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Abstract 

Mutations in the polycystins PC1 or PC2 cause autosomal dominant polycystic kidney disease 
(ADPKD), which is characterized by the formation of fluid-filled renal cysts that disrupt renal 
architecture and function, ultimately leading to kidney failure in the majority of patients. Although 
the genetic basis of ADPKD is now well established, the physiological function of polycystins remains 
obscure and a matter of intense debate. The structural determination of both the homomeric PC2 
and heteromeric PC1–PC2 complexes, as well as the electrophysiological characterization of PC2 in 
the primary cilium of renal epithelial cells, provided new valuable insights into the mechanisms of 
ADPKD pathogenesis. Current findings indicate that PC2 can function independently of PC1 in the 
primary cilium of renal collecting duct epithelial cells to form a channel that is mainly permeant to 
monovalent cations and is activated by both membrane depolarization and an increase in intraciliary 
calcium. In addition, PC2 functions as a calcium-activated calcium release channel at the endoplasmic 
reticulum membrane. Structural studies indicate that the heteromeric PC1–PC2 complex comprises 
one PC1 and three PC2 channel subunits. Surprisingly, several positively-charged residues from PC1 
occlude the ionic pore of the PC1–PC2 complex, suggesting that pathogenic polycystin mutations 
might cause ADPKD independently of an effect on channel permeation. Emerging reports of novel 
structural and functional findings on polycystins will continue to elucidate the molecular basis of 
ADPKD.  

 

Main text 

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common human 

monogenic diseases, with a prevalence of about 1 in 1000 1,2. This multi-system inherited disorder is 

characterized by the progressive development of fluid-filled cysts in the kidney, liver and pancreas, 

and is associated with hypertension, kidney failure and brain aneurysms 3,4. Mutations that cause 

ADPKD occur on PKD1 and PKD2, which encode polycystin 1 (PC1; also known as PKD1) and 

polycystin 2 (PC2; also known as PKD2 or TRPP2), respectively 5,6. Mutations in PKHD1, which 

encodes fibrocystin (also known as polyductin), cause the autosomal recessive form of the disease 

(ARPKD) 7. One study proposed that the carboxy-terminal domain of fibrocystin binds to the 

intracellular amino terminus of PC2 and that loss of fibrocystin results in reduced PC2 expression8; 

however, another study did not confirm this interaction between fibrocystin and PC2 8,9. Additional 

reported partners for PC2 include other ion channel subunits such as the transient receptor potential 

(TRP) channels TRPV4 and TRPC1, and the Piezo1 mechanosensitive ion channel 10-15.  
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Genetically, ADPKD is autosomal dominant as the mutations associated with the disease are 

heterozygous. However, at the cellular level, cyst formation requires a second somatic mutation in 

the normal allele that results in either reduced expression or inactivation of the wild-type gene 16-18; 

these pathogenic mutations affect intracellular calcium homeostasis, as well as numerous additional 

signaling pathways 19. Notably, in ADPKD, low cytosolic calcium concentration is associated with 

enhanced cAMP levels, due to calcium-dependent regulation of adenylate cyclase and 

phosphodiesterases, which are responsible for the synthesis and degradation of cAMP, respectively. 

The rise in intracellular cAMP promotes the proliferation of tubular epithelial cell and cystic fibrosis 

transmembrane conductance regulator (CFTR)-mediated fluid secretion 20-22.  

The genetic basis of ADPKD is well known, including the identity of the mutated genes and 

mutational mechanisms, but the biological function of polycystins remains poorly understood. Initial 

reports indicated that PC1 and PC2 combine to form a calcium-permeable channel at the plasma 

membrane 23,24. However, subsequent studies in which PC1 expression was targeted with small 

interfering RNAs (siRNAs) or through a conditional knockout of PKD1 challenged this assertion 25,26. 

Instead, those data suggested that PC2 can function independently of PC1 as a cationic channel with 

low calcium permeability; this function seems to be restricted to the primary cilium [G] and is not 

observed in other areas of the plasma membrane. Moreover, some reports indicated that PC1–PC2 

complexes in the primary cilium of both renal tubular epithelial cells and endothelial cells are 

responsible for sensing shear stress 27-29, whereas subsequent findings showed that primary cilia are 

not calcium-responsive mechanosensors 30.  

The resolution of the atomic structure of both PC1 and PC2 addressed a major gap in the 

field and provided valuable new insights into the permeation [G] and gating mechanism [G] of the 

PC2 cationic channel; surprisingly, it also revealed a pore blocking function for PC1 31-35. In this 

Review, we describe the most recent structural and functional findings about polycystins and 

tentatively reconcile some of the earlier controversies in the field. 

[H1] Pre-structural studies of polycystins  

Mutations in PKD1 or PKD2 produce a similar cystic phenotype, suggesting that both proteins 

might function in the same pathway and/or complex 1,36,37. Indeed, PC1 interacts with PC2 through 

coiled-coil domains [G] within the cytosolic carboxy-terminal domains 38. It was initially reported that 

co-assembly of PC1 and PC2 resulted in a non-selective [G] cation-permeable current at the plasma 

membrane when overexpressed in transfected Chinese hamster ovary (CHO) cells, whereas neither 

PC1 nor PC2 alone could produce a current 23. In the absence of PC1, PC2 was retained in the 

endoplasmic reticulum (ER) and only translocated to the plasma membrane when co-expressed with 
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PC1 23; PC2 contains a C-terminal ER retention motif 39. One of the disease-causing mutated forms of 

PKD1, R4227X, encodes a truncated PC1 protein that lacks the last 76 amino acids, which include the 

coiled-coil domain. Notably, co-expression of this mutated isoform of PC1, which cannot interact 

with PC2, did not result in a measurable current 23. Similarly, co-expression of full-length PC1 with 

PC2 742X, a pathogenic mutated isoform of PC2 that lacks the last 227 amino acids, including the 

coiled-coil domain, did not yield a measurable current 23. PC1 was thus proposed to interact with PC2 

and enable its trafficking to the plasma membrane where it established a non-selective cation-

permeable current 23. These findings were elegantly confirmed in rat sympathetic neurons, in which 

exogenous co-assembly of PC1 with PC2 was shown to form a functional ion channel complex at the 

plasma membrane 24. This study also suggested that PC2 activation might result from a 

conformational change in PC1, as induced by an activating antibody raised against the extracellular 

domains of PC1 24.  

