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Introduction

Cells can adapt their motility strategy. Cell motility is a fundamental mechanism involved in several biological phenomena such as bone remodelling, immune response and tumorogenesis. Different modes of motility exist, such as flagellar motility [START_REF] Silflow | Assembly and motility of eukaryotic cilia and flagella. Lessons from Chlamydomonas reinhardtii[END_REF]], gliding [START_REF] Kappe | Apicomplexan gliding motility and host cell invasion: Overhauling the motor model[END_REF]], swarm-ing [START_REF] Henrichsen | Bacterial surface translocation: A survey and a classification[END_REF]], mesenchymal [START_REF] Chhabra | The many faces of actin: Matching assembly factors with cellular structures[END_REF]; Van [START_REF] Van Haastert | Amoeboid cells use protrusions for walking, gliding and swimming[END_REF]] or amoeboid motility [START_REF] Charras | Blebs lead the way: How to migrate without lamellipodia[END_REF]]. Some cells are able to switch from mesenchymal (F-actin driven pseudopods) to amoeboid (myosin-driven blebs) migration as a reaction to various environments, such as an increased confinement [START_REF] Ibo | Cell blebbing in confined microfluidic environments[END_REF]]. Mesenchymal motility is based on a tight synchronization between the protrusion-contraction movement of the cell and the adhesion forces exerted by the cell on the substrate and necessary to anchor and move forward. In three-dimensional (3D) confined environments and in the absence of adhesion/traction forces, some cells such as cancer cells are able to adopt an amoeboid mode of invasion forming bleb-like constric-tion rings (i.e. membrane protrusions without cytoskeletal elements such as actin filaments) [START_REF] Wolf | Com-pensation mechanism in tumor cell migration[END_REF]; [START_REF] Liu | Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells[END_REF]] and bypassing the requirement for ExtraCellular Matrix (ECM) degradation [START_REF] Sahai | Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis[END_REF]; [START_REF] Friedl | Prespecification and plasticity: Shifting mechanisms of cell migration[END_REF]], as it occurs during mes-enchymal migration. In this specific case, the cell migrates through a traction-independent mechanism named "chimneying" because of its resemblance with a technique used by alpinists to climb up rock clefts [START_REF] Paluch | The role and regulation of blebs in cell migration[END_REF]]. In fact, the cell generates push-ing forces perpendicular to its membrane [START_REF] Malawista | Random locomotion and chemotaxis of human blood polymorphonuclear leukocytes from a patient with Leukocyte Adhesion Deficiency-1: Normal displacement in close quarters via chimneying[END_REF]; [START_REF] Lämmermann | Rapid leukocyte migration by integrin-independent flowing and squeezing[END_REF]] and the result-ing friction is sufficient to ensure the forward movement and may be enhanced by blebbing into gaps and pores within the ECM. This last migration mode is the main focus of this paper. The importance of interstitial fluid flow in cells. The specificity of bleb-based chimneying migration lies in the ability of the cell to move without the formation of adhesions between the cell and its surrounding and in the absence of actin polymerization. Without two key features of classical mesenchymal migration, one may wonder: What is the motor of such migration mechanism? Some migration modes have been found to be driven by intra-cellular pressure instabilities [START_REF] Petrie | Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix[END_REF]], or fluid exchanges between the cell and its environment [START_REF] Stroka | Water permeation drives tumor cell migration in confined microenvironments[END_REF]], thus pointing out the importance to take intra-cellular fluid flow into account when dealing with cell mechanics. In fact, the pressure instabilities and the resulting interstitial fluid flow are what drives the formation of a bleb [START_REF] Maugis | Dynamic insta-bility of the intracellular pressure drives bleb-based motility[END_REF]]. Bleb-based chimneying migration. Bleb-based migration takes its source in the poroelastic properties of the cytoplasm [START_REF] Zhou | Cell rheology[END_REF]; [START_REF] Arroyo | Hydraulic fracturing in cells and tissues: Fracking meets cell biology[END_REF]]. The life cycle of a bleb can fall into three steps: initiation, growth and retraction [START_REF] Charras | Blebs lead the way: How to migrate without lamellipodia[END_REF]]. An increase in the intra-cellular hydrostatic pressure, coupled with a local weakening of the actin cortex underlying the membrane, can lead to the initiation and the growth of a bleb, while the repairing of the actin cortex forces the bleb to retract. Chimneying is much less studied and described in the literature than mesenchymal migration. Hence, many hypotheses are made but not yet confirmed on the translocation process. In this type of migration strategy, some experimental works have shown a sharp decrease, or a complete lack, of