(2012)].Since no volume forces are applied to the system, the cell fluid equilibrium 
equation then reads

Div(σ′ − pfI) = ρa (7)

where Div is the divergence and a is the acceleration, which is low but nonetheless
relevant, at least from a numerical point of view. ρ is the weighted density defined as
ρ = φρf + (1−φ)ρs, with φ the porosity of the cytoplasm, ρf the density of the interstitial
fluid and ρs the density of the solid phase.
In order to model the fluid-solid interaction, we write down the mass conservation for each
phase of the material locally. At such scale, the local quantities are marked with an asterisk
and from the mass conservation of each phase, we can write [Bear and Bachmat (1990);
Coussy (1995)]:

cp,s
dp∗s
dt

+ div(v∗s) = 0

cp,f
dp∗f
dt

+ div(v∗f ) = 0

(8)

with cp,s and cp,f the compressibility of the solid and the fluid phase respectively. p∗s and
p∗f are the local pressures v∗s and v∗f are the local velocities. The subscripts s and f stand
for solid and fluid, respectively.
We perform a volume integration on a representative volume element (RVE) Ω of total
volume Vt, composed of a solid phase Ωs of volume Vs and a fluid phase Ωf of volume Vf
(see Fig. 1), to get a homogenized problem.

Figure 1: Illustration of the poroelastic system

∂Ωse and ∂Ωfe are the exterior solid and fluid boundaries of the RVE, so that the total 
boundary ∂Ωe = ∂Ωse ∪ ∂Ωfe. ns and nf are the outward normal vectors to each phase. 
The homogenized quantities are noted without the asterisk and we have:



∫
Ωs

(cp,s
dp∗s
dt

+ div(v∗s))dV +

∫
Ωf

(cp,f
dp∗f
dt

+ div(v∗f ))dV = 0 (9)

which gives

cp,s
dps
dt
Vs + cp,f

dpf
dt

Vf +

∫
Ωs

div(v∗s)dV +

∫
Ωf

div(v∗f )dV = 0 (10)

The Stokes theorem allows us to write:

cp,s
dps
dt
Vs + cp,f

dpf
dt

Vf +

∫
∂Ωse

(v∗s ,ns)dS +

∫
Σfs

(v∗f ,nf )dS

+

∫
∂Ωfe

(v∗f ,nf )dS +

∫
Σfs

(v∗s ,ns)dS = 0

(11)

where (a, b) indicates the scalar product of two vectors a and b.
On Σfs, ns = −nf and vs = vf , so

∫
Σfs

(v∗f ,nf )dS+
∫

Σfs
(v∗s ,ns)dS = 0. The previous

equation then becomes

cp,s
dps
dt
Vs + cp,f

dpf
dt

Vf +

∫
∂Ωe

(v∗s ,ns)dS +

∫
∂Ωfe

(v∗f − v∗s ,nf )dS = 0 (12)

By applying the Stokes theorem the other way around and dividing everything by Vt, we
introduce the porosity of the cytoplasm φ = Vf

Vt
and we can write

cp,s(1− φ)
dps
dt

+ cp,fφ
dpf
dt

Vf +
1

Vt

∫
Ω
div(v∗s)dV

+
1

Vt

∫
∂Ωfe

(v∗f − v∗s ,nf )dS = 0
(13)

1
Vt

∫
Ω div(v∗s)dV is the solid matrix deformation so 1

Vt

∫
Ω div(v∗s)dV = Tr(ε̇). The appli-

cation of the Stokes theorem allows to rewrite the equation as:

cp,s(1− φ)
dps
dt

+ cp,fφ
dpf
dt

+ Tr(ε̇) + div(vf − vs) = 0 (14)

