
Proceedings of Machine Learning Research 101:1–15, 2019 ACML 2019

Supplementary Material for “Model-Based Reinforcement
Learning Exploiting State-Action Equivalence”

Mahsa Asadi mahsa.asadi@inria.fr
Mohammad Sadegh Talebi sadegh.talebi@inria.fr
Hippolyte Bourel hippolyte.bourel@ens-rennes.fr
Odalric-Ambrym Maillard odalric.maillard@inria.fr
Inria Lille – Nord Europe

Editors: Wee Sun Lee and Taiji Suzuki

Appendix A. Pseudo-Codes of UCRL2 and C-UCRL

In this section, we provide the pseudo-codes of UCRL2, C-UCRL(C,σ), and C-UCRL.

Algorithm 1 UCRL2 with input parameter δ ∈ (0, 1] (Jaksch et al., 2010)
Initialize: For all (s, a), set N0(s, a) = 0 and v0(s, a) = 0. Set t0 = 0, t = 1, k = 1, and observe the initial
state s1;
for episodes k > 1 do
Set tk = t;
Set Ntk (s, a) = Ntk−1 (s, a) + vk(s, a) for all (s, a);
Compute empirical estimates µ̂tk (s, a) and p̂tk (·|s, a) for all (s, a);
Compute π+

tk
= EVI

(
µ̂tk , p̂tk , Ntk ,

1√
tk
, δ
SA

)
— see Algorithm 2;

while vk(st, π+
tk

(st)) < max{1, Ntk (st, π+
tk

(st))} do
Play action at = π+

tk
(st), and observe the next state st+1 and reward rt(st, at);

Set vk(st, at) = vk(st, at) + 1;
Set t = t+ 1;

end while
end for

Appendix B. Proof of Lemma 7

Let us consider the case when a switch occurs between index 1 and 2, that is σq(1) = σp(2) and
σq(2) = σp(1). In this situation, we thus have p(σp(1)) > p(σp(2)) but p(σq(1)) 6 p(σq(2)).
Then, we study

∑
i=1,2 |p(σp(i))− q(σq(i))|. First, we note that if q(σq(1)) < p(σp(1)) and

q(σq(2)) < p(σp(2)), then

|p(σp(1))− q(σq(1))|+ |p(σp(2))− q(σq(2)))| = p(σp(1))− q(σq(2)) + p(σp(2))− q(σq(1))
= |p(σp(1))− q(σp(1))|+ |p(σp(2))− q(σp(2))| .

Likewise, the same equality occurs if q(σq(1)) > p(σp(1)) and q(σq(2)) > p(σp(2)). Now,
in the remaining intermediate cases (that is q(σp(1)) < p(σp(2)) < q(σp(2)) < p(σp(1)),

c© 2019 M. Asadi, M.S. Talebi, H. Bourel & O.-A. Maillard.

Asadi et al.

Algorithm 2 EVI(µ, p,N, ε, δ) (Jaksch et al., 2010)
Initialize: u(0) ≡ 0, u(−1) ≡ −∞, n = 0;
while maxs(u(n)(s)− u(n−1)(s))−mins(u(n)(s)− u(n−1)(s)) > ε do

For all (s, a), set µ′(s, a) = µ(s, a) + β′N(s,a)(δ);
For all (s, a), set p′(·|s, a) ∈ argmaxq∈P(s,a)

∑
x∈S q(x)u(n)(x) where

P(s, a) :=
{
q ∈ ∆S : ‖q − p(·|s, a)‖1 6 βN(s,a)(δ)

}
;

For all s, update u(n+1)(s) = maxa∈A
(
µ′(s, a) +

∑
x∈S p

′(x|s, a)u(n)(x)
)
;

For all s, update πn+1(s) ∈ Argmaxa∈A
(
µ′(s, a) +

∑
x∈S p

′(x|s, a)u(n)(x)
)
;

Set n = n+ 1;
end while
Output: πn+1

Algorithm 3 C-UCRL(C,σ) with input parameter δ ∈ (0, 1]
Initialize: For all c ∈ C, set n0(c) = 0 and V0(c) = 0. Set t0 = 0, t = 1, k = 1, and observe the initial
state s1;
for episodes k > 1 do
Set tk = t;
Set ntk (c) = ntk−1(c) + Vk−1(c) for all c;
Compute empirical estimates µ̂σ

tk (c) and p̂σ
tk (·|c) for all c;

Compute π+
tk

= EVI
(
µ̂σ
tk , p̂

σ
tk , ntk ,

1√
tk
, δ
C

)
— see Algorithm 2;

while Vk(ct) < max{1, ntk (ct)} do
Play action at = π+

tk
(st), and observe the next state st+1 and reward rt(st, at);