integrin-mediated adhesions [START_REF] Lämmermann | Rapid leukocyte migration by integrin-independent flowing and squeezing[END_REF]]. If the cell does not adhere to the substrate, it should oscillate around a stable position, unless another force enables it to move forward. One strong hypothesis is that the cell "pushes" against the confining surface, which gen-erates sufficient friction for it to "stick" to the wall [START_REF] Hawkins | Pushing off the walls: A mechanism of cell motility in confinement[END_REF]]. Then, a fine synchronization between the "stick-slip" phases and the life cycle of the bleb is necessary for the cell to have a net forward motion. Poroelastic models in biology. Cell modeling is not the first field of biomechanics getting into poroelasticity. Such models have been used to model soft tissues [START_REF] Pena | Cellular poroelasticity: A theoretical model for soft tissue mechanics[END_REF]], bone [START_REF] Cowin | Bone poroelasticity[END_REF]], blood vessels [START_REF] Thiriet | Biology and Mechanics of Blood Flows: Part II: Mechanics and Medical Aspects[END_REF]], ECM [START_REF] Vuong | A biochemo-mechano coupled, computational model combining membrane transport and pericellular proteolysis in tissue mechanics[END_REF]], cell nucleus [START_REF] Cao | A chemomechanical model for nuclear morphology and stresses during cell transendothelial migration[END_REF]] as well as cell cytoplasm [START_REF] Taber | A poroelastic model for cell crawling including mechanical coupling between cytoskeletal contraction and actin polymerization[END_REF][START_REF] Strychalski | A poroelastic immersed boundary method with applications to cell biology[END_REF]; [START_REF] Ghosh | Role of intracellular poroelasticity on freezing-induced deformation of cells in engineered tissues[END_REF]]. The cell cytoplasm is often modeled as a viscoelastic medium [START_REF] Karcher | A three-dimensional viscoelastic model for cell deformation with experimental verification[END_REF]; [START_REF] Deveraux | A numerical model suggests the interplay between nuclear plasticity and stiffness during a perfusion assay[END_REF]], but the relevance of interstitial fluid flow makes us question this assumption and a poroelastic representation appears as more suited for bleb-based chimneying. Indeed, cell rheology is often explained through viscosity while the poroelasticity theory appears to be more fitted [START_REF] Moeendarbary | The cytoplasm of living cells behaves as a poroelastic material[END_REF]; [START_REF] Wei | Poroelasticity of cell nuclei revealed through atomic force microscopy characterization[END_REF]]. Among the previously cited poroe-lastic cell models, Strychalski et al. tackled the issue of cell blebbing and cell crawling [START_REF] Strychalski | A poroelastic immersed boundary method with applications to cell biology[END_REF]] and Taber et al. [START_REF] Taber | A poroelastic model for cell crawling including mechanical coupling between cytoskeletal contraction and actin polymerization[END_REF]] presented a very interesting model of confined actin-polymerization-based migra-tion. Some models for cell blebbing exist without considering poroelasticity [START_REF] Lim | A computational model of amoeboid cell migration[END_REF]; [START_REF] Woolley | Random blebbing motion: A simple model linking cell structural properties to migration characteristics[END_REF]], but bleb-based chimneying in-cluding poroelasticity has not yet been studied. The proposed model. The challenge in bleb-based chimneying is to capture the very fine synchronization between the friction force with the confining surface and the bleb cycle. In this respect, the present paper proposes a one-dimensional (1D) Finite Elements (FE) model of a poroelastic cell. The model revolves around three main ingredients: the constitutive relationship of the material, the active strain-as developed in previous models [START_REF] Deveraux | A numerical model suggests the interplay between nuclear plasticity and stiffness during a perfusion assay[END_REF]; [START_REF] Aubry | A computational mechanics approach to assess the link between cell morphology and forces during confined migration[END_REF]; Allena and Aubry (2012b); [START_REF] Allena | Cell migration with multiple pseudopodia: Temporal and spatial sensing models[END_REF]; Allena and Aubry (2012a); [START_REF] Allena | Mechanical modelling of confined cell migration across constrictedcurved micro-channels[END_REF]; [START_REF] Allena | On the mechanical interplay between intra-and inter-synchronization during collective cell migration: A numerical investigation[END_REF]]-solely at the rear of the cell and the Coulomb's friction force between the cell and the confining surface. Our goal is to explore a rarely studied motility mode and to show that, in terms of cell-environment interaction, the laws of mechanics alone are surprinsingly sufficient to enable a net forward motion in a non-adhesive migration. Hence, we chose not to model one specific cell phenotype but to develop a generic model that could later on be further enriched to fit a specific cellular type.

