N

N

Securing IoT-based Groups: Efficient, Scalable and
Fault-tolerant Key Management Protocol
Mohammed Riyadh Abdmeziem, Frangois Charoy

» To cite this version:

Mohammed Riyadh Abdmeziem, Frangois Charoy. Securing loT-based Groups: Efficient, Scalable and
Fault-tolerant Key Management Protocol. Ad Hoc & Sensor Wireless Networks, 2019. hal-02378889

HAL Id: hal-02378889
https://hal.science/hal-02378889
Submitted on 27 Nov 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02378889
https://hal.archives-ouvertes.fr

Securing IoT-based Groups: Efficient, Scalable
and Fault-tolerant Key Management Protocol

MOHAMMED RIYADH ABDMEZIEM!* FRANCOIS CHAROY!

Université de Lorraine (Inria-CNRS-LORIA), Nancy, France

Group key management protocols are crucial in establishing se-
cured communication channels for collaborative [oT-based groups.
The Internet of Things (IoT) dimension includes additional chal-
lenges. In fact, resource constrained members within dynamic
and heterogeneous groups are unable to run existing group key
protocols. Furthermore, these protocols need to be scalable and
fault tolerant to suit growing and sensitive groups. To face these
issues, we enhance our previously proposed protocol called De-
centralized Batch-based Group Key protocol (DBGK). Using poly-
nomial computation to secure data exchanges, we considerably
improve its scalability, fault tolerance and collusion freeness prop-
erties. This gain is achieved thanks to the ability to include
additional unconstrained members (controllers) while inducing
a very limited cost on the constrained members. Furthermore,
we include an energy preserving blockchain-based mechanism
to authenticate group members credentials in a distributed man-
ner. To assess our new protocol called DiStributed Batch-based
Group Key protocol (DsBGK), we performed a detailed theo-
retical security analysis to evaluate its behaviour against well
studied attacks in the literature. Furthermore, we validated this
analysis using a formal validation tool. To evaluate DsBGK per-
formances, we performed extensive simulations. We proceeded
by comparing DsBGK in term of energy cost, first, with DBGK,
then with other analogous protocols from the literature. The re-
sults confirmed the security soundness of DsBGK, in addition to
an improved energy efficiency compared to its peers.

Key words: Collaborative groups, Internet of Things (IoT), Security,

* email: mohammed-riyadh.abdmeziem@loria.fr

Group key management, Polynomial computation, Blockchains, Con-
tiki, Avispa.

1 INTRODUCTION

Collaborative applications entered a new era with the advent of the Internet
of Things (IoT), and its use in information systems. Various objects from our
environment are enhanced with perception and actuation capabilities. These
pervasive devices are autonomous enough to act independently relying on the
perceived environment targeting a specific goal. Indeed, building on data col-
lected from both users and objects resulted in numerous applications ranging
across several domains such as healthcare, transportation and military envi-
ronments [8]. In these sensitive applications, strong guarantees in terms of
data confidentiality, and users privacy need to be ensured. The distributed
nature of such pervasive systems and the requirement for encryption of data
shared among participants lead to one of the most important challenges in
such evolving environments: the management of cryptographic group keys
[55] [10] [6].

In order to highlight these security challenges through a relevant use case
scenario, let us consider a personal health record system (PHR) [56] (FIG-
URE. 1) (also called e-health application). Indeed, this scenario is a typical
illustration of a collaboration on sensitive and private data among health-care
personal, insurers, caregivers, patients and sensors. The goal being to main-
tain the patient’s medical status, health history and treatment. To access and
modify shared data, some participants (e.g. medical staff) collaborate using
unconstrained devices, such as Personal Computers (PC) and smartphones,
while sensors planted in or around the human, collaborate by communicating
their sensed data to other users or directly editing patient’s medical record.
It is worth highlighting that the different involved sensors are considered as
constrained since they have limited computing power and may operate on bat-
tery. As a result, a gap is created regarding the ability of all entities to run
the required security protocols. Furthermore, medical staff can also control
the sensors (trigger or stop the sensing of a particular physiological data),
and include additional sensors to the collaboration. Hence, members can
join and leave the collaboration around the medical record as the situation
of the patient evolves. In this context, there is an obvious need to provide de-
centralized, secure, energy-aware, privacy preserving and scalable group key
management protocols to secure communications among people and sensors
(objects).

shared medical record

))

@ aQ |-u|

%

R\ v}
Medical team edit the medical Patient’s physiological data is
record using smart phone/PC captured through sensors

FIGURE 1

E-health use case scenario

Group key management is challenging in this environment. In fact, col-
laborative groups encompass heterogeneous members with different require-
ments and resources capabilities [31]. This gap can disrupt end-to-end com-
munications. As a matter of fact, constrained members with limited process-
ing power and storage space can not run heavy cryptographic primitives [9].
Moreover, collaborative applications may present a high rate of leaving and
joining members within tight time lapses, which makes the issue more diffi-
cult to handle. The scalability of these systems needs to be addressed bear-
ing in mind the increasing number of entities taking part in the collaborative
groups. Last, fault tolerance is at utmost importance especially for critical
and sensitive applications (e.g. health related and military applications) [54].

We address this problematic of designing a secure and efficient protocol
to establish shared group credentials for peer-to-peer collaborative groups.
These credentials will be used to ensure the required security properties such
as data confidentiality, data integrity, and data authentication. The proposed
protocol has to be energy aware allowing an implementation on constrained
devices, which take part in the collaborative process. In addition, the proto-

col must be scalable, as well as tolerant to possible failures of the entity in
charge of managing the group key. To achieve this goal, we rely on our previ-
ously proposed group key management protocol called DBGK (Decentralized
Batch-based Group Key) [7]. This protocol considers a network topology
composed of several sub groups. Each sub group is managed by an area key
management server, while the whole group is managed by a general group
key management server. The established group key is composed of a long
term key and short terms keys (called tickets), which are different for each
time interval. Constrained members in terms of resources (e.g. connected ob-
jects) are only involved in the re-keying process if these latter have recently
been active. Keying materials are distributed to joining members based on
their resources capabilities. Experiments showed that DBGK [7] is energy
efficient and outperforms similar existing protocols in the literature.

Although efficient and secure, DBGK relies on unconstrained key man-
agement servers (called controllers) to maintain the group key. Each member
of the group share credentials with each controller. As a result, including
additional controllers to improve fault tolerance would impose a high stor-
age overhead on constrained members. Furthermore, a manual intervention
is required on the constrained members to store the shared security creden-
tials. This might not be convenient in some cases like in e-health applications,
where sensors might be planted inside human bodies. Consequently, DBGK
is not appropriate to be directly implemented in sensitive collaborative appli-
cations. In this paper, we propose a distributed extension for DBGK called
DsBGK (Distributed Batch-based Group Key).

In this extension, we keep the basic functioning of DBGK, while signifi-
cantly improving both fault tolerance and scalability. In fact, the contributions
of DsBGK can be summarized as follows:

- Instead of using encryption to secure communications between con-
strained members and controllers, we propose a polynomial based scheme
inspired from [45] and [44].

- This scheme allows including additional controllers with very limited
impact on constrained members regarding storage cost.

- Furthermore, no manual intervention is required on the constrained
node side.

- Taking into account the highly scalable nature of IoT applications, we
enhance the polynomial based scheme proposed in [45] and [44] to be

able to handle a high number of members while keeping a constant
polynomial degree.

- Taking into account the sensitivity of IoT applications, we further en-
hance our polynomial scheme to improve collusions freeness. In fact,
the disclosure of private credentials from colluding users brings no
additional knowledge to retrieve private credentials of non colluding
members.

- Taking into account the distributive nature of IoT, we complete Ds-
BGK with a lightweight blockchain-based solution to allow constrained
members authenticate the controllers. This would prevent malicious
controllers from tampering the identity of constrained members, which
could lead to data leakage.

To assess the security properties of DsBGK, firstly, we theoretically an-
alyzed its behavior when faced with common security threats, secondly, we
validated this analysis by implementing a specification of DsBGK within a
formal validation tool called Avispa [1]. In fact, we considered several back-
end techniques to assess DsBGK security properties. In addition, we analyzed
the obtained results using a graphical tool called SPAN [27]. This analysis
confirmed the soundness of DsBGK in terms of data confidentiality, data au-
thentication, and data integrity. To compare the efficiency of DsBGK with
other protocols in the literature, we conducted extensive experiments using
the built-in network simulator of the Contiki OS, namely, Cooja [2]. In a first
step, we compared DsBGK with DBGK. The results showed that DsBGK
provides an enhanced scalability and fault tolerance, as additional key man-
agement servers (controllers) can be included without impacting the storage
overhead on constrained members. Furthermore, energy cost due to rekeying
operations is reduced compared to DBGK, which extends the life cycle of
battery powered entities. In a second step, we compared DsBGK with anal-
ogous protocols in the literature, namely, Veltri et al [58], MARKS [15], and
LKH [61]. The results showed that DsBGK outperforms its peers in terms
of energy efficiency following various membership events such as, members
departure, and members joining.