These seminal reports put forward the notion that PC1 controls both the trafficking and the 

gating of PC2, and that pathogenic mutations in either subunit impair calcium-dependent signalling 

in renal tubular epithelial cells, as well as in other cell types affected by ADPKD, which include arterial 

smooth muscle cells 23,24,40. Consequently, prior to the structural determination of polycystins, the 

dogmatic view was that PC1 acts as an obligatory positive regulator of PC2 23,24. Surprisingly, 

structural studies suggest an intriguing alternative hypothesis in which PC1 blocks cation permeation 

through the heteromeric PC1–PC2 complex 33.  

[H1] Atomic structure of homomeric PC2  

PC2, which is found at the membrane of the primary cilium and at the ER, belongs to the TRP 

ion channel family 41 (FIG. 1b); its structure was first solved by cryogenic-electron microscopy (cryo-

EM) at a resolution of 3Å in lipid nanodiscs [G] (BOX 1) 31,32,34. PC2 forms a homotetramer and each 

subunit contains a pore domain, composed of two pore helices (PH1 and PH2) and a selectivity filter 

[G], as well as a voltage sensor [G] -like domain (VSD) that is formed by S1–S4 (FIG.1b and 1d).  

 

[H2] The selectivity filter 

Alignment of the PC2 protein sequence with that of other TRP channel subunits suggests the 

presence of a selectivity filter between S5 and S6 (FIG. 1b) 31,32,34. The external part of the pore is 

enriched in negative charges and probably acts as a cation sink [G] 31; in addition, the pore is 

constricted within the selectivity filter between amino acids Leu641-Gly642-Asp643 (FIGs. 1d and 2), 

which narrows the ionic pathway so that only dehydrated cations can move through the pore 31. 
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Within the homotetramer, the negatively-charged Asp643 residues point to the center of the pore, 

presumably interacting with cations, while repulsing anions (FIG. 1e) 31. The Leu-Gly-Asp sequence 

found in the PC2 selectivity filter is also present in PC2-like 1 protein, a PC2 homologue (71% 

sequence similarity) encoded by PKD2L1 that is responsible for sour taste sensing and other pH-

dependent processes that occur at the primary cilium 42,43. Since, unlike PC2, transfected PC2-like 1 

protein is active at the plasma membrane, chimeric constructs that combined the pore domain of 

PC2 (Glu631-Pro658) with the core domain of PC2-like 1 protein have been used to evaluate the ionic 

selectivity of PC2 31. The data obtained from these constructs indicated that PC2 is mainly a sodium 

and potassium conducting channel (Px:PNa+ permeability ratio = 2.2 K+; 1 Na+; 0.5 Ca2+) 31. 

[H2] Calcium binding sites 

The structural analysis of full length PC2 in complex with calcium and lipids revealed two 

distinct channel states 34. The structure with a larger pore radius of 1.7 Å presented a single cation 

located below the selectivity filter between Leu641 and Phe669, whereas the alternative structure 

with a smaller pore radius of 1.4 Å (compared to the close state with a pore radius of 1.0 Å)  

contained five cation binding sites along the conduction pathway [G] (presumably a calcium-blocked 

state), interacting with Asp643 in the selectivity filter, three other sites between Leu641 and Phe669 

and finally a fifth binding site at the channel exit, involving Asn681 and Ser685 34. These structural 

data support electrophysiological studies indicating that PC2 permeation to monovalent cations is 

blocked by extracellular calcium, presumably through binding of calcium to Asp643 within the 

selectivity filter 25,26,34.  

The cytosolic carboxy-terminal EF hand motif (FIG. 1b) [G], upsteam of the coiled coil 

domain, constitute a key regulatory domain that controls the activation of PC2 by intracellular 

calcium 25,26,34,39,44-46. The high-resolution structure of the EH-hand domain of human PC2 was 

determined using NMR spectroscopy 47-49. The PC2 region 717-792 was shown to bind with a low 

affinity (122 M) a single calcium ion and this binding was abolished when glutamate 774 was 

mutated in glutamine 47. Therefore, whereas calcium binding to the cytosolic C-terminal EF hand 

motif results in the activation of PC2, extracellular calcium binding to Asp643  blocks permeation of 

monovalent cations 25,26,31,39,49.  

[H2] The polycystin domain 

PC2 contains a large extracellular domain (~200 amino acids long), termed the polycystin 

domain (PCD), which is also present in PC1 and PC2-like 1 protein (FIGs. 1b and 1d). The PCD, found 

between S1 and S2 and extending 35 Å above the membrane, is involved in the assembly of the ion 

channel subunits and might have a role in the regulation of channel gating 31-34 (FIGs. 1b, 1d and 3b). 
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The importance of PCDs is highlighted by the clinical data demonstrating that this region is a hot spot 

for pathogenic mutations (FIGs. 1d)31-34; moreover, PCD glycosylation is important for both the 

stability and trafficking of PC2 50. The PCD interacts with the pore of the adjacent subunit and the 

VSD of its own subunit 31-34. Below the PCD and on top the selectivity filter, a large upper vestibule of 

highly negatively-charged amino acids is accessible from the extracellular side through an apical 

opening and four lateral portals 34; lipids also bind to this interfacial region. One possibility is that the 

selectivity filter is blocked when the amphipathic [G] funnels below the PCD are filled with water 34 

(FIG. 3a). By contrast, interactions between lipids in the VSD and the PCD might enhance the 

permeation and/or activation of the channel by preventing water from accumulating in the lateral 

funnel, thus allowing the conduction of dehydrated cations through the selectivity filter 34 (FIG. 3b). 

