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hyperbolic problems in one and two space dimensions
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Abstract

In this paper, stability conditions are derived for the Discontinuous Galerkin Material Point Method [1, 2] on the scalar linear
advection equation for the sake of simplicity and without loss of generality for linear problems. The discrete systems resulting
from the application of the DGMPM discretization in one and two space dimensions are first written. For these problems a
second-order Runge-Kutta and the forward Euler time discretizations are respectively considered. Moreover, the numerical fluxes
are computed at cell faces by means of either the Donor-Cell Upwind [3] or the Corner Transport Upwind [4] methods for multi-
dimensional problems. Second, the discrete scheme equations are derived assuming that all cells of a background grid contain
at least one particle. Although a Cartesian grid is considered in two space dimensions, the results can be extended to regular
grids. The von Neumann linear stability analysis then allows the computation of the critical Courant number for a given space
discretization. Though the DGMPM is equivalent to the first-order finite volume method if one particle lies in each element[1],
so that the Courant number can be set to unity, other distributions of particles may restrict the stability region of the scheme.
The study of several configurations is then proposed.

Keywords— Discontinuous Galerkin Material Point Method, Stability analysis, Critical CFL number, Hyperbolic problems,
Corner Transport Upwind method

1 Introduction

The numerical simulation of physical problems modeled by means of hyperbolic partial differential equations involves the solution
of possibly discontinuous waves. The precise tracking of those waves is of major importance in solid mechanics, especially
for history-dependent constitutive equations, as it allows to properly assess the residual states. More specifically, high-speed
forming techniques such that electromagnetic forming [5] also requires the tracking of solid interfaces. Nevertheless, the accurate
simulation of such problems can be prevented by several reasons. First, Lagrangian formulations of mesh-based approaches
such as the widely used Finite Element (FEM) [6] and Finite Volume (FVM) [3] methods become less accurate for very large
deformations due to sever distortions of the mesh. Although those instabilities can be avoided by resorting to Eulerian or
Arbitrary Lagrangian-Eulerian formulations, other difficulties arise owing to additional diffusive projections of fields. Second, it is
well-known that explicit finite element schemes can exhibit numerical noise near sharp solutions that can be hard to remove with
artificial viscosity without loss of accuracy. Such oscillations can nevertheless be removed from FVM solutions due to numerical
fluxes involved in the formulation, allowing the building of Total Variation Diminishing (TVD) schemes [7]. The Discontinuous
Galerkin approximation in space [8], combined with FEM (DGFEM), enables to take advantage of similar interface fluxes so as
to construct Total Variation Diminishing in the Means (TVDM) finite element procedures [9]. While the introduction of the DG
approximation within FEM schemes enables to avoid non-physical oscillations, providing the use of suitable limiters [10], these
approaches are constrained by a restrictive CFL condition [11] and hence, suffer from numerical diffusion. Space-time DGFEM
formulations [12] enable to circumvent this drawback but are nonetheless subject to mesh entanglement.

One possibility to avoid mesh tangling instabilities while providing a material description of the motion is to use mesh-free
approaches such as those of the Particle-In-Cell (PIC) family [13] and, in particular, the Material Point Method [14]. The MPM
is based on a dual discretization of a domain made of a collection of material points lying in an arbitrary grid. A discrete
system is solved on the grid, whereas the loading history is stored at particles during the motion so that field projections, which
introduce some freedom into the scheme, are required. Indeed, the updated velocity at the grid level can be directly interpolated
to the particles according to the original PIC procedure. Alternatively, the particle velocities can be updated by interpolating
the nodal acceleration resulting from the solution of the discrete system, as introduced in PIC by the FLuid Implicit Particle
method (FLIP) [15]. The latter allows to reduce numerical diffusion at the cost of spurious oscillations [16]. Recently, a tunable
mapping procedure, based on a parameter m that completely eliminates the noise in MPM solutions, has been proposed in the



Extended PIC of order m (XPIC(m)) [17]. A classical interpolation is selected for m = 1 whereas the mapping tends to FLIP
one as m — oo. Nevertheless, the numerical diffusion still prevents from capturing (discontinuous) waves.

