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Real-Time Estimation in a Turbulent Jet Using
Multiple-Input-Multiple-Output Transfer Functions

Igor A. Maia∗, Peter Jordan†, Eduardo Martini‡, André V. G. Cavalieri§, Aaron Towne¶, Lutz
Lesshafft‖,Oliver Schmidt∗∗

In this work we investigate the use of multiple-input, multiple-output (MIMO)
transfer functions obtained empirically from a large-eddy simulation of a turbu-
lent jet. We compare the MIMO performance with single-input-single-output
(SISO) transfer functions used in previous studies. The choice of sensor place-
ment has been made based on results of linear stability analysis from the litera-
ture. The results show that MIMO transfer functions improve on SISO results
where both single- and two-point statistics are concerned. It is also found that
the number of sensors necessary to converge the estimates depends strongly on
Strouhal number.

I. Nomenclature

y = Input measurement
z = Output measurement
H1 = Transfer function corresponding to H1 estimator
Szy = Cross-spectral density matrix between inputs and outputs
Syy = Cross-spectral density matrix between input measurements
h1 = Time-domain transfer function
γ2 = Two-point coherence
c0 = Ambient speed of sound
St = Strouhal number
p′ = Fluctuating pressure
u′ = Fluctuating streamwise velocity
u′r = Fluctuating radial velocity

II. Introduction
Input-output analysis is increasingly used in the control of fluid systems, because it provides a framework in

which to associate control design and reduced-order models, the latter being frequently based on hydrodynamic
stability theory[1]. In this framework the frequency response of the system to given excitations is described
by means of transfer functions, and this information is used to feed actuators via a control law so as to
achieve a certain objective.

For a convectively unstable flow, the crucial step in this approach is the correct estimation of the evolution
of flow disturbances as they are convected downstream. Therefore, a model that provides an accurate
description of the convective flow dynamics is required. The use of reduced-order models based on linear
stability theory for the control of open flows has been extensively revised by [2]. Galerkin-based, reduced-order
models have also been used in control theory. They rely on the projection of the linearised Navier-Stokes
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equation onto a basis, which results in a state-space equation. Proper Orthogonal Decomposition (POD)
modes [3, 4], balanced modes [5, 6] and global eigenmodes [7, 8] have been used as such bases.

However, as pointed out by [9], Galerkin-based methods for control possess a number of limitations.
For instance, the performance of such models depends on the observability of the associated modes from
measurements, which may not be the case for POD modes. Moreover, the projections usually rely on a priori
assumptions about the sources of ambient noise on the state variables, which should be taken into account by
the model; if the true noise sources are different from the modelled ones, the controller may present stability
issues.

An alternative to model-based control is system identification[9–11], which is a data-based technique that
establishes a link between input and output through direct observations. System identification is particularly
interesting for experimental applications, because the effect of external noise is implicitly embedded in the
determination of the transfer function. In [9], an auto-regressive, moving-average, exogenous (ARMAX)
model was used to perform estimation and control in a simulation of a flow over a backward-facing step, with
significant reductions in turbulent kinetic energy.

For a turbulent jet, it has been shown in [12] that the space-time evolution of disturbances can be
successfully predicted by two methods of transfer function identification: the parabolised stability equations
(PSE) and a direct identification based on the cross-spectral density of input and output measurements. The
former is a model approach based on first principles, and depends only on the mean flow; the latter is empirical
and depends on measurements of fluctuating flow quantities. The authors used a single-input configuration
and the results indicated that both methods perform equally well and provide good estimates when input and
output are separated by a few jet diameters. Such single-input-single-output transfer functions based on PSE
have later been used to perform closed-loop control in an incompressible shear-layer [13, 14]. However, the
agreement between estimates and measurements deteriorates if input and outputs are moved further apart.
Moreover, single-input transfer functions have the disadvantage of not being able to predict higher-order
dynamics, such as jitter [15], which is manifest in the two-point coherence decay and is an important trait for
sound radiation [16].

A method for estimating unknown two-point space-time statistics from a set of measurements has been
developed in [17]. The method is based on the resolvent framework [18], in which non-linear effects are
interpreted as input forcing that drives linear dynamics via the resolvent operator of the linearised Navier-
Stokes operator. In a model problem, based on the Ginzburg-Landau equation, it is shown that it is possible
to improve estimates of power spectral density and cross-spectral density with the addition of input probes,
which amounts to using multiple resolvent modes in the estimation of the forcing term. This method has been
applied in a turbulent channel flow in [19], with good estimates of velocity energy spectra and autocorrelations
near the wall.

The objective of this work is to explore how SISO estimation can be iproved by the introduction of multiple
sensors. We are interested in the evolution of both disturbance amplitude and higher-order activity, manifest
in the two-point coherence of the disturbance field. We use a large-eddy simulation (LES) database for a
Mach Ma = 0.4, Reynolds number Re = 4.5× 105, jet, performed using the compressible flow solver "Charles"
[20]. The empirical approach is conceptually similar to the resolvent-based one used in [19]. However, the
resolvent-based approach involves one intermediate step of inferring the forcing term from the set of available
measurements; in the empirical framework, this step is implicit in the determination of transfer functions
from the measurements.

An important question then arises: where to place the sensors in order to improve the predictions? Linear
stability analysis can be used as a physics-based framework in which to guide sensor placement prior to the
application of optimization algorithms. It has been previously shown that homogeneous linear stability models
(such as PSE) can describe the evolution of flow disturbances up to the point where the Kelvin-Helmholtz
(KH) mode becomes neutrally stable [21–23]. Further downstream the agreement between homogeneous
linear models and experiments breaks down; the results of [12] also show a deterioration of the estimates
using transfer functions based on PSE in the region where the KH mode is unstable.