This model suggests that changes in the conformation of the PCD might contribute to channel 

activation 34, in which case, the PCD might act as a lid on top of the channel and regulate channel 

activation in response to physical and/or chemical stimuli 31 (FIG. 3b).  

 [H2] The voltage sensing domain 

The S4 of the PC2 VSD only contains 2 of the 4 positive charges that are usually found in 

voltage-gated channels (FIG. 3c). Of note, these positive charges are facing Asp511 in S3, which is a 

frequent site of missense pathogenic mutations in patients with ADPKD. An alternative model to the 

aforementioned model of PCD-regulated activation of PC2 34 is that PC2 gating is controlled by 

conformational changes within the VSD (that is, segments S1-S4)43 (FIG. 3c). In this model, the PCD 

would remain mostly static upon membrane depolarization, whereas the positively charged voltage 

sensing domain S4 would be predicted to undergo a clockwise twist of about 4° together with an 

outward movement of about 4 Å (FIG. 3c). Such a conformational change in the VSD is anticipated to 

result in an iris-like opening of the lower end of S6, where the hydrophobic gate [G] (Leu677) that 

keeps the ionic pore closed is located 43 (FIGs. 3a and 3c). The last nine residues of S4 (Ile571-Phe579) 

form a 310 helical region (that is, 3 residues per turn) that might be involved in gating movements of 

the S4–S5 linker, which is coupled to S6 via a hydrogen bond between Gln585 and Lys688 31.  

[H2] The inner activation gate 

Before the publication of the structural studies, very limited information was available about 

the gating mechanisms of PC2 36,51. Leu677 at the cytoplasmic end of S6 forms a single residue 

hydrophobic barrier that is predicted to prevent ion permeation by repulsing water molecules at the 

cytoplasmic side of the channel 35 (FIG. 2a). Accordingly, the non-pathogenic Leu677Asn or 

Leu677Gly mutants of PC2, which were created by systematic site-directed mutagenesis replacing 

Leu677 with polar residues, greatly enhanced PC2 currents 35. Similarly, the Phe604Pro mutation, 
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another experimental mutation that is not reported in patients, results in constitutive activation of 

PC2, probably by bending S5 and pulling on the Leu677 hydrophobic gate 35,52 (FIGs. 2b and 3d). 

Similarly, the double experimental mutant Phe604Pro Leu677Gly caused very large PC2 currents 35. 

The S6 of PC2 is characterized by the presence of a  helix [G] at amino acids Met668-Phe-Phe-Ile-

Leu672, which possibly acts as a point of flexibility that causes the rotation of the Leu677 

hydrophobic gate so that it points away from the centre of the pore. In the Phe604Pro mutant, the 

inner pore diameter increases from 5 Å to 7.6 Å, allowing cation permeation 35 (FIGs. 2b and 3d). No 

major difference was found in the diameter of the selectivity filter between the closed channel and 

the constitutively open channel composed of Phe604Pro mutant subunits, indicating that the inner 

hydrophobic gate Leu677 alone might control the opening of PC2 35 (FIG. 2). However, the selectivity 

filter might still possibly act as a secondary gate 31. Interestingly, the gain-of-function mutants 

Phe604Pro and Leu677Gly rescued the cystic phenotypes induced by PKD2 knockdown in zebrafish 

more efficiently than wild-type PC2; this rescue effect was even more pronounced in the double 

mutant (Phe604Pro and Leu677Gly) 35. These in vivo findings provide further functional evidence that 

both Phe604Pro and Leu677Gly are gain-of-function mutations that open the PC2 channel.  

The structural studies of PC2 provide novel insights into the permeation, as well as the gating 

mechanisms of the PC2 ion channel. Currently no structure for PC1 alone is available and whether 

PC1 might form a biologically relevant multimer in the absence of PC2 is unknown. However, the 

reported structure of the PC1–PC2 heteromeric complex suggests an unexpected function for PC1 33. 

[H1] The heteromeric PC1–PC2 complex 

The structure of the PC1–PC2 complex was solved by cryo–EM at a 3.6 Å resolution 33 (BOX 

1). The N-terminal domain of PC1 (NTD), formed by TM1-TM5, lies on the side of the PC1 VSD and 

contains a PC1 lipoxygenase and α toxin (PLAT) domain that is located between TM1 and TM2 and 

faces the cytosol 33 (FIGs. 1a and 1c). The PLAT domain can be found in a variety of membrane-

associated or lipid-associated proteins, where it is involved in lipid binding and/or trafficking. Of 

note, the PC1 protein used for the structural studies of PC1–PC2 lacked the large cleavable 

extracellular N-terminal domain 53. 

The carboxy-terminal domain of the PC1 subunit is similar to that of PC2 and includes a VSD 

formed by S1 to S4, as well as a PCD between S1 and S2 (FIG. 1a-b). Importantly, sequences 

corresponding to the selectivity filter (SF) and the supporting pore helices (PH1 and PH2), as found in 

PC2, are absent in PC1 (FIG. 1c-d). However, a 29 amino acid long segment (4051-4080), within the 

predicted pore region, was not resolved in the PC1 structure 53. The heteromeric PC1–PC2 complex is 

composed of one PC1 and three PC2 subunits, as previously suggested by studies of single molecules 
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54 (FIG. 1e). Early studies indicated that PC1 and PC2 interact through their carboxy-terminal coiled-

coil domains 38. However, the PC1 construct used for the subsequent structural determination of the 

complex showed that heteromultimerization with PC2 was possible, even in the absence of the 

cytosolic coiled-coil domains 33. Similarly to the homotetrameric PC2 channel, the channel core of the 

PC1–PC2 heteromeric complex is formed by 24 transmembrane segments, but it also contains an 

additional 5 transmembrane segments from the amino-terminal domain of PC1, which renders the 

complex asymmetric (FIG. 1e). The four VSDs in the heteromeric complex show a pseudo four-fold 

symmetry, although the S6 of PC1 is bent in the middle of the helix (FIG. 1a and 1e). Strikingly, three 

positively-charged residues from the S6 – Arg4100, Arg4107 and His4111 –face the conduction 

pathway and are predicted to prevent cation permeation through the pore (FIG. 1e). These findings 

suggest that the heteromeric PC1–PC2 complex may be non-conductive and that PC1 could act as a 

dominant-negative subunit of the PC2 channel 33. 