Additionally, the Darcy equation of fluid flow in porous media reads:

vf − vs = − 1

ηf
Kf (∇pf ) (15)

where ηf  is the fluid viscosity, Kf  is the fluid intrinsic permeability matrix and ∇ is the 
gradient operator.
By combining Eqs. (14) and (15), we get the global poroelastic equation of our model:

cp,s(1− φ)
dps
dt

+ cp,fφ
dpf
dt

+ Tr(ε̇) + div(− 1

ηf
Kf (∇pf )) = 0 (16)



2.2 Reduction to a 1D problem

In our model, we choose to represent the cell as 1D element in the x direction. To do so, 
we average a 2D model in the other direction:

f̄ =
1

H

∫ H/2

−H/2
f(z)dz (17)

where f̄ defines the average of a function f and H is the height of the cell in the z direction. 
Eq. (1) then becomes:

∂ū

∂x
− ε̄a)− p̄f (18)σ̄xx = (λ + 2µ)(ε̄xx − ε̄a) − p̄f = (λ + 2µ)(

where u is the displacement along the x-axis. 
The integration of Eq. (7) along the z-axis 
gives:

ρ
∂2ū

∂t2
=
∂σ̄xx
∂x

+ σxz(
H

2
)− σxz(−

H

2
) (19)

By combining these last two equations, we find:

ρ
∂2ū

∂t2
− (λ+ 2µ)(

∂2ū

∂x2
− ∂ε̄a
∂x

) = −∂p̄
∂x

+ τ̄ (20)

with τ̄ = 1
H (σxz(

H
2 )− σxz(−H

2 )) the weighted shear stress.
In the global poroelastic Eq. (16), we assume that we can neglect the solid phase 
compress-ibility so that the final equation then reads:

cp,fφ
∂p̄f
∂t

+
∂

∂t

∂ū

∂x
= k

∂2p̄f
∂x2

(21)

where k = Kf

ηf
is the effective permeability, Kf being the scalar version of Kf due to the

1D reduction.
Boundary conditions. Here, the cell membrane is not permeable to outside fluid. We choose 
this hypothesis as a first approximation, even though we are aware of the importance of 
water permeation in cells [Murata, Mitsuoka, Hirai et al. (2000)], in order to build a first 
model that shall later be improved. Then, the boundary conditions on the fluid at both ends 
of the cell read Kf ∇p̄f = 0. From a mechanical point of view, the outside fluid pressure is 
negligible so that σxx = 0 at both ends. Besides, we consider the cell to be at rest at the 
initial time t = 0.

2.3 The Coulomb’s friction law

The ability of the cell to progress in confinement is linked to the f riction g enerated by 
the cell in contact with the confining surface. Assuming that the contact is established be-
tween the cell and the confining surface, the Coulomb’s friction-sliding law reads [Coulomb 
(1821); Pfeiffer (2008)]:



∂ū

∂t
=

{
0 if |τ̄ | < µf |σ̄zz| stick phase
−λcτ̄ if |τ̄ | = µf |σ̄zz| slip phase

(22)

with λc a scalar and µf the friction coefficient.
Then, in the slipping phase, we can write

λc =
|∂ū∂t |
|τ̄ |

As a result,

τ̄ = −|τ̄ |
∂ū
∂t

|∂ū∂t |

Eventually,

τ̄ = −µf |σ̄zz|
∂ū
∂t

|∂ū∂t |

Besides, if we assume that the strain in the z-direction is negligible, we can write σzz =−pf
All in all, we obtain

τ̄ = −µf |p̄f |
∂ū
∂t

|∂ū∂t |
= −µf |p̄f |sign(

∂ū

∂t
) (23)

with sign(·) the sign function.
This force can be described in Fig. 2.
As we can see, the classical difficulty with Coulomb’s law is that it is not a continuous
function. For a zero velocity, there are infinite values for τ̄ and if τ̄ reaches its threshold,
there is no way to determine the velocity. In order to solve this issue, we use a regularized
sign function .
The regularized Coulomb’s law reads [Aström and Canudas de Wit (2008)]:

τ̄ = −µf |p̄f |smsign(
∂ū

∂t
) (24)

where |σ̄zz| = |p̄f | if we consider that the strain occurs solely in the x direction. smsign(·)
is the regularized form of the sign function.In this respect the shear stress is always smaller
than µf |p̄f | with a vanishing velocity and very close to µf |p̄f | when the sliding velocity
is larger. This smoothed sliding friction has often been used in non linear dynamical or
mechanical systems. It requires only one parameter and it generates stable, efficient and
fast computations.