The poroelastic model

We first write all the equations of the model in 2D in order to stay close to our previously developed models, and will proceed to the 1D reduction on the final equations only.

Global equations of the model

The cell cytoplasm can be considered as a porous material-made of the cytoskeleton, as well as all the organelles present there-infiltrated with interstitial fluid. In such a configuration, two sorts of fluid-solid interactions may occur. First, a fluid-to-solid interaction takes place when a fluid displacement or an evolution of the intra-cellular pressure induce a variation of the cytoplasm volume. Second, a solid-to-fluid interaction may occur when the mechanical stresses applied to the cell provoke an evolution of the intra-cellular pressure and a displacement of the fluid. Our poroelastic approach is based on the theory developed by Terzaghi in 1936 for geomechanics [START_REF] Terzaghi | A fundamental fallacy in Earth pressure computations[END_REF]], and taken one step further, for numerical purposes, by [START_REF] Zienkiewicz | Computational Geomechanics with Special Reference to Earthquake Engineering[END_REF]]. We consider that the total stress in the material is the superposition of the effective stress and the stress due to the fluid pressure. The effective stress is the Cauchy stress in the dry solid, which then follows the typical stress-strain relationship. As for the pressure, if we freeze the system at a certain time and measure the pressure inside the fluid, the difference between the total stress and the effective stress is the stress exerted by the fluid pressure on the system. In this framework, the total Cauchy stress σ is defined as:

σ = σ -p f I (1)
where σ is the effective stress in the solid part, p f is the hydrostatic fluid pressure, and I is the identity matrix. Biot models usually found in the literature [START_REF] Taber | A poroelastic model for cell crawling including mechanical coupling between cytoskeletal contraction and actin polymerization[END_REF][START_REF] Strychalski | A poroelastic immersed boundary method with applications to cell biology[END_REF]] offer refined considerations, but the approach in Eq. 1 is accurate enough for our purpose. The motor of cell blebbing lies in the high contractility of the cell rear, the uropod [START_REF] Lorentzen | An ezrin-rich, rigid uropod-like structure directs movement of amoeboid blebbing cells[END_REF]]. As in previous works [START_REF] Aubry | A computational mechanics approach to assess the link between cell morphology and forces during confined migration[END_REF]; Deveraux, Allena and Aubry ( 2017)], we model this contractility as an active strain through the decomposition of the deformation gradient tensor F as follows:

F = F e F a (2) 
with F e and F a the elastic and active deformation gradient tensors, respectively. The deformation gradient is defined as F = I+D p u, where D p u is the gradient of the displacement u with respect to the initial configuration p . From here on, we put ourselves in the small deformation hypothesis. Indeed, although the overall strain of the cell is not small, it may be considered as the combination of successive small deformations, thus making such a hypothesis acceptable. We can assume that F a is close to the identity and thus approximate it by F a = I + ω a + a where ω a is the anti-symmetric part of F a that defines the rotation and a is the symmetric part of F a that defines the strain. From Eq.

(2), we can then write:

F e = F .F -1 a = (I + D x u)(I -ω a -a ) (3) 
Thus, the Green-Lagrange tensor E e defined as E = 1 2 (F T .F -I) reads:

E e = 1 2 [(I -ω a -a ) T (I + D x u) T (I + D x u)(I -ω a -a ) -I] = 1 2 (D x u + D x u T -(ω a + ω T a -2 a ) (4) 
The cell's strain is defined as = 1 2 (D x u + D x u T ) and, in the hypothesis of small deformations, we eventually come up with:

e = -a (5) 
with e and a the elastic and the active cell strains, respectively. Then, the constitutive mechanical law reads:

σ = λT r( -a )I + 2µ( -a ) (6) 
with λ and µ the Lamé coefficients of the solid part, defined as λ =

Eν (1+ν)(1-2ν) and µ = E 2(1+ν)
, where E and ν are the Young modulus and the Poisson's ratio of the solid phase, respectively and T r the trace operator.