Note also that the numerical diffusion exhibited by the PIC can be limited by reducing the domain of influence of nodes rather
than modifying the projections themselves. This approach is followed in the Discontinuous Galerkin Material Point Method
(DGMPM) [1, 2]. The introduction of the DG approximation within the MPM, combined with the use of the PIC projection,
thus aims at providing non-oscillating discontinuous solutions with low numerical diffusion due to the support of the shape
functions that reduces to one cell. Therefore, the DGMPM enables to take advantage of space-DGFEM and MPM in order to
accurately follow waves in finite-deforming media.

In that method, the weak form of a system of conservation laws is written on an arbitrary grid and numerical fluxes arising
from the DG approximation are computed at cell faces by means of an approximate Riemann solver. Those intercell fluxes
allow to take into account the characteristic structure of hyperbolic problems, and in particular the transverse propagation of
waves through the use of the Corner Transport Upwind method (CTU) [4] developed for finite volumes. The CTU is however
reformulated in order to fit the DGMPM approximation, in which fields are edge-wise constant in Riemann problems rather than
cell-wise constant as it is the case for FVM. Furthermore, as in MPM, all the fields are stored at material points moving in the
arbitrary grid, the mapping between nodes and particles being made with PIC projection so that non-oscillating solutions are
provided. Hence, the geometry is updated at the particles level based on a single-valued velocity field. As a first development
step, the DGMPM has been constructed upon a total Lagrangian formulation. The numerical results provided by the method for
a plane wave problem in a finite-deforming hyperelastic material showed excellent agreement with the exact solution consisting
of either a shock or a rarefaction wave [1]. It is worth noticing that similar results can be obtained with the FVM written in
the reference configuration, the key point being however that the update of the geometry is straightforward in the DGMPM.
Furthermore, an interesting feature of the method consists in allowing the employment of mesh adaption strategies so that waves
can be accurately captured in the current configuration. On the other hand, only linear shape functions leading to a first-order
accuracy [2] have been considered, the extension of the method to higher-order approximations being the object of ongoing works.
The low-order approximation is however not seen as a shortcoming for now since the development of the method has been focused
so far on capturing discontinuous solutions for which the accuracy of any numerical scheme falls to one [3].

Nonetheless, the stability of the DGMPM highly depends on the distribution of particles inside the computational grid. Indeed,
the stability analysis of the one-dimensional DGMPM scheme coupled to the forward Euler time integration [1] yields a stability
condition that depends on the space discretization and the CFL number. Conversely, one can ensure the stability for a given
distribution of material points by finding the maximum CFL number satisfying the aforementioned relation. Such a condition,
which does not exist for the MPM and other DGMPM discretizations, is crucial since it allows to: (i) ensure the stability of
the scheme while minimizing the numerical diffusion; (ii) adapt the Courant number when the grid is reconstructed; (iii) adapt
the grid so that a given CFL condition is satisfied. It is the purpose of this paper to provide the stability conditions for the
one-dimensional DGMPM scheme combined with the two-stage second-order Runge-Kutta (RK2) time discretization and for the
two-dimensional DGMPM coupled to the forward Euler algorithm. Although the solution of linear equations is considered here,
the results presented must be put into the context of the problems aimed by the method, involving large deformation, and for
which the DGMPM enables plenty of perspectives.

In the following, the DGMPM discrete system for the multi-dimensional scalar linear advection equation is derived and the
computation of interface fluxes, as well as the solution scheme, are recalled in section 2. In particular, we shall see that the
adaptation of the Corner Transport Upwind method (CTU) [4] to DGMPM leads to the same corrections of intercell fluxes
as for finite volumes. Second, the system resulting from the combination of DGMPM and RK2 discretization is specialized to
one-dimensional problems in section 3 so that the von Neumann linear stability analysis is carried out. At last, the same approach
is followed in section 4 for the DGMPM scheme coupled to the forward Euler time integration applied to the two-dimensional
problem.

