
HAL Id: hal-02378826
https://hal.science/hal-02378826v1

Preprint submitted on 21 Nov 2019 (v1), last revised 25 Nov 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Principled Approach to Analyze Expressiveness and
Accuracy of Graph Neural Networks

Asma Atamna, Nataliya Sokolovska, Jean-Claude Crivello

To cite this version:
Asma Atamna, Nataliya Sokolovska, Jean-Claude Crivello. A Principled Approach to Analyze Ex-
pressiveness and Accuracy of Graph Neural Networks. 2019. �hal-02378826v1�

https://hal.science/hal-02378826v1
https://hal.archives-ouvertes.fr

A Principled Approach to Analyze Expressiveness and Accuracy of Graph Neural
Networks

Asma Atamna,1 Nataliya Sokolovska,2 Jean-Claude Crivello1

1ICMPE (UMR 7182), CNRS, University of Paris-Est, Thiais, France
name@icmpe.cnrs.fr

2NutriOmics, INSERM, Sorbonne University, Paris, France
nataliya.sokolovska@sorbonne-universite.fr

Abstract

Graph neural networks (GNNs) have known an increasing
success recently, with many GNN variants achieving state-of-
the-art results on node and graph classification tasks. The pro-
posed GNNs, however, often implement complex node and
graph embedding schemes, which makes it challenging to ex-
plain their performance. In this paper, we investigate the link
between a GNN’s expressiveness, that is, its ability to map
different graphs to different representations, and its general-
ization performance in a graph classification setting. In partic-
ular, we propose a principled experimental procedure where
we (i) define a practical measure for expressiveness, (ii) in-
troduce an expressiveness-based loss function that we use to
train a simple yet practical GNN that is permutation-invariant,
(iii) illustrate our procedure on benchmark graph classifica-
tion problems and on an original real-world application. Our
results reveal that expressiveness alone does not guarantee a
better performance, and that a powerful GNN should be able
to produce graph representations that are well separated with
respect to the class of the corresponding graphs.

1 Introduction
Many real-world data present an inherent structure and can
be modelled as sequences, graphs, or hypergraphs (Col-
lobert et al. 2011; Min et al. 2017; Duvenaud et al. 2015;
Bojchevski et al. 2018). Graph-structured data in particular
are very common in practice and are at the heart of this work.

We consider the problem of graph classification. That
is, given a set G = {Gi}mi=1 of arbitrary graphs Gi and
their respective labels {yi}mi=1, where yi ∈ {1, . . . , C} and
C ≥ 2 is the number of classes, we aim at finding a mapping
fθ(G) : G → {1, . . . , C}, that minimizes the classification
error, where θ denotes the parameters to optimize.

Recent years have known a surge of interest in graph neu-
ral networks (GNNs) and their deep learning variants, the
graph convolutional networks (GCNs) (Defferrard, Bresson,
and Vandergheynst 2016; Kipf and Welling 2017; Atwood
and Towsley 2016; Duvenaud et al. 2015; Zhang et al. 2018;
Niepert, Ahmed, and Kutzkov 2016; Gilmer et al. 2017;
Schlichtkrull et al. 2018). GNNs learn latent node represen-

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tations by recursively aggregating the neighboring node fea-
tures for each node, thereby capturing the structural infor-
mation of a node’s neighborhood.

Despite the profusion of GNN variants, some of which
achieve state-of-the-art results on tasks like node classifica-
tion, graph classification, and link prediction, GNNs remain
very little studied. In particular, it is often unclear what a
GNN has learned and how the learned graph (or node) map-
ping influences its generalization performance. In a recent
work, (Xu et al. 2019) present a theoretical framework to an-
alyze the expressive power of GNNs, where a GNN’s expres-
siveness is defined as its ability to compute different graph
representations for different graphs. Theoretical conditions
under which a GNN is maximally expressive are derived. Al-
though it is reasonable to assume that a higher expressivess
would result in a higher test accuracy on classification tasks,
this link has not been explicitly studied so far.

In this paper, we design a principled experimental proce-
dure to analyze the link between expressiveness and the test
accuracy of GNNs. In particular,

• We define a practical measure to estimate the expressive-
ness of GNNs;

• We use this measure to define a new penalized loss func-
tion that allows training GNNs with varying expressive
power;

• We present a simple yet practical architecture, the Sim-
ple Permutation-Invariant Graph Convolutional Network
(SPI-GCN), on which we illustrate our experimental
framework.

We also present an original graph data set of metal hydrides
that we use along with benchmark graph data sets to evaluate
SPI-GCN.

This paper is organized as follows. Section 2 discusses
the related work. Section 3 introduces preliminary notations
and concepts related to graphs and GNNs. In Section 4, we
introduce our graph neural network, SPI-GCN. In Section 5,
we present a practical expressiveness estimator and a new
expressiveness-based loss function as part of our experimen-
tal framework. Section 6 presents our results and Section 7
concludes the paper.

2 Related Work
Two main supervised learning approaches for graph-
structured data include graph kernels and graph neural net-
works.

Graph kernels (Haussler 1999; Kriege, Johansson, and
Morris 2019) define a similarity measure on graphs that al-
lows the application of kernel methods to graph classifica-
tion. The similarity between two graphs is usually computed
by decomposing the graphs into substructures, then compar-
ing the latter pairwise. This procedure can be expensive, es-
pecially on large graphs. An effective class of graph ker-
nels are the Weisfeiler-Lehman (WL) kernels (Shervashidze
et al. 2011) that implement a feature extraction mechanism
based on the WL algorithm (Weisfeiler and Lehman 1968)
for graph isomorphism test. Graph kernels have been the
state-of-the-art in graph classification; their main drawback,
however, is their computational inefficiency. In particular,
the training complexity of graph kernels is at least quadratic
in the number of graphs (Shervashidze et al. 2011).