The remaining of the paper is organized as follows. In section 2, we dis-
cuss in detail, existing solutions in the literature, as well as, the required
background. In section 3, first, we present our network model, along with
our assumptions and the used notations. Then, we thoroughly present the
functioning of DsBGK, before assessing its security properties in section 4.

In section 5, we introduce and analyze the simulation results. In section 6, we
provide some final remarks.

2 RELATED WORK

In this section, we review the main categories under which group key man-
agement protocols are usually categorized [21] [48], namely, the centralized,
the decentralized, and the distributed categories.

Centralized protocols are based on an unconstrained central entity (i.e.
Key Management Server (KMS)), which is responsible for generating, dis-
tributing, and updating the group key for the whole group. Authors in [29]
introduced the Group Key Management Protocol (GKMP), which is based
on a Group Key Packet (GKP). This latter encompasses a Group Traffic En-
cryption Key (GTEK) to secure data traffic, and a Group Key Encryption Key
(GKEK) to secure transmissions related to rekeying operations. Following
a leave event, the central entity broadcasts the new GKP to all remaining
members creating a complexity of O(n). This complexity makes GKMP not
scalable with regards to dynamic and large groups. To reduce the impact
of leave events, authors in [58] proposed an interval-based protocol, which
generates the keying materials corresponding to the predicted period of time
during which the members are expected to remain in the group. Doing so,
following a leave event, no rekeying is required. However, this solution is not
suited to dynamic groups with unexpected join and leave events, as predicting
the leaving moment of members is neither realistic nor practical. In addition,
constrained members which are part of the group for a long period of time
might suffer from storage issues, as a large number of keying materials needs
to be stored.

To further improve efficiency, several hierarchical based protocols have
been proposed. Among them, the Logical Key Hierarchy (LKH) protocol
[61], later improved by the One-way Function Tree protocol [13] are typi-
cal examples. The basic idea of these protocols is that the KMS shares pre-
established credentials with subsets of the group. Following an event, the
KMS relies on these credentials to target specific subgroups during the rekey-
ing, thus, reducing the number of required rekeying messages (i.e. O Log(n)).

Thanks to their efficiency, polynomial based approaches are used to man-
age group keys in collaborative applications. In fact, polynomial based schemes
allow overcoming the storage cost related to multicast inter-group communi-
cations. Moreover, polynomial evaluation can be, under certain conditions,

more efficient than encryption/decryption primitives. Polynomials have orig-
inally been included in threshold secret sharing schemes [53]. More recently,
authors in [59] [60] used polynomials to enable group members decrypting
received messages. Doing so, the members are no longer required to store
a secret key shared with each sender. Nevertheless, polynomials are usually
generated and broadcasted by the KMS. To reduce this overhead on the KMS,
authors in [45] propose a self-generation technique to generate the polynomi-
als by the members of the group. In a nutshell, centralized protocols are
characterized by their efficiency due to the use of symmetric primitives. Fur-
thermore, these protocols do not require peer-to-peer communications during
rekeying operations. However, the single point of failure and scalability is-
sues constitute their main weaknesses.

Decentralized protocols consider the group divided into various areas,
with an Area Key Management Server (AKMS) in charge of managing local
events. This class of protocols is generally categorized into two sub cate-
gories [21]: common Traffic Encryption Key (TEK) per area [15] [47], and
independent TEK per area [45] [41]. In the former category, a unique TEK is
implemented for the various areas of the group. As a result, if an event hap-
pens, the whole group is affected by the rekeying. In the latter category, a dif-
ferent TEK is implemented for each area. As a result, the /-affects-n issue is
attenuated, as rekeyings only affect specific areas. However, data transmitted
across areas has to be translated at the border of each area. This classification
of decentralized protocols can further be refined [16] by including time-driven
rekeying subcategory [15] [52] and membership-driven rekeying subcategory
[47] [14]. In membership-driven protocols, the group key is updated follow-
ing each membership event, whereas, in time-driven protocols, the update of
the group key is carried out at the end of a defined period of time without
taking into consideration membership events. Consequently, the impact of
frequent and consecutive events is limited. Nevertheless, ejected members
are still able to access exchanged data up to the end of the interval. Likewise,
a new member would have to temporize until the start of a new interval prior
of being able to access exchanged data in the group.

Distributed protocols do not rely on any central entity. Instead, all mem-
bers contribute in the management of the group key in a peer-to-peer way.
Distributed protocols are usually based on the n-party version of the well
known Diffie- Hellman protocol [32] [34]. Hence, these protocols are highly
reliable, as the group is free from any single point of failure. Nevertheless,

distributed protocols involve a high number of exchanged messages during
rekeying operations, in addition to an important computation cost due to the
use of heavy asymmetric primitives.

To alleviate this cost, authors in [23] propose a probabilistic based proto-
col. Members of the group establish communication channels composed of
sequences of adjacent members between which a key is shared. Indeed, mem-
bers propagate the key, which is shared between the first adjacent members to
the remaining members. This propagation is achieved using local keys. How-
ever, if no local key is found between two specific members, these members
proceed with a pairing attempt by exchanging a set of global keys gener-
ated from a pool of keys. In spite of its improved performances compared
to deterministic protocols, this protocol suffers from a lack of connectivity.
In fact, members could be disconnected from the group if several pairing
attempts fail. To further mitigate the complexity of distributed protocols,
authors in [22] introduce a protocol which proceeds within two phases. In
the first phase, members of the group autonomously generate the group key
using pre-defined seeds and hash functions. In the second phase, members
synchronize their generated keys taking into account delays due to the loose
synchronization of members clocks. Compared to other solutions based on
DH primitives, one of the drawbacks of this protocol lies in the pre-sharing
assumption of the seeds, which affects both its scalability and feasibility.

In this context, we address the issue of group key management for dy-
namic and heterogeneous collaborative groups. The originality and features
of our approach are detailed through the remaining sections. But first, to ease
the understanding of our contribution, we provide the reader with a broad
overview of the protocols upon which our approach is built.

DBGK [7]

DBGK considers the group divided into sub groups. Each sub-group is
managed by an Area Key Management Server (AK M S). The time axis is
split into several time slots. For each time slot, a different ticket (piece of
data) is issued. The group Traffic Encryption Key (T'E'K) for slot ¢ is com-
puted using a one way function F' as follows:

TEK; = F(SK,T;)

where SK is a long term key, and 7; is the ticket issued for slot ;.

Once an object (or member, both terms are used indistinguishably) O;
wants to join the group, it initiates DBGK which goes through successive
phases. The object sends a join request through an anycast message. Based
on the object location, the nearest AK M .S handles the join. Let us assume
that the AK M S of area j is the nearest one. In case of a successful authen-
tication, the object is initialized (through a secure channel) with a long term
key (i.e. SK), and a shared key with its AKMS. Despite being a valid
member of the group, the new member O; is not yet able to derive the current
TFEK. Backward secrecy is therefore inherently ensured while no rekeying
operation is required for the group. If O; is involved in a message exchange
(sending/receiving), it has to be able to encrypt and decrypt the messages.
To do so, O; has to compute the current TEK. Thus, O; sends a request to
AK M S; asking for a ticket corresponding to the current time slot. In order
to reduce the amount of exchanges in case O; is highly active, the object can
request several tickets corresponding to multiple future intervals. The request
contains information about the objects specifications, in particular, data re-
garding its storage capabilities and resources. Based on this data, and on the
trust level of O; (if the object has previously been a member of the group),
AKMS decides on the number of tickets to be granted to O;.

When O; leaves the network, forward secrecy has to be guaranteed to pre-
vent the object from accessing future communications in the area. Two pos-
sible scenarios arise. In the first case, O; leaves the network or is ejected
with one or several valid tickets stored in its internal memory. In this case,
AKMS checks its AOL (Active Object List, which keeps track of the issued
tickets) and sends a multicast notification to all the objects that have received
the same tickets owned by the leaving member. The semantics of the notifica-
tion is as follows. The tickets ranging from 73 to 13 (k corresponds to the
number of tickets that O; has received) are no longer valid. The recipients of
the notification that are not active anymore (i.e. not in the process of exchang-
ing messages) just ignore the notification. However, the active objects send
a request to AK M S in order to receive new tickets. Based on experimen-
tal results (see section IV.B in [7]), DBGK outperforms its peers. This is true
when the proportion of members in possession of the same tickets as the leav-
ing (ejected) member does not exceed 50%. If the proportion exceeds 50%,
a state of the art approach (i.e. LKH [61]) is considered to rekey the whole
group. In the second case, the leaving O; does not own any valid ticket. In
this situation, forward secrecy is ensured without any rekeying operation.

Piao et al [45] and Patsakis et al [44] schemes

Piao et al proposed a scalable and efficient polynomial based centralized
group key management protocol to secure both inter-group and intra-group
communications. Nevertheless, this scheme contains security breaches. In
[30], authors show that Piao et al scheme does not ensure neither backward
nor forward secrecy. In [37] authors show that Piao et al is based on a math-
ematical problem computable within a reasonable amount of resources (time
and computation power). An attacker can easily factorize the polynomial
over a finite field and retrieve the private keys of the members, as well as the
exchanged secrets.