2 Discrete system for the scalar linear advection equation
Consider a solid domain with constant volume Q € R*, bounded by the surface Q within the time interval t € 7 = [0, T]. In that

domain, a material particle is located in the Cartesian coordinates system by the vector T =20 Ca following the convention of
implicit summation over repeated indices.

2.1 The model equation
We focus here on the transport of an arbitrary scalar quantity ¢ in that domain, governed by the advection equation:

%(?,t)+?~?(?,t):o VT, teQxT (1)

where ? - (o) is the right divergence operator, and ? = q(?,t)sa?a, the flux vector. In the expression of the flux vector,
Sa € R is the speed at which the quantity ¢ is advected in direction € o. For the linear advection equation considered here, these



celerities are constant and equation (1) can be rewritten as:
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2.2 DGMPM space discretization

The continuum body 2 is discretized into a set of N, material points in a Cartesian grid made of N,, nodes and E non-overlapping
cells of volume Q°. The boundary of the computational domain is defined by the set of faces separating empty cells from those
containing particles (see figure 1 for a two-dimensional example). Even though MPM, and in turn DGMPM, have been developed

— boundary of the domain

..... “. ;P .. ® o

° 3e2 o:. ol .5:
— 2t TOL I ..e 0 %
%0 ¢0 0 00 @9 0 o 0
"?.c ¢ o0 2| 0" o

Figure 1: Representation of a continuum body by a set of material points in a regular grid in R2.

for solid dynamics based on the balance equation of linear momentum, the formulation can be extended to equation (1) by means
of a fictitious mass density p. Indeed, the methods rely on the representation of the mass density that weights the time partial
derivative of the hyperbolic equation by means of a delta Dirac characteristic function:

p(7) = %p:m,a (?I - ?) (2)

where 77 is the position of the Ith material point and mr the associated mass. In the following, a unit mass density is assumed
to derive the DGMPM. Analogously to FEM and MPM, the quantity ¢ is approximated on the background grid as:

(70 = 350 3

with ¢ the quantity at node i and 51(7) the shape function attached to that node. Note that the convention of denoting particle
and nodal fields by uppercase and lowercase indices respectively is used in the remainder of the paper.

The key idea of DG methods is to allow jump of fields across mesh element faces by using broken polynomial spaces for the
approximate solution [18]:

Y ={Ve H* Q) ; W ={ve2"Q)} cv”
H*(Q°) being the Sobolev space, and F2*(Q°) the space of polynomials of degree k in Q°. We restrict our attention here to linear
polynomials (k = 1). Multiplying equation (1) by a test function V yields the element-wise weak formulation of the problem:

Find q € ¥ such that Ve

v%dmr/ VY. Fda=0 VYV,te % xrT
Qe e

Then, the use of Gauss’ divergence theorem leads to:

Find q € ¥ such that Ve

%y 7.3l F.R)Vdr =0 vV,tc ¥ xr
L] Jaos [ (7-7) e
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where 00Q° is the boundary of the eth element with outward normal vector 7, and ? is the gradient operator. The inner

product ? T, corresponding to intercell flux, is written F, for simplicity. Next, the 1ntroduct10n of specific fields:
q=pq ; ?:p?:p?q‘
combined with the definition of mass density (2), leads to the following weak form:
g ? _ 1
Zm, V—sq v + FVdl'=0 VYV,te ¥ xr (4)
=z one

Introduction of the DGMPM approximation (3) and arbitrariness of the test field in the weak form (4) finally provide the
semi-discrete system that must be solved on the grid:

Np

Z {Sumzsﬂ 8(] — 05u mISﬂsaq :| + Sl(?)Fn dl'=0 Vter (5)
— ot 0xq r.
or, in matrix form:
1,20 Kgsud + B =0
ot o’ -

Remark 1 As for MPM, the particle-based quadrature rule yields a consistent mass matriz M;; that may be smgular due to
reduced integration. This can be circumvented by resorting to the diagonally lumped mass matriz [19] MF = Z W Mij. The
aforementioned numerical trick, which is also employed in explicit FEM [6] for efficiency purposes, can be (wozded within the
MPM owing to recent works. Indeed, the use of moving least squares [20] or spline interpolation [21, 22] techniques enables the
evaluation of a reconstructed function at Gauss’ point locations. In these versions of the MPM, the particles are no longer seen
as integration points. Similar reconstructions can be considered within the DGMPM, which would amount to provide an arbitrary
background grid to a DG scheme. This is, however, out of the scope of the present work.