Graph neural networks (GNNs) were first introduced
in (Gori, Monfardini, and Scarselli 2005; Scarselli et al.
2009). They learn latent node representations by itera-
tively aggregating neighborhood information for each node.
More recent graph convolutional networks (GCNs) gener-
alize conventional convolutional neural networks to irreg-
ular graph domains. In (Kipf and Welling 2017), the au-
thors present a GCN for node classification where the com-
puted node representations can be interpreted as the graph
coloring returned by the 1-dimensional WL algorithm. A
related GCN that is invariant to node permutation is pre-
sented in (Zhang et al. 2018). The graph convolution op-
erator is closely related to the one in (Kipf and Welling
2017), and the authors introduce a permutation-invariant
pooling operator that sorts the convolved nodes before feed-
ing them to a 1-dimensional classical convolution layer for
graph-level classification. A popular graph deep learning
approach is PATCHY-SAN (Niepert, Ahmed, and Kutzkov
2016). Its graph convolution operator extracts normalized
local “patches” (neighborhood representations) of the graph
which are then sorted and fed to a 1-dimensional tradi-
tional convolution layer for graph-level classification. The
method, however, requires the definition of a node ordering
and running the WL algorithm in a preprocessing step. On
the other hand, the normalization of the extracted patches
implies sorting the nodes again and using the external graph
software NAUTY (Mckay and Piperno 2014).

Despite the success of GNNs, there are relatively few pa-
pers that analyze their properties, either mathematically or
empirically. A notable exception is the recent work by (Xu
et al. 2019) that studies the expressive power of GNNs. The
authors prove that (i) GNNs are at most as powerful as
the WL test in distinguishing graph structures and that (ii)
if the graph function of a GNN—i.e. its graph embedding
scheme—is injective, then the GNN is as powerful as the
WL test. In another study (Chen, Bian, and Sun 2019), the
authors present a simple neural network defined on a set of
graph augmented features and show that their architecture
can be obtained by linearizing graph convolutions in GNNs.

Our work is related to (Xu et al. 2019) in that we adopt

the same definition of expressiveness, that is, the ability of a
GNN to compute distinct graph representations for distinct
input graphs. However, we go one step further and investi-
gate how the graph function learned by GNNs affects their
generalization performance. On the other hand, our SPI-
GCN extends the GCN in (Kipf and Welling 2017) to graph-
level classification. Our SPI-GCN is also related to (Zhang
et al. 2018) in that we adopt the same graph convolution op-
erator inspired by (Kipf and Welling 2017). Unlike (Zhang
et al. 2018), however, our architecture does not require any
node ordering, and we only use a simple multilayer percep-
tron (MLP) to perform classification.

3 Preliminaries
3.1 Matrix and Vector Notations
We denote matrices by capital letters and vectors by small
letters. Scalars, on the other hand, are denoted by small italic
letters. Consider a matrix M. mi denotes its ith row and mij

denotes the entry at its ith row and jth column. Its inverse
matrix is denoted M−1.

3.2 Some Graph Concepts
A graphG is a pair (V,E) of a set V = {v1, . . . , vn} of ver-
tices (or nodes) vi, and a set E ⊆ V × V of edges (vi, vj).
In practice, a graph G is often represented by an adjacency
matrix A ∈ Rn×n modelling the edges of the graph, where
n = |V | is the number of vertices, and such that aij = 1
if there is an edge between nodes vi and vj ((vi, vj) ∈ E)
and aij = 0 otherwise. Edges can be either oriented, and we
say that the graph is directed, or non-oriented, in which case
we say that the graph is undirected. Note that the adjacency
matrix of undirected graphs is symmetric. In an undirected
graph, we say that two vertices vi and vj are neighbors if
there exists an edge (vi, vj) ∈ E, and we denote N(i) the
neighborhood of vi, i.e. the set of the indices of all neigh-
bors of vi. The number of neighbors, |N(i)|, of a node vi is
called the degree of vi. In directed graphs, similar notions
of indegree and outdegree exist. Finally, edges of the form
(vi, vi), i.e. edges between a node and itself, are referred to
as self-loops.

We assume that a graph G is characterized by a node fea-
ture matrix X ∈ Rn×d, with d being the number of node
features, in addition to its adjacency matrix A. Each row
xi ∈ Rd of X contains the feature representation of a node
vi, where d is the dimension of the feature space. Since we
only consider node features in this paper (as opposed to edge
features for instance), we will refer to the node feature ma-
trix X simply as the feature matrix in the rest of this paper.

We now introduce the notion of graph isomorphism in
Definition 1.

Definition 1 (Graph Isomorphism). Two graphs G1 =
(V1, E1) and G2 = (V2, E2) are isomorphic if there exists a
bijection g : V1 → V2 such that every edge (u, v) is in E1 if
and only if the edge (g(u), g(v)) is in E2.

Informally, Definition 1 states that two graphs are isomor-
phic if there exists a vertex permutation such that when ap-
plied to one graph, we recover the vertex and edge sets of the

other graph. That is, two graphs are isomorphic if they have
the same structure independently of the vertex indexing.

