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ABSTRACT 

Amongst the most important graphite shapes, nodules and compacted particles are of 

particular interest as they can coexist in castings with relevant changes in properties. In 

this context, it has been often reported that the compacted shape is an intermediate form 

between nodules and graphite lamellas that may be seen as a degeneracy from the 

nodular one. The present work shows the microstructure evolution of an initially ductile 

iron alloy with a silicon content of about 2.4 wt.% when reducing progressively the 

magnesium content by holding a large melt batch in a nitrogen-pressurized pouring unit for 

8 hours. Thermal cups with and without inoculant were cast at a regular time interval 

together with a sample for chemical analysis. Interestingly, the thermal records of the 

inoculated samples show no significant changes with time while the structure evolved from 

fully spheroidal to half spheroidal half compacted graphite. Conversely, the thermal curves 

of the non-inoculated samples showed two arrests, one at nearly the same temperature as 

for inoculated alloys and a second one at a temperature decreasing with holding time until 

being below the metastable eutectic temperature. Microstructure observations showed the 

presence of a limited number of compacted cells which decreases as well with holding 

time. These observations suggest that these cells start developing during the temperature 

interval between the first and second arrests, leading to a bulk eutectic transformation 

either above or below the metastable eutectic temperature. These results support the view 

that a fully compacted structure can be obtained only with a controlled inoculation which 

should not be too high to avoid too high nodularity. 

 

1. INTRODUCTION 

Compacted graphite cast irons (CGI) have generated an important 
interest due to the combined properties of these alloys in 
comparison to spheroidal graphite irons (SGI) and lamellar 
graphite irons (LGI) [1-4]. This has led to improved physical 
properties of castings and components normally produced with 
LGI. However, satisfactory production of CGI is somehow 
difficult as the intended microstructure, namely a mixture of 
compacted and spheroidal graphite, is highly sensitive to casting 
section (cooling rate) [2-5], chemical composition (especially in 
case of some minor alloying elements as Al, Ti, S, etc.) and 
inoculation level [6]. Consequently, requirements from customers 
are mainly focused on defining a correct range of nodularity so as 
to guarantee the appropriate properties of the produced alloy while 
casting procedures try to fit them. Successive reviews on 

compacted graphite cast irons [7-9] show that: i) controlling melt 
preparation for achieving an appropriate low nodularity and 
maximum compactness is quite demanding; ii) a clear 
understanding of compacted graphite formation has not yet been 
achieved. 
Though various methods of melt preparation to produce CGI have 
been proposed [10], the cheapest and most common one consists 
in using low level of a nodularizing alloy similar to those used for 
producing SGI, i.e. mostly a FeSiMg alloy containing some level 
of rare earths. That the proper amount of nodularizer is present in 
the melt before pouring may be controlled by checking the oxygen 
level [11] or by usual methods as spectrometry and thermal 
analysis [12]. 
Mampaey [13] studied the mushy zone evolution during 
solidification of a CGI by quenching semi-liquid semi-solid 
samples and compared the results to those obtained on LGI and 
SGI. At the start of solidification, the mushy zone of CGI follows 
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the same behaviour as for SGI, but then behaves more as that of 
LGI. These results are in line with the description of the 
microstructure evolution by Pan et al. [14] on the basis of 
observations on samples quenched during thermal analysis. 
Emphasis has been put on the maximum undercooling experienced 
by CGI at the start of solidification, which is similar to that 
encountered with SGI, sometimes larger [15] and sometimes 
smaller [16]. It has thus been proposed that graphite precipitation 
in CGI starts with spheroidal graphite as in SGI; after some time, 
protuberances appear on the spheroids which lead to the 
development of two-phase austenite compacted graphite eutectic 
cells [14]. During this stage, the two phases are in contact with the 
liquid as in LGI solidification and the thermal records generally 
show a marked recalescence. 
Because of the deep undercooling at the start of solidification, 
CGI must be inoculated when casting thin sections with the risk of 
a significant increase in nodularity [9]. Unless laboratory 
experiments that are carried out on small melt batches, the present 
study was dedicated at studying the effect of time and inoculation 
on the formation of compacted graphite with a large industrial 
melt maintained for hours in a pressurized pouring unit. Thermal 
analysis was performed at regular time intervals with two standard 
thermal analysis (TA) cups, one containing an inoculant and the 
other not. The evolution of the thermal records and of the 
microstructure is presented and then discussed. 
 