Remark 2 The DGMPM discretization can be constructed upon reqular grids that allow the straightforward building of an or-
thonormal approximation basis. In that case, the mass matriz is naturally diagonal provided the derivation of a modal formulation
as can be done for DGFEM [23].

The DGMPM discrete system is finally derived by dividing the time interval 7 into N; subintervals and using the explicit

forward Euler method:
_ik+1 ik

Lq’ —q a 7,k i,k
M S = Kfjsad”* — F (6)
where the superscripts (o)”“ denote a field evaluated at node i and time step k. Alternatively, a second-order Runge-Kutta (RK2)
explicit time discretization may be employed, leading to the following two-stage discrete form:

i k+1/2 ik 1 .
i At — ) (KQ sad" - FW)
Zik+1 _ ik (7)
q’ — 47 o k12 fik+1/2
ML 2 — Kij50q —F

AtF

2.3 Computation of intercell fluxes

The relaxation of the continuity of fields across cell interfaces introduced by the DG approximation allows to define Riemann
problems at element faces in the direction z,, = zn

dq " oF,
Ot ' Oxn

(2 0) q ifx, <0
ql’ny =
Tifz, >0

=0

(8)

where the qi are downwind and upwind states. The use of DG approximation can be seen as a duplication of nodes so that those
states can be obtained by averaging nodal fields on each side of the interface as depicted in figure 2 for a two-dimensional case.
By doing so, only one Riemann problem per interface rather than nodal ones is considered, thus avoiding a dramatic increase in
computational time. As for the original formulation of the DGMPM [1], the numerical flux at a given interface is based on the
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Figure 2: Duplication of nodes at an interface and building of initial conditions of the Riemann problem (2D).

stationary solution ¢* of the Riemann problem (8) according to Godunov’s method [24]. For the linear advection, the stationary
solution is simply that of the upwind side, namely:

9
¢ =q¢" ifsn<0 ©)

{q*—q if s, >0
where s,, = e ﬁ, so that the intercell flux at a given interface reads F,, = snq”.

The method derived above for the computation of normal fluxes can be seen as the Donor-Cell Upwind method (DCU) [3]
in which only the influence of upwind neighbor cells is considered. For multi-dimensional problems, however, waves can travel
in several directions so that contributions coming from corner cells must be taken into account in order to improve accuracy
and stability of the numerical scheme. The Corner Transport Upwind method (CTU) [4] consists in considering contributions
propagating in bias and coming from upwind cells sharing only a node (in two dimensions) with another. This approach has been
developed for finite volumes in which fields are cell-wise constant and allows to improve the CFL condition. The approach is now
reformulated for DGMPM, based on edge-wise constant fields within Riemann problems.

At each cell interface, one defines left-going and right-going fluctuations as:

AT(Aq) =Fu(q") = Fulq") 5 AT(Aq) = Fulq") — Fu(q) (10)

From equation (10) and the definition of the stationary state ¢* (9), one of the fluctuation obviously vanishes for the scalar
linear advection equation. The non-zero fluctuation, on the other hand, characterizes a wave that carries a jump discontinuity
Aq at speed s, in the direction 7. This jump influences the state vector ¢ in the neighbor cell so that the the initial data in
the Riemann problems formulated on adjacent edges are changed. To illustrate the above discussion, let’s consider the patch of
two-dimensional regular grid cells of length Az shown in figure 3. Assuming that the speed vector 7 is such that si,s2 > 0, the
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Figure 3: Hlustration of the influence of fluctuations on fluxes computed at adjacent cells interfaces.