Modeling PC1 in an “activated” state (based on the Phe604Pro PC2 structure), shows that at 

least one positively-charged residue remains in the conduction pathway (D.D., unpublished 

observations), suggesting that permeation through the complex might  be impaired, independently 

of PC1 activation. It will be interesting to study the co-expression of PC1 with PC2 Phe604Pro and/or 

Leu677Asn (constitutively open mutants forms of PC2) to functionally determine whether PC1 still 

inhibits opening of the activated PC2 channel.  

These findings contrast with previous functional data, which suggested that PC1 is required 

for the channel activity of PC2 at the plasma membrane 23,24. However, it remains possible that either 

direct or indirect binding of a specific ligand to the PC1–PC2 complex alters the conformation of PC1 

and opens the channel 24,55,56. Alternatively, auxiliary subunits that can complex with PC1 or PC2, such 

as other TRP channel subunits, might modify the structural properties of the complex and allow ion 

permeation through the heteromeric PC1–PC2 channel. Another possibility is that the absence of the 

coiled-coil domain in the construct used for structural determination might have favoured a 

heteromeric assembly between truncated PC1 and the PC2 subunits that is not physiologically 

relevant.  

These structural studies support the notion that PC1 might prevent cation permeation 

through the PC1–PC2 ion channel complex (FIG. 1e), which is rather unexpected as both PKD1 and 

PKD2 loss-of-function mutations cause ADPKD. The only difference is that the phenotype associated 

with PKD2 mutations is milder than that associated with PKD1 mutations and is characterized by a 

lower number of cysts in renal parenchyma, although the rates of cyst growth are identical 57. The 

difference in phenotype might be due to the difference in the size of both genes; the larger size of 

PKD1 might increase its probability of acquiring the required second hit mutation on the somatic 

allele 57.  
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In addition to ion permeation, the PC1–PC2 complex is also involved in regulation of the cell 

cycle, cell adhesion and intracellular signaling; disruption of any of these functions due to loss-of-

function mutations in PKD1 or PKD2 could potentially contribute to polycystic disease. Notably, and 

similarly to PC2, the PCD of PC1 33 (FIG. 1a-b) is a hot spot for pathogenic mutations 33 (FIG. 1c); the 

PC1 PLAT domain is another common site for pathogenic mutations 33 (FIG. 1c). Strikingly, pathogenic 

mutations in the pore domain of PC1 have not been described, further suggesting that the 

pathogenic mechanisms of polycystin mutations might be independent of channel permeation (FIG. 

1c). Clearly, further investigation will be needed to confirm and elucidate the significance of the 

reported structural findings.  

[H1] Ion channel functions of polycystins  

Polycystins are located at the membrane of the primary cilium and of the ER. The ion channel 

function of PC2 was demonstrated at both locations, activated by an increase in cytosolic calcium 

25,26,39. 

[H2] Cationic channels at the primary cilium 

Single channel currents at the primary cilium of renal epithelial cells were first described in 

2005 58 and electrophysiological findings reported in 2017 and 2018 suggest that these currents are 

PC2-dependent 25,26. The electrophysiological activity of native ciliary PC2 was recorded in a murine 

cell line derived from inner medullary tubules, mIMCD-3, as well as in primary cultures of mouse 

collecting duct cells (FIG. 4a-c); of note, cysts in ADPKD are mainly found in the renal medulla. The 

researchers recorded a large conductance non-selective cationic channel of 97 pS in physiological 

solution that had a PK+:PNa+ permeability ratio of 2.4, indicating that potassium is more permeant 

than sodium (FIG. 4b-c). Importantly, knock out of PKD2 with CRISPR-Cas9 technology suppressed 

this cationic current in mIMCD-3 cells 26; transfection of collecting duct cells with siRNAs against PKD2 

or genetic deletion of this gene also eliminated cationic currents at the primary cilium 25. 

Provocatively, PC2 channel activity at the primary cilium was still present in cells that lacked PC1 25, a 

finding that is again in sharp contrast with previous observations that suggest an obligatory role for 

PC1 in the regulation of PC2 trafficking to the plasma membrane and channel gating 23,24. In line with 

this finding, the N-terminal domain of PC2 contains a ciliary trafficking motif (R6VxP) 59. However, the 

possibility that the conditional Pkd1 mice used to test the activity of PC2 in the absence of PC1 might 

have some residual PC1 expression in tubular cells cannot be disregarded 25. In addition, these 

findings do not support an inhibitory function of PC1 on PC2 permeation, as suggested by the 

structural data 33. One possibility for this discrepancy is that the trafficking of heteromeric PC1–PC2 
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and homomeric PC2 complexes to the primary cilium occurs through independent pathways – in this 

scenario, inactivation of PKD1 might not influence the electrophysiological function of 

homotetrameric PC2 at the primary cilium 25. However, even if the basal activity of PC2, which is 

presumably driven by the homotetrameric PC2 complex, occurs independently of PC1, it is still 

possible that PC1 regulates the PC2 channel. For example, PC1 activation in response to the binding 

of a ligand such as Wnt might result in the activation the PC1–PC2 heteromeric complex 55. Binding of 

Wnt to the extracellular domain of PC1 has been shown to result in PC2-dependent calcium influx 55, 

although subsequent findings from experiments that used HEK and CHO cells co-transfected with 

both PC1 and PC2 have challenged the potential role of Wnt in PC2 activation 31. Further experiments 

will be required to explain whether or not additional subunits and/or receptors are involved in the 

possible regulation of PC1–PC2 by Wnt. 