The problem of determining whether two graphs are iso-
morphic is called the graph isomorphism (GI) problem and
is an important one in graph and complexity theory. It is
known to be in the class NP and has been largely stud-
ied since the 1970’s (Read and Corneil 1977). The notion
of graph isomorphism is also directly related to the impor-
tant notion of invariance to node permutation, as we discuss
in Section 4.

3.3 Graph Neural Networks
Consider a graphGwith adjacency matrix A and feature ma-
trix X. Graph Neural Networks (GNNs) use the graph struc-
ture (A) and the node features (X) to learn a node-level or
a graph-level representation—or embedding—of G. GNNs
iteratively update a node representation by aggregating its
neighbors’ representations. At iteration l, a node represen-
tation captures its l-hop neighborhood’s structural informa-
tion. Formally, the lth layer of a general GNN can be defined
as follows:

al+1
i = AGGREGATEl({zlj : j ∈ N(i)}) (1)

zl+1
i = COMBINEl(zli, a

l+1
i) , (2)

where zl+1
i is the feature vector of node vi at layer l

and where z0i = xi. While COMBINE usually con-
sists in concatenating node representations from differ-
ent layers, different—and often complex—architectures for
AGGREGATE have been proposed. In (Kipf and Welling
2017), the presented GCN merges the AGGREGATE and
COMBINE functions as follows:

zl+1
i = ReLU

(
mean({zlj : j ∈ N(i) ∪ {i}}) ·Wl

)
, (3)

where ReLU is a rectified linear unit and Wl is a trainable
weight matrix. GNNs for graph classification have an addi-
tional module that aggregates the node-level representations
to produce a graph-level one as follows:

zG = READOUT({zLi : vi ∈ V }) , (4)

for a GNN with L layers. In (Xu et al. 2019), the au-
thors discuss the impact that the choice of AGGREGATEl,
COMBINEl, and READOUT has on the so-called expres-
siveness of the GNN, that is, its ability to map different
graphs to different embeddings. They present theoretical
conditions under which a GNN is maximally expressive.

We now present a simple yet practical GNN architecture
on which we illustrate our experimental framework.

4 Simple Permutation-Invariant Graph
Convolutional Network (SPI-GCN)

We carry out our empirical study on a Simple Permutation-
Invariant Graph Convolutional Network (SPI-GCN). SPI-
GCN’s architecture consists of the following sequential
modules: 1) a graph convolution module that encodes local
graph structure and node features in a substructure feature
matrix whose rows represent the nodes of the graph, 2) a

sum-pooling layer as a READOUT function to produce a
single-vector representation of the input graph, and 3) a pre-
diction module consisting of dense layers that reads the vec-
tor representation of the graph and outputs predictions. Fig-
ure 1 in the Supplementary Material summarizes the general
architecture of SPI-GCN.

Let G be a graph represented by the adjacency matrix
A ∈ Rn×n and the feature matrix X ∈ Rn×d, where n and d
represent the number of nodes and the dimension of the fea-
ture space respectively. Without loss of generality, we con-
sider graphs without self-loops, i.e. the adjacency matrix A
has zeros on its diagonal. Additionally, when node features
are not available (purely structural graphs), we take X = In,
where In ∈ Rn×n is the identity matrix.

4.1 Graph Convolution Module
Given a graph G with its adjacency and feature matrices, A
and X, we define the first convolution layer as follows:

Z = f(D̂
−1

ÂXW) , (5)

where Â = A + In is the adjacency matrix of G with
added self-loops, D̂ is the diagonal node degree matrix of
Â,1 W ∈ Rd×d′ is a trainable weight matrix, f is a nonlinear
activation function, and Z ∈ Rn×d′ is the convolved graph.

The convolution operator (5) computes new node repre-
sentations as follows. For each node i,2 the average of its
feature vector and the feature vectors of its neighbors is com-
puted and stored in the ith row of the matrix X̂ := D̂

−1
ÂX ∈

Rn×d. X̂ is then mapped to a new d′-dimensional feature
space through multiplication by W. Finally, a nonlinear ac-
tivation function f is applied element-wise resulting in a
n×d′ substructure feature matrix Z that contains the convo-
lution result. To stack multiple convolution layers, we gen-
eralize the propagation rule in (5) as follows:

Zl+1 = f l(D̂
−1

ÂZlWl) , (6)

where Z0 = X, Zl is the output of the lth convolution layer,
Wl is a trainable weight matrix, and f l is the nonlinear acti-
vation function applied at layer l. Each row of the resulting
matrix Zl+1 contains a node representation in a new feature
space. Similarly to the GCN presented in (Kipf and Welling
2017) from which we draw inspiration, our graph convo-
lution module merges the AGGREGATE and COMBINE
functions (see (1) and (2)), and we can rewrite (6) as:

zl+1
i = f l

(
mean({zlj : j ∈ N(i) ∪ {i}}) ·Wl

)
, (7)

where zt+1
i is the ith row of Zl+1.

We return the result of the last convolution layer, that is,
for a network with L convolution layers, the result of the
convolution is the last substructure feature matrix ZL. Note
that (6) accepts graphs with varying node numbers without

1If G is a directed graph, D̂ corresponds to the outdgree diago-
nal matrix of Â.

2For convenience, we use i instead of vi to denote the ith node
of a graph.

changing the structure of the convolution layer, i.e. using the
same weight matrix Wl.