Figure 2: Diagram of the Coulomb’s friction force and its regularized form

2.4 Active strain

Cells that use bleb-based migration present a very particular type of active deformation. 
Indeed, this migration mode does not require actin polymerization, but solely relies on 
cyclic myosin-driven contractility in the uropod, the cell’s rear. In our model, the active 
strain ε̄a(x, t) is written as a time periodic function (see Fig. 3) of period T0, spatially
localized ∀x ∈ [x0 − dx0

2 ;x0 + dx0

2 ], as follows, with x0 and dx0 geometrical parameters
defining the active strain zone in the cell:

ε̄a(x, t) = −ea,0(h(t− t0,up, s)− h(t− t0,down, s)) ∀x ∈ [x0 −
dx0

2
;x0 +

dx0

2
] (25)

where ea,0 is the amplitude, t0,cont and t0,decont describe the time at which the contrac-
tion/decontraction occurs and sa regulates the slope of the active strain.
The relatively fast contraction and decontraction, over a time of 4 s, was chosen so that the 
resulting pressure would be high enough for the creation of a bleb. The value of T0, 30 
s, to fit the blebbing time scale found in the literature [Charras and Paluch (2008)].

2.5 Blebbing and Young’s modulus

Bleb initiation starts from the weakening of bonds between the actin cortex and the cell 
membrane. The bleb then grows until such bonds are reformed, thus stabilizing the bleb. 
In order to model this local weakening, we chose a quite raw approximation to begin with: 
The cell’s Young’s modulus Ecell is locally weakened at the cell front, which enables 
easier blebbing, such that

Ecell =

{
Ecell,0 if x < 3

4Lcell

(1−D)Ecell,0 if x ≥ 3
4Lcell

(26)

where Ecell,0 is the un-damaged cell’s Young’s modulus, Lcell is the cell’s dimension and
D is the damage coefficient.



Figure 3: Graphical representation of the regularized active strain during four cycles of 30 
s each

To sum up, our poroelastic model rests on three main features: The active strain, as described 
in Eq. (25), the poroelastic laws of the model, that summed up in Eqs. (20) and (21), 
and the self-synchronized friction law, described in its final form in Eq. (26).

3 Results
In this section, we present the results of our 1D model, implemented in COMSOL 
Multiphysicsc ©. The contractile zone at the rear of the cell and the blebbing front zone are 
both 5 µm long. The description and value of each parameter are listed in Tab. 1. We use 
quadratic finite elements for the displacement variable and linear elements for the intra-
cellular pressure to prevent mesh locking phenomena. The mesh is a 1D uniform one with 
a discretization length of 0.5 µm. In the solver parameters, a fifth degree Backwards Euler 
integration is employed and at each time step, a Newton method is used with a relative 
tolerance of 0.01 with regards to both fields. A computational run for 120 s physical 
time takes about 3 min CPU time.

Table 1: Values and description of the model’s parameters

Parameter Description Value (unit) References
Lcell Cell dimension 20 µm
Ecell,0 Cell Young’s modulus 1 kPa Kuznetsova,

Staro-
dubtseva,
Yegorenkov 
et al. (2007)

D Damage coefficient 0.9
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ρ Weighted cell density
k Effective permeability

1000 kg/m3

10−14 m4/N.s      Guilak,
Haider, Set-ton 
et al.  (2006)

cp,f Compressibility of the cell’s fluid
phase

5× 10−4 Pa−1

φ Cytoplasm porosity 0.5 Taber,
Shi, Yang
et al. (2011)