To address these issues, Patsakis et al [44] proposed a modified version of
Piao et al [45] scheme to take advantage of its efficiency while strengthening
its security properties. They base their scheme on a NP-hard mathematical
problem which is finding the roots of univariate polynomials modulo large
composite numbers for which the factorization is not known [46] . This is
in contrast with the weak mathematical problem upon which Piao et al [45]
scheme is based. Moreover, they introduce an additional virtual term in the
generation of the polynomial (called salting parameter) upon every rekeying
to prevent backward and forward secrecy breaches.

In DsBGK, we build upon Patsakis et al [44] scheme to secure the trans-
mission of secrets using polynomial computation instead of using encryption.
Furthermore, we enhance Patsakis et al scheme to ensure forward and back-
ward secrecy more efficiently and to increase the collusion freeness of the
protocol.

3 PROTOCOL FUNCTIONING

3.1 Network model

Our network architecture models a group of entities collaborating to achieve
a defined and common goal. This group is heterogeneous, and composed of
both unconstrained and constrained entities. The unconstrained entities are
powerful enough to perform asymmetric primitives (e.g. desktop computers,
servers, smart phones, etc). The constrained entities are limited in terms of
energy, computational, communication and storage capabilities (e.g. sensors,
RFID, NFC, etc), hence, unable to perform asymmetric primitives. Unlike
in DBGK, no General Key Management Server (GKMS) is considered. Fur-
thermore, the group is not partitioned into subgroups with Area Key Man-
agement Servers (AKMS) controlling each sub group. In fact, we consider

10

(O Constrained member |:| (Uncctms"tra)ined member
controller

- N-party DH

", Leaving member -4 Member-controllers
exchanges

" Joining member

FIGURE 2
Network model

11

Notation Description

Group a set of entities (members and controllers) collaborating by exchanging data in
a Peer to Peer way to reach a common goal

Member (node) an object of the group with limited resources capabilities (e.g. RFID, IP-
enabled sensors, etc)

Controller an object of the group without hard resource constraints (e.g. personal com-

puters, smartphones, servers, etc)

TEK (Traffic Encryption

the group key used to secure communications within the group. TEK =

Key) F(SK.T;)
F a one way function (easy to compute but hard to reverse)
SK a long term key transmitted to each new member during its first exchange

Ticket (T7;)

piece of data used in the generation of the T E' K. T; refers to the ticket issued
for time slot ¢

Time slot a defined period of time (e.g. seconds, minutes, days, etc)

ID binding private identity of members. I D is used in the computation of polyno-
mials

PublicID identity of the member

P(x) univariate polynomial modulo a composed large number n (product of two
large primes p * q)

D-AOL Distributed Active Object List: records all active members including the tickets
they have received

SpecData data related to storage, processing capabilities, and trust level of members

Nslot number of requested time slots (tickets)

TABLE 1

Terminology table

12

a single logical group where the unconstrained entities play the role of con-
trollers. These controllers maintain a consistent, distributed and open AOL
(Active Object List). This list can be maintained convergent using one of the
existing solutions in the literature, such as [43]. FIGURE. 2 illustrates our
network model.

Assumptions and definitions

- we consider a heterogeneous group. More precisely, we assume the
existence of both unconstrained members, powerful enough to perform
periodic n-party Diffie-Hellman (DH) rekeyings [16], and constrained
members unable to run the resource consuming n-party DH.

- the powerful entities are considered as controllers. Controllers are in
charge of initiating a key update following specific events (e.g. join and
leave).

- during the initialization phase, at least one controller is pre-loaded (of-
fline) with the binding ID of each new member. The binding is ap-
pended to a blockchain data structure and propagated to the remaining
controllers (more details in section 3.4).

- a distributed AOL (i.e D-AOL) is maintained consistent between all
controllers through the different updates.

- members are [P-enabled (6Lowpan for constrained members, and IPV6
for unconstrained members).

- we consider at a particular moment, only one active controller.

The different notations used throughout the remaining of this paper are
summarized in TABLE 1.

3.2 DsBGK general overview
The goal of DsBGK is to establish and maintain a group key to secure com-
munications in collaborative environments. This has to be achieved while
remaining efficient and secure, ensuring both forward and backward secrecy.
DsBGK is based on DBGK, we recommend the reader to refer to [7] for a
comprehensive presentation of the protocol.

DsBGK proceeds within several phases (see FIGURE 3). The first phase
is related to the initialization of the entities. In fact, a set of unconstrained
entities are designated off-line to play the role of controllers based on their

13

Member; Controller Member;

Initialisation {
TICKET_REQUEST
Activation E—
TICKET_RESPONSE
<«
TEK generation {

Leaving X
(with valid tickets) Checking D-AOL { V€ (D-AOL)
LEAVE_NOTIFY
Checking tickets validity {
TICKET_REQUEST [OPTIONAL]
FIGURE 3
DsBGK signaling flow

14

capabilities. n-party DH is run within this sub-group of controllers to estab-
lish shared credentials. These latter are used to secure the communications
required to update the distributed AOL (D-AOL). In addition, at least one
controller is set with the secret binding ID of each new member. Moreover,
we propose a system based on a private blockchain to record and authenticate
the binding between the private and the public ID of the constrained members
(see section 3.3 and section 3.4).

To become active, the new member sends a request to the active controller.
The member requests one or more tickets according to its level of trust and
resources capabilities. Upon successfully passing the authentication and au-
thorization phase, the member receives the tickets along with SK (SK is
only sent during the first exchange). The member will then be able to derive
the group key using both the current ticket and the long term key SK. To
secure the transmission of these tickets to the requesting members, the active
controller builds a univariate polynomial of degree m. Upon its reception,
the member computes the polynomial using its private binding I D to retrieve
the transmitted secret (i.e. tickets). The security of this scheme relies on
the strength of the underlying mathematical problem. In this case, the prob-
lem comes down to finding the roots of univariate polynomials modulo large
composite numbers. Upon a leave event, two situations arise. If the leaving
member has not recently been active, then, no rekeying is required. However,
if the leaving member is active, its tickets are no longer valid. As a result,
the information stating that these tickets are no longer valid has to be propa-
gated to the concerned members by the active controller. In the following, we
present the details of DsBGK phases.

3.3 Initialization (Joining)
During this phase, the private binding I D of the member is communicated
to at least one controller (typically the active controller). Upon successful
authentication and authorization, the controller propagates the I.D to the rest
of controllers. We assume that the ID of a new members is set offline. This
ID will be used to compute the received polynomials from controllers to
retrieve exchanged secrets. Once the 1D is set, the member is valid and can
become active at any moment. As a result, it is important to notice, that the
inclusion of additional controllers implies no operation on the constrained
members, which increases fault tolerance.

It is worth highlighting, that in case the binding between the public ID and
the private ID (PublicID, ID) is maliciously altered, the group key secrecy
would be in jeopardy. Indeed, secret credentials might be transmitted by the

15

Block,, Block, Block >

Hash (n-1) | | Hash (n) Hash (n+1)
Hash (n-2) | | Hash (n-1) Hash (n)

ID-Bindings| |ID-Bindings| \|ID-Bindings

| | | | Controller,

Block Block, Block >

n-1

Hash (n-1) Hash (n) Hash (n+1)

Hash (n-2) | | Hash (n-1) Hash (n)
I

ID-Bindings| |ID-Bindings| \|ID-Bindings

| | | | Controller,

Block | Block, Block,

Hash (n-1) | | Hash (n) Hash (n+1)
Hash (n-2) | | Hash (n-1) Hash (n)

ID-Bindings| \| ID-Bindings

| | | I/Confroller3

FIGURE 4
A lightweight blockchain mechanism to authenticate ID bindings

controllers to illegitimate members. In the following subsection, we present
a blockchain-based mechanism to ensure the validity of ID bindings.

3.4 1D bindings: a blockchain-based solution

A blockchain is a fully distributed list of blocks. An analogy is often made
with a distributed ledger that is replicated within all members of the network.
Each block of this blockchain records a set of transactions.

Among other information, each block contains a hash of its own transac-
tions in the form of a Merkel tree [40]. Moreover, the cryptographic hash of
the previous block is also included. As a result, as soon as a transaction is
maliciously altered within any block, it can easily be detected, as the hashes
are propagated and would inevitably diverge. Furthermore, before append-
ing a new block to the blockchain, a special type of members (called miners)

16

perform a computational intensive task called proof-of-work to validate this
new block. Other validation techniques can be used following the blockchain
implemntation (e.g. proof-of-stake, proof-of-burn). Indeed, several imple-
mentations of blockchains currently exist, particularly in the domain of cryp-
tocurrencies such as Bitcoin and Ethereum. Besides, a blockchain can either
be public or private. A public blockchain does not enforce any access control
mechanism for the members of the network and all transactions are thus pub-
licly available. However, a private blockchain only encompasses authorized
members [11] [12].