Our graph convolution model is connected to the 1-
dimensional Weisfeiler-Lehman (WL) algorithm (Weisfeiler
and Lehman 1968) as shown in (Kipf and Welling 2017;
Zhang et al. 2018). The WL algorithm iteratively computes
a vertex coloring for a given graph and is applied in prac-
tice to the GI problem. The output of the convolution layer
in (6) can be viewed as the vertex coloring computed by the
1-dimensional WL algorithm. This parallel with the WL al-
gorithm allows to define invariant pooling operators such as
the SortPooling layer presented in (Zhang et al. 2018) and
our sum-pooling layer that we define next.

4.2 Sum-Pooling Layer
The sum-pooling layer produces a graph-level representation
zG by summing the rows of the node-level representation ZL

returned by the convolution module. Formally:

zG =

n∑
i=1

zLi . (8)

The resulting vector zG ∈ RdL contains the final vector rep-
resentation (or embedding) of the input graph G in a dL-
dimensional space. This vector representation is then used
for prediction—graph classification in our case.

Using the sum-pooling layer in (8) results in the invari-
ance of our architecture to node permutation as stated in
Theorem 1. This invariance property is crucial for GNNs,
as it ensures that two isomorphic—and hence equivalent—
graphs will result in the same output.
Theorem 1. Let G and Gς be two arbitrary isomorphic
graphs. The sum-pooling layer of SPI-GCN produces the
same vector representation for G and Gς .

The proof of Theorem 1 is straightforward and can be
found in the Supplementary Material.

Using a summing-based pooling operator (e.g. sum or av-
erage of node features) is a simple idea that has already been
implemented in graph neural networks such as (Atwood and
Towsley 2016; Simonovsky and Komodakis 2017). The key
advantage of summing-based methods is their efficiency and
inherent invariance to node permutation. Their main draw-
back, on the other hand, is that by summing node features,
we lose more refined information on individual nodes and on
the global structure of the graph. We show through our work,
however, that summing-based architectures are competitive
with more complex deep learning graph architectures.

4.3 Prediction Module
The prediction module of SPI-GCN is a simple MLP that
takes as input the graph-level representation zG returned by
the sum-pooling layer and returns either: (i) a probability p
in case of binary classification or (ii) a vector p of probabili-
ties such that

∑
i pi = 1 in case of multi-class classification.

Note that SPI-GCN can be trained in an end-to-end fash-
ion through backpropagation. Additionally, since only one
graph is treated in a forward pass, the training complexity of
SPI-GCN is linear in the number of graphs.

In the next section, we describe a practical methodology
for studying the expressiveness of SPI-GCN and its connec-
tion to the generalization performance of the algorithm.

5 Investigating Expressiveness of SPI-GCN
We start here by introducing a practical definition of expres-
siveness. We then show how the defined measure can be used
to train SPI-GCN and help understand the impact expres-
siveness has on its generalization performance.

5.1 Practical Measure of Expressiveness
The expressiveness of a GNN, as defined in (Xu et al.
2019), is its ability to map different graph structures to
different embeddings and, therefore, reflects the injectivity
of its graph embedding function. Since studying injectivity
can be tedious, we characterize expressiveness—and hence
injectivity—as a function of the pairwise distance between
graph embeddings.

Let {zGi}mi=1 be the set of graph embeddings computed
by a GNN A for a given input graph data set {Gi}mi=1. We
define A’s expressiveness, E(A), as follows:

E(A) = mean({||zGi − zGj ||2 : i, j = 1, . . . ,m}) , (9)

that is, the average pairwise Euclidean distance between
graph embeddings produced by A. While not strictly equiv-
alent to injectivity, E is a reasonable indicator thereof, as
the average pairwise distance reflects the diversity within
graph representations which, in turn, is expected to be higher
for more diverse input graph data sets. For permutation-
invariant GNNs like SPI-GCN,3 E is zero when all graphs
{Gi}mi=1 are isomorphic.

5.2 Penalized Cross Entropy Loss
We train SPI-GCN using a penalized cross entropy loss, Lp,
that consists of a classical cross entropy augmented with a
penalty term defined as a function of the expressiveness of
SPI-GCN. Formally:

Lp = cross-entropy({yi}mi=1, {ŷi}mi=1)

−α · E(SPI-GCN)︸ ︷︷ ︸
π

, (10)

where {yi}mi=1 (resp. {ŷi}mi=1) is the set of real (resp. pre-
dicted) graph labels, α is a non-negative penalty factor, and
E is defined as in (9) with {zGi

}mi=1 being the graph embed-
dings computed by SPI-GCN.

By adding the penalty term π in Lp, the expressiveness
E(SPI-GCN) is maximized while the cross entropy is mini-
mized during the training process. The penalty factor α con-
trols the importance attributed to E(SPI-GCN) when Lp is
minimized. Consequently, higher values of α allow to train
more expressive variants of SPI-GCN whereas for α = 0,
only the cross entropy is minimized.

In the next section, we assess the performance of SPI-
GCN for different values of α. We also compare SPI-GCN
with other more complex approaches, including two graph
deep learning methods and one state-of-the-art graph kernel.

3As mentioned previously, we state that permutation-invariance
is a minimal requirement for any practical GNN.

6 Experiments
We carry out a first set of experiments where we com-
pare our approach, SPI-GCN, with one state-of-the-art graph
kernel and two recent deep learning approaches for graph-
structured data. In a second set of experiments, we train dif-
ferent instances of SPI-GCN with increasing values of the
penalty factor α (see (10)) in an attempt to understand how
the expressiveness—or injectivity—of SPI-GCN affects its
test accuracy, and whether it is the determining factor of its
generalization performance, as implicitly suggested in (Xu
et al. 2019). We implement SPI-GCN using PyTorch (Paszke
et al. 2017).