Set ct ∈ C to be the class containing (st, at);
Set Vk(ct) = Vk(ct) + 1;
Set t = t+ 1;

end while
end for

Algorithm 4 C-UCRL with input parameter δ ∈ (0, 1]
Initialize: For all (s, a), set N0(s, a) = 0 and v0(s, a) = 0. For all c ∈ C, set n0(c) = 0 and V0(c) = 0. Set
t0 = 0, t = 1, k = 1, and observe the initial state s1;
for episodes k > 1 do

Set tk = t;
Set Ntk (s, a) = Ntk−1 (s, a) + vk(s, a) for all (s, a);
Set ntk (c) = ntk−1(c) + Vk−1(c) for all c;
Compute empirical estimates σtk ;
Find Ctk using ApproxEquivalence;
Compute empirical estimates µ̂σtk

tk
(c) and p̂σtk

tk
(·|c) for all c ∈ Ctk ;

Compute π+
tk

= EVI
(
µ̂

σtk
tk

, p̂
σtk
tk

, ntk ,
1√
tk
, δ
SA

)
— see Algorithm 2;

while vk(st, π+
tk

(st)) < max{1, Ntk (st, π+
tk

(st))} and Vk(ct) < max{1, ntk (ct)} do
Play action at = π+

tk
(st), and observe the next state st+1 and reward rt(st, at);

Set ct ∈ Ctk to be the class containing (st, at);
Set Vk(ct) = Vk(ct) + 1;
Set vk(st, at) = vk(st, at) + 1;
Set t = t+ 1;

end while
end for

2

Supplementary Material for Model-Based RL Exploiting State-Action Equivalence

p(σp(2)) < q(σp(1)) < q(σp(2)) < p(σp(1)), and p(σp(2)) < q(σp(1)) < p(σp(1)) < q(σp(2))),
it is immediate to check that

|p(σp(1))− q(σq(1))|+ |p(σp(2))− q(σq(2)))| 6 |p(σp(1))− q(σp(1))|+ |p(σp(2))− q(σp(2))| .

Thus, proceeding iteratively for all switch that occurs, and decomposing the permutations
σp and σq into elementary switches, we deduce that almost surely

‖q(σq(·))− p(σp(·))‖1 6 ‖q(σp(·))− p(σp(·))‖1 = ‖p− q‖1 ,

thus concluding the lemma. �

Appendix C. Proof of Proposition 13

First recall that ∆ := min
{
d({`}, {`′}) : `, `′ ∈ S × A and `, `′ are not in the same class

}
.

Define

E =
⋂
t∈N

⋂
s,a

{
‖p(·|s, a)− p̂t(·|s, a)‖1 6 βNt(s,a)

(
δ
SA

)}
.

Note that P(E) > 1− δ. We will need the following lemma:

Lemma 1 Assume that the event E holds. Then, for all t, at every round k of ApproxEquivalence,
for all v ∈ Ck, there exists u ∈ N (v) such that u and v belong to the same class.

Proof (of Lemma 1) Fix t > 1 and round k, and consider v ∈ Ck. Recall that u is a PAC
Neighbor of v if it satisfies:

(i)
∥∥p̂σu,t
t (·|u)− p̂σv,t

t (·|v)
∥∥

1 − εu,t − εv,t 6 0 ;
(ii)

∥∥p̂t(σi,t(·)|i)− p̂t(σj,t(·)|j)∥∥1 − βNt(i)
(
δ
SA

)
− βNt(j)

(
δ
SA

)
6 0 , ∀i ∈ u,∀j ∈ v;

(iii)
∥∥p̂t(σ`,t(·)|`)− p̂σu∪v,t

t (·|u ∪ v)
∥∥

1 − βNt(`)
(
δ
SA

)
− εu∪v,t 6 0 , ∀` ∈ u ∪ v.

In order to prove the lemma, it suffices to show that under E , there exists u ⊂ S × A
satisfying (i)–(iii) and d(u, v) = 0. To this end, we will show that the event E implies the
following: For all u ∈ S ×A,

(i′)
∥∥p̂σu,t
t (·|u)− p̂σv,t

t (·|v)
∥∥

1 6 d(u, v) + εu,t + εv,t ;
(ii′)

∥∥p̂t(σi,t(·)|i)− p̂t(σj,t(·)|j)∥∥1 6 d({i}, {j}) + βNt(i)
(
δ
SA

)
+ βNt(j)

(
δ
SA

)
, ∀i ∈ u,∀j ∈ v;

(iii′)
∥∥p̂t(σ`,t(·)|`)− p̂σu∪v,t

t (·|u ∪ v)
∥∥

1 6 d({`}, u ∪ v) + βNt(`)
(
δ
SA

)
+ εu∪v,t , ∀` ∈ u ∪ v.

Now, (i′)–(iii′) imply that there exists u ∈ N (v) such that u and v belong to the same
class, and the lemma follows. It remains to prove (i′)–(iii′).

3

Asadi et al.