The distributed, immutability, and trustless nature of blockchain mecha-
nisms can be used to ensure the correctness of the ID binding in our protocol.
In fact, we propose to consider a private blockchain replicated within all con-
trollers. These latter are not constrained and can withstand the computing and
storage overhead induced by blockchain related operations. The transactions
of the blocks represent the ID bindings. Doing so, if a controller is com-
promised and tries to alter the ID bindings, it can easily be detected by the
rest of controllers. Consequently, the corrupted controller would no longer
receive the latest blocks of the blockchain. Furthermore, controllers can be
authenticated by sending the latest block of the blockchain to the constrained
members of the group (i.e. IP-enabled sensors). The constrained members
would then check the hash of the latest block which must match the hashes
received from other controllers (see FIGURE 4).

3.5 Activation

Algorithm. 1 depicts the behaviour of DsBGK following a join event. After
successfully joining the group, a member becomes active by requesting one
(or several) tickets from the active controller (TICK ET_REQU EST mes-
sage). Indeed, any controller is able to deliver tickets to members (T ICK ET_RESPONSE
message), as D-AOL is distributed and maintained between all controllers.
This provides a better fault tolerance compared to DBGK where only the
controller, in charge of a specific area, can deliver the tickets. Upon receiving
arequest, a controller grants or deny the request based on several parameters
related to the requesting member such as, resources capabilities and the level
of trust. To secure the transmission of tickets, the active controller generates a
univariate polynomial P(z) modulo the product of two large prime numbers.
(see Algorithm. 2)

P(z)=(x—r)(x —ID)(x —13)...(x —) + T; mod n

17

This polynomial represents the product of m terms plus the transmitted
secret (i.e. T;). One of the terms (i.e. x — I D) allows the receiving mem-
ber to compute P(ID) = 0 to retrieve the secret. The remaining terms are
set randomly unlike both Patsakis et al [44] and Piao et al [45] schemes. In-
deed, in these latter, the terms are composed of the private credentials of the
members (i.e. ID). To mitigate collusion attacks and to provide backward and
forward secrecy, additional terms are included upon each rekeying (called
salting parameters), which can rapidly increase the ratio between the polyno-
mial degree and the actual number of users (members) within the group. As
a result, it is important to mention that in DsBGK the size of the polynomial
does not grow with the growth of the number of users (members), which has
a positive impact on scalability.

In the original Piao et al scheme, if a new member [joins the group, this
latter could breach backward secrecy (i.e. accessing data exchanged prior to
the joining). Indeed, let us consider P,;4(x) the polynomial generated before
the joining, P,e, () the polynomial generated after the joining, n the num-
ber of users, and s the transmitted secret.

Pyi(z) = (x — IDy)...(x — ID,) + smodn
Prew(x) = (x — IDy)...(x — IDy)...(x — IDpy1) + 8 mod n
The new member m would derive the old secret s by computing:

Pew(x)—s'
s = Paualw) = P52

In DsBGK, this attack would not possible, as computing %%;51 would

give no extra knowledge considering that the terms are defined randomly (ex-
cept the term that contains the I D of the recipient member) and thus vary
across the different polynomials.

Furthermore, DsBGK ensures collusion freeness as the disclosure of the
private I D of colluding users brings no additional knowledge to retrieve pri-
vate I Ds of non-colluding members. Indeed, in each polynomial, apart from
the term containing the recipient /D, the remaining terms are random and
different across the polynomials. Besides, we set the degree m of the polyno-
mial in a way to keep the factorization not easily feasible while maintaining
efficiency. In [36], experimentations on MICA?2 sensor showed that the com-
putation of a polynomial of a degree up to 40 is more efficient than symmetric

18

encryption (i.e. RCS).

3.6 Leaving

To ensure forward secrecy upon a leaving event, the T'E K is changed. In Ds-
BGK, two scenarios are considered. If the leaving (ejected) member at time
slot ¢ is not in possession of valid tickets 75, (with £ >= 0) , no rekeying is
required. In fact, the leaving member will not be able to derive future TEK
given the fact that group keys are partly composed of dynamic tickets. As
a result, the leaving member will not have access to future communications.
However, if the leaving member is in possession of tickets, the members in
possession of the same tickets need to be notified (LEAV E_NOTIFY mes-
sage). In case they are still active, they will ask for new tickets. The exchange
of these secret credentials is secured using univariate polynomials generated

by the active controller (see Algorithm. 3).

Algorithm 1 Activation algorithm

1: procedure ACTIVATION (MEMBER, CONTROLLER)

request < Ticket_request{ PublicI D, SpecData, N slot}

Member.send(request, controller)
if member is authenticated then
if member is authorized then
while ¢ < number of granted tickets do
Py < GeneratePoly(T;)
11+ 1
if first activation then
P2 < GeneratePoly(SK)
Controller.Send(P1, member)
Controller.Send(P2, member)
else

Controller.Send(P1, member)
endif

Update D_AOL(controller, PublicID)
endif

endif

19

Algorithm 2 Polynomial generation algorithm

1: procedure GENERATEPOLY (SECRET)

2:

R A A

p < randomly generated large prime number
q < randomly generated large prime number
n<pxgq
m < fixed threshold
P+ (x—1D)
while : < m — 1 do
r < random_value()
P+ Px(x—r)modn
P < P + secret
return(P)

Algorithm 3 Leaving algorithm

1: procedure LEAVING (MEMBER, CONTROLLER)

R A AN -

—_ =
- o

—_ -

,_.
&

> retrieving tickets of the leaving member
tickets < controller.lookup(D_AOL, member)
if tickets # null then
> retrieving members holding the same tickets
list < controller.lookup(D_AOL, tickets);
threshold < 50% of total number of members
if list.length < threshold then
while list # null do
> concerns only active members
controller.noti fy(member)
activation(member, controller)

else > rekey the whole group using LKH

LKH(SK)
endif

endif

20

4 SECURITY ASSESSMENT

4.1 Security properties

To study DsBGK security properties, let us consider the personal health record
(PHR) [56] (FIGURE. 1) use case application presented in the introduction.
Indeed, this latter is vulnerable to a multitude of security threats [5] [35]. In
the following, we discuss how DsBGK behaves when faced with common
attacks which can threaten the safety of PHR systems.

Health related applications are particularly sensitive, due to the very pri-
vate nature of the exchanged data. Confidentiality is a crucial property to
be preserved for the sake of users privacy. Any data breach would seriously
jeopardize the adoption of these applications. In DsBGK, confidentiality is
ensured through the generation of a univariate polynomial. The hard math-
ematical problem to be solved in this case is retrieving the roots of univari-
ate polynomials modulo large composite numbers [44]. It is important to
highlight that the factorization of these numbers is not known. Indeed, the
composite numbers can be set relying on the same properties as those used
in other security protocols such as RSA [50]. Doing so, the factorization of
these numbers would be nearly impossible (not feasible within a reasonable
timeframe). As a result, this mathematical problem cannot be transformed
to a trivial problem (i.e. finding the roots of univariate polynomials modulo
prime numbers), which can be solved in a reasonable time.

Backward secrecy violation occurs when a legitimate member tries to ac-
cess health related data, that has been exchanged before its joining. In Ds-
BGK, backward secrecy is ensured inherently, as joining members are not
able to derive group keys which have been established prior to their joining.
In fact, the group key is composed of a fixed long term key and varying tickets
following each time slot. Hence, new members are unable to derive previous
keys.

Forward secrecy violation occurs when a former member of the group
tries to access communications, which took place after its departure from the
group. In DsBGK, the protection against this violation is based on whether
the leaving member is in possession of tickets or not. If the member is not
in possession of tickets, no rekeying is required. In fact, the leaving member
will not be able to derive any future group keys. However, if the member is
in possession of valid tickets, using D — AOL, the active controller notifies
only the active members which are in possession of the same tickets about
their non-validity. In case the number of active members reaches a certain
threshold (set experimentally to 40 — 50% of the total number of members in

21

the group), the active controller relies on the state of the art LKH protocol to
rekey the long term key S K. As a result, the leaving member will not be able
to use its tickets to derive future group keys, either because they are not valid
anymore (and thus not used in the generation of the group key) or because the
long term key has been modified.

Collusion attacks occur when two or more legitimate members collude to
retrieve the security credentials of other members. In DsBGK, we ensure col-
lusion freeness by considering variable terms, which are not based on the cre-
dentials of the users (members). Indeed, the collusion of a subset of members
will not help in any form to compose polynomials with the goal of retrieving
the security credentials of the remaining members. Nevertheless, this solu-
tion requires from the controller to compose a different polynomial for each
member. It is worth noting, however, that the controllers are not considered as
constrained members, and DsBGK main goal is to reduce the overhead with
respect to the constrained members of the group.

PHR systems can dramatically be impacted by replay attacks. In fact,
delayed or outdated data can trigger inappropriate medical responses which
might end up with unfortunate consequences. DsBGK provides key fresh-
ness by including nonces in each exchanged message. These nonces can be
considered as random numbers, sequence numbers, or timestamps according
to members capabilities. Using random numbers, members store all previ-
ously received numbers. Doing so, following the reception of a message, the
member verifies if the received random number has already been received
previously. This solution requires the storage of all received numbers, which
can lead to a considerable storage overhead, especially for highly constrained
members. Sequence numbers, on the other hand, can spare members from
storage constraints. In fact, each message would contain an incremental num-
ber, so as recent messages would present a greater number compared to older
ones. Nevertheless, in case a member fails, there would be no way of keeping
track of the current sequence. Besides, timestamps can also be considered
in spite of their unsuitability with constrained members as a high amount of
resources are required to ensure time synchronization.