6.1 Data Sets
We use nine public benchmark data sets to evaluate
the accuracy of SPI-GCN. These data sets include five
bioinformatics data sets (MUTAG (Debnath et al. 1991),
PTC (Srinivasan et al. 2001), ENZYMES (Borgwardt et
al. 2005), NCI1 (Wale, Watson, and Karypis 2008), and
PROTEINS (Dobson and Doig 2003)), two social network
data sets (IMDB-BINARY and IMDB-MULTI (Yanardag
and Vishwanathan 2015)), one image data set where im-
ages are represented as region adjacency graphs (COIL-
RAG (Riesen and Bunke 2008)), and one synthetic data set
(SYNTHIE (Morris et al. 2016)). These data sets are avail-
able at (Kersting et al. 2016) in a specific text format that we
process in order to transform the graphs into a (adjacency
matrix, feature matrix) format that can be processed by our
neural network. We also evaluate SPI-GCN on an original
real-world data set, HYDRIDES, that contains metal hy-
drides in a graph representation, labelled as stable or un-
stable according to a specific energetic property that deter-
mines their ability to store hydrogen efficiently. A detailed
description of the HYDRIDES data set is provided in the
Supplementary Material.

The properties of the tested data sets are summarized in
Table 1 in the Supplementary Material.

6.2 Architecture of SPI-GCN
The instance of SPI-GCN that we use for experiments has
two graph convolution layers of 128 and 32 hidden units re-
spectively, followed by a hyperbolic tangent function and a
softmax function (per node) respectively. The sum-pooling
layer is a classical sum applied row-wise; it is followed by
a prediction module consisting of a MLP with one hidden
layer of 256 hidden units followed by a batch normalization
layer and a ReLU. We choose this architecture by trial and
error and keep it unchanged throughout the experiments.

6.3 Comparison with Other Methods
In these experiments, we consider the simplest variant of
SPI-GCN where the penalty term π in (10) is discarded by
setting α = 0. That is, the algorithm is trained using only
the cross entropy loss.

Baselines We compare SPI-GCN with the state-of-the-art
Weisfeiler-Lehman subtree kernel (WL) (Shervashidze et al.
2011), the well-known graph neural network PATCHY-SAN
(PSCN) (Niepert, Ahmed, and Kutzkov 2016), and the more

recent deep learning approach Deep Graph Convolutional
Neural Network (DGCNN) (Zhang et al. 2018) that uses a
similar convolution module to ours.

Experimental procedure We train SPI-GCN using full
batch ADAM optimizer (Kingma and Ba 2015), with cross
entropy as the loss function to minimize (α = 0 in (10)).
After trying few combination of values, we set ADAM’s hy-
perparameters as follows. The algorithm is trained for 200
epochs on all data sets and the learning rate is set to 10−3.
To estimate the accuracy, we perform 10-fold cross valida-
tion using 9 folds for training and one fold for testing each
time. We report the average (test) accuracy and the corre-
sponding standard deviation in Table 1. Note that we only
use node attributes in our experiments. In particular, SPI-
GCN does not exploit node or edge labels of the data sets.
When node attributes are not available, we use the identity
matrix as the feature matrix (X = In) for each graph.

We follow the same procedure for DGCNN. We use the au-
thors’ PyTorch implementation4 and perform 10-fold cross
validation with the recommended values for training epochs,
learning rate, and the SortPooling parameter k, for each data
set (see Table 2 in the Supplementary Material).

For PSCN, we report the results from the original pa-
per (Niepert, Ahmed, and Kutzkov 2016) (for receptive field
size k = 10) as we could not find an authors’ public im-
plementation of the algorithm. The experiments were con-
ducted using a similar procedure as ours.

For WL, we follow (Niepert, Ahmed, and Kutzkov 2016;
Yanardag and Vishwanathan 2015) and set the height pa-
rameter h to 2. We set the algorithm to use node labels and
choose the regularization parameter C of the SVM from
{10−7, 10−5, . . . , 107} using cross validation as follows: we
split the data set into a training set (90% of the graphs) and a
test set (remaining 10%), then perform 10-fold cross valida-
tion on the training set with LIBSVM (Chang and Lin 2011).
The parameter C with the highest average validation accu-
racy is then evaluated on the test set. The experiment is re-
peated 10 times and we report the average test accuracy and
the standard deviation. We use the authors’ MATLAB imple-
mentation,5 where we modify the cross validation script to
implement the evaluation procedure described previously.6

Results Table 1 shows the results for our algorithm (SPI-
GCN), DGCNN (Zhang et al. 2018), PSCN (Niepert, Ahmed,
and Kutzkov 2016), and WL (Shervashidze et al. 2011). We
observe that SPI-GCN is highly competitive with other algo-
rithms despite using the same architecture for all data sets.
The only noticeable exceptions are on the NCI1 and IMDB-
BINARY data sets, where the best approach (WL) is up to
1.24 times better. On the other hand, SPI-GCN appears to
be highly competitive on classification tasks with more than
3 classes (ENZYMES, COIL-RAG, SYNTHIE). The differ-

4https://github.com/muhanzhang/pytorch\ DGCNN
5https://www.bsse.ethz.ch/mlcb/research/machine-

learning/graph-kernels/weisfeiler-lehman-graph-kernels.html
6The original script returns the average test accuracy of the best

C parameters, i.e. parameters with the best validation accuracy on
each fold, for one complete run of 10-fold cross validation.

ence in accuracy is particularly significant on COIL-RAG
(100 classes), where SPI-GCN is around 34 times better than
DGCNN, suggesting that the features extracted by SPI-GCN
are more suitable to characterize the graphs at hand. Results
for WL on COIL-RAG and SYNTHIE are not available as
we could not find these data sets in the appropriate format
for the algorithm online. SPI-GCN also achieves a very rea-
sonable accuracy on the HYDRIDES data set.