If the cell is confined i n a h orizontal m icro-channel, w e c an a ssume t hat t he r ole o f the gravity will be minimal. Experimental work moreover proved that gravity does not influence the active mechanism of cell spreading in a micro-pillars assay [START_REF] Pan | Control of cell nucleus shapes via micropillar patterns[END_REF]].Since no volume forces are applied to the system, the cell fluid equilibrium equation then reads

Div(σ -p f I) = ρa (7)
where Div is the divergence and a is the acceleration, which is low but nonetheless relevant, at least from a numerical point of view. ρ is the weighted density defined as ρ = φρ f + (1 -φ)ρ s , with φ the porosity of the cytoplasm, ρ f the density of the interstitial fluid and ρ s the density of the solid phase.

In order to model the fluid-solid interaction, we write down the mass conservation for each phase of the material locally. At such scale, the local quantities are marked with an asterisk and from the mass conservation of each phase, we can write [START_REF] Bear | Introduction to Modeling of Transport Phenomena in Porous Media[END_REF]; [START_REF] Coussy | Mechanics of Porous Continua[END_REF]]: We perform a volume integration on a representative volume element (RVE) Ω of total volume V t , composed of a solid phase Ω s of volume V s and a fluid phase Ω f of volume V f (see Fig. 1), to get a homogenized problem. 

c p,s dp * s dt + div(v * s ) = 0 c p,f dp * f dt + div(v * f ) = 0 ( 
(c p,s dp * s dt + div(v * s ))dV + Ωf (c p,f dp * f dt + div(v * f ))dV = 0 (9) which gives c p,s dp s dt V s + c p,f dp f dt V f + Ωs div(v * s )dV + Ωf div(v * f )dV = 0 (10) 
The Stokes theorem allows us to write: [START_REF] Vuong | A biochemo-mechano coupled, computational model combining membrane transport and pericellular proteolysis in tissue mechanics[END_REF] where (a, b) indicates the scalar product of two vectors a and b.

c p,s dp s dt V s + c p,f dp f dt V f + ∂Ωse (v * s , n s )dS + Σfs (v * f , n f )dS + ∂Ωfe (v * f , n f )dS + Σfs (v * s , n s )dS = 0 ( 
On Σ f s , n s = -n f and v s = v f , so Σfs (v * f , n f )dS + Σfs (v * s , n s )dS = 0. The previous equation then becomes c p,s dp s dt V s + c p,f dp f dt V f + ∂Ωe (v * s , n s )dS + ∂Ωfe (v * f -v * s , n f )dS = 0 (12) 
By applying the Stokes theorem the other way around and dividing everything by V t , we introduce the porosity of the cytoplasm φ = Vf Vt and we can write

c p,s (1 -φ) dp s dt + c p,f φ dp f dt V f + 1 V t Ω div(v * s )dV + 1 V t ∂Ωfe (v * f -v * s , n f )dS = 0 (13) 1 
Vt Ω div(v * s )dV is the solid matrix deformation so 1

Vt Ω div(v * s )dV = T r( ˙ ). The application of the Stokes theorem allows to rewrite the equation as:

c p,s (1 -φ) dp s dt + c p,f φ dp f dt + T r( ˙ ) + div(v f -v s ) = 0 (14)
Additionally, the Darcy equation of fluid flow in porous media reads:

v f -v s = - 1 η f K f (∇p f ) (15)
where η f is the fluid viscosity, K f is the fluid intrinsic permeability matrix and ∇ is the gradient operator. By combining Eqs. ( 14) and (15), we get the global poroelastic equation of our model:

c p,s (1 -φ) dp s dt + c p,f φ dp f dt + T r( ˙ ) + div(- 1 η f K f (∇p f )) = 0 (16)

Reduction to a 1D problem

In our model, we choose to represent the cell as 1D element in the x direction. To do so, we average a 2D model in the other direction:

f = 1 H H/2 -H/2 f (z)dz (17) 
where f ¯defines the average of a function f and H is the height of the cell in the z direction.

Eq. ( 1) then becomes:

∂ ū ∂x -¯ a ) -pf (18) σ ¯xx = (λ + 2µ)( ¯xx -¯a) -p ¯f = (λ + 2µ)(
where u is the displacement along the x-axis. The integration of Eq. ( 7) along the z-axis gives:

ρ ∂ 2 ū ∂t 2 = ∂ σxx ∂x + σ xz ( H 2 ) -σ xz (- H 2 ) (19) 
By combining these last two equations, we find:

ρ ∂ 2 ū ∂t 2 -(λ + 2µ)( ∂ 2 ū ∂x 2 - ∂¯ a ∂x ) = - ∂ p ∂x + τ (20) with τ = 1 H (σ xz ( H 2 ) -σ xz (-H 2 
)) the weighted shear stress. In the global poroelastic Eq. ( 16), we assume that we can neglect the solid phase compress-ibility so that the final equation then reads:

c p,f φ ∂ pf ∂t + ∂ ∂t ∂ ū ∂x = k ∂ 2 pf ∂x 2 (21) 
where k = Kf ηf is the effective permeability, K f being the scalar version of K f due to the 1D reduction. Boundary conditions. Here, the cell membrane is not permeable to outside fluid. We choose this hypothesis as a first approximation, even though we are aware of the importance of water permeation in cells [START_REF] Murata | Structural determinants of water permeation through aquaporin-1[END_REF]], in order to build a first model that shall later be improved. Then, the boundary conditions on the fluid at both ends of the cell read K f ∇p ¯f = 0. From a mechanical point of view, the outside fluid pressure is negligible so that σ xx = 0 at both ends. Besides, we consider the cell to be at rest at the initial time t = 0.

The Coulomb's friction law

The ability of the cell to progress in confinement is linked to the f riction g enerated by the cell in contact with the confining surface. Assuming that the contact is established between the cell and the confining surface, the Coulomb's friction-sliding law reads [START_REF] Coulomb | Théorie Des Machines Simples[END_REF]; [START_REF] Pfeiffer | Mechanical System Dynamics[END_REF]]:

∂ ū ∂t = 0 if |τ | < µ f |σ zz | stick phase -λ c τ if |τ | = µ f |σ zz | slip phase (22)
with λ c a scalar and µ f the friction coefficient. Then, in the slipping phase, we can write

λ c = | ∂ ū ∂t | |τ | As a result, τ = -|τ | ∂ ū ∂t | ∂ ū ∂t | Eventually, τ = -µ f |σ zz | ∂ ū ∂t | ∂ ū ∂t |
Besides, if we assume that the strain in the z-direction is negligible, we can write σ zz =-p f All in all, we obtain

τ = -µ f |p f | ∂ ū ∂t | ∂ ū ∂t | = -µ f |p f |sign( ∂ ū ∂t ) (23) 
with sign(•) the sign function. This force can be described in Fig. 2.

As we can see, the classical difficulty with Coulomb's law is that it is not a continuous function. For a zero velocity, there are infinite values for τ and if τ reaches its threshold, there is no way to determine the velocity. In order to solve this issue, we use a regularized sign function .

The regularized Coulomb's law reads [START_REF] Aström | Revisiting the LuGre friction model[END_REF]]:

τ = -µ f |p f |smsign( ∂ ū ∂t ) (24) 
where |σ zz | = |p f | if we consider that the strain occurs solely in the x direction. smsign(•) is the regularized form of the sign function.In this respect the shear stress is always smaller than µ f |p f | with a vanishing velocity and very close to µ f |p f | when the sliding velocity is larger. This smoothed sliding friction has often been used in non linear dynamical or mechanical systems. It requires only one parameter and it generates stable, efficient and fast computations. 

Active strain

Cells that use bleb-based migration present a very particular type of active deformation. Indeed, this migration mode does not require actin polymerization, but solely relies on cyclic myosin-driven contractility in the uropod, the cell's rear. In our model, the active strain ¯a(x, t) is written as a time periodic function (see Fig. 3) of period T 0 , spatially localized ∀x ∈ [x 0 -dx0 2 ; x 0 + dx0 2 ], as follows, with x 0 and dx 0 geometrical parameters defining the active strain zone in the cell:

¯ a (x, t) = -e a,0 (h(t -t 0,up , s) -h(t -t 0,down , s)) ∀x ∈ [x 0 - dx 0 2 ; x 0 + dx 0 2 ] ( 25 
)
where e a,0 is the amplitude, t 0,cont and t 0,decont describe the time at which the contraction/decontraction occurs and s a regulates the slope of the active strain. The relatively fast contraction and decontraction, over a time of 4 s, was chosen so that the resulting pressure would be high enough for the creation of a bleb. The value of T 0 , 30 s, to fit the blebbing time scale found in the literature [START_REF] Charras | Blebs lead the way: How to migrate without lamellipodia[END_REF]].

Blebbing and Young's modulus

Bleb initiation starts from the weakening of bonds between the actin cortex and the cell membrane. The bleb then grows until such bonds are reformed, thus stabilizing the bleb.