It is obvious that using clock synchronization between constrained mem-
bers and controllers is not adapted. Nevertheless, timestamps can be envi-
sioned as a countermeasure to be used between unconstrained controllers.
Furthermore, random numbers and sequence numbers are more suited to pro-
tect the messages involving constrained members. Providing a strong reliabil-
ity (remote probability of failures), sequence numbers are the more appropri-
ate choice, especially, for members with limited storage capabilities. In case

22

storage capabilities are not a concern, random numbers can be envisioned. In
a nutshell, protecting DsBGK from replay attacks is ensured by combining
the discussed solutions based on the specificities of the network model.

In Sybil attacks [25] [39], legitimate members can claim several fake iden-
tities. This can engender disastrous consequences for health related systems
(e.g. PHR). In fact, a malicious user can send altered data using feigned
identities. Consequently, either real emergency situations are missed, or false
emergency alarms are triggered. DsBGK is protected against Sybil attacks. In
fact, there is no possibility for a malicious member to perform a Sybil attack
unless the controller (assumed to be a trusted entity) is corrupted. Indeed,
the controller secures its exchanges with members based on their private ID,
which is binded with their publicID. Furthermore, once the group key is es-
tablished, all exchanged messages are authenticated and contain the identity
of the sender. In addition, before any further processing, the controller checks
its access control policy with respect to any new joining member.

In PHR systems, the availability of health data must be resilient against
Denial of Service (DoS) attacks. In DsBGK, the different messages are au-
thenticated through the binding public ID-private ID before data processing
is performed. Indeed, local states are not established prior to authentication.
In addition, traditional solutions can also be used. For instance, rate-limiting
techniques which abort the execution of the protocol following the detection
of corrupted messages can also be envisioned. Besides, attacks that aim to
drain the energy power of the members constitute another point of interest
regarding the PHR systems threat model. The De-synchronization attack al-
ters the sequence number of the different messages. Doing so, messages can
be retransmitted indefinitely. Clearly, this would lead to the draining of en-
ergy resources. The main countermeasure against this kind of attacks is to
ensure message integrity. In DsBGK, once the group key is set, we advocate
to protect all messages by appending Message Authentication Codes (MAC).

It is worth mentioning that PHR systems can also be targeted by routing
attacks. DsBGK does not protect the group from these kind of attacks. Its
primary goal is to manage a master group key, which is then used to secure
data transmission. Intrusion Detection Systems (IDS) [49] [33] should be
considered to address routing related threats.

4.2 Formal validation

Many solutions have been used to formally validate security protocols. Among
others, model checking [20] is usually considered to evaluate finite-state-
concurrent protocols (e.g. communication protocols). In general, verification

23

tools are used to thouroughly look for all eventual execution paths that satisfy
some desired properties stated in a protocol specification. In the literature,
the validation of several security protocols has been carried out using model
checking [57] [28]. In addition, model checking has also been at the basis of
the development of a multitude of validation tools [1] [4] [3]. In the following,
we discuss the advantages of considering model checking techniques instead
of traditional techniques built around deductions, testing, and simulations:

- Enables rapid and automated assessment using various model checking
tools. Thus, users are spared from prototyping their protocol.

- Enables users to assess each single stage of the execution process. As
a result, users have the possibility to spot any failure accurately. Nev-
ertheless, simulation techniques only provide a general overview of the
protocol functioning. Moreover, parts of the flaws can stay hidden, and
only discovered at production stage.

AVISPA (Automated Validation of Internet Security Protocol and Applications)[1]
is a tool used to assess and validate security protocols. Avispa is based on a
set of model checkers running in the back-end, with which interaction is made
through a shared front-end. The Dolev-Yao intruder model [24] is considered
to model messages interception and altered data insertion. The model en-
gages analytical rules to evaluate the security soundness of the protocol. If a
flaw is detected, the tool produces a log detailing the different stages of the
attack. In the state of the art, the security assessment of a multitude of pro-
tocols has been carried out using Avispa [19] [38] [17] [51]. Furthermore,
several standard based protocols such as IKE, TLS, and AAA maintained by
the Internet Engineering Task Force (IETF) have been analyzed using Avispa.
In fact, flaws have been spotted in some of them [42] [1].

We performed a formal validation of DsBGK based on Avispa to assess
its security properties such as authentication, delivery proof and replay pro-
tection. It is worth noting here that since DsBGK confidentiality is based
on polynomial computation instead of traditional symmetric encryption, this
property has not been considered in the Avispa evaluation. Indeed, the strength
and resistivity of the polynomial is directly related to the factorization prob-
lem (see section 4.1). In general, Avispa (and other formal validation tools
for that matter) does not assess the strength of the cryptographic primitives
but rather focus on the messaging flow.

In Avispa, protocol’s behaviors are specified using a role-based language
(i.e. High Level Protocol Specification Language (HLPSL)) [18]. A basic

24

Notation Member

A Member

B Controller

IDx Identity of x

Noncex Nonce generated by x

Datax data related to storage, processing capabilities, and trust level of x

Grant — Notifyx access control decision regarding x

Ticket — Requestx tickets request by x

Ticket — Responsex tickets response for x

Move-Request request of leave

Leave-Notify acknowledgement of the leave request, or notification of an ejection

Messagegpc message confidentiality is secured through polynomial computation
TABLE 2

Alice-Bob terminology for HLPSL specification

role module contains the actions of the various entities. The interactions be-
tween them are specified through the composition of a multitude of basic
roles, hence forming a composed role. Besides, the security properties to
be assessed are mentioned in the goal section. It is worth mentioning that
Avispa uses several automated analysis techniques: on-the-fly model-checker
(OFMC), constraint-logic based attack searcher (CL-AtSe), and SAT-based
model checker (SATMC) are currently in use.

Firstly, we specified the actions of the various entities in a basic role. Sec-
ondly, we described the participants interactions in a composed role. In our
validation, we covered message exchanges related to joining events that trig-
ger a ticket request. We also covered leave/ejection events which trigger a
new ticket request. For the sake of simplicity, in this section, our modeling
is introduced through Alice-Bob (A — B) notation instead of raw HLPSL
specification (TABLE 1 provides more details about the notations).

The mapping with DsBGK’s concepts, along with the used notations are
defined in TABLE 2:

- A: Member (i.e. object)
- B: Controller

Joining exchanges:

25

controller member
b-4

a-3
{a.b.nonce-1.msg-2} k Stepl.
{b.a.nonce-1.nonce-3.msg-4} k Step2.

—anl: =
{a.b.nonce-5.nonce-3.msg-6} k Step3.

FIGURE 5
DsBGK leave process using SPAN animation tool

The message exchanges have been modeled as follows:

* A— > B :{IDj,Datas, Noncep}

* B— > A:{IDg,IDy,Grant — Notifya, Noncea, Nonceg}sgc
* A— > B :{IDy,IDp,Ticket — Request o, Noncey, Nonceg}sgc

* B— > A:{ID,I1Dg,Ticket—Responsea, Noncea, Noncep}sgc
Leaving exchanges:

The message exchanges have been modeled as follows:

* [Optional] A— > B :{ID4,IDp, Move — Request, Nonces}sgc

* B— > A:{IDpg,ID 4, Leave — Notify, Nonceg}sgc

* A— > B :{IDj,1Dp, Ticket — Request s, Nonceas, Nonceg}sec
* B— > A:{IDpg,ID 4, Ticket—Response4, Nonceg, Nonce}sgc

Once the modeling completed, we inserted the specification as input to
Avispa, and checked DsBGK correctness relying on a protocol animation
tool (i.e. SPAN) [27]. This tool has been proposed to offer a graphical sup-
port for the writing and analysis of Avispa specifications (See FIGURE 5).
We launched several Avispa backends like OFMC, C'L — AtSe, SATMC and

26

FIGURE 6
Joining: Avispa output (OFMC)

FIGURE 7
Leaving: Avispa output (OFMC)

TA4SP to assess our security goals. Furthermore, we considered the default
Dolev-Yao intruder model. This model simulates an attacker which is in full
control of the network. Both sent and received messages can be intercepted,
analyzed, modified, or sent to malicious entities.

With respect to each back-end, Avispa produces a report that depicts the
results of the simulation. In our case, the results highlighted that DsBGK is
"SAFE" against OFMC (for illustration purposes, see FIGURE 6 for the join-
ing exchanges, and FIGURE 7 for the leaving exchanges), and C'L — AtSe.
Nevertheless, the results indicated by the TA4SP model were "INCONCLU-
SIVE". Based on Avispa documentation [1], an inconclusive result does not
indicate a flaw. Relying on both our analysis and on Avispa output, we can
affirm that DsBGK guarantees the main security properties namely, confiden-
tiality, integrity and authentication.

Following the security assessment, we performed an evaluation of DsBGK
energy cost. In the next section, we discuss the obtained results.