Proof of (i′). Consider u ∈ S×A. Then, the non-expansive property of the norm function
implies∥∥p̂σu,t
t (·|u)− p̂σv,t

t (·|v)
∥∥

1 6
∥∥pσu(·|u)− pσv(·|v)

∥∥
1 +

∥∥p̂σu,t
t (·|u)− pσu(·|u)

∥∥
1 +

∥∥p̂σv,t
t (·|v)− pσv(·|v)

∥∥
1

= d(u, v) +
∥∥p̂σu,t
t (·|u)− pσu(·|u)

∥∥
1︸ ︷︷ ︸

A1

+
∥∥p̂σv,t
t (·|v)− pσv(·|v)

∥∥
1︸ ︷︷ ︸

A2

.

The term A1 is upper bounded as follows:

A1 =
∑
x∈S

∥∥p̂σu,t
t (x|u)− pσu(x|u)

∥∥
1

=
∑
x∈S

∣∣∣∣ 1
nt(u)

∑
(s,a)∈u

Nt(s, a)
(
p̂t(σs,a,t(x)|s, a)− p(σs,a(x)|s, a)

)∣∣∣∣
6

1
nt(u)

∑
(s,a)∈u

Nt(s, a)
∑
x∈S

∣∣∣p̂t(σs,a,t(x)|s, a)− p(σs,a(x)|s, a)
∣∣∣

6
1

nt(u)
∑

(s,a)∈u
Nt(s, a)

∥∥p̂t(σs,a,t(·)|s, a)− p(σs,a(·)|s, a)
∥∥

1

6
1

nt(u)
∑

(s,a)∈u
Nt(s, a)

∥∥p̂t(·|s, a)− p(·|s, a)
∥∥

1 ,

where we have used Lemma 7 as well as the non-expansive property of the norm function.
Hence, under the event E ,∥∥p̂σu,t

t (·|u)− pσu(·|u)
∥∥

1 6
1

nt(u)
∑

(s,a)∈u
Nt(s, a)βNt(s,a)

(
δ
SA

)
= εu,t . (1)

A similar argument yields A2 6 εv,t under E . Putting these together verifies (i′).

Proof of (ii′). The proof of (ii′) is quite similar to that of (i′), hence omitted.

Proof of (iii′). Consider u ∈ S ×A and ` ∈ u ∪ v. We have∥∥p̂t(σ`,t(·)|`)− p̂σu∪v,t
t (·|u ∪ v)

∥∥
1 6

∥∥p(σ`(·)|`)− pσu∪v(·|u ∪ v)
∥∥

1 +
∥∥p̂t(σ`,t(·)|`)− p(σ`(·)|`)∥∥

+
∥∥p̂σu∪v(·|u ∪ v)− p̂σu∪v,t

t (·|u ∪ v)
∥∥

1
6 d({`}, u ∪ v) + ‖p̂t(·|`)− p(·|`)‖1 +

∥∥pσu∪v(·|u ∪ v)− p̂σu∪v,t
t (·|u ∪ v)

∥∥
1 ,

where we have used Lemma 7 and the non-expansive property of the norm function. The
third term in the right-hand side is bounded as follows:
∥∥pσu∪v(·|u ∪ v)− p̂σu∪v,t

t (·|u ∪ v)
∥∥

1 6
∑

(s,a)∈u∪v

Nt(s, a)
nt(u) + nt(v)

∑
x∈S

∣∣∣p(σs,a(x)|x)− p̂t(σs,a,t(x)|s, a)
∣∣∣

=
∑

(s,a)∈u∪v

Nt(s, a)
nt(u) + nt(v)

∥∥p̂t(σs,a,t(·)|s, a)− p(σs,a(·)|s, a)
∥∥

1

6
∑

(s,a)∈u∪v

Nt(s, a)
nt(u) + nt(v)

∥∥p̂t(·|s, a)− p(·|s, a)
∥∥

1 .

4

Supplementary Material for Model-Based RL Exploiting State-Action Equivalence

Hence, when E occurs,
∥∥pσu∪v(·|u ∪ v)− p̂σu∪v,t

t (·|u ∪ v)
∥∥

1 6 εu∪v,t, so that∥∥p̂t(σ`,t(·)|`)− p̂σu∪v,t
t (·|u ∪ v)

∥∥
1 6 d({`}, u ∪ v) + βNt(`)

(
δ
SA

)
+ εu∪v,t .

We are now ready to prove the proposition.

Proof (of Proposition 13) Fix t > 1, and consider α→∞ (the choice α > t
max{1,f−1(∆)}

suffices). Assume that mins,aNt(s, a) > f−1(∆), and that E holds. By Lemma 1, we have
that at any round of the algorithm, the set of PAC Neighbors of a given v ∈ S×A maintained
by the algorithm contains some u ∈ S ×A belonging to the same class as v.