solution of the Riemann problem on edge (i) yields the fluctuation AT (Aq'?) which travels the distance s1 At in cell C. On the
other hand, the flux through edge (j) reads [25]:

A
FY = i/ t32cjdt (11)
At J,



where ¢ is the upwind state at edge (j). When using DCU, this constant state is built from nodal values in cell C' and is written
qf’(”. Alternatively, ¢ is taken in CTU as the average of states qf’(’) and q7’<j), weighted by the portion of edge (j) along which
they respectively act at time ¢, namely:

s1t g~ + (Az — 51t gD

4= Ax
Thus, integral (11) yields:
G) _ SlAt —,(4) 2AZL‘ — SlAt —, ()
B =2 2Ax g + 82 2Ax d
which can be rewritten:
; (i 1 At G _ N 1 At i
Fé]) = s2q (J) _ 553231@ () _ q ( )) _ F;LJ)(q V(J)) _ 5E3+‘A+(Aq( )) (12)

where F7)(g7%) is the flux through the edge (j) resulting from the DCU, and BT AT (Aq¥) is a transverse correction coming
from edge (4). It then comes out that the CTU leads to the same corrections in DGMPM than it does in FVM [3].

2.4 Solution scheme

Suppose that the quantity ¢ is known at every material points that discretize a solid domain {2 at a time increment t*. Since the
volume is assumed constant, the lumped mass and pseudo-stiffness matrices ML and K can be computed once and for all at
the beginning of the computation. Then, the DGMPM procedure followed to update the field between t* and t*+1 consists in
the following steps:

(a) project the field onto the grid by solving for the ¢* the conservation of volume quantities [1]:
Np
M{‘q’ = Z Sum[q_l (13)
=1

(b) compute intercell fluxes by using either DCU or CTU approach, as well as volume fluxes.
(c) advance the solution in time by solving the discrete system (6) or (7)
(d) interpolate the updated fields §* to material points according to equation (3)

In what follows, the scheme equations associated with the above numerical procedure are derived for one and two-dimensional
problems. The von-Neumann stability analysis of these equations are then carried out in order to determine an upper bound of
the Courant number that ensures the stability of the method. The aforementioned upper bound is hereinafter referred to as the
critical Courant number and is denoted by CFL so that the Courant number must satisfy:

Inabx(s@)i—atC < CFL

3 Stability properties of the one-dimensional schemes

The discrete system (7) is now specialized to a one-dimensional problem for which s; > 0. Thus, a domain of length [ is divided
with N, material points arbitrarily distributed in E two-node elements of constant length Az (figure 4). The grid mesh is such
that at least one particle lies in every cell during the computation in order to ensure that there is no hole. Moreover, periodic
boundary conditions are considered to simplify the analysis. In that mesh, the cell containing the particle I is denoted by ¢(I) so

Oo—7 O————O0
1 2 21 -1 21 2E-1 2K

Figure 4: One-dimensional mesh made of E elements of constant length Az = %

that the nodes interacting with this particle are 2¢(I) — 1 and 2¢([I). Since only scalar quantities are considered here, subscript
can be used to denote nodal or particle values without ambiguity. Therefore, the linear shape functions defined in element c¢(I)
are: . - -

Sae(ny-1(x) = % 5 Sacny(z) = % T € [Tae(r)—1, T2e(n)]
and S;r or S; 1 correspond to the shape function of node ¢ evaluated at the position of the Ith material point. In order to better
distinguish nodal and particle fields, uppercase symbols are used for material point quantities.



3.1 The scheme equation

The method followed to write the scheme equation is to trace backward the numerical procedure described in section 2 to get an
expression of the form:

olan :H(Qf“,) J=1,.,N,

where H stands for the DGMPM discrete solution operator.
The two stages of the RK2 algorithm can be written as:

2E
ptl 1 At P Akt B
‘7er T =g+ %W& <E Ki,j(jf+2 - ik+2ni> , o sum on 4 (14)
1 j=1

~ p
in which F;HZ and n; = £1 are respectively the intercell flux and the outward unit normal at node i, and p = {0,1} refers to

the two stages of the scheme. Moreover, the mass density is approximated on the grid as:

NC
M2Lc—1 + M2Lc Zjil my
ple) = Az - Az

x € h@cflax2J

where N, is the number of particles in cell c. The mass is uniformly distributed between particles so that the previous definition
reduces to p = Nym®/Ax, with m® the mass carried by particles lying in c.