2. EXPERIMENTAL PROCEDURE 

Melt samples analysed in this work were obtained from an 8 t in 
capacity nitrogen pressurized pouring unit (press-pour) used to fill 
green sand moulds produced in a high-pressure vertical moulding 
line. These moulds were used to manufacture series of ductile iron 
castings with 0.030-0.040 wt.% magnesium and <0.008 wt.% 
sulphur contents. Melt batches of about 2000 kg were regularly 
produced adding 17–18 kg of a FeSiMg alloy (grain size 5–25 
mm, Si = 45.7, Mg = 5.50, Al = 0.43, Ca = 2.16, Ce = 1.45, La = 
0.79 and Fe balance, wt.%), 8 kg of a FeSi alloy (grain size 2–15 
mm, Si = 74.6, Al = 0.89, Ca = 0.38, C = 0.10, P = 0.02 and Fe 
balance, wt.%) and 5 kg of return scraps in a ladle according to the 
tundish-cover method. The Mg-treated batches were then added to 
the press-pour in order to support a continuous filling of the 
moulds. 
After finishing regular production in the foundry shop, 4 t of melt 
were stored in the main holder of the press-pour, keeping some 
level of heating to maintain the temperature of the liquid alloy. 
Then, 19 melt samples were gradually taken from the pouring 
basin (area were the stopper is located) after raising the melt level 
from inside the main holder of the press-pour. In all cases, the 
melt contained in the pouring unit was mixed by filling the 
pouring basin two times before sampling to promote the best 
homogenization of composition and to avoid uneven magnesium 
fading phenomena. 
In each set of analyses, the melt sample taken out from the 
pouring basin was used to fill two TA cups and to obtain a medal 
sample which was then used to determine the chemical 
composition of the alloy. One of the TA cups was empty when it 
was filled while the other one contained 0.35 g of a commercial 

inoculant (grain size 0.2–0.5 mm, Si = 69.9, Al = 0.93, Ca = 1.38, 
Bi = 0.49, RE = 0.37 and Fe balance, wt.%), i.e. about 0.10 wt.% 
of the sample weight poured in the cup. Time at which all 
sampling steps were carried out was rigorously controlled so as to 
monitor the evolution of the alloy during holding for 8 hours in 
the press-pour. The 19 castings were identified with a letter from 
A to S and a subscript “no-inoc” and “inoc” for not inoculated and 
inoculated alloys respectively. 
All cooling curves were recorded from the poured TA cups by 
means of Thermolan® software that was then used to determine 
the values of the most relevant characteristics in each case, i.e. 
maximum temperature recorded, liquidus temperature, minimum 
eutectic temperature, recalescence and solidus temperature. The 
samples poured in the TA cups were then cut and the obtained 
surfaces properly polished for carrying out metallographic 
inspections. Micrographs at 100x magnification of three different 
fields were obtained from the central area of each sample and the 
shape of the graphite particles was then evaluated by determining 
the count and area fractions of class III graphite related to 
compacted shape, respectively fIII_C and fIII_A , class V irregular 
nodules, respectively fV_C and fV_A, and class VI well-shaped 
nodules, respectively fVI_C and fVI_A with an image analysis 
software. These fractions are relative in the sense they are 
normalized with the total count and area of graphite, i.e. fIII_C + 
fV_C + fVI_C = 1 and fIII_A  + fV_A + fVI_A = 1. Nodule count values 
were then obtained as the sum of class V and VI count values, and 
the sum fV_C + fVI_C was used to express nodularity. The structure 
of the samples was checked by etching the polished surfaces with 
Nital 5% reactant. In case of those samples without inoculant 
addition, the carbide area fractions (fcarbides_A) were also 
determined on the etched surfaces. 

 
Fig. 1 - Evolution of the content of the melt in Mg, Ce and La. 

The evolution of the chemical composition of the alloy remaining 
in the press-pour was determined by analysing the collected 
medals. Carbon and sulphur contents were measured by 
combustion analysis (LECO CS300) and the rest of elements by 
spark spectrometry (SPECTROLAB). The first measured 
composition (wt.%) was 3.75 C, 2.45 Si (not including the 
contribution of the inoculant addition), 0.64 Mn, 0.85 Cu, 0.021 
Ti, 0.023 P, 0.043 Mg, 0.013 Ce, 0.0051 La, and less than 0.005 S. 
During holding, the Mn, Cu, P and Ti contents remained constant, 
while the C and Si contents decreased slightly to 3.65 wt.% and 
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2.39 wt.% respectively. The carbon equivalent of the melt was 
calculated as: 

CE = wC + 0.28·wSi + 0.007·wMn + 0.092·wCu + 0.303·wP 
where the term wi is the content in wt.% of element “i” [17]. CE 
decreased from 4.53 wt.% to 4.41 wt.% during the holding, thus 
remaining hypereutectic. The only noticeable evolution was that 
of Mg, Ce and La that is presented in figure 1. 
 