We prove the theorem by induction. First we show that the best case holds, that is in the
first iteration of the algorithm, (i) the algorithm avoids grouping state-action pairs belonging
to different classes; and (ii) the algorithm groups all the pairs in the same class. Initially,
all the classes are singletons. So in the first iteration, the algorithm starts with the classes
sorted according to a non-increasing order of number of samples, and then iteratively merges
each class with its PAC Nearest Neighbor (see Definition 10). Recall that for a partition C,
Near(c, C) denotes the PAC Nearest Neighbor of C: Near(c, C) ∈ argminx∈N (c) d̂(c, x). In the
first round the algorithm, if i, j ∈ S ×A are combined, then d̂({i}, {j}) 6 0. In view of the
definition of d̂(·, ·), we deduce that∥∥p̂t(σi,t(·)|i)− p̂t(σj,t(·)|j)∥∥1 − βNt(i)

(
δ
SA

)
− βNt(j)

(
δ
SA

)
6 0 . (2)

In order to show that the algorithm makes no mistake, we need to show that d({i}, {j}) =
0. We have

d({i}, {j}) = ‖p(σi(·)|i)− p(σj(·)|j)‖1
6 ‖p(σi(·)|i)− p̂t(σi(·)|i)‖1 + ‖p(σj(·)|j)− p̂t(σj,t(·)|j)‖1 + ‖p̂t(σi,t(·)|i)− p̂t(σj,t(·)|j)‖1
6 ‖p(σi(·)|i)− p̂t(σi(·)|i)‖1 + ‖p(σj(·)|j)− p̂t(σj(·)|j)‖1 + ‖p̂t(σi,t(·)|i)− p̂t(σj,t(·)|j)‖1
= ‖p(·|i)− p̂t(·|i)‖1 + ‖p(·|j)− p̂t(·|j)‖1 + ‖p̂t(σi,t(·)|i)− p̂t(σj,t(·)|j)‖1 ,

where the first inequality follows from the sub-additivity of the norm function, and the
second follows from Lemma 7. Hence, under the event E , it holds that

d({i}, {j}) 6 βNt(i)
(
δ
SA

)
+ βNt(j)

(
δ
SA

)
+ ‖p̂t(σi,t(·)|i)− p̂t(σj,t(·)|j)‖1 .

Combining this with (2), we have under E ,

d({i}, {j}) 6 2βNt(i)
(
δ
SA

)
+ 2βNt(j)

(
δ
SA

)
.

In view of the assumption mins,aNt(s, a) > f−1(∆), and noting that d({i}, {j}) > ∆, we
deduce that d({i}, {j}) 6 0, so that the base case holds.

Now assume that at the end of iteration m, the algorithm outputs a valid partition under
E , namely, it does not wrongly group pairs coming from different classes. We would like
to show that the partition obtained in iteration m+ 1 is valid, too. To this end, consider

5

Asadi et al.

u, v ∈ Cm that are merged by the algorithm in round m + 1, so that u ∪ v ∈ Cm+1. First
note that by Lemma 1, for any v ∈ Cm, there exists u′ ∈ N (v) with d(u′, v) = 0. We need to
show that d(u, v) = 0. By construction, u = Near(v, Cm), and so the following inequalities
hold: ∥∥p̂σu,t

t (·|u)− p̂σv,t
t (·|v)

∥∥
1 − εu,t − εv,t 6 0 ;∥∥p̂t(σi,t(·)|i)− p̂t(σj,t(·)|j)∥∥1 − βNt(i)

(
δ
SA

)
− βNt(j)

(
δ
SA

)
6 0 , ∀i ∈ u,∀j ∈ v;∥∥p̂t(σ`,t(·)|`)− p̂σu∪v,t

t (·|u ∪ v)
∥∥

1 − βNt(`)
(
δ
SA

)
− εu∪v,t 6 0 , ∀` ∈ u ∪ v.

Using similar steps as in the proof of Lemma 1, it follows that

d(u, v) 6 ‖pσu(·|u)− p̂σu,t
t (·|u)‖1 + ‖pσv(·|v)− p̂σv,t

t (·|v)‖1 + ‖p̂σu,t
t (·)|u)− p̂σv,t

t (·|v)‖1 .

Using (1) in the proof of Lemma 1, we arrive at

d(u, v) 6 εu,t + εv,t +
∥∥p̂σu,t
t (·|u)− p̂σv,t

t (·|v)
∥∥

1

6 2εu,t + 2εv,t < 4βf−1(∆)
(
δ
SA

)
.