5 PERFORMANCE EVALUATION

To evaluate DsBGK energy cost, we went through two phases. In the first
phase, we compared DsBGK with DBGK [7], while in the second phase, we
proposed a broader comparison by including relevant state of the art schemes
(MARKSJ[15], LKH [61], and Veltri et al [58]). In our evaluation, we con-
sidered both storage and energy costs upon common events in collaborative
IoT groups (i.e. joining,sending/receiving messaging, and leaving). We per-
formed this evaluation using Cooja, which is the built-in network simulator
of Contiki 2.7 [2]. Contiki is an open source Operating System (OS) for
IP-enabled constrained devices (objects). It is widely used in the research
community for Internet of Things (IoT) related applications. Examples are
networked electrical systems, industrial monitoring, and e-health systems. In
our experimental setup, we considered Tmote Sky nodes, which are equipped
with the CC2420 radio chip and the MSP430 microcontroller (10k RAM, 48k
Flash). Furthermore, energy consumption is computed using Powertrace tool
[26]. This tool measures the time (number of ticks) during which each ele-
ment (e.g. CPU, transmission, reception, etc.) of the sensor is active. This
duration is combined with other data (specific to the sensor, such as the cur-
rent draw, and voltage) to evaluate the energy consumption.

28

5.1 First phase (DsBGK vs DBGK)

In this phase, we evaluated DsBGK performances against DBGK with respect
to the following metrics: storage overhead, polynomial degree, and members
leave.

Storage overhead: in this experiment, we considered an event where a new
constrained member (denoted merely by *'member’ in the remaining of this
analysis) joins a group. We varied the number of controllers (K M .S) in order
to assess the impact of additional controllers on the overhead resulting from
the storage of security materials by members. The results, depicted in FIG-
URE. 8, show that for DBGK, storage overhead increases linearly with the
inclusion of additional controllers. However, for DsBGK, storage overhead
is steady and is not related to the number of controllers. In fact, in DBGK, a
pre-shared key is established between each member and each controller. This
leads to a proportional dependency between the number of controllers and
the number of stored keys. Indeed, in DsBGK, thanks to the use of polyno-
mials, a pre-shared material (i.e. ID) is only set in the controller side for
each additional member. Nevertheless, no material is stored in the member
side. Consequently, unlike DBGK, DsBGK allows adding controllers with no
impact on storage overhead. It is clear that the ability of including additional
controllers has a strong positive impact on scalability and fault tolerance.

The next step in our evaluation was to evaluate the impact of this gain in
storage cost on the energy consumption induced by rekeying operations. In
particular, when members leave (or are ejected from the group). To do so,
we need to set our polynomial degree to achieve the best trade-off between
security and efficiency. Hence, before carrying on with our evaluation, in the
following we detail our experiments to set the optimal degree.

Polynomial degree: we considered a group of 1000 members. We simu-
lated a member leaving the group (or being ejected) with a proportion of 40
% of remaining members holding the same tickets as the leaving member.
Based on DBGK evaluation (see section IV.B in [7]), around 40-50 % rep-
resents the maximum proportion above which DBGK efficiency drops and a
state of the art protocol (i.e. LKH[61]) is preferred to update the group key.
Furthermore, N Slot has been set to 20, which we consider being a realistic
value. We varied the degree of the polynomial and compared energy cost with
DBGK. The results presented through FIGURE. 9 highlight a steady raise in
energy consumption with the increase of the polynomial degree. It is worth
mentioning that DBGK energy cost is not impacted by polynomial degree

29

dbgk
® dsbgk

Number of stored keys

1 2 3 4 5

Number of KMS (controllers)

FIGURE 8
Storage cost comparison

30

16
14
12
10

== dshgk
6 dbgk

Energy consumption (mj)
oo

5 10 15 20 25 30 35 40

Polynomial degree

FIGURE 9
Setting polynomial degree

31

10.5

10
E
c
S 95
o
E
2 m dshgk
S ° dbE
3> g
o
Y g5

8

10.00% 40.00% 70.00% 100.00%

Percentage of nodes with a ticket

FIGURE 10
Member leaving cost comparison

32

variation, hence the constant energy consumption. Eventually, DsBGK en-
ergy cost exceeds DBGK energy cost when the degree reaches a value around
25.

Our results were slightly different compared to the experimental results
presented in [36] (previously mentioned in section 3.5), where performances
using polynomial computation were better, up to a degree of 40. We explain
this difference by the fact that we used a different sensor in our experiment
(Sky mote) in addition to a different encryption primitive for DBGK (i.e.
AES). Nonetheless, this variation does not alter the security foundations of
DsBGK, as the NP-hard mathematical problem upon which DsBGK is based
is not altered [46]. Following this experiment, we compared the energy con-
sumptions of DBGK and DsBGK in case of a leave event to make sure that
the gain in storage cost has not been achieved at the expense of other metrics.

Member leave cost: we estimated the energy cost related to the depar-
ture (or ejection) of a member in possession of a valid ticket. Similarly to
DBGK’s evaluation, we consider a group of users composed of 1000 mem-
bers. We record several measures, while varying the proportion of members
with tickets similar to those in possession of the leaving member. Moreover,
we define the number of tickets requested by notified members as equal to
20 time slots (i.e. NSlot = 20). We depict the results in FIGURE. 10. It
is clear that DsBGK energy consumption increases with the increase of the
percentage of members in possession of the same tickets as leaving members.
However, this raise in energy cost is slightly lower compared to the raise
noticed in DBGK energy consumption. This is mainly due to the superior
efficiency of polynomial computation compared to cryptographic symmetric
primitives. As a result, we can safely affirm that no additional cost is induced
by the obtained storage gains.

5.2 Second phase (DsBGK vs state of the art)

In this phase, we broadened our comparison by including other similar proto-
cols from the literature (i.e. LKH[61], MARKS [15], and Veltri et al protocol
[58]). We considered the following metrics:

- Number of messages exchanged between a member of the group and
a controller (key management server for other protocols) following an
event (typically a membership change).

- Number of transmitted keys contained in the exchanged messages as a
result of an event.

33

Protocol messages keys to transmit

MARKS 1 < 2(logy(n) — 1)
LKH h h(h+1)/2-1
Veltri et al 1 < 2(logy(n) — 1)
DBGK 1 1
DsBGK 1 1
TABLE 3

Member joining (Initialization)

As mentioned in section 3.6, in case of a leave (or ejection), all members
which have the same tickets as the leaving member need to be notified. As a
result, the overall cost related to the number of messages M1 and the number
of keys M2 can be considerable. To reduce this cost, the stat-of-the-art LKH
[61] protocol can be superimposed to DsBGK. The long-term key .S K would
then be updated using LKH in replacement of a notification broadcast to the
involved members.

In Veltri et al protocol [58], the group key is updated using LKH when a
member leaves the group unpredictably. Due to the dynamic nature of collab-
orative groups, the unpredicted departure of members is likely to take place
frequently. It is important to highlight that in DsBGK, LKH is only consid-
ered when the notification overhead is higher than LKH overhead. Conse-
quently, we make sure that DsBGK cost is less than or equal to LKH cost
[61] in the worst case.

The controller is in charge of choosing whether to use LKH or to use the
notification process. It is worth noting that the cost of LKH regarding the
number of messages to be sent is (d-1)(h-1). (d: the degree of LKH tree, h:
height of the tree). The controller evaluates the cost of using LKH, as well as
the cost of using a notification mechanism, and makes a decision regarding
the use of the former or the latter one.

The performances of DsBGK are compared with the performances of MARKS[15],
LKH [61], Veltri et al [58], and DBGK [7] protocols relying on the following
set of events: joining, sending/receiving messages, member leaving with valid
tickets, and member leaving without valid tickets. TABLE 3 to TABLE 6 de-
pict the theoretical complexity of each protocol. Relying on these analytical
results, we simulate the energy cost following group key updates to evalu-

34

Protocol messages

keys to transmit

MARKS 0 0

LKH 0 0

Veltri et al 0 0
DBGK 1 Nslot
DsBGK 1 Nslot

TABLE 4
Triggering secured message exchanges

Protocol messages keys to transmit
MARKS X X
LKH (d-1)(h-1) (d-Dh(h-1)72
Veltri et al (d-1)(h-1) (d-Dhh-1)/2 + 1
DBGK MI< (d—1)(h—1) M2< (d—1)h(h —1)/2
DsBGK MI< (d—-1)(h—1) M2< (d —1)h(h —1)/2
TABLE 5

Member leaving with a valid ticket

Protocol messages keys to transmit
MARKS 0 0
LKH (d-1)(h-1) (d-1)h(h-1)/2
Veltri et al 0 0
DBGK 0 0
DsBGK 0 0

TABLE 6
Member leaving without a valid ticket

35

12

10
E s
c
2
g— 6 marks
2 Ikh
8 veltri
5 4 m dbgk
L%) M dshgk

2 o -

Wl 1

10 100 1000 10000
Members

FIGURE 11
Joining: energy cost comparison

ate DsBGK performances using Cooja simulator compared to MARKS[15],
LKH [61], Veltri et al [58], and DBGK [7] protocols.