In order to model this local weakening, we chose a quite raw approximation to begin with: The cell's Young's modulus E cell is locally weakened at the cell front, which enables easier blebbing, such that

E cell = E cell,0 if x < 3 4 L cell (1 -D)E cell,0 if x ≥ 3 4 L cell (26) 
where E cell,0 is the un-damaged cell's Young's modulus, L cell is the cell's dimension and D is the damage coefficient. To sum up, our poroelastic model rests on three main features: The active strain, as described in Eq. ( 25), the poroelastic laws of the model, that summed up in Eqs. ( 20) and ( 21), and the self-synchronized friction law, described in its final form in Eq. (26).

Results

In this section, we present the results of our 1D model, implemented in COMSOL Multiphysics c . The contractile zone at the rear of the cell and the blebbing front zone are both 5 µm long. The description and value of each parameter are listed in Tab. 1. We use quadratic finite elements for the displacement variable and linear elements for the intracellular pressure to prevent mesh locking phenomena. The mesh is a 1D uniform one with a discretization length of 0.5 µm. In the solver parameters, a fifth degree Backwards Euler integration is employed and at each time step, a Newton method is used with a relative tolerance of 0.01 with regards to both fields. A computational run for 120 s physical time takes about 3 min CPU time. Temporal parameter of the active strain 5 s t 0,down Temporal parameter of the active strain 20 s s a

Temporal parameter of the active strain 2 s

We first show that the friction force leads to a self synchronization that enables a net cell motion forward. Then, we proceed to a sensibility analysis to identify the key parameters that determine the ability of the cell to successfully migrate, and to study the influence of the secondary parameters on the migration speed.

A successful synchronization and the cell migrates

A new point tackled by this model is that no adhesion is required for the cell to move forward. Moreover, what gets really interesting is that the synchronization between the Coulomb's friction force and the cell motion is self-determined. In fact, there is no need for a synchronization function, as it was the case in our previous works [START_REF] Deveraux | A numerical model suggests the interplay between nuclear plasticity and stiffness during a perfusion assay[END_REF]; [START_REF] Aubry | A computational mechanics approach to assess the link between cell morphology and forces during confined migration[END_REF]; [START_REF] Allena | Mechanical modelling of confined cell migration across constrictedcurved micro-channels[END_REF]], and mechanics alone regulates this interaction.

We perform an analysis of our model on 4 periods of active strain (i.e. 120 s). The first contraction cycle shows a different behaviour from the following ones and can be seen as a necessary step to reach a new dynamic equilibrium. Then, the further analyses will be made excluding this initial cycle. Obviously, in the absence of friction (µ f =0), the cell pulsates on place but does not move forward. This configuration is interesting to study the poroelastic part of the model. Indeed, we observe a lag time between the displacement of the cell rear, due to the active contraction, and the one of the cell front, that is a direct consequence of poroelasticity. Plotting the displacement of the cell front and rear rather than their position, which would simply induce an offset of the front, allows to spot more easily if the cell is overall contracted or extended (see Fig. 4a). Besides, the intra-cellular pressure p f is transported towards the front of the cell over one period of active strain (see Fig. 4b), which enables the development of a frontal bleb. Due to blebbing, the pressure does not have time to build up at the front, which explains the low values compared to the pressure at the rear (30 Pa at the front vs. 400 Pa at the rear). After pointing out the influence of poroelasticity, the full model is studied, now including the friction force with µ f =0.3. First, the pressure evolution inside the cell does not change from the previous case, which is not surprising since poroelasticity occurs in the same way. However, the displacement of the cell is strongly impacted (see Fig. 5). The lag between the displacement of the rear and front of the cell is very similar to the previous Once made sure that our poroelastic model does enable bleb formation, we need to take it to the next step and find the parameters that will generate a net forward motion, which is the goal of the Coulomb's friction force. To do so, we first integrate the friction force over the whole cell to study the total force F tot applied to the cell. When F tot is negative, it generally prevents a forward motion and, when negative, it prevents a backward motion. During cycle 2 (and the following ones), two events need to be addressed: First a negative peak of -1.45 nPa at 35.5 s, a positive rise up to 0.7 nPa from 55 s to the end of the cycle (see Fig. 6). However, this global view conceals the local phenomena, which are of great interest here in order to pinpoint where the friction is the strongest.