3. RESULTS 

Thermal records for the inoculated alloys are illustrated with those 
for Ainoc, Ginoc, Minoc and Sinoc samples in figure 2-a, and the 
graphite distribution of the first (Ainoc) and last (Sinoc) samples 
appear in figure 2-b and 2-c respectively. On the graph of figure 2-
a, the calculated stable and metastable eutectic temperatures, Teut 
and TW, determined as indicated in the annex have also been 
drawn as dotted horizontal lines. The TA records for inoculated 
alloys were all very similar, showing solidification proceeded 
along one single eutectic plateau with a maximum temperature 
that appears nearly the same for all records. It was noticed some 
recalescence which decreased slowly from the first to the last cast. 

The corresponding microstructures showed however a continuous 
evolution from a fully SGI microstructure to a nearly CGI one. It 
could further be noticed that small nodules appearing in alloy Ainoc 
are totally replaced by compacted graphite particles in alloy Sinoc. 
This suggests graphite precipitation in the inoculated alloys started 
with primary spheroids that became engulfed in austenite and give 
the large nodules that appear similarly in all samples. This is 
demonstrated in figure 2-d where the evolutions of the relative 
area fractions fIII_A , fV_A and fVI_A with time are reported and 
where it is seen that fV_A is nearly constant. 
In figure 3-a, a similar selection of TA records from the series of 
non-inoculated alloys is shown; they appear more at change than 
those for inoculated samples. This is in agreement with the strong 
change seen in the microstructures illustrated with samples Ano-

inoc, Eno-inoc and Sno-inoc in figures 3-b, 3-c and 3-d respectively. As 
a matter of fact, sample Ano-inoc is fully graphitic with mostly 
spheroidal graphite, and its TA record is just alike the ones in 
figure 2-a. On the contrary, all other non-inoculated alloys showed 
a two-step solidification with a short plateau at 1139-1149°C and 
a main plateau at a temperature that decreased with holding time. 
 

 
 

  
(a) (b) 

  
(c) (d) 

Fig. 2 - Inoculated samples: cooling curves of a few selected trials (a), graphite distribution in samples Ainoc (b) and Sinoc (c), and 
evolution of the relative fractions of compacted and nodular graphite (d). 
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(a) (b) 

  
(c) (d) 

Fig. 3 - Non-inoculated samples: cooling curves of a few selected trials (a) and graphite distribution in samples Ano-inoc (b), Eno-inoc 
(c) and Sno-inoc (d). 

 

  
(a) (b) 

Fig. 4 - Time evolution of the graphite and cementite area fractions (a) and of the relative fraction fIII_A, fV_A and fVI_A (b) in the non-
inoculated samples. 

 
 
After Nital etching, samples from Cno-inoc to Sno-inoc did show a 
significant and increasing amount of white eutectic as seen in 
figure 4-a where the evolution of the area fractions of graphite and 
of cementite with time are plotted. For sample Cno-inoc, the 

minimum temperature before the second plateau was above TW, 
meaning cementite appeared in that sample at the end of 
solidification. This sample thus demonstrates that the growth of 
compacted graphite cells gets strongly impeded and slowed down 
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at late solidification stage, in contrast to the case of lamellar 
graphite. For all other samples, the minimum temperature before 
recalescence was below TW so that cementite may have appeared 
both before and after the second plateau. Also, for samples H to S, 
the second plateau was entirely located below TW. In some cases, 
a small but abrupt increase in recalescence during this second 
plateau was observed which could possibly be associated with 
nucleation of ledeburite. 
In figure 4-b is shown the parallel time evolution of the area 
fraction of cementite and the relative area fractions fIII_A , fV_A and 
fVI_A for non-inoculated samples. During the first 50 minutes, the 
relative amount of both types of spheroidal graphite (V and VI 
classes) decreases while that of compacted graphite strongly 
increases. Then, the relative amounts of the different types of 
graphite remain almost constant and the changes seen in figures 3 
and 4-a relate to the decrease of the graphite fraction and the 
associated increase of cementite. 
 