[H3] Calcium permeation 

The selectivity of PC2 for calcium is controversial as one group reported a signficant PCa2+:PK+ 

permeability ratio of 0.55 26, whereas another study reported a negligible PCa2+:PK+ ratio of 0.025, 

which suggested instead that PC2 is poorly permeant to calcium 25,26. However, such low calcium 

permeability through PC2 25 is at odds with previous findings from functional studies 23,24,27,29,39,40. 

Moreover, ion channel chimeras in which the selectivity filter of PC2 was inserted into the core of 

PC2-like 1 protein, also resulted in substantial calcium permeability (PCa2+:PNa+ permeability ratio of 

0.5)31. However, both the pore dilation and electrostatic fields of PC2-like protein 1 might influence 

calcium permeability of the chimeric channel 25,42. Whether native PC2 permeates calcium therefore 

remains an open question. 

[H3] Activation of PC2 at the primary cilium 

The latest electrophysiological findings indicate that PC2 functions as a cationic channel at 

the primary cilium, but not at the plasma membrane 25,26. In the Xenopus oocyte, despite obvious 

targeting of PC2 to the plasma membrane, no significant channel activity could be detected 35. 

Similarly, no current was detected at the plasma membrane outside the primary cilium in HEK or COS 

cells that overexpressed PC2 25,60. These findings suggest that wild-type PC2 is in a closed 

conformation when expressed at the plasma membrane, and becomes active at the primary cilium 

25,26.  

In addition, the open state probability of PC2 is dramatically enhanced by membrane 

depolarization, as well as by elevated intraciliary calcium, possibly detected by the intracellular EF 

hand motif 25,26 (FIG. 1b and 4c-d). Under physiological conditions, cation influx (mostly potassium 

within the collecting duct) through PC2 is predicted to depolarize the primary cilium, although with a 
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limited impact on the whole cell potential as the membrane resistance of collecting duct cells is low 

26. Extracellular calcium blocks permeation of monovalent cations through PC2, presumably by 

interacting with Asp643 within the selectivity filter (IC50= 17 mM) 25,34 (FIGs. 1d and 1e). However, 

since urinary concentration of calcium is highly variable, ranging from 5 to 20 mM, PC2 is likely to be 

mostly active when urinary calcium concentration is in the lower range.  

By contrast, intracellular calcium binding to the EF hand motif within the cytosolic carboxy-

terminal domain of PC2 is thought to promote channel activation (FIG. 1b)45,46,49. Since the resting 

membrane potential of primary cilia is -18 mV and intraciliary calcium concentration is estimated to 

be in the range of 700 nM 30, PC2 is predicted to be in the closed conformation under basal 

conditions as the intracellular calcium is too low and the membrane is not sufficiently depolarized to 

mediate channel opening 26 (FIG. 4c). Thus, additional stimuli such as the stimulation of a membrane 

receptor and/or the presence of an intracellular second messenger or specific lipids might be 

required for the activation of PC2 and channel opening within the primary cilium. For example, PC2 

might function as an epidermal growth factor (EGF)-activated ion channel 56. EGF activates PC2 by 

releasing a protein diaphanous homolog 1 (mDIA1) block at negative membrane potentials 61. Of 

note, in mIMCD3 cells, the number of active channels per cilium was relatively low; 66% of cilia did 

not show PC2 activity and in the remaining cilia, only one to six channels were active at the primary 

cilium 26.  

[H2] Mechanosensing by the primary cilium  

Initial reports claimed that PC1 and PC2 mediate mechanosensation at the primary cilium of 

kidney epithelial cells 27. In response to shear stress (that is elevated fluid flow), an increase in 

intracellular calcium was detected in cells that naturally express PC1 and PC2; remarkably, this was 

not observed in cells that lacked PC1 27, nor following inhibition of PC2 with antibodies. The 

conclusion was that the PC1–PC2 complex was required for fluid flow sensing by the primary cilium in 

renal tubular epithelial cells 27,62. In addition, it was suggested that loss of mechanosensation by the 

primary cilium upon pathogenic mutation of PC1 or PC2 might contribute to cystogenesis 27 –

subsequent findings challenged this interesting hypothesis. One study showed that TRPV4, another 

TRP family channel subunit, interacts with PC2 at the primary cilium and is also critically required for 

flow sensing, as visualized by calcium imaging 10. However, since zebrafish or mice that are deficient 

in TRPV4 do not develop renal cysts, it seems unlikely that defective flow sensing by the primary 

cilium alone has a causative role in ADPKD 10.  

The proposed role of primary cilia as a calcium-responsive mechanosensor was challenged by 

one study that used cultured cells derived from a transgenic mouse line that selectively expresses a 

genetically-encoded ratiometric calcium indicator [G] in all primary cilia 30. The researchers reported 
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that cilia-specific calcium influx did not occur in response to fluid flow, even when supraphysiological 

fluid flows were applied 30. These results suggest that mechanosensation by the primary cilium might 

be independent of ciliary calcium signaling 30; however, potential technical issues such as 

oversaturation of the calcium reporter due to a relatively high calcium concentration in the primary 

cilium might complicate the interpretation of these data 63. In fact, several other reports support the 

increase in ciliary calcium in response to mechanical stimuli in cultured renal cells 64-67.  