First, quantities at time t**1 at particles are obtained by interpolating nodal solutions of the discrete system (14):

Ak+1 k1 k1
= S2C(I)7l,lq22ij)_1 JrSzc(I),mgj(I) (15)

Second, provided linear shape functions, the lumped mass and the pseudo-stiffness matrices are:

Np Np
Ml = Z Siymy =m<® Z Sig
=1 I=1

N o N o
o 2e(I)—1,J (i) 5
Kocry-1,5 = Z ow mySj; =—m Z Ar
=1 J=1
NP Np
0Sac(1),7 (i S
Koy =) 75;) my S =m " e
J=1 J=1

The discontinuous approximation basis moreover yields a bloc diagonal pseudo-stiffness matrix so that one can write:
K & K
Kijq; = Ki2c(i)-1G2c(i)—1 T Ki,2¢(0) Q2e(s)

Third, a right-going wave leads to a stationary solution of Riemann problems equals to the state of the upwind node of an
interface, that is:

c(I)
* — c m —
Q2c(1)—1 = quzcc(l)fz = Np(I) Az q]2€6(1)*2

(€]
* _k nmY
Qac(1) = PQ2c(r) = Ny Ap 2e(D

Therefore, gathering all the previous considerations, equation (14) reads for each node of cell ¢(1):

k+5 e(I) kt+%
kB _ptlsiAt fey = No Goe(h)—2
Qoc(ry—1 = 92¢(1)—1 2 Ax Ne®D Sauty 1.1

K=1 c(f)—1,
» » , p=1{0,1} (16)
k+5 NC(I) _k+35

KBk p+1siAt [ feay = No Qo)
Gocry = T2e() T 5 AL e

Zszl SQC(I),K

e
with the volume fluxes contributions f¥ = >k [SQC,LJ(jgc_l + S2E,Jq§c]. Note that equation (16) involves the Courant number
s1At/Ax.



The first stage of equation (16) (i.e. p = 0) yields the intermediate nodal fields in cell ¢(I):

c(l) -
ket 1 k siAt [ [l — Ny ( )qgc(z)fz
q2c(I) 1= Q2e(n)-1 — AT Ne@
S.
k ZKC(I)_ 2¢(1)—1,K (17)
Jc.»,_% K s1At fc(I) - N q2¢(I)
Qoe(r) = Q2e(r) T SAx e
ZK 1 S2c(n)K
and the second one (i.e. p =1) leads to the expression of nodal quantities at the end of the time step:
NgD ket _k+3 e(I) F+3
e s1At ZJ 1 {526(1)—1,J‘12c(12)71 +SQC(I)7Jq20(I2):| = Np Gae)—2
q2c(I) 1 —(12c(1> 17 A pee)
x
EK 1 ‘920(1) LK
N ket ket o(1) F+3 ()
- . s1At ZJ 1 [S2e() 1,001 -1 T S2e(1). 0 Tacry | — Vo oc(r)
Tac(1y = Q2e(r) + Az Ne@

K1 S2e(n),K

Then, introduction of equations (18) in the interpolation from nodes to particles (15) leads to the solution at material point I
and time step k + 1:

N s1At  Sae(ny-1,1 qk+2
Az E:K SQC(I) 1,K 2e()=2
s1At > 7 Sacry—1,0 |\ k+1d
— Soe(r)— — So. = ) e 2
( Az { 2¢(1)—1,1 2¢(1),I > Soetnoic Aac(1)—1

>y S2e(n), g Ne _ S ] qk+%
ZK SQ(;(I)—I,K P ZK SQC(I),K 2e(D)