We thus deduce that d(u, v) = 0, which concludes the proof. �

Appendix D. Regret Analysis of C-UCRL(C, σ): Proof of Theorem 13

In this section, we prove Theorem 13, which provides an upper bound on the regret of
C-UCRL(C,σ). We provide the proof for the case when the reward function is unknown to the
learner too. Our proof follows similar lines as in the proof of (Jaksch et al., 2010, Theorem 2).
We first provide the following time-uniform concentration inequality to control a bounded
martingale difference sequence, which follows from time-uniform Laplace concentration
inequality:

Lemma 2 (Time-uniform Azuma-Hoeffding) Let (Xt)t>1 be a martingale difference
sequence bounded by b for some b > 0 (that is, |Xt| 6 b for all t). Then, for all δ ∈ (0, 1),

P
(
∃T ∈ N :

T∑
t=1

Xt > b
√

2(T + 1) log
(√
T + 1/δ

))
6 δ .

Proof (of Theorem 1) Let δ ∈ (0, 1). To simplify notations, we define the short-hand
Jk := Jtk for various random variables that are fixed within a given episode k (for example
Mk := Mtk). Denote by m(T) the number of episodes initiated by the algorithm up to
time T . An application of Lemma 2 yields:

R(T) =
T∑
t=1

g? −
T∑
t=1

rt(st, at) 6
∑
s,a

Nm(T)(s, a)(g? − µ(s, a)) +
√

1
2(T + 1) log(

√
T + 1/δ) ,

with probability at least 1− δ. We have

∑
s,a

Nm(T)(s, a)(g? − µ(s, a)) =
m(T)∑
k=1

∑
s,a

tk+1∑
t=tk+1

I{st = s, at = a}
(
g? − µ(s, a)

)

=
m(T)∑
k=1

∑
s,a

νk(s, a)
(
g? − µ(s, a)

)
.

6

Supplementary Material for Model-Based RL Exploiting State-Action Equivalence

Defining νk(c) :=
∑
s,a νk(s, a) for c ∈ C, we further obtain

∑
s,a

Nm(T)(s, a)(g? − µ(s, a)) =
m(T)∑
k=1

∑
c∈C

νk(c)
(
g? − µ(c)

)
,

where we have used that µ(s, a) has constant value µ(c) for all (s, a) ∈ c. For 1 6 k 6 m(T),
we define the regret of episode k as ∆k =

∑
c∈C νk(c)

(
g? − µ(c)

)
. Hence, with probability at

least 1− δ,

R(T) 6
m(T)∑
k=1

∆k +
√

1
2(T + 1) log(

√
T + 1/δ) .

We say an episode is good if M ∈Mk (that is, the setMk of plausible MDPs contains the
true model), and bad otherwise.

Control of the regret due to bad episodes (M /∈ Mk). Due to using time-uniform
instead of time-instantaneous confidence bounds, we can show that with high probability,
all episodes are good for T ∈ N. More precisely, with probability higher than 1− 2δ, for all
T , bad episodes do not contribute to the regret:

m(T)∑
k=1

∆kI{M /∈Mk} = 0 .

Control of the regret due to good episodes (M ∈ Mk). We closely follow (Jaksch
et al., 2010) and decompose the regret to control the transition and reward functions. At a
high level, we make two major modifications as follows. (i) We use the time-uniform bound
stated in Lemma 2 to control the martingale difference sequence that appears; and (ii) as the
stopping criterion of C-UCRL(C,σ) slightly differs from that of UCRL2, we use the following
lemma to control the number m(T) of episodes:

Lemma 3 (Number of episodes) The number m(T) of episodes of C-UCRL(C,σ) up to
time T > C is upper bounded by:

m(T) 6 C log2(8T
C) .

Consider a good episode k (hence, M ∈Mk). The EVI algorithm outputs a policy π+
k

and M̃k satisfying gM̃k

π+
k

> g? − 1√
tk
. Let us define gk := gM̃k

π+
k

. It then follows that

∆k =
∑
c∈C

νk(c)
(
g? − µ(c)

)
6
∑
c∈C

νk(c)
(
gk − µ(c)

)
+
∑
c∈C

νk(c)√
tk

. (3)

Using the same argument as in the proof of (Jaksch et al., 2010, Theorem 2), the value
function u(i)

k computed by EVI at the last iteration i satisfies: maxs u(i)
k (s)−mins u(i)

k (s)6D.
Moreover, the convergence criterion of EVI implies

|u(i+1)
k (s)− u(i)

k (s)− gk| 6
1√
tk
, ∀s ∈ S . (4)

7

Asadi et al.

By the design of EVI, we have u(i+1)
k (s) = µ̃k(s, π+

k (s)) +
∑
x p̃k(x|s, π+

k (s))u(i)
k (x) .

Substituting this into (4) gives∣∣∣(gk − µ̃k(s, π+
k (s))

)
−
(∑

x

p̃k(x|s, π+
k (s))u(i)

k (x)− u(i)
k (s)

)∣∣∣ 6 1√
tk
, ∀s ∈ S .

Defining gk = gk1, µ̃k :=
(
µ̃k(s, π+

k (s))
)
s∈S , P̃k :=

(
p̃k(x|s, π+

k (s))
)
s,x∈S , and νk :=(

νk
(
s, π+

k (s))s∈S , we can rewrite the above inequality as:∣∣∣gk − µ̃k − (P̃k − I)u(i)
k

∣∣∣ 6 1√
tk

1 .