4. DISCUSSION 

This discussion deals with the shape of the thermal records in 
relation with the sequence of graphite precipitation. The 
description of the cooling curves follows the experimental 
approach by Pan et al. [14] and the modelling description by 
Lesoult et al. [18-19]. 
Owing to the hypereutectic composition of the samples, one 
expects primary precipitation of graphite when the temperature 
decreases below the graphite liquidus. However, this precipitation 
is not predicted to show up with a thermal arrest because the 
corresponding amount of graphite is low even for inoculated 
alloys. As the temperature further decreases, the extrapolation of 
the austenite liquidus is reached and austenite starts precipitating 
without significant undercooling. At that time, those graphite 
spheroids which are large enough get surrounded with an austenite 
envelop while the others continue their growth in the liquid until 
they could get encapsulated. For the inoculated alloys, it is seen in 
figure 2-a that there were enough large spheroids at the time 
austenite appeared for bulk eutectic solidification to take place 
immediately. The small increase in the minimum eutectic 
temperature from sample Ainoc to sample Sinoc may be due to the 
slight decrease with time of both the CE and the liquid cooling 
rate (increase of the maximum temperature). It is worth stressing 
that the evolution from fully spheroidal to half-spheroidal half-
compacted microstructure cannot be noticed on the thermal 
records. 
The first non-inoculated sample, Ano-inoc, showed the same type of 
record as the inoculated samples, with solidification showing up 
with a single plateau. It may be safely assumed that there were 
enough exogenous particles left in the melt to trigger graphite 
nucleation at the time of pouring this sample without any 
inoculant addition. This nucleation capacity then disappeared 
progressively during holding of the melt, leading to a continuous 
decrease of the number of primary graphite spheroids in non-
inoculated samples as it can be seen from the micrographs shown 
in figure 3. The thermal records then showed solidification to 
proceed in two steps marked by two successive plateaus. The first 
plateau was denoted as TL (TLA) for liquidus arrest temperature by 

Pan et al. [14], which appears a misleading labelling owing to the 
hypereutectic composition of the alloy and to the fact that graphite 
was already present as primary spheroids. Note that the 
temperature of this first arrest slightly increases with holding time 
as for the inoculated samples. 
Except for alloy Ano-inoc, the primary graphite nodules in the case 
of the non-inoculated alloys were however not numerous enough 
to generate bulk eutectic solidification so that the first arrest is 
followed by a further decrease of the sample temperature until a 
minimum temperature (TEU) was reached at which bulk 
solidification could take place. This TEU temperature was found to 
decrease first rapidly and then more slowly from sample Bno-inoc to 
sample Sno-inoc which clearly shows that less and less graphite had 
appeared during the first part of solidification. In turn, this 
demonstrates that the first arrest is not only related to austenite 
deposition. This is also seen in figure 3-a by observing that there 
is an inflexion point in between the first arrest and the minimum 
temperature, which Pan et al. [14] denoted TE and associated to 
the start of coupled eutectic growth. It is interesting to note that 
the shape of the first arrest remains anyway the same from 
samples Bno-inoc to Sno-inoc until the inflexion point is reached while 
less and less graphite is involved. This may be easily understood 
by means of the modelling approach [18-19] in which the mass 
balances showed that less eutectic is compensated for by more off-
eutectic austenite, and vice versa. 
Attempt was then made to understanding the evolution of the 
primary spheroidal graphite particles during the stage between the 
first arrest and TEU. Figure 5-a shows a micrograph of sample 
Gno-inoc after light etching where spheroids are seen isolated and 
embedded in ledeburite or included in compacted graphite cells. 
Accordingly, after deep etching, several spheroids could be 
observed amongst which a few were clearly connected to 
compacted graphite as in figure 5-b and others were not. This 
suggests that primary graphite spheroids could be associated with 
the formation of compacted graphite cells during the first 
solidification stage or remained growing free in the liquid until 
bulk solidification. 
In figure 6 an extended metallographic field with some marked 
compacted cells and a detailed SEM image after deep etching of 
sample Sno-inoc. are shown. Much less spheroids could be identified 
in this sample as expected, but the most interesting was that the 
compacted graphite cells appeared either rounded or elongated. It 
may easily be inferred that the growth of the rounded cells 
occurred mostly before the white eutectic developed while the 
elongated cells were due to their growth being hindered by 
ledeburite. 
To sum up, the following schematic can be suggested for the non-
inoculated samples which mostly agrees with previous work by 
Pan et al. [14]. There is no doubt that the stable eutectic 
solidification started at the first thermal arrest with primary 
spheroids getting encapsulated by austenite provided they had a 
large enough size. Upon further cooling, spheroids remaining in 
the liquid grew further and then started developing protuberances 
from which compacted graphite cells develop, as already 
considered by several authors [20-22]. In samples Bno-inoc to Eno-

inoc, there were enough of these cells for bulk solidification to take 
place before the eutectic white temperature (TEW) was reached. 
White eutectic formed in those cases at the very end of 
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solidification. For samples Fno-inoc to Sno-inoc, compacted graphite 
cells started to grow to some extent during cooling before TEU was 
reached, but then were competing with fast growing white eutectic 
leading to some of them appearing elongated. This above 
schematic still misses a criterion for the formation of 

protuberances, which cannot be undercooling as compacted 
graphite develops in inoculated samples at a temperature very 
close to TEU. 
 