Qi = Soc(ty—1.1@5e(r)—1 + S2e(1).1@e(r) +

SlAt
+ —— Az {S%(I g — Sac(n)—1,1

1
Nodal values (jf T2 are provided by the first stage of RK2 algorithm and can be substituted the above equation:

(I)—1 -k
_ S siat (o1 =Ny T

K _ g K g o Nc(1)51At 2¢(1)—1,1 1 e(I)—1 2¢(1)—2
Q7 2e(I)=1,1T2¢(1)—1 T S2e(1),1G2¢(1) + Az S, Sae1n Boe(ry—2 + N S Sau) o

I
_ s1At {S _g 2o 52c<1>71,J] g siAt (i) — N )q26(1) 2 (19)
Az 2¢(I)—1,1 2¢(I),1 ZK SQC(I)J( 2c(I)—1 — AT ZK S2c(I)—1,K

. c(I) -
+S1At S 1-— pr(” - S M tfk + s14f ff(l) — Np( >q§c<[)
Az 2e(1).1 >k Soe(n), K 2=t >k Soe(n—1,K > 9A 2k S2e(1). K

1
Note that the solution of the downstream node of the adjacent cell q;“:;f)% results from the second equation of the set (17). This

gives rise to the number of particles in the cell ¢(I) — 1 which is involved in the mass density and the solution of the discrete
system at the time step k 4+ 1/2 in that element. By rearranging formula (19), one gets:

Skl < s1At > S2c(I)—1,J:|> k
kL 22J P2e(D)—1,J

Sac(ry—1,1 — Ar [S2c([) 1,1 — Sac(n),1 S Sy G2c(1)—1
s1At NeD > 7S,
s s A AR P O A R
< 2¢(I),1 + Ax [ 2¢(I),1 < S Sk 2c(I)—1,1 S Soetn)1.1¢ Q2c(1)
+1 (S1At>2 NeD { Sae(y-1,1  Sae(n)1 } e NE(I) ’ & 20
2 Az P ZK SQC(I)—LK ZK SQ(;(I),K 2etint ZK S2C(I),K QQC(I) ( )
ey S1AE | Saen— At N1 At Sz
+Np<1)sl 2c(I)—1,1 1_ 81 14 p i s1 2c(I),1 (126(1) ,
Az ZK S2c(1)71,K 2Ax ZK S2c([)—2,K 2Ax ZK SQC(I) K

1 (s1At)? (1) Sae(r),1 s1At oy See(n)-1,1 fc(])—l
) M= Ry + N
(X k Saetr) k) Az 2ok S2e(D)—1,K 2og S2e(1)-2,K




Next, the nodal solutions at time step k in equation (20) result from the projection between particles and the grid (13):

e _ > SiemiQf _ > SiQk (21)
’ Do Sikmk >k Sik

In particular, volume fluxes contributions can be written:

Ny Ak Sk
Soc_ S
fck = Z S2c71,J72L 20-1.L Q1 + S2c,J72L 2001
= >k S2e—1,K >k S,k
Np

fck = Z (S2¢—1,2 + S2c,1) Qli

L=1

=) Q&

Lec

(22)

where the partition of unity yields the last equality.
The use of mapping equations (21) and (22) allows to write after some simplifications:

=kl s1A¢ [ Sae(Ly,1 Soc(L)=1,1 ]
S: + -
d ZQL {Z LZ SzK AX ZK SQC(L),K ZK SQc(L)—l,K

51AL (1)
N,
AX P

ZK SQ(:(I)—I,K ZK SQC(])—Q,K (ZK S2c([),K)2

(SlAt>2NC<1)( Sse(n), L Sae(n-2,L )[ Sre(ny-1,1  Sre(n)1 } (23)
P Do S2e(), K 2o S2e(D-2.K ) L2k S2e(h—1,k D5 S2e(n), K

2
(SlAt) N;([) SQC(L),I . [NC(I) SQC<I)’L _ 1:|
(X5 Soe(n), i) >k S K

N 1 (51At>2 520(L)+1,1N§<I) {1 _ Neh-1 Sae(n-2,L } }
AX ) 3 Sac(—1,K Dok S2e()—2,K P Dok S2e(—2,K