µf Friction coefficient 0.3
ea,0 Amplitude of the active strain 0.8
x0 Geometrical parameter of the active

strain
2.5 µm

dx0 Geometrical parameter of the active
strain

5 µm

T0 Period of the active strain 30 s Charras
and Paluch
(2008)

t0,up Temporal parameter of the active strain 5 s
t0,down Temporal parameter of the active strain 20 s
sa Temporal parameter of the active strain 2 s

We first show that the friction force leads to a  self synchronization that enables a  net cell 
motion forward. Then, we proceed to a sensibility analysis to identify the key parameters 
that determine the ability of the cell to successfully migrate, and to study the influence of 
the secondary parameters on the migration speed.

3.1 A successful synchronization and the cell migrates

A new point tackled by this model is that no adhesion is required for the cell to move 
forward. Moreover, what gets really interesting is that the synchronization between the 
Coulomb’s friction force and the cell motion is self-determined. In fact, there is no need 
for a synchronization function, as it was the case in our previous works [Deveraux, Allena 
and Aubry (2017); Aubry, Thiam, Piel et al. (2014); Allena (2014)], and mechanics alone 
regulates this interaction.
We perform an analysis of our model on 4 periods of active strain (i.e. 120 s). The first 
contraction cycle shows a different behaviour from the following ones and can be seen as 
a necessary step to reach a new dynamic equilibrium. Then, the further analyses will be 
made excluding this initial cycle. Obviously, in the absence of friction (µf=0), the cell 
pulsates on place but does not move forward. This configuration is interesting to study the 
poroelastic part of the model. Indeed, we observe a lag time between the displacement 
of the cell rear, due to the active contraction, and the one of the cell front, that is a direct 
consequence of poroelasticity. Plotting the displacement of the cell front and rear rather
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than their position, which would simply induce an offset of the front, allows to spot more 
easily if the cell is overall contracted or extended (see Fig. 4a). Besides, the intra-cellular 
pressure pf is transported towards the front of the cell over one period of active strain (see 
Fig. 4b), which enables the development of a frontal bleb. Due to blebbing, the pressure 
does not have time to build up at the front, which explains the low values compared to the 
pressure at the rear (30 Pa at the front vs .  400 Pa at the rear).

Figure 4: Graphical representation of a) the displacement of the rear (blue) and front 
(green) extremities of the cell over four periods of active strain and b) the intra-
cellular pressure along the cell length over one period of active strain

3.1.1 Poroelasticity enables cell blebbing

After pointing out the influence of poroelasticity, the full model is studied, now including 
the friction force with µf=0.3. First, the pressure evolution inside the cell does not 
change from the previous case, which is not surprising since poroelasticity occurs in the 
same way. However, the displacement of the cell is strongly impacted (see Fig. 5). The 
lag between the displacement of the rear and front of the cell is very similar to the previous



case, but a net forward motion of the cell of 2 µm for the first cycle, and then 4 µm per cycle 
occurs. The cell migrates at an average speed of 8 µm/min, which is in the range of the 
values experimentally found for blebbing cells in confinement [Ibo, Srivastava, Robinson 
et al. (2016); Liu, Le Berre, Lautenschlaeger et al. (2015); Yip, Chiam and Matsudaira 
(2015)].

Figure 5: Graphical representation of the displacement of the rear (blue) and front (green) 
extremities of the cell over three periods of active strain