To do so, we study the first peak at t=35.5 s corresponding to the contraction and the time period from 55 s to 60 s -right after decontraction-and plot the friction force τ ¯ along the cell length every second from 55 s to 60 s. During contraction, there is a strong friction at the uropod which is the direct consequence of the rear shrinkage. Indeed, the friction is negative from 0 µm to 4 µm and positive from 4 µm to 7 µm (see Fig. 7a). The cell is then mostly blocked from moving forward because the negative part of τ ¯ is much stronger than the positive one. This means that the friction necessary for the cell to move forward is mostly located in the rear part of the cell and not at the bleb, as it has been suggested in exploratory works on blebbing migration [START_REF] Charras | Blebs lead the way: How to migrate without lamellipodia[END_REF]]. These results are very interesting since they offer a completely mechanics-based insight of chimneying. In fact, although often observed, this phenomenon is quite unclear from the mechanical point of view. Hypotheses were made that the cell pushed against the confining walls, but no further mechanical inquiries were undertaken. Our model, although still preliminary, already unveils interesting mechanisms. First, it proves that a simple mechanical friction force is sufficient for the cell to move forward at a reasonable rate. Second, it reveals that the friction required for chimneying is located at the rear of the cell during the uropod decontraction.

Sensibility study

Now, we study the influence of the parameters on the cell behaviour. Some parameters are crucial to the migration, while others simply regulate its amplitude. Then, the model's parameters can be divided into three categories:

Discriminating: They determine whether the cell migrates or not: µ f , c p,f , E cell Non-discriminating: They determine how fast the cell migrates: k, s a Technical: They purely define the problem: L cell , ρ, φ, e a,0 , x 0 , dx 0 , T 0 , t 0,up , t 0,down

The conditions for a successful synchronization

As seen in the Section 3.1, the friction is the corner stone of our model: Without it, no migration is possible. Intermediate values of the friction coefficient µ f lead to intermediate migration speed, as could be expected (see Fig. 8a). The Young's modulus was chosen at 1 kPa. Each cell type has a different range of Young's modulus, making it interesting to study its influence on cell motility in the prospect of looking at specific cell types. There appears to be an optimum in cell displacement for E cell =1000 Pa. For higher values, the migration speed decreases and at 5 kPa, the cell may even go in the opposite direction (see Fig. 8b). The decrease of the cell compressibility c p,f induces a faster migration but, more importantly, a too high compressibility leads to no migration or even a backward one (see Fig. 8c). In each case, this is due to an insufficient level of intra-cellular pressure mobilization with respect to the friction force. 

Sensitivity of the other parameters

The others parameters simply define how fast the cell migrates, but they do not influence the capacity of the cell to migrate. The rate of active strain, directly linked to s a , influences chimneying velocity: The faster it is (the lower s a is), the faster the cell migrates (see Fig. 9a). Concerning the effective permeability k, we observe the same trend as for the Young's modulus, but we do not reach a backward migration. From this table, we can see that the optimal migration speed occurs when t 1/2 is ten folds grater than s a . Indeed, for greater values of t 1/2 , there is no time for intra-cellular fluid flow to occur, and for the lowest values, the pressure does not have time to build up before the fluid leaves the cell rear. Since we saw that the friction force occurs at the rear of the cell, we understand that if there is no pressure increase, then the friction remains too low to enable migration. In the case of E cell =5000 Pa, the friction force is too negative, and the cell goes the wrong way. 4 Discussion and conclusion Our preliminary model presents very interesting insights on the combined role of poroelasticity and passive friction force during the migration mode known as chimneying. In this work, we focus on the sharp synchronization between poroelastic-based blebbing and passive friction force. In this respect, we chose to implement a 1D model of a generic cell which could be adapted to fit a specific cell type. This 1D reduction is of course a rough simplification that induces a loss of information, but it simplifies the problem and allows to pinpoint the exact mechanisms that govern chimneying. Finding out the values of the model's parameters was complex due to the lack of experimental data, or the wide range of the data that could be found. Thus, after starting with first-approximation values of the parameters from the literature, we iterated until getting an acceptable set of parameters for the model to run (see Tab. 1). The model's sensibility on cell stiffness highlights the various behaviour that could be expected from various cell types and it raises the question of the possibility of such migration mode in stiffer cells. Despite the simplifications, there is still a lot to learn from our model. Our model rests on three pillars: Active contractility, a poroelastic material law, and the selfsynchronized friction force. First, it shows the need for poroelasticity intra-cellular fluid flows in the pro-cess of blebbing. Indeed, the active contraction on the cell's uropod causes an increase of intra-cellular pressure at the rear that propagates through the cell.