Combining this with (3) yields

∆k 6
∑
s,a

νk(s, a)
(
gk − µ(s, a)

)
+
∑
s,a

νk(s, a)√
tk

=
∑
s,a

νk(s, a)
(
gk − µ̃k(s, a)

)
+
∑
s,a

νk(s, a)
(
µ̃k(s, a)− µ(s, a)

)
+
∑
s,a

νk(s, a)√
tk

6 νk(P̃k − I)u(i)
k +

∑
s,a

νk(s, a)
(
µ̃k(s, a)− µ(s, a)

)
+ 2

∑
s,a

νk(s, a)√
tk

.

Similarly to (Jaksch et al., 2010), we define wk(s) := u
(i)
k (s)− 1

2(mins u(i)
k (s) + maxs u(i)

k (s))
for all s ∈ S. Then, in view of the fact that P̃k is row-stochastic, we obtain

∆k 6 νk(P̃k − I)wk +
∑
s,a

νk(s, a)
(
µ̃k(s, a)− µ(s, a)

)
+ 2

∑
s,a

νk(s, a)√
tk

. (5)

The second term in the right-hand side can be upper bounded as follows. Fix pair (s, a) and
let cs,a denote the cluster to which (s, a) belongs. The fact M ∈Mk implies

µ̃k(s, a)− µ(s, a) 6 |µ̃k(s, a)− µ̂k(s, a)|+ |µ̂k(s, a)− µ(s, a)| 6 2β′nk(cs,a)(δC)

= 2
√

1
2nk(cs,a)

(
1+ 1

nk(cs,a)
)

log
(
C
√
nk(cs,a)+1/δ

)
6 2

√
1

nk(cs,a)
log

(
C
√
T + 1/δ

)
,

where we have used 1 6 nk(cs,a) 6 T in the last inequality. Using this bound and noting
that tk > nk(c), we obtain

∆k 6 νk(P̃k − I)wk + 2
(√

log
(
C
√
T + 1/δ

)
+ 1

)∑
c∈C

νk(c)√
nk(c)

. (6)

In what follows, we derive an upper bound on νk(P̃k − I)wk. Similarly to (Jaksch et al.,
2010), we consider the following decomposition:

νk(P̃k − I)wk = νk(P̃k −Pk)wk︸ ︷︷ ︸
L1(k)

+ νk(Pk − I)wk︸ ︷︷ ︸
L2(k)

.

8

Supplementary Material for Model-Based RL Exploiting State-Action Equivalence

Noting that ‖wk‖∞ 6 D
2 , we upper bound L1(k) as follows:

L1(k) 6
∑
s,a

νk(s, a)
(
p̃k(s′|s, a)− p(s′|s, a)

)
wk(s′)

6
∑
s,a

νk(s, a)‖p̃k(·|s, a)− p(·|s, a)‖1‖wk‖∞

6 D
∑
s,a

νk(s, a)βnk(cs,a)(δC)

= D
∑
c∈C

νk(c)βnk(c)(δC)

6 2D
√

log
(
C2S
√
T + 1/δ

)∑
c∈C

νk(c)√
nk(c)

. (7)

To upper bound L2(k), similarly to the proof of (Jaksch et al., 2010, Theorem 2), we
define the sequence (Xt)t>1, with Xt := (p(·|st, at)− est+1)wktI{M ∈Mkt}, for all t, where
kt denotes the episode containing step t. Note that E[Xt|s1, a1, . . . , st, at] = 0, so (Xt)t>1
is martingale difference sequence. Furthermore, |Xt| 6 D: Indeed, for all t, by the Hölder
inequality,

|Xt| 6 ‖p(·|st, at)− est+1‖1‖wk(t)‖∞ 6
(
‖p(·|st, at)‖1 + ‖est+1‖1

)D
2 = D .

Using similar steps as in (Jaksch et al., 2010), for any k with M ∈Mk, we have that:

L2(k) 6
tk+1−1∑
t=tk

Xt +D ,

so that
∑m(T)
k=1 L2(k) 6

∑T
t=1Xt + m(T)D. Therefore, by Lemma 2, we deduce that with

probability at least 1− δ,
m(T)∑
k=1

L2(k) 6 D
√

2(T + 1) log(
√
T + 1/δ) +m(T)D

6 D
√

2(T + 1) log(
√
T + 1/δ) +DC log2(8T

C) , (8)

where the last step follows from Lemma 3.