Another hypothesis that warrants further investigation suggests that potassium and sodium 

permeability through PC2, independently of a calcium influx 25, could contribute to flow sensing by 

the primary cilium and that disruption of this mechanism might have a role in ADPKD. PC2 activation 

might also be secondary to the opening of a neighboring depolarizing and/or calcium-permeable 

ciliary channel or plasma membrane channel, such as Piezo 1 68-70, in response to shear stress. In the 

context of vertebrate left-right asymmetry determination during embryonic development, PC2 might 

also have a role in cilia mechanosensation, independently of PC1 (BOX 2).  

Interestingly, in comparison to wild-type cells, endothelial cells that lack PC1 release less 

nitric oxide (NO), a vasorelaxing factor, in response to shear stress 29. Of note, patients with ADPKD 

suffer from hypertension, a vascular dysfunction that might precede kidney failure 71. However, shear 

stress-induced activation of the endothelium seems to depend on the activation of the 

mechanosensitive ion channel Piezo1 at the plasma membrane 69,70. Deletion of Piezo1 not only 

prevents activation of the endothelium in response to shear stress but also causes vascular and 

valvular developmental defects, as well as impaired NO release and associated hypertension in adult 

mice 69,70,72,73. Interestingly, polycystins might regulate the function of Piezo1. One study showed that 

Pkd1 deletion in arterial myocytes impairs activation of Piezo1-dependent stretch-activated cationic 

channels at the plasma membrane 60. Moreover, in both vascular and renal cells, the PC1:PC2 ratio 

influences Piezo1 activity, at least partly through a mechanoprotection [G] mechanism mediated by 

the filamin A-actin cytoskeleton network 15,60;  in the absence of PC1 (or when PC2 is elevated) the 

cortical skeleton becomes stiffer which inhibits opening of Piezo1 induced by membrane stretch. 

Thus, the impaired shear stress response of renal and endothelial cells in PKD1-knockout mice might 

be explained by the resulting blunted activation of Piezo1, rather than the loss of a direct 

contribution of polycystins to the primary cilium mechanosensation 27,29. Of note, kidney-specific 

Piezo1-knockout mice do not have a cystic phenotype 74.  

[H2] Calcium release through PC2 at the ER  

The C terminal domain of PC2 includes an ER retention signal. Accordingly, the majority of 

PC2 is found at the ER membrane 39 where it forms a calcium-activated channel that is permeable to 
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divalent cations, including Ca2+ and Ba2+ 39 (FIG. 4d). When PC2 is overexpressed in the LLC-PK1 kidney 

proximal tubule cell line, vasopressin-induced calcium responses are greatly enhanced, whereas the 

pathogenic loss-of-function mutant PC2-D511V showed no effect 39. These findings indicate that PC2 

at the ER membrane is permeant to divalent cations 14,39,44,75 (FIG. 4d). The open state probability of 

PC2 in response to cytosolic calcium concentrations follows a normal distribution pattern that peaks 

at 0.3M 44-46,49, meaning that channel activity is potentiated at calcium concentrations below 0.3 

M, but becomes inhibited at higher concentrations (FIG. 4d)39,44. Interestingly, the calcium 

sensitivity of ER PC2 is modulated by casein kinase phosphorylation of Ser812 within its cytosolic C-

terminal domain 44; the Ser812Ala mutant is approximately 10-fold less sensitive to calcium 

activation than the wild-type PC2. In line with these findings, the Ser812Ala mutant greatly reduces 

potentiation of the vasopressin response by PC2 44. One study demonstrated that at the ER 

membrane, inositol-1,4,5-trisphosphate receptor (InsP3R)-mediated release of Ca2+ from the ER 

induces opening of the PC2 channel (calcium-induced calcium release), which in turn amplifies the 

Ca2+ release induced by InsP3 75 (FIG. 4d). When calcium is released, the ER lumen becomes 

negatively charged and a potassium influx is required to balance the positive charge deficit; whether 

PC2 also has a role in counterion conductance at the ER membrane and indirectly influences calcium 

release through InsP3Rs has not yet been explored. Collectively, these findings suggest that the 

selectivity, and possibly the gating, of PC2 might differ depending on its subcellular localization (that 

is, primary cilium, plasma membrane or ER), as location might determine, for example, which lipids 

are available for binding to polycystins 34, as well as other potential binding partners, such as other 

TRP channels, including TRPV4 and TRPC1 10,11. The potential modulation of polycystin functions by 

subcellular localization needs to be further evaluated. At this stage, it is also unclear whether PC2 at 

the ER requires PC1, or another related molecule, to function. Moreover, whether PC2 at the ER is 

relevant to ADPKD remains to be examined.  

[H1] Conclusions and perspectives 

PC2 is a non-selective cationic channel, which is activated by both membrane depolarization 

and intracellular ciliary calcium, and inhibited by high extracellular calcium 25,26. PC2 localizes to the 

primary cilium and ER membrane, and its ability to permeate calcium might be conditioned by its 

subcellular localization; this effect might be due to the specific membrane environment and/or the 

presence and contribution of auxiliary proteins such as PC1, fibrocystin, PC1-like proteins, PC2-like 

proteins or other TRP subunits. PC2 might also have a non-channel function, for instance in mitotic 

spindles, with potential effects on cell division, or even as a negative regulator of other types of ion 

channels, including the ryanodine receptor at the ER 12, K2P TREK channels 76 and Piezo1 15,60 at the 
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plasma membrane. Breakthroughs in the structural characterization of PC1–PC2 revealed that PC1 

might occlude the PC2 ion channel pore, suggesting that ion channel permeation might be unrelated 

to ADPKD; this hypothesis is reinforced by the observation that no pathogenic mutations are found in 

the putative pore region of PC1 33 (FIG. 1b). However, these findings come from a single report and 

await confirmation; importantly, they need to be functionally validated by electrophysiological data. 