The three first terms of the latter scheme equation correspond to that obtained for the Euler algorithm [1], whereas the second-
order terms are provided by the two-stage time integration. Alternatively and given the compact support of shape functions,
equation (23) can be split into two sums, one over the material points contained in the cell ¢(I), and one over these of cell ¢(I) —1:

_ At
oy QL{zszLZ .t
K 'L

Lec(T)
+1 (81At>2NC(1) ( Sae(n),L [ Sae(ny-1,1  Sae(n)1 } n Soe(ry,1 [NC(I) Sae(r), 1})
2\ AX PNk Seetnk Lk S2etn—1, X Sec) k] (g Saeryk)? LT Xk Seen),x

Ak pre s1At  Sae(n-1,1 Soe(L),L
n Ok NeD { , ,
Le%—l : AX 37k Soc(ny—1,K Do S2e(r), K

+1 (51At>2 Soe(L)+1,1 1 B SQC(L),LN;(IF1  Se)L { Sse(y-1,1  Sae(n)1 }
2\ AX Do S2e(D-1,K | 2ok S2e(r) K Tk SZC(L)7K)2 Dok S2e(n) ik LDk Sec(n—-1,8 Dok S2e(D),K

or, for simplicity:

[ Soc(ry—1,1 Sac(ry—2,L SQC(I),ISQC(I),L:|

Sse(r) s Sse(ry-11 NeD Sac(r),152¢(1),L
Dok S2er) kK 2k S2e(L)-1,K P >k SQC(I),K)2

k+1 Z HILQL (24)

When only one point lies in each cell of the grid, the sum of shape functions over particles reduces to one single term (e.g.
> x S2e()=1,K = Sac(s)=1,7)- Thus, one can show that the terms under brackets in the above equation all vanish so that the

scheme reduces to:
Ak+1 81 At slAt
1 = ( - )QI

It then appears that, as for the DGMPM combined with the Forward Euler time integration [1], the use of one particle per
cell and RK2 time discretization within the DGMPM leads, for one-dimensional problems, to the well-known first-order upwind

method.

Qll




3.2 Validation of the discrete operator

Given the mathematical complexity of the scheme equation (24), the matrix operators H derived above are validated with
numerical results before studying the stability properties of the DGMPM. Let us then consider a one-dimensional medium
x € [0,1] with I = 1 m, submitted to the Dirichlet condition ¢(0,t) = q%, to an outflow boundary condition at = = [, and to the
initial condition ¢(x,0) = 0. The combination of the scalar linear advection equation in that domain and the aforementioned
boundary and initial conditions leads to a Picard problem whose exact solution is [25]:

1D (@,1) q if x < s1t
q X :r7 =
exact 0 otherwise

d

The linear advection equation is discretized by means of the DGMPM coupled with the Euler or RK2 time integrators. In parallel,
the DGMPM discrete operators H are explicitly constructed so that the problem is solved at each time step as in equation (24).
For each numerical result, the L' norm of the relative error with the exact solution, which is suitable for discontinuous solutions
[3], is computed as:

N, n n
_ AxZIil |qé:gct(x17t ) B QI‘

N,
72 |qi)zct (zJ, t")|

Both errors are expected to be identical from one to another and to decrease with the size of the background mesh for a fixed
distribution of material points in the cells. In what follows two or four particles placed symmetrically with respect to the cell
centers are considered in every element. The material points are moreover regularly spaced in the whole domain. In addition,
the CFL number is set to 0.43 for two particles per cell and to 0.23 for four particles per cell when the Euler algorithm is used,
and to 0.50 in both cases for the RK2 time discretization. As we shall see in section 3.4, those values ensure the stability of the
scheme.

It must be emphasized that the results presented below aim at showing the consistency of the discrete operators derived in
section 3.1 since the study of the accuracy of DGMPM schemes is out of the scope of the pr