3.1.2 The fine action of the friction force

Once made sure that our poroelastic model does enable bleb formation, we need to take it 
to the next step and find the parameters that will generate a net forward motion, which is the 
goal of the Coulomb’s friction force. To do so, we first integrate the friction force over the 
whole cell to study the total force Ftot applied to the cell. When Ftot is negative, it generally 
prevents a forward motion and, when negative, it prevents a backward motion. During 
cycle 2 (and the following ones), two events need to be addressed: First a negative peak of 
-1.45 nPa at 35.5 s, a positive rise up to 0.7 nPa from 55 s to the end of the cycle (see
Fig. 6). However, this global view conceals the local phenomena, which are of great
interest here in order to pinpoint where the friction is the strongest.
To do so, we study the first peak at t=35.5 s corresponding to the contraction and the time 
period from 55 s to 60 s -right after decontraction-and plot the friction force τ̄  along the 
cell length every second from 55 s to 60 s. During contraction, there is a strong friction at 
the uropod which is the direct consequence of the rear shrinkage. Indeed, the friction is 
negative from 0 µm to 4 µm and positive from 4 µm to 7 µm (see Fig. 7a). The cell is then 
mostly blocked from moving forward because the negative part of τ̄  is much stronger than 
the positive one. If we focus on what occurs after the decontraction however, the picture is 
quite different. As time progresses, τ̄  increases in the positives at the rear and slightly 
decreases in the negatives at the front (see Fig. 7 b). 



Figure 6: Graphical representation of the total force applied to the cell

This means that the friction necessary for the cell to move forward is mostly located in the 
rear part of the cell and not at the bleb, as it has been suggested in exploratory works on 
blebbing migration [Charras and Paluch (2008)].
These results are very interesting since they offer a completely mechanics-based insight 
of chimneying. In fact, although often observed, this phenomenon is quite unclear from 
the mechanical point of view. Hypotheses were made that the cell pushed against the 
confining walls, but no further mechanical inquiries were undertaken. Our model, although 
still preliminary, already unveils interesting mechanisms. First, it proves that a simple 
mechanical friction force is sufficient for the cell to move forward at a reasonable rate. 
Second, it reveals that the friction required for chimneying is located at the rear of the cell 
during the uropod decontraction.

3.2 Sensibility study

Now, we study the influence of the parameters on the cell behaviour. Some parameters are 
crucial to the migration, while others simply regulate its amplitude.
Then, the model’s parameters can be divided into three categories:

Discriminating: They determine whether the cell migrates or not: µf , cp,f , Ecell

Non-discriminating: They determine how fast the cell migrates: k, sa

Technical: They purely define the problem: Lcell, ρ, φ, ea,0, x0, dx0, T0, t0,up, t0,down

3.2.1 The conditions for a successful synchronization

As seen in the Section 3.1, the friction is the corner stone of our model: Without it, 
no migration is possible. Intermediate values of the friction coefficient µf lead to 
intermediate migration speed, as could be expected (see Fig. 8a). 



Figure 7: Graphical representation of a) friction force per unit length along the cell profile 
at t=35.5 s, b) friction force per unit length along the cell profile between 55 s and 60 s with 
a line every 3 s

The Young’s modulus was chosen at 1 kPa. Each cell type has a different range of 
Young’s modulus, making it interesting to study its influence on cell motility in the 
prospect of looking at specific cell types. There appears to be an optimum in cell 
displacement for Ecell=1000 Pa. For higher values, the migration speed decreases and at 
5 kPa, the cell may even go in the opposite direction (see Fig. 8b). The decrease of the 
cell compressibility cp,f induces a faster migration but, more importantly, a too high 
compressibility leads to no migration or even a backward one (see Fig. 8c). In each case, 
this is due to an insufficient level of intra-cellular pressure mobilization with respect to 
the friction force.



Figure 8: Cell front displacement-Parametric study on a) µf b) Ecell c) cp,f

3.2.2 Sensitivity of the other parameters

The others parameters simply define how fast the cell migrates, but they do not influence 
the capacity of the cell to migrate. The rate of active strain, directly linked to sa, influences



chimneying velocity: The faster it is (the lower sa is), the faster the cell migrates (see 
Fig. 9a). Concerning the effective permeability k, we observe the same trend as 
for the Young’s modulus, but we do not reach a backward migration.