  

  
(a) (b) 

Fig. 5 - Sample Gno-ino: light optical micrograph (a) and SEM micrograph after deep etching (b). 
 

  
(a) (b) 

Fig. 6 - Sample Sno-inoc: light optical micrograph (a) and SEM micrograph after deep etching (b). 
 

It has been reported previously that the growth rate of compacted 
graphite cells is comparable though slower than that of lamellar 
graphite cells [23]. That it is slower at the start of growth may be in 
relation with the low capability of compacted graphite to branch 
[24], and thus to the increased distance between graphite worm-like 
flakes as compared to the flakes in LGI. At the end of 
solidification, the slowing down of the growth rate of the 
compacted graphite cells could possibly be related to the 
accumulation of magnesium rejected by austenite, which has been 
suggested to leading to austenite closing up around graphite 
precipitates [25]. 
In case of the hypereutectic inoculated samples, graphite nucleation 
is favoured, and high nodule count values lead to a limitation in the 
growth of primary nodules. This fact minimizes the early formation 
of protuberances from the rounded shape and avoid the formation 
of lebeburite (metastable solidification) leading to the one single 
plateau observed in the thermal records (see figure 2-a). 
 

5. CONCLUSIONS 

Inoculated samples show solidification reactions that proceeded 
along one single eutectic plateau due to the comparatively high 
graphite nucleation and the hypereutectic composition of the 
studied alloys. The solidification on these samples starts with the 
primary nodules formation which first grow from the liquid and 
become then surrounded by austenite shells when the metastable 
extrapolation of the austenite liquidus is reached. For the first cast 
samples with high magnesium content, new nodules formed during 
the eutectic reaction get also encapsulated in austenite. As the 
magnesium content gradually decreases, primary nodules formed 
similarly but less and less nodules nucleated during eutectic 
solidification. Instead, more and more compacted graphite particles 
could be observed which demonstrate that more and more 
compacted graphite cells have developed. It is interesting to notice 
that cooling curves shape does not show any evidence of decreasing 
nodularity of samples. 
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In case of the non-inoculated samples, it was unexpected that the 
first one showed a high graphite nucleation. Accordingly, the 
corresponding thermal record is similar to the ones obtained from 
the inoculated samples. However, solidification of the rest of non-
inoculated samples occurs in two successive steps. In a first small 
arrest, austenite appears and start interacting with a limited number 
of primary nodules that have nucleated before. With further 
cooling, the nodules start developing protuberances that originate 
compacted graphite cells. With increasing time, bulk reaction takes 
place at lower and lower temperature in relation with an overall 
decrease of graphite. During this second arrest, the compacted 
graphite cells develop further but white eutectic also appears which 
becomes more and more important as time increases. The present 
results may be first seen as demonstrating again that inoculation is 
the second key to master CGI casting together with chemical 
alloying and cooling rate. Inoculation must be lower in CGI than in 
SGI to suppress the tendency to form spheroidal graphite [26-27] 
but yet it is necessary for avoiding chilling. In the non-inoculated 
samples studied here, the increase of the undercooling before bulk 
eutectic solidification has been related to the progressive 
disappearance of remaining graphite nuclei. As a consequence, 
there were not enough compacted graphite cells developing to 
avoid the formation of ledeburite. With increasing holding time, the 
recalescence rate decreased which is also associated with a decrease 
in the number of eutectic cells competing with the ledeburitic 
eutectic. Even when bulk solidification started before the TEW 
temperature was reached and showed a marked recalescence, 
ledeburite was observed which must have formed at the end of 
solidification. This demonstrates that the growth rate of compacted 
graphite cells slows down significantly during eutectic 
solidification. The present analysis suggests that the formation of 
compacted graphite is strongly related to degeneracy of nodules 
having reached a certain size. This is well in line with the effect of 
inoculation which limits the maximum size of the spheroids, thus 
delaying the degeneracy to the very last stage of solidification. 
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Annex 
The calculated stable eutectic temperature may be estimated as 
Teut = 1154.02 + 4.24·wSi + 4.87·wCu − 4.98·wMn [17], where the 
temperature is in Celsius. For the alloy composition indicated in the 
text, one has Teut varying from 1165.3ºC to 1165.1ºC along the series of 
castings. The calculated metastable eutectic temperature is given as 
TW = 1150 − 12.5·wSi [28], i.e. increasing from 1119.4°C to 1120.1°C 
during the series of castings. 
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