We expect the accuracy (respectively variance) of SPI-
GCN to improve (respectively decrease) after tuning its hy-
perparameters to individual data sets. SPI-GCN may also
benefit from the exploitation of node labels (as additional
features) and edge labels (as weights in the adjacency ma-
trix), especially on data sets where it lags behind other ap-
proaches, such as NCI1 and IMDB-BINARY.

The results in Table 1 show that despite its simplicity, SPI-
GCN is competitive with other practical graph algorithms
and, hence, it is a reasonable architecture to consider for our
next set of experiments involving expressiveness.

6.4 Expressiveness Experiments
We perform this set of experiments in an attempt to answer
the following questions:

• Do more expressive GNNs perform better on graph classi-
fication tasks? That is, is the injectivity of a GNN’s graph
function the determining factor of its performance?

• Can the performance be explained by another factor? If
yes, what is it?

To this end, we train increasingly injective instances of SPI-
GCN on the penalized cross entropy loss Lp (10) by setting
the penalty factor α to increasingly large values. Then, for
each trained instance, we investigate (i) its test accuracy, (ii)
its expressiveness E(SPI-GCN) (9), that is, the average pair-
wise distance between the graph representations computed
by SPI-GCN, and (iii) the average normalized Inter-class
Graph Embedding Distance (IGED), defined as the average
pairwise Euclidean distance between mean graph embed-
dings taken class-wise divided by E(SPI-GCN). Formally:

IGED =
mean({||z∗c − z∗c′ ||2 : c, c′ = 1, . . . , C})

E(SPI-GCN)
, (11)

where z∗c is the mean graph embedding for class c. The
IGED can be interpreted as an estimate of how well the
graph embeddings computed by SPI-GCN are separated
with respect to their respective class.

Experimental procedure We train SPI-GCN on the pe-
nalized cross entropy loss Lp (10) where we sequentially
choose α from {0, 10−3, 10−1, 1, 10}. We do so using full
batch ADAM optimizer that we run for 200 epochs with a
learning rate of 10−3, on all the graph data sets introduced
previously. For each data set and for each value of α, we
perform 10-fold cross validation using 9 folds for training
and one fold for testing. We report in Table 2 the average
and standard deviation of: (a) the test accuracy, (b) the ex-
pressiveness E(SPI-GCN), and (c) the IGED (11), for each
value of α and for each data set.

Results We observe from Table 2 that using a penalty term
in Lp to maximize the expressiveness—or injectivity—of
SPI-GCN helps to improve the test accuracy on some data
sets, notably on MUTAG, PTC, and SYNTHIE. However,
larger values of E(SPI-GCN) do not correspond to a higher
test accuracy except for two cases (PTC, SYNTHIE). Over-
all, E(SPI-GCN) increases when α increases, as expected,
since the expressiveness is maximized during training when
α > 0. The IGED, on the other hand, is correlated to the best
performance in four out of ten cases (ENZYMES, IMDB-
BINARY, and IMDB-MULTI), where the test accuracy is
maximal when the IGED is maximal. On HYDRIDES, the
difference in IGED for α = 10−1 (highest accuracy) and
α = 1 (highest IGED value) is negligible.

Our empirical results indicate that while optimizing the
expressiveness of SPI-GCN may result in a higher test accu-
racy in some cases, more expressive GNNs do not systemat-
ically perform better in practice. The IGED, however, which
reflects a GNN’s ability to compute graph representations
that are correctly clustered according to their effective class,
better explains the generalization performance of the GNN.

7 Conclusion
In this paper, we challenged the common belief that more ex-
pressive GNNs achieve a better performance. We introduced
a principled experimental procedure to analyze the link be-
tween the expressiveness of a GNN and its test accuracy in
a graph classification setting. To the best of our knowledge,
our work is the first that explicitly studies the generalization
performance of GNNs by trying to uncover the factors that
control it, and paves the way for more theoretical analyses.
Interesting directions for future work include the design of
better expressiveness estimators, as well as different (possi-
bly more complex) penalized loss functions.

References
Atwood, J., and Towsley, D. 2016. Diffusion-convolutional
neural networks. In Proceedings of the 30th Interna-
tional Conference on Neural Information Processing Sys-
tems, 2001–2009.
Bojchevski, A.; Shchur, O.; Zügner, D.; and Günnemann,
S. 2018. NetGAN: Generating graphs via random walks.
In Proceedings of the International Conference on Machine
Learning, volume 80, 609–618.
Borgwardt, K. M.; Ong, C. S.; Schönauer, S.; Vishwanathan,
S. V. N.; Smola, A. J.; and Kriegel, H.-P. 2005. Protein func-
tion prediction via graph kernels. Bioinformatics 21(1):47–
56.
Chang, C.-C., and Lin, C.-J. 2011. LIBSVM: A library for
support vector machines. ACM Trans. Intell. Syst. Technol.
2(3):1–27.
Chen, T.; Bian, S.; and Sun, Y. 2019. Are powerful graph
neural nets necessary? A dissection on graph classification.
arXiv:1905.04579v2.
Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.;
Kavukcuoglu, K.; and Kuksa, P. 2011. Natural language pro-