FIGURE 11 shows the variation of energy cost following a join event in
groups containing different numbers of users. We observe that LKH [61] en-
ergy consumption raises when the size of the group raises. This raise is more
noticeable in comparison with MARKS[15] and Veltri et al [58]. Indeed, both
Veltri et al [58] and MARKS[15] are time-driven protocols. These protocols
only imply one message for the joining member. However, LKH [61] is an
event-driven protocol. This protocol implies several messages in case of a
joining event. DBGK [7], and DsBGK energy consumption is constant and
independent from the number of users. It is worth mentioning that DsBGK
energy consumption is slightly lower compared to DBGK [7].

In FIGURE 12, we depict the measured energy cost of a member leav-

36

11

10.5
E 10
c
9o
5
= 9.5 kh
c
S dbgk
3 9 =% dshgk
2
w

8.5

8

20% 40% 60% 80%

Percentage of members with ticket(s)

FIGURE 12
Leave: energy cost comparison

37

12 —
10
c
o
o
% 6
=
3
5 4
@
[=
w
2 |
0 ‘JL:
10 100 1000 10000
Members

FIGURE 13
Leave (without a valid ticket): energy cost comparison

38

marks
Ikh
i veltri
m dbgk
M dshgk

ing in possession of a valid ticket. We consider a group of 1000 users. We
evaluate the energy cost while taking into account the proportion of members
that have the same ticket as the leaving the member. Furthermore, we assume
that the notified members will request 20 tickets (i.e. N.Slot = 20). In this
experiment, MARKS is not considered as this protocol only treats planned
departures. The results show that the energy consumption of LKH [61] (and
Veltri et al [58] which relies on LKH for unpredicted leave events) is constant
and it is not affected by the variation of the proportion of responding mem-
bers. However, DBGK [7], and DsBGK energy consumption increases with
the increase of responding members. It is worth noting again that compared
to DBGK [7], DsBGK energy consumption is perceptibly inferior. We can
notice that up to a proportion of around 50 % of members in the group in
possession of a valid ticket at the moment of the departure, DBGK [7] and
DsBGK energy consumption is lower than LKH [61].

FIGURE 13 depicts energy consumption after a leave event where the
leaving member is not in possession of any valid tickets. The results show that
LKH [61] energy consumption increases with the increase of the number of
members. However, MARKS[15], Veltri et al [58], DBGK [7], and DsBGK
perform the operation without any cost. This is due to the fact that LKH [61]
is an event-driven protocol that is not based on time intervals. Thus, unlike
other protocols, LKH [61] does not take any advantage of batch rekeying,
which spare from updating the key if the leaving member is not in possession
of valid credentials.

Unlike Veltri et al, LKH, and MARKS protocols that involve the totality
of group members in rekeying operations, even if they have not been active
for a long period of time prior to the rekeying, both DBGK [7] and DsBGK
allow these members to remain in a sleep mode without being interrupted.
Consequently, energy consumption is lower in up to a proportion of 50 % of
group members in possession of the same tickets as those hold by the leav-
ing member. This raise is caused by the computation and the communication
overheads following an increasing number of messages to be dealt with. If
the proportion exceeds 50 %, LKH is used for both DBGK and DsBGK. As
a result, their energy consumption is less or equal to other protocols in the
worst case. Furthermore, unlike Veltri et al, DBGK [7] and DsBGK are not
based on predicting the leaving moment of the members. This property is
particularly relevant, as IoT-based groups are likely to witness unpredictable
events affecting their members. Indeed, DBGK [7] and DsBGK offer a flexi-
ble mechanism which allows members to ask for the exact number of keying
materials that suits the most their storage capabilities (i.e. IN.Slot).

39

Following the security and performances comparison results, we can af-
firm that both DBGK and [7] DsBGK are suited to groups with a large num-
ber of members that can join the collaborative group for a long period of time
(without being necessarily active), and leave the group unexpectedly. In ad-
dition, although DsBGK displays the same theoretical complexity as DBGK
[7], simulation results show that DsBGK provides a perceptible energy gain
due to the superior efficiency of polynomial computation compared to crypto-
graphic symmetric primitives. Moreover, as presented in section 5.1, DsBGK
preserves the same properties as DBGK [7], but provides a considerable im-
provement in terms of fault tolerance and scalability. The main source of scal-
ability improvement is related to the fact that polynomial computation does
not require shared credentials between constrained members and controllers.
Thus, including additional controllers does not impact existing groups mem-
bers. Moreover, it is worth highlighting that the improvement in polynomial
building compared to both Patsakis et al [44] and Piao et al [45] schemes con-
tributes as well to improve scalability. In fact, we introduced random values in
the polynomial instead of adding salting parameters upon each member join-
ing event, which would have drastically increase the polynomial degree and
thus would have negatively impacted performances (weakening scalability).
Furthermore, this randomness of polynomial terms also provides collusion
freeness. Indeed, the disclosure of the private I.D of colluding users brings
no additional knowledge to retrieve private I Ds of non-colluding members
(see section 3.5).

Back to our e-health (i.e. PHR) use case scenario, and based on our evalu-
ation studies, we can safely affirm that DsBGK is suitable to manage a group
key that can be used to secure communication channels. Indeed, the role of
controllers can be played by the group members, which are not constrained in
terms of energy, computational, and memory resources, such as smartphones,
personal computers, and servers. These controllers generate, and manage
the group key on behalf of the constrained members of the group, such as
e-health sensors. Backup controllers can be included in the group with very
limited overhead on constrained members. Furthermore, no human interven-
tion on the sensors is required, which might be very convenient, knowing that
these sensors can be planted inside human bodies. Consequently, the fail-
ure of one or several controllers does not hamper the normal behaviour of
the protocol, as backup controllers can take over. Besides, the improved ef-
ficiency in term of energy consumption for battery powered e-health sensors
will increase their life time, and thus reduce the cycle of surgical interventions
required for their replacement.

40

6 CONCLUSION

Resilient, scalable, and energy-aware group key management protocols con-
stitute the cornerstone of modern distributed collaborative groups under the
umbrella of the IoT paradigm. In this work, we built on top of an existing pro-
tocol (i.e. DBGK) to considerably enhance its features in terms of scalability,
fault tolerance, and collusion freeness. To do so, we combined a polyno-
mial based approach with DBGK to propose a new protocol called DsBGK.
In fact, controllers secure their communications with constrained members
using polynomials instead of symmetric encryption. As a result, there is no
need for a manual intervention on the constrained members to store new cre-
dentials for each new controllers. Furthermore, we introduced an innovative
application of blockchain technology to further enhance DsBGK strength in
term of authentication. Security assessment including theoretical analysis,
and formal validation proved the soundness of DsBGK security properties.
Furthermore, simulation results showed that DsBGK improves both fault tol-
erance and scalability which are highly sought in sensitive applications, such
as e-health systems. Compared to its peers from the state of the art, energy
gains are achieved upon rekeying operations following membership events
(e.g. join and leave). These results make DsBGK more suitable for heteroge-
neous, and dynamic collaborative groups. As a future work, we plan to design
an actual implementation of DsBGK on real test-beds.

REFERENCES

[1] Avispa — a tool for automated validation of internet security protocols. http://www.avispa-
project.org.

[2] The contiki operating system. http://www.contiki-os.org.
[3] Murphi model checker. http://www.cs.utah.edu.
[4] Prism - a probabilistic model checker. http://www.prismmodelchecker.org.

[5S] Mohammed Riyadh Abdmeziem and Djamel Tandjaoui. (2014). A cooperative end to end
key management scheme for e-health applications in the context of internet of things. In
International Conference on Ad-Hoc Networks and Wireless, pages 35-46. Springer.

[6

=

Mohammed Riyadh Abdmeziem and Djamel Tandjaoui. (2015). An end-to-end secure
key management protocol for e-health applications. Computers & Electrical Engineering,
44:184-197.

Mohammed Riyadh Abdmeziem, Djamel Tandjaoui, and Imed Romdhani. (2015). A
decentralized batch-based group key management protocol for mobile internet of things
(dbgk). In Computer and Information Technology; Ubiquitous Computing and Communi-
cations; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Com-
puting (CIT/IUCC/DASC/PICOM), 2015 IEEE International Conference on, pages 1109—
1117. IEEE.

[7

—

41

[8] Mohammed Riyadh Abdmeziem, Djamel Tandjaoui, and Imed Romdhani. (2016). Archi-
tecting the internet of things: state of the art. In Robots and Sensor Clouds, pages 55-75.
Springer.

[9] Mohammed Riyadh Abdmeziem, Djamel Tandjaoui, and Imed Romdhani. (2016). A new
distributed mikey mode to secure e-health applications. In Proceedings of the Interna-
tional Conference on Internet of Things and Big Data - Volume 1: IoTBD,, pages 88-95.
SciTePress.

[10] Mohammed Riyadh Abdmeziem, Djamel Tandjaoui, and Imed Romdhani. (2017). Lightweighted
and energy-aware mikey-ticket for e-health applications in the context of internet of things.
International Journal of Sensor Networks, In press.

[11] Muhammad Salek Ali, Koustabh Dolui, and Fabio Antonelli. (2017). Iot data privacy

via blockchains and ipfs. In Proceedings of the Seventh International Conference on the
Internet of Things, page 14. ACM.