Final control. Combing (6)–(8) and summing over all episodes give:
m(T)∑
k=1

∆kI{M ∈Mk} 6
m(T)∑
k=1

L1(k) +
m(T)∑
k=1

L2(k) + 2
(√

log
(
C
√
T + 1/δ

)
+ 1

)m(T)∑
k=1

∑
c∈C

νk(c)√
nk(c)

6 2
(
D
√

log
(
C2S
√
T + 1/δ

)
+
√

log
(
C
√
T + 1/δ

)
+ 1

)m(T)∑
k=1

∑
c∈C

νk(c)√
nk(c)

+D
√

2(T + 1) log
(√
T + 1/δ

)
+DC log2(8T

C) , (9)

with probability at least 1− δ. To upper bound the right-hand side, we recall the following
lemma:

9

Asadi et al.

Lemma 4 ((Jaksch et al., 2010, Lemma 19)) For any sequence of numbers z1, z2, . . . , zn
with 0 6 zk 6 Zk−1 := max{1,

∑k−1
i=1 zi},
n∑
k=1

zk√
Zk−1

6
(√

2 + 1
)√

Zn .

Note that nk(c) =
∑
k′<k νk′(c). Hence, applying Lemma 4 gives

∑
c∈C

m(T)∑
k=1

νk(c)√
nk(c)

6
∑
c∈C

(√
2 + 1

)√
nm(T)(c) ≤

(√
2 + 1

)√
CT ,

where the last step follows from Jensen’s inequality and
∑
c nm(T)(c) = T . Therefore,

m(T)∑
k=1

∆kI{M ∈Mk} 6 D
√

2(T + 1) log
(√
T + 1/δ

)
+DC log2(8T

C)

+ 2
(√

2 + 1
)(
D
√

log
(
C2S
√
T + 1/δ

)
+
√

log
(
C
√
T + 1/δ

)
+ 1

)√
CT ,

with probability of at least 1 − δ. Finally, the regret of C-UCRL(C, σ) is controlled on an
event of probability higher than 1− 2δ − δ − δ, uniformly over all T , by

R(T) 6 2
(√

2 + 1
)(
D
√

log
(
C2S
√
T + 1/δ

)
+
√

log
(
C
√
T + 1/δ

)
+ 1

)√
CT

+D
√

2(T + 1) log
(√
T + 1/δ

)
+DC log2(8T

C) +
√

1
2(T + 1) log

(√
T + 1/δ

)
6 18

√
CT

(
S + log(C

√
T + 1/δ)

)
+DC log2(8T

C) ,

thus completing the proof. We finally note that when the mean reward function is known,
as in the main text, the above bound holds with a probability higher than 1− 3δ.

D.1. Proof of Lemma 3

The proof uses similar steps as in the proof of Proposition 18 in (Jaksch et al., 2010).
Recall that given c, NT (c) and νk(c) := νtk(c) denote as the total number of state-action

observations, up to step T and in episode k, respectively. For any c, let K(c) denote the
number of episodes where a state-action pair from c is sampled: K(c) =

∑m(T)
k=1 I{νk(c) > 0}.

It is worth mentioning that if nk(c) > 0 and νk(c) = nk(c), by the design of the algorithm,
nk+1(c) = 2nk(c). Hence,

nm(T)(c) =
m(T)∑
k=1

νk(c) > 1 +
∑

k:νk(c)=nk(c)
nk(c) > 1 +

K(c)∑
i=1

2i−1 = 2K(c) .

If nm(T)(c) = 0, then K(c) = 0, so that nm(T)(c) > 2K(c) − 1 for all c. Thus,

T =
∑
c∈C

nm(T)(c) >
∑
c∈C

(
2K(c) − 1

)

10

Supplementary Material for Model-Based RL Exploiting State-Action Equivalence

On the other hand, an episode has happened when either nk(c) = 0 or nk(c) = νk(c).
Therefore, m(T) 6 1 +C+

∑
c∈CK(c) and consequently,

∑
c∈CK(c) > m(T)−1−C. Hence,

by Jensen’s inequality, we obtain∑
c∈C

2K(c) > C2
∑

c∈C
K(c)
C > C2

m(T)−1
C

−1 .

Putting together, we obtain T > C
(
2
m(T)−1

C
−1 − 1

)
. Therefore,

m(T) 6 1 + 2C + C log2(TC) 6 3C + C log2(TC) 6 C log2(8T
C) ,

thus concluding the proof. �

Appendix E. Environments Used in Numerical Experiments

In this section, we provide further details for the environments used in numerical experiments
in Section 5.