Nonetheless, these unexpected observations raise important novel questions: Is the solved PC1–PC2 

structure physiologically relevant? What is the function of the homomeric PC2 channel, besides its 

recognized role in nodal cells during embryonic development? What mediates PC2 calcium 

permeability in the ER? If channel activity is unrelated to ADPKD, what is the function of the PC1–PC2 

heteromeric complex and how do pathogenic mutations cause the disease? Since numerous 

mutations are found in the PCD of both PC1 and PC2, what is the role of this extracellular ‘lid’ that 

sits on top of the channel complex? Is the PCD involved in either physical and/or chemical activation 

of the heteromeric PC1–PC2 complex? What function might the PC1 PLAT domain fulfill? Which lipids 

bind to PC1-PC2 and how does this may affect its function or relate to ADPKD?  

Despite being discovered more than 20 years ago, the biological role of polycystins and how 

mutations in PKD1 and PKD2 cause ADPKD is still obscure and requires substantial further work to 

enable the identification of potential therapeutic options.  
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 Key points  

 The channel activity of PC2 at the primary cilium of renal collecting duct cells is independent 

of PC1.  

 Opening of PC2 is controlled by an internal hydrophobic gate; it is enhanced by membrane 

depolarization and an increase in intraciliary calcium. 

 PC1 and PC2 assemble in a 1:3 ratio in the PC1–PC2 complex. 

 PC1 might prevent cation permeation through the heteromeric PC1–PC2 complex by 

occluding the pore with three positively charged residues. 

 Extracellular polycystin domains in PC1 and PC2 are hot spots for pathogenic mutations. 

BOX 1: Cryo-electron microscopy 

Crystallization of transmembrane proteins in well-ordered crystals suitable for X-ray crystallography 

remains a difficult task. As an alternative approach, cryo-electron microscopy (cryo-EM) is a 

combination of methods that enable the creation of 3D protein models using focused beams of 

electrons and super-cold temperatures 77. The protein is frozen in a thin, single-molecule thick, layer 

of glass-like ice that is then bombarded with electrons. An advantage of the freezing process is that it 

preserves proteins and complexes in their native state. In addition, for the study of membrane 

proteins in their nearly native lipid bilayer environment, the transmembrane domain can be 

http://pkdb.mayo.edu/
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stabilized with lipid nanodiscs. The irradiation of these nanodiscs with low-energy electrons produces 

2D images of individual protein particles in many orientations. Then, cryo-EM methods sort and 

average hundreds of thousands of these images to build a 3D map and computationally construct a 

3D model of the protein. Cryo-EM is an expanding structural biology technique that allows high-

resolution (∼3 to 5 Å) structural determination of large biomolecules and thus complements other 

structural biology techniques such as X-ray crystallography and nuclear magnetic resonance (NMR). 

BOX 2: PC2 and the determination of left-right asymmetry 

Although vertebrates show a bilaterally symmetrical body-plan, visceral organs show left-right 
asymmetry in their structure and position, which is best exemplified by the heart. Symmetries are 
broken during early development, in a process that involves an unidirectional fluid flow, termed 
nodal flow, within an embryonic cavity at the ventral midline 78,79; PC2 is exclusively expressed in the 
crown cells at the edge of the ventral node 80. Nodal flow generated by the rotational movement of 
motile node cell monocilia is detected by the non-motile perinodal sensory monociliated cells 78-80. 
Leftward nodal flow is responsible for breaking left-right symmetry in the embryo through activation 
of PC2 in crown cells 80. Accordingly, homozygous PC2 mutant embryos show laterality defects 79. 
Notably, PC1 is not expressed in nodal crown cells 81, further indicating that PC2 can operate 
independently of PC1 25; moreover left-right asymmetry is unaffected in Pkd1-knockout mice 81. By 
contrast, a laterality defect is also observed in a PC1-like 1 protein loss-of-function mutant and in 
PKD1L1-/- mouse models, as well as in humans carrying mutations in this gene 82-85. Accordingly, PC1-
like 1 protein interacts with PC2 and this interaction has a role in flow detection by nodal cells 82,86,87. 
When nodal flow occurs, an asymmetric calcium increase is detected at the left margin of the node, 
upstream of the asymmetrically expression of nodal genes 79,80. Notably, ciliary localization of PC2 is 
essential for the control of left-right asymmetry 80, but whether or not PC2 directly senses nodal flow 
or molecules transported by unidirectional nodal flow remains an open question 30,80.  
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Figure legends:  

Figure 1: The PC1–PC2 heteromeric complex. a| Topological model of polycystin 1 (PC1) and 

PC2. PC1 comprises an N-terminal domain (NTD), which includes an intracellular PC1 

lipoxygenase and alpha toxin (PLAT) domain between transmembrane helix 1 (TM1) and 

TM2, followed by a voltage sensor-like domain (VSD) that contains an extracellular 

polycystin domain (PCD) between segment 1 (S1) and S2. The region indicated by the dashed 

line between S5 and S6 was not resolved in the PC1 structure. b| Topology of a PC2 subunit, 

including a VSD and a pore domain between S5 and S6, which includes two pore helices (PH1 

and PH2) that surround the selectivity filter (SF). c| Structure of a PC1 subunit. The dashed 

line represents a 29 amino acid long segment (4051-4080), upstream of S6, which was not 

resolved in the PC1 structure. In PC2 and in other TRP subunits, this region corresponds to 

the pore domain. Pathogenic substitution mutations, as described by the ADPKD mutation 

database, [JA: please add hyperlink: http://pkdb.mayo.edu] are indicated by gray spheres. d| 

Structure of PC2. Asp643 in the SF is responsible for the binding of extracellular calcium and 

inhibition of PC2 permeation. Leu677 at the intracellular side of S6 acts as a hydrophobic 

gate. e| Structure of the heteromeric polycystin complex including one PC1 (in blue and red) 

and three PC2 subunits (in green). For easier visualization, the polycystin domains (PCD) are 

not represented. Magnification of the pore region shows that positively charged residues 

Arg4100/Arg4107/His4111 from PC1 occlude the permeation pathway in the PC1–PC2 

heteromeric complex. PDB accession number: 6A70; PyMOL 1.3 software. 