Figure 9: Cell front displacement-Sensibility study on a) sa b) k

In order to get a new insight on our results, we introduce the so-called half-reduced time
L2

cell

E . It gives an order of time needed to observe the poroelastic phenomenon.t1/2 = 2k cell

The values of t1/2 for the values of the parameters tested in the parametric study are listed 
in Tab. 2.
From this table, we can see that the optimal migration speed occurs when t1/2 is ten folds 
grater than sa. Indeed, for greater values of t1/2, there is no time for intra-cellular fluid 
flow to occur, and for the lowest values, the pressure does not have time to build up before 
the fluid leaves the cell rear. Since we saw that the friction force occurs at the rear of the 
cell, we understand that if there is no pressure increase, then the friction remains too low 
to enable migration. In the case of Ecell=5000 Pa, the friction force is too negative, and the 
cell goes the wrong way.



Table 2: Half-reduced time values for different parameters couples

t1/2 (s) Ecell(Pa) k (m4/N.s)

200
1000 10−15

100 10−14

40
1000 5.10−15

500 10−14

20 1000 10−14

10
1000 2.10−14

2000 10−14

4
1000 5.10−14

5000 10−14

4 Discussion and conclusion
Our preliminary model presents very interesting insights on the combined role of poroe-
lasticity and passive friction force during the migration mode known as chimneying. In 
this work, we focus on the sharp synchronization between poroelastic-based blebbing and 
passive friction force. In this respect, we chose to implement a 1D model of a generic cell 
which could be adapted to fit a specific cell type. This 1D reduction is of course a rough 
simplification that induces a  loss of information, but it simplifies the problem and allows 
to pinpoint the exact mechanisms that govern chimneying. Finding out the values of the 
model’s parameters was complex due to the lack of experimental data, or the wide range 
of the data that could be found. Thus, after starting with first-approximation values of the 
parameters from the literature, we iterated until getting an acceptable set of parameters for 
the model to run (see Tab. 1). The model’s sensibility on cell stiffness highlights the var-
ious behaviour that could be expected from various cell types and it raises the question of 
the possibility of such migration mode in stiffer cells.
Despite the simplifications, there is still a lot to learn from our model. Our model rests 
on three pillars: Active contractility, a poroelastic material law, and the self-
synchronized friction force. First, it shows the need for poroelasticity intra-cellular fluid 
flows in the pro-cess of blebbing. Indeed, the active contraction on the cell’s uropod 
causes an increase of intra-cellular pressure at the rear that propagates through the cell. 
When the pressure wave reaches the mechanically weakened front of the cell, it induces 
a bleb growth. The last pillar is the self-synchronized friction force between the cell and 
the confining surface. Indeed, contrarily to our previous works [Deveraux, Allena and 
Aubry (2017); Aubry, Thiam, Piel et al. (2014)], the synchronization between the active 
strain and the force from the cell-environment interaction is completely self-
determined, which is a major step towards a more autonomous model. Our model 
sheds light on the question of the location of the friction force needed for the cell to move 
forward: The force enabling migration is the strongest at the cell rear. These findings 
allow further research to focus its attention more specifically on the cell’s uropod and 
experimentally investigate the molecular processes at stake there.
In order take this model further, we could consider more cellular components, which can



be described with specific constitutive properties by using spatial characteristic functions 
as in our previous works [Aubry, Thiam, Piel et al. (2014); Deveraux, Allena and 
Aubry (2017)]. The presence of the nucleus for instance could trigger interesting phenom-
ena, such as a piston effect [Petrie, Koo and Yamada (2014)]. This exploratory model is 
only a proof of concept of future more complex versions that could be developed to study 
the influence of specific cell features in unhealthy cells. Indeed, blebbing is involved in 
various diseases such as cancer metastasis [Friedl (2004); Sahai and Marshall (2003)] or 
angiogenesis [Gebala, Collins, Geudens et al. (2016)] and our model could be adapted to 
these various cases to deepen our understanding of the mechanics of such phenomena.
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