Table 1: Accuracy results for SPI-GCN, two deep learning methods (DGCNN, PSCN), and a graph kernel method (WL).
Algorithm SPI-GCN DGCNN PSCN WL
MUTAG 84.40± 8.14 86.11± 7.14 88.95± 4.37 82.77± 8.46
PTC 56.41± 5.71 55.00± 5.10 62.29± 5.68 57.05± 7.61
NCI1 64.11± 2.37 72.73± 1.56 76.34± 1.68 79.87± 1.77
PROTEINS 72.06± 3.18 72.79± 3.58 75.00± 2.51 72.25± 3.22
ENZYMES 50.17± 5.60 47.00± 8.36 − 51.16± 5.33
IMDB-BINARY 60.40± 4.15 68.60± 5.66 71.00± 2.29 72.10± 5.30
IMDB-MULTI 44.13± 4.61 45.20± 3.75 45.23± 2.84 51.26± 4.31
COIL-RAG 74.38± 2.42 2.21± 0.33 − −
SYNTHIE 71.00± 6.44 54.25± 4.34 − −
HYDRIDES 82.75± 2.67 − − −

Table 2: Expressiveness experiments results. SPI-GCN is trained on the penalized cross entropy loss, Lp, with increasing
values of the penalty factor α. For each data set, and for each value of α, we report the test accuracy (a), the expressiveness
E(SPI-GCN) (b), and the IGED (c). Highlighted are the maximal values for each quantity.

α 0 10−3 10−1 1 10
MUTAG 84.40± 8.14 84.40± 8.14 86.07± 9.03 82.56± 7.33 81.45± 6.68 (a)

0.09± 0.01 0.09± 0.01 0.12± 0.01 5.96± 1.08 6.32± 0.76 (b)
0.68± 0.16 0.68± 0.16 0.82± 0.18 1.21± 0.23 1.20± 0.22 (c)

PTC 56.41± 5.71 54.97± 6.05 54.64± 6.33 57.88± 8.65 58.70± 7.40 (a)
0.09± 0.01 0.09± 0.01 0.11± 0.01 8.41± 3.13 9.03± 2.94 (b)
0.26± 0.05 0.26± 0.05 0.26± 0.06 0.41± 0.22 0.42± 0.22 (c)

NCI1 64.11± 2.37 64.21± 2.36 64.01± 2.87 63.48± 1.36 63.19± 1.72 (a)
0.09± 0.004 0.09± 0.005 1.07± 0.19 16.83± 0.49 16.91± 0.52 (b)
0.18± 0.02 0.19± 0.03 0.59± 0.05 0.62± 0.05 0.62± 0.05 (c)

PROTEINS 72.06± 3.18 71.78± 3.55 71.51± 3.26 70.97± 3.49 71.42± 3.23 (a)
5.89± 1.34 13.07± 3.21 35.88± 4.89 35.88± 4.89 35.88± 4.89 (b)
0.74± 0.09 0.74± 0.09 0.74± 0.09 0.74± 0.09 0.74± 0.09 (c)

ENZYMES 50.17± 5.60 50.17± 5.60 29.33± 5.93 29.33± 5.54 29.33± 5.88 (a)
0.79± 0.21 1.85± 0.64 23.22± 2.99 23.33± 3.02 23.35± 3.01 (b)
0.44± 0.06 0.42± 0.10 0.42± 0.10 0.42± 0.10 0.42± 0.10 (c)

IMDB-BINARY 60.40± 4.15 61.70± 4.96 61.10± 3.75 54.40± 3.10 54.20± 5.15 (a)
0.12± 0.01 0.12± 0.01 0.16± 0.01 12.43± 2.37 11.70± 2.89 (b)
0.15± 0.03 0.15± 0.03 0.15± 0.03 0.12± 0.08 0.12± 0.08 (c)

IMDB-MULTI 44.13± 4.61 44.60± 5.41 44.80± 4.51 39.73± 4.34 38.87± 4.42 (a)
0.08± 0.01 0.08± 0.01 0.64± 0.14 10.38± 1.05 9.91± 1.15 (b)
0.16± 0.02 0.16± 0.02 0.16± 0.09 0.15± 0.09 0.15± 0.09 (c)

COIL-RAG 74.38± 2.42 74.38± 2.45 72.49± 3.21 52.08± 4.89 28.72± 3.62 (a)
0.08± 0.002 0.081± 0.002 0.13± 0.01 2.00± 0.18 2.33± 0.14 (b)
0.95± 0.01 0.95± 0.01 0.96± 0.01 0.98± 0.02 0.98± 0.02 (c)

SYNTHIE 71.00± 6.44 71.00± 6.04 74.00± 6.44 73.00± 7.57 73.75± 7.52 (a)
1.60± 0.20 1.86± 0.24 29.97± 2.16 29.50± 2.18 29.37± 2.18 (b)
0.73± 0.07 0.72± 0.08 0.61± 0.11 0.59± 0.12 0.58± 0.12 (c)