Figure 2: Closed and open states of PC2. a| Wild-type PC2 channel in a closed state. The 

ionic pore is constricted at the external side of the channel within the selectivity filter 

between amino acids Leu641–Gly–Asp643. Leu677 forms an internal hydrophobic gate. b| 

The Phe604Pro gain-of-function mutation, located within S5, constitutively opens PC2. The 

hydrophobic gate L677 swings away from the ionic path in Phe604Pro but the external 

constriction at the selectivity filter is not altered. The solvent-accessible pathway is shown as 

a blue cloud (calculated with the HOLE program) [JA: Please add hyperlink: 

http://www.holeprogram.org]. PDB accession numbers: 5T4D and 6D1W; PyMOL 1.3 

software. 

http://pkdb.mayo.edu/
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Figure 3: Proposed mechanistic models for the gating of PC2. a| Closed state of the PC2 

channel. The polycystin domain (PCD) sits on top of the channel like a lid. The positively 

charged S4 segment is a voltage sensor domain (VSD) that changes conformation in response 

to a change in membrane potential. A 310 helix is located at the basis of the S4 and is 

predicted to be involved in gating movements of the S4–S5 linker. The S6 helix comprises a  

helix that acts as a point of flexibility that causes the rotation of the Leu677 hydrophobic 

gate at the inner side of the S6. The hydrophobic gate Leu677 of S6 blocks permeation of 

cations. Water (H2O) accumulation in the funnel underneath the polycystin domains (PCDs) 

might prevent permeation through the selectivity filter that accommodates dehydrated 

cations. b| Gating model involving a conformational change in the PCD. Dehydration of the 

lateral funnels between PCD and VSD is thought to control permeation through the pore 34. 

Fatty acids (FA) block the lateral funnels and prevent water accumulation, which allows 

permeation of dehydrated cations through the selectivity filter. The horizontal arrows 

indicate conformational changes in S6. Although the role of lipids in the regulation of PC2 

activation has not yet been functionally demonstrated, lipid-mediated interaction between 

PCD and VSD, as demonstrated in structural studies, suggests a potential lipid-mediated 

activation mechanism for PC2 34 c| Gating model mediated by VSD. Upon depolarization, a 

conformational change in the positively-charged S4 drives a movement of the S4–S5 linker, 

possibly coupled to S6 via an hydrogen bond between Gln585 and Lys688, that results in a  

to helix conformation change of S6 and opening of the lower hydrophobic gate (Leu677) 
31,35,43. d| The Phe604Pro mutant bends S5, which is predicted to induce a movement of the 

S4–S5 linker and activate the channel by opening the Leu677 inner gate 35. 
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Figure 4: Ion channel function of PC2 at the primary cilium and the ER. a| Patch clamp 

recording (inside-out configuration) of PC2 at the primary cilium of renal collecting duct cells. 

Once the electrode is attached to the primary cilium, the patch is excised in the inside-out 

configuration; the cilium can then be depolarized and exposed to free intracellular calcium 

([free-Ca2+]in) concentrations (adapted from 25). b| Inside-out cilium patch record from an 

inner medullary collecting duct epithelial cells (pIMCD) cilia (adapted from 25). The patch 

contained at least three active channels; O1, O2 and O3 indicate open states. Cytosolic 

calcium was progressively elevated from 0.09 µM to 0.3 µM, then to 3 M and finally 

washed out. c| Relationship between open channel probability and membrane voltage with 

increasing internal calcium concentrations of ciliary PC2 channels (adapted from 26). d| PC2 

opening amplifies the release of calcium through the InsP3R by a calcium-induced calcium 

release mechanism 39,44,75; the PC2 open channel probability over cytosolic calcium 

concentration is normally distributed 44.[JA: Licence for reproduction: (FIG. 4a-b) 

https://creativecommons.org/licenses/by/4.0/] 

Glossary terms: 

Primary cilium: single non-motile cilium that lacks a central pair of microtubules present in all 

mammalian cells, except immune cells.  

Permeation: permeability of ions through channels. 

Gating: molecular mechanisms of channel opening and closing. 

Non-selective cationic channel: a channel permeable to all cations, including sodium, potassium and 

calcium. 

Coiled-coil domain: structural motif in proteins in which 2-7 -helices are coiled together, mediating 

protein-protein interaction. 

Lipid nanodiscs: lipid bilayer mimetics that function as synthetic model membranes in which purified 

proteins can be reconstituted for structural determination with cryo-EM  

Selectivity filter: segment within the pore of an ion channel that controls its ionic permeability 

Voltage sensor: charged domain of an ion channel (S4) that confers voltage sensitivity 

Cation sink: negative charges present at the extracellular side of the channel that attract cations 

toward the selectivity filter 

Conduction pathway: the pore of the ion channel 

Vestibule: the entrance of the ion channel pore 

EF hand motif: motif with a helix-loop-helix topology to which calcium ions bind 

Amphipathic: contains both hydrophobic and hydrophilic groups 

https://creativecommons.org/licenses/by/4.0/
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 helix: helix with 4.4 amino acids per turn;  helices have 3.6 amino acids per turn.  

Hydrophobic gate: hydrophobic residue that repels water and prevents ion permeation through an 

ion channel 

Electrostatic maps: illustrates in 3D the charge distributions over a protein 

Ratiometric calcium indicator: a fluorescence method based on the use of a ratio between two 

fluorescence intensities (for instance Fura-2 calcium probe) 

Mechanoprotection: inhibition of mechano-sensitive ion channels by the cytoskeleton 
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