E.1. RiverSwim and Ergodic RiverSwim

In the first set of experiments, we examined the performance of various algorithms in
RiverSwim environments. Figures 2 and 1 respectively display the L-state RiverSwim and
ergodic RiverSwim environments.

sLsL−1

0.95
(r = 1)0.6

0.35

1

0.1

0.35

0.05

0.9

0.1

0.05
s1

0.10.4

0.6

0.05
0.9

0.6

0.9
(r = 0.05)

s2

0.1

0.35

0.05
0.9

s3

0.6 0.1

0.35

0.05
0.9

Figure 1: The L-state Ergodic RiverSwim MDP

sLsL−1

0.95
(r = 1)0.55

0.4

1

0.4

0.05

1
0.05

s1

0.6

0.4

0.05
1

0.55

1
(r = 0.05)

s2
0.4

0.05
1

s3

0.55

0.4

0.05
1

Figure 2: The L-state RiverSwim MDP

E.2. Grid-World

We conducted our last set of experiments in a 7× 7 grid-world environment shown in Figure
3, which we refer to as the 4-room grid-world. This MDP comprises 20 states (S = 20). In

11

Asadi et al.

this environment, the initial state is the upper-left corner (shown in red). When the learner
reaches the lower-right corner (shown in yellow), a reward of 1 is given, and the learner
is sent back to the initial state. The learner can perform four actions (A = 4): Going up,
left, down, or right. After playing a given action, the learner stays in the same state with
probability 0.1, moves to the desired direction with probability 0.7 (for example, to the left,
if the learner chooses to ‘go left’), and moves to other possible directions with probability
0.2. Walls act as reflectors: When the next state is a wall, the transition probability of it is
added to that of the current state.

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Figure 3: The 4-room grid-world MDP

Appendix F. Other Examples of MDPs

In this section, we examine the notion of similarity presented in Definition 1 on some
grid-world environments.

For this purpose, we consider grid-world MDPs. The action-space is {u, d, l, r}. Playing
action a = u moves the current state ‘up’ with probability 0.8, does not change the current
state with probability 0.1, and moves left or right with the same probability 0.05. Walls act
as reflectors: When the next state is a wall, the transition probability of it is added to that
of the current state. Other actions are defined in a similar way. Finally, the goal-state is put
in the bottom-right corner of the MDP, where the learner is given a reward of 1.

Below, we show four examples of grid-world environments defined according to the above
scheme, with different numbers of state-action pairs. The number of state-action pairs in
the introduced 4-room and 2-room MDPs changes as the grid size grows, while keeping the
number of classes almost fixed:

grid-world Figure 4 Figure 5 Figure 6 Figure 7
SA 84 800 736 ∼ 104

C 6 6 7 7

12

Supplementary Material for Model-Based RL Exploiting State-Action Equivalence

Environment States 5× 5 7× 7 9× 9 100× 100
4-Room SA 100 196 324 4× 104

4-Room C 3 3 3 3
2-Room SA 100 196 324 4× 104

2-Room C 4 4 4 4

We stress that other notions of similarity from the RL literature do not scale well. For
instance, in (Ortner, 2013), a partition S1, . . .Sn of the state-space S is considered to define
an aggregated MDP, which satisfies: For all i ∈ {1, . . . , n},

∀s, s′ ∈ Si, ∀a ∈ A, µ(s, a) = µ(s′, a) ,
∀j,

∑
s′′∈Sj p(s

′′|s, a) =
∑
s′′∈Sj p(s

′′|s′, a) .

This readily prevents any two states s, s′ such that p(·|s, a) and p(·|s′, a) have disjoint
supports from being in the same set Si. Thus, since in a grid-world MDP, where transitions
are local, the number of pairs with disjoint support is (almost linearly) increasing with
S, this implies a potentially large number of classes for grid-worlds with many states. A
similar criticism can be formulated for (Anand et al., 2015), even though it considers sets of
state-action pairs instead of states only, thus slightly reducing the total number of classes.

Figure 4: Left: Two-room grid-world (left) with walls in black, and goal state in yellow.
Right: equivalence classes for state-action pairs (one color per class).

13

Asadi et al.

Figure 5: Left: Four-room grid-world (left) with walls in black, and goal state in yellow.
Right: equivalence classes for state-action pairs (one color per class).

Figure 6: Left: A more complex grid-world (left) with walls in black, and goal state in
yellow. Right: equivalence classes for state-action pairs (one color per class).

14

Supplementary Material for Model-Based RL Exploiting State-Action Equivalence

Figure 7: Left: A more complex grid-world (left) with walls in black, and goal state in
yellow. Right: equivalence classes for state-action pairs (one color per class).

References

A. Anand, A. Grover, Mausam, and P. Singla. ASAP-UCT: Abstraction of state-action
pairs in UCT. In Proc. of IJCAI, pages 1509–1515, 2015.

T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning.
JMLR, 11:1563–1600, 2010.

R. Ortner. Adaptive aggregation for reinforcement learning in average reward Markov
decision processes. Annals of Operations Research, 208(1):321–336, 2013.

15

	Pseudo-Codes of UCRL2 and C-UCRL
	Proof of Lemma 7
	Proof of Proposition 13
	Regret Analysis of C-UCRL(C,): Proof of Theorem 13
	Proof of Lemma 3

	Environments Used in Numerical Experiments
	RiverSwim and Ergodic RiverSwim
	Grid-World

	Other Examples of MDPs