When the pressure wave reaches the mechanically weakened front of the cell, it induces a bleb growth. The last pillar is the self-synchronized friction force between the cell and the confining surface. Indeed, contrarily to our previous works [START_REF] Deveraux | A numerical model suggests the interplay between nuclear plasticity and stiffness during a perfusion assay[END_REF]; [START_REF] Aubry | A computational mechanics approach to assess the link between cell morphology and forces during confined migration[END_REF]], the synchronization between the active strain and the force from the cell-environment interaction is completely selfdetermined, which is a major step towards a more autonomous model. Our model sheds light on the question of the location of the friction force needed for the cell to move forward: The force enabling migration is the strongest at the cell rear. These findings allow further research to focus its attention more specifically on the cell's uropod and experimentally investigate the molecular processes at stake there.

In order take this model further, we could consider more cellular components, which can be described with specific constitutive properties by using spatial characteristic functions as in our previous works [START_REF] Aubry | A computational mechanics approach to assess the link between cell morphology and forces during confined migration[END_REF]; [START_REF] Deveraux | A numerical model suggests the interplay between nuclear plasticity and stiffness during a perfusion assay[END_REF]]. The presence of the nucleus for instance could trigger interesting phenomena, such as a piston effect [START_REF] Petrie | Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix[END_REF]]. This exploratory model is only a proof of concept of future more complex versions that could be developed to study the influence of specific cell features in unhealthy cells. Indeed, blebbing is involved in various diseases such as cancer metastasis [START_REF] Friedl | Prespecification and plasticity: Shifting mechanisms of cell migration[END_REF]; [START_REF] Sahai | Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis[END_REF]] or angiogenesis [START_REF] Gebala | Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo[END_REF]] and our model could be adapted to these various cases to deepen our understanding of the mechanics of such phenomena.

  8) with c p,s and c p,f the compressibility of the solid and the fluid phase respectively. p * s and p * f are the local pressures v * s and v * f are the local velocities. The subscripts s and f stand for solid and fluid, respectively.
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 1 Figure 1: Illustration of the poroelastic system
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 2 Figure 2: Diagram of the Coulomb's friction force and its regularized form

Figure 3 :

 3 Figure 3: Graphical representation of the regularized active strain during four cycles of 30 s each

Figure 4 :

 4 Figure 4: Graphical representation of a) the displacement of the rear (blue) and front (green) extremities of the cell over four periods of active strain and b) the intracellular pressure along the cell length over one period of active strain

  case, but a net forward motion of the cell of 2 µm for the first cycle, and then 4 µm per cycle occurs. The cell migrates at an average speed of 8 µm/min, which is in the range of the values experimentally found for blebbing cells in confinement[START_REF] Ibo | Cell blebbing in confined microfluidic environments[END_REF];[START_REF] Liu | Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells[END_REF];[START_REF] Yip | Traction stress analysis and modeling reveal that amoeboid migration in confined spaces is accompanied by expansive forces and requires the structural integrity of the membrane-cortex interactions[END_REF]].

Figure 5 :

 5 Figure 5: Graphical representation of the displacement of the rear (blue) and front (green) extremities of the cell over three periods of active strain

  If we focus on what occurs after the decontraction however, the picture is quite different. As time progresses, τ ¯ increases in the positives at the rear and slightly decreases in the negatives at the front (see Fig. 7 b).

Figure 6 :

 6 Figure 6: Graphical representation of the total force applied to the cell

Figure 7 :

 7 Figure 7: Graphical representation of a) friction force per unit length along the cell profile at t=35.5 s, b) friction force per unit length along the cell profile between 55 s and 60 s with a line every 3 s

Figure 8 :

 8 Figure 8: Cell front displacement-Parametric study on a) µ f b) E cell c) c p,f

Figure 9 :

 9 Figure 9: Cell front displacement-Sensibility study on a) s a b) k

Table 1 :

 1 Values and description of the model's parameters

	Parameter	Description	Value (unit)	References
	L cell	Cell dimension	20 µm	
	E cell,0	Cell Young's modulus	1 kPa	Kuznetsova,
				Staro-
				dubtseva,
				Yegorenkov
				et al. (2007)
	D	Damage coefficient	0.9	

Table 2 :

 2 Half-reduced time values for different parameters couples t 1/2 (s) E cell (P a) k (m 4 /N.s)

	200	1000 100	10 -15 10 -14
	40	1000 500	5.10 -15 10 -14
	20	1000	10 -14
	10	1000 2000	2.10 -14 10 -14
	4	1000 5000	5.10 -14 10 -14
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