HYDRIDES 82.75± 2.67 82.65± 2.44 83.92± 4.30 77.45± 3.25 76.37± 2.57 (a)
0.13± 0.01 0.13± 0.01 1.68± 0.87 4.75± 0.41 5.03± 0.75 (b)
0.50± 0.11 0.50± 0.11 0.8± 0.19 0.85± 0.21 0.72± 0.22 (c)

cessing (almost) from scratch. Journal of Machine Learning
Research 12:2493–2537.
Debnath, A. K.; Lopez de Compadre, R. L.; Debnath, G.;
Shusterman, A. J.; and Hansch, C. 1991. Structure-activity
relationship of mutagenic aromatic and heteroaromatic nitro
compounds. Correlation with molecular orbital energies and
hydrophobicity. Journal of Medicinal Chemistry 34(2):786–
797.
Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In Advances in Neural Information Pro-
cessing Systems, 3844–3852.
Dobson, P. D., and Doig, A. J. 2003. Distinguishing enzyme
structures from non-enzymes without alignments. Journal of
Molecular Biology 330(4):771–783.
Duvenaud, D. K.; Maclaurin, D.; Iparraguirre, J.; Bombarell,
R.; Hirzel, T.; Aspuru-Guzik, A.; and Adams, R. P. 2015.
Convolutional networks on graphs for learning molecular
fingerprints. In Advances in Neural Information Processing
Systems, volume 28, 2224–2232.
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural message passing for quantum
chemistry. In Proceedings of the 34th International Confer-
ence on Machine Learning, ICML 2017, Sydney, NSW, Aus-
tralia, 6-11 August 2017, 1263–1272.
Gori, M.; Monfardini, G.; and Scarselli, F. 2005. A new
model for learning in graph domains. In Proceedings of
the International Joint Conference on Neural Networks, vol-
ume 2, 729–734.
Haussler, D. 1999. Convolution kernels on discrete struc-
tures. Technical Report UCS-CRL-99-10, University of Cal-
ifornia, Santa Cruz.
Kersting, K.; Kriege, N. M.; Morris, C.; Mutzel, P.; and Neu-
mann, M. 2016. Benchmark data sets for graph kernels.
Kingma, D. P., and Ba, J. 2015. ADAM: A method for
stochastic optimization. In Proceedings of the 3rd Interna-
tional Conference on Learning Representations.
Kipf, T. N., and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. In International
Conference on Learning Representations.
Kriege, N. M.; Johansson, F. D.; and Morris, C. 2019. A
survey on graph kernels. arXiv:1903.11835.
Mckay, B. D., and Piperno, A. 2014. Practical graph iso-
morphism, ii. Journal of Symbolic Computation 60:94–112.
Min, S.; Lee, B.; ; and Yoon, S. 2017. Deep learning in
bioinformatics. Briefings in Bioinformatics 18(5):851–869.
Morris, C.; Kriege, N. M.; Kersting, K.; and Mutzel, P. 2016.
Faster kernels for graphs with continuous attributes via hash-
ing. In IEEE 16th International Conference on Data Mining,
1095–1100.
Niepert, M.; Ahmed, M.; and Kutzkov, K. 2016. Learning
convolutional neural networks for graphs. In Proceedings of
the 33rd International Conference on International Confer-
ence on Machine Learning, volume 48, 2014–2023. JMLR.

Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,
A. 2017. Automatic differentiation in PyTorch. In NIPS
Autodiff Workshop.
Read, R. C., and Corneil, D. G. 1977. The graph isomor-
phism disease. Journal of Graph Theory 1(4):339–363.
Riesen, K., and Bunke, H. 2008. IAM graph database repos-
itory for graph based pattern recognition and machine learn-
ing. In Proceedings of the 2008 Joint IAPR International
Workshop on Structural, Syntactic, and Statistical Pattern
Recognition, 287–297. Springer Berlin Heidelberg.
Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and
Monfardini, G. 2009. The graph neural network model.
Transactions on Neural Networks 20(1):61–80.
Schlichtkrull, M.; Kipf, T. N.; Bloem, P.; van den Berg, R.;
Titov, I.; and Welling, M. 2018. Modeling relational data
with graph convolutional networks. In The Semantic Web
(ESWC), 593–607.
Shervashidze, N.; Schweitzer, P.; van Leeuwen, E. J.;
Mehlhorn, K.; and Borgwardt, K. M. 2011. Weisfeiler-
lehman graph kernels. Journal of Machine Learning Re-
search 12:2539–2561.
Simonovsky, M., and Komodakis, N. 2017. Dynamic
edge-conditioned filters in convolutional neural networks on
graphs. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR 2017), 29–38.
Srinivasan, A.; Helma, C.; King, R. D.; and Kramer, S. 2001.
The predictive toxicology challenge 2000–2001. Bioinfor-
matics 17(1):107–108.
Wale, N.; Watson, I. A.; and Karypis, G. 2008. Compar-
ison of descriptor spaces for chemical compound retrieval
and classification. Knowledge and Information Systems
14(3):347–375.
Weisfeiler, B., and Lehman, A. A. 1968. A reduction of a
graph to a canonical form and an algebra arising during this
reduction. Nauchno-Technicheskaya Informatsia 9(2):12–
16.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
powerful are graph neural networks? In International Con-
ference on Learning Representations.
Yanardag, P., and Vishwanathan, S. 2015. Deep graph ker-
nels. In Proceedings of the 21th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, 1365–1374. ACM.
Zhang, M.; Cui, Z.; Neumann, M.; and Chen, Y. 2018. An
end-to-end deep learning architecture for graph classifica-
tion. In AAAI Conference on Artificial Intelligence, 4438–
4445. AAAI Press.