[12] Sedrati Anass, Abdelraheem Mohamed Ahmed, and Raza Shahid. (2017). Blockchain and
iot: Mind the gap. In 4th EAI/Springer International Conference on Safety and Security in
Internet of Things. EAL

[13] D. Balenson, D. McGrew, and A. Sherman. (February 1999). Key management for large
dynamic groups: One-way function trees and amortized initialization. Internet-Draft.

[14] A. Ballardie. (May 1996). Scalable multicast key distribution. RFC 1949.

[15] B. Briscoe. (1999). Marks: Zero side effect multicast key management using arbitrarily
revealed key sequences. Networked Group Communication, pages 301-320.

[16] Y. Challal and H. Seba. (2005). Group key management protocols: A novel taxonomy.
International Journal of Information Technology, 2(1):105-118.

[17] A. Charu and T. Mathieu. (2009). Validating integrity for the ephemerizer’s protocol with
cl-atse. pages 21-32.

[18] Y. Chevalier, L. Compagna, J. Cuellar, P. Hankes Drielsma, J. Mantovani, and and L. Vi-
gneron S. Modersheim. (2004). A high level protocol specification language for industrial
security sensitive protocols. Proc. SAPS 04. Austrian Computer Society, 2004.

[19] C. Chun, H. Daojing, C. Sammy, B. Jiajun, G. Yi, and F. Rong. (2011). Lightweight
and provably secure user authentication with anonymity for the global mobility network.
International Journal of Communication Systems, 24(3):347-362.

[20] EM. Clarke, O. Grumberg, and DA. Peled. (1999). Model checking. MIT Press: Cam-
bridge.

[21] B. Daghighi, M.L.M. Kiah, S. Shamshirband, and M.H.U. Rehman. (2015). Toward secure
group communication in wireless mobile environments: Issues, solutions, and challenges.
Journal of Network and Computer Applications, 50:1-14.

[22] Roberto Di Pietro, Luigi V Mancini, and Sushil Jajodia. (2003). Providing secrecy in key
management protocols for large wireless sensors networks. Ad Hoc Networks, 1(4):455—
468.

[23] Gianluca Dini and Lanfranco Lopriore. (2015). Key propagation in wireless sensor
networks. Computers & Electrical Engineering, 41:426-433.

[24] D. Dolev and C.C. Yao. (1981). On the security of public key protocols. FOCS, IEEE,
1981, page 350-357.

[25] J.R. Douceur. (2002). The sybil attack. Peer-to-peer Systems.

[26] A. Dunkels, J. Eriksson, N. Finne, and N. Tsiftes. (2011). Powertrace: Network-level
power profiling for low-power wireless networks.

42

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Y. Glouche and T. Genet. (2006). Span — a security protocol animator for avispa — user
manual. http ://www.irisa.fr/lande/genet/span/, 2006.

Y. Hanna, H. Rajan, and W. Zhang. (2008). Slede: A domain specific verification frame-
work for sensor network security protocol implementations. Proceeding of the ACM Con-
ference on Wireless Network Security (WiSec’08), pages 109-118.

H. Harney and C. Muckenhirn. (July 1997). Group key management protocol (gkmp)
architecture. RFC 2093.

Abdel Alim Kamal. (2013). Cryptanalysis of a polynomial-based key management scheme
for secure group communication. 1J Network Security, 15(1):68-70.

Sye Loong Keoh, Sandeep S Kumar, and Hannes Tschofenig. (2014). Securing the internet
of things: A standardization perspective. IEEE Internet of Things Journal, 1(3):265-275.

Y. Kim, A. Perrig, and G. Tsudik. (2004). Tree-based group key agreement. ACM
Transactions on Information and System Security (TISSEC), 7(1):60-96.

A.Le,J. Loo, A. Lasebae, M. Aiash, and Y. Luo. (2012). 6lowpan: a study on qos security
threats and countermeasures using intrusion detection system approach. International
Journal of Communication Systems, 25(9).

P. Lee, J. Lui, and D. Yau. (2006). Distributed collaborative key agreement and au-
thentication protocols for dynamic peer groups. Networking, IEEE/ACM Transactions on,
14(2):263-276.

S.Lim, T.H. Oh, Y.B Choi, and T. Lakshman. (February 2010). Security issues on wireless
body area network for remote healthcare monitoring. Sensor Networks, Ubiquitous, and
Trustworthy Computing (SUTC), IEEE International Conference, pages 327 — 332.

Donggang Liu and Peng Ning. (2007). Security for wireless sensor networks, volume 28.
Springer Science & Business Media.

Niu Liu, Shaohua Tang, and Lingling Xu. (2013). Attacks and comments on several
recently proposed key management schemes. JACR Cryptology ePrint Archive, 2013:100.

M. Marino and U. Caterina. (2011). Formal analysis of facebook connect single sign-on
authentication protocol. 11:22-28.

Faiza Medjek, Djamel Tandjaoui, Mohammed Riyadh Abdmeziem, and Nabil Djedjig.
(2015). Analytical evaluation of the impacts of sybil attacks against rpl under mobility.
In Programming and Systems (ISPS), 2015 12th International Symposium on, pages 1-9.
IEEE.

Ralph C Merkle. (1987). A digital signature based on a conventional encryption function.
In Conference on the Theory and Application of Cryptographic Techniques, pages 369—
378. Springer.

S. Mittra. (1997). Iolus: A framework for scalable secure multicasting. ACM SIGCOMM
Computer Communication Review, 27(4):277-288.

S. Moedersheim and P.H. Drielsma. (2003). Avispa project deliverable d6.2: Specification
of the problems in the high-level specification language. http://www.avispa-project.org.
Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. (2006). Data consistency
for p2p collaborative editing. In Proceedings of the 2006 20th anniversary conference on
Computer supported cooperative work, pages 259-268. ACM.

Constantinos Patsakis and Agusti Solanas. (2013). An efficient scheme for centralized
group key management in collaborative environments. IACR Cryptology ePrint Archive,
2013:489.

Y. Piao, J. Kim, U. Tariq, and M. Hong. (2013). Polynomial-based key management

for secure intra-group and inter-group communication. Computers & Mathematics with
Applications, 65(9):1300-1309.

43

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

David A Plaisted. (1984). New np-hard and np-complete polynomial and integer divisi-
bility problems. Theoretical Computer Science, 31(1-2):125-138.

S. Rafaeli and D. Hutchison. (June 2002). Hydra: a decentralized group key management.
11th IEEE International WETICE: Enterprise Security Workshop.

S. Rafaeli and D. Hutchison. (2003). A survey of key management for secure group
communication. ACM Computing Surveys (CSUR), 35(3):309-329.

S. Raza, L. Wallgren, and T. Voigt. (2013). Svelte: Real-time intrusion detection in the
internet of things. Ad hoc networks, 11(8).

Ronald L Rivest, Adi Shamir, and Leonard Adleman. (1978). A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM, 21(2):120—
126.

Antonio Ruiz-Martinez, C. Inmaculada Marin-Lépez, Laura Bafio-Lépez, and AF Skarmeta.
(2006). A new fair non-repudiation protocol for secure negotiation and contract signing.
page 16.

S. Setia, S. Koussih, S. Jajodia, and E. Harder. (2000). Kronos: A scalable group re-
keying approach for secure multicast. Proceedings IEEE Symposium on Security and
Privacy, pages 215-228.

Adi Shamir. (1979). How to share a secret. Communications of the ACM, 22(11):612-613.

Sabrina Sicari, Alessandra Rizzardi, Luigi Alfredo Grieco, and Alberto Coen-Porisini.
(2015). Security, privacy and trust in internet of things: The road ahead. Computer
Networks, 76:146—-164.

Sabrina Sicari, Alessandra Rizzardi, Daniele Miorandi, and Alberto Coen-Porisini. (2016).
Internet of things: Security in the keys. In Proceedings of the 12th ACM Symposium on
QoS and Security for Wireless and Mobile Networks, pages 129-133. ACM.

Paul C Tang, Joan S Ash, David W Bates, J] Marc Overhage, and Daniel Z Sands. (2006).
Personal health records: definitions, benefits, and strategies for overcoming barriers to
adoption. Journal of the American Medical Informatics Association, 13(2):121-126.

L. Tobarra, D. Cazorla, F. Cuartero, G. Diaz, and E. Cambronero. (2009). Model checking
wireless sensor network security protocols: Tinysec + leap + tinypk. Telecommunication
Systems, 40(3-4):91-99.

L. Veltri, S. Cirani, S. Busanelli, and G. Ferrari. (2013). A novel batch-based group key
management protocol applied to the internet of things. Ad Hoc Networks, 11(8):2724—
2737.

Weichao Wang and Bharat Bhargava. (2005). Key distribution and update for secure inter-
group multicast communication. In Proceedings of the 3rd ACM workshop on Security of
ad hoc and sensor networks, pages 43-52. ACM.

Weichao Wang and Yu Wang. (2008). Secure group-based information sharing in mobile
ad hoc networks. In Communications, 2008. ICC’08. IEEE International Conference on,
pages 1695-1699. IEEE.

C.K. Wong, M. Gouda, and S.S. Lam. (2000). Secure group communications using key
graphs. Networking, IEEE/ACM Transactions, 8(1):16-30.

44