It has been shown in [24], by means of a locally parallel, spatial transient growth analysis, that a way to
correct the discrepancies of the linear models is to account for the contribution of the stable modes, that
are important due to the non-normality of the linearised Navier-Stokes operator. The study revealed that,
concerning both the growth of disturbances and the two-point coherence, the spatial evolution of disturbances
involves linear combination of the stable modes, in a manner that may be mimicked by a MIMO model.
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These stable modes have extended spatial support in the shear-layer, but have different radial organisation.
Based on these observations, we radially distribute the sensors in the shear-layer of the jet to perform the
MIMO analysis; the idea being to pick up information from different stable modes so as to improve the
estimates of the SISO transfer functions which, by construction, can only carry information of a single-mode.

The remainder of the paper is organised as follows: in section §III the methodology for computing the
transfer functions from flow data is shown. In section §IV we assess the performance of the two methods in
predicting power spectral densities and two-point coherence of the disturbances. Finally, in section §V we
summarise the main conclusions of the study.

III. Methodology
A time-invariant dynamical system can be represented by [25, 26]

z = Hy + ε, (1)

where y, z are inputs and responses (outputs), H is the transfer function and ε is the error. We have used the
H1 estimator as a transfer function, which assumes that the error, ε, is uncorrelated with the input, y. For
the case of a multiple-input-multiple-output system, the H1 estimator is given, in the frequency domain, by

H1(ω) = Szy (ω)S−1
yy (ω) =


Sz1y1 (ω) Sz1y2 (ω) · · · Sz1ymω)
Sz2y1 (ω) Sz2y2 (ω) · · · Sz2ym (ω)

...
...

. . .
...

Szny1 (ω) Szny2 (ω) · · · Sznym (ω)



Sy1y1 (ω) Sy1x2 (ω) · · · Sy1ym (ω)
Sy2y1 (ω) Sy2y2 (ω) · · · Sy2ym (ω)

...
...

. . .
...

Symy1 (ω) Symx2 (ω) · · · Symym (ω)


−1

,

(2)
where Sziyk

is the cross spectral density of the kth input and the ith output, and Syiyk
is the cross spectral

density of the kth and ith inputs. In the case of a single-input-single-output system, the expression reduces to

H1 = Szy/Syy. (3)

A time-domain transfer function, h1(t), can be obtained through the inverse Fourier transform of H1,

h1(t) =
1

2π

∫ ∞
−∞

H1(ω)e−iωtdω. (4)

Once the time-domain transfer function is obtained, the output z(t) can be obtained by convolution of some
input measurements with the causal part of h1(t),

z(t) =
∫ ∞

0
h1(t− τ )y(τ )dτ. (5)

Equation 5 is used to estimate downstream flow disturbances in the jet based on measurements made at a
given upstream position. Three quantities have been used to perform the estimation: pressure, streamwise
velocity and radial velocity. All the estimations concern the axisymmetric azimuthal mode of the jet only.
Throughout the paper we show estimations of the power spectral density of outputs, Szz, and two-point
coherence, defined, for different outputs zi and zj , as

γ2
ij (ω) =

〈Szizj (ω)〉2

〈Szizi (ω)〉2〈Szjzj (ω)〉2
, (6)

where the symbol 〈·〉 denotes ensemble average.
We use an LES database of a Ma = 0.4 turbulent jet generated using the flow solver "Charles" [20]. The

power- and cross-spectral density matrices have been computed using Welch’s method. The jet is isothermal
and synthetic turbulence is introduced in the nozzle to obtain a fully turbulent boundary layer. The simulation
was run for a total time of 2000 acoustic time units, where the acoustic time is defined as tc0/D, with c0 is
the ambient speed of sound and D the jet diameter. The unstructured grid was interpolated to a cylindrical
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grid spanning 0 6 x/D 6 30, 0 6 r/D 6 6, 0 6 φ 6 2π. This database has also been used by [27] to perform
spectral proper orthogonal decomposition (SPOD) and resolvent analysis with a view to study the low-rank
behaviour of the jet.

A preliminary analysis of SISO transfer functions was carried out to determine the Strouhal-number range
in which input and output have a linear phase relation. For the two streamwise sensor positions described in
section§IV, a linear phase relation was observed up to Strouhal number St = 1, a deterioration occurring at
higher St. For this reason, the time signals have been filtered using a 30th order low pass FIR filter with a
cutoff Strouhal number of Stcut = 1.

IV. Results
Throughout the paper, we systematically compare estimates made using SISO and MIMO transfer

functions with data from the LES. We perform estimations of the evolution of flow disturbances in the
shear-layer in two different zones of the jet. In the first, the input sensors are situated at x/D = 2, where the
KH mode is spatially unstable for a range of Strouhal numbers. In the second, the sensors are situated at
x/D = 6, where the KH mode is stable [24]. Estimations are performed with outputs distributed over an
extended streamwise region and along a line of constant radial position.

Different numbers of sensors are tested for the MIMO estimations. In section §IV.A we show results
obtained with 50 sensors distributed in the shear-layer and we compare with the estimates obtained using a
single sensor. In section §IV.B we analyse the convergence of the MIMO estimates with increasing number of
sensors.

A. SISO vs. MIMO estimation
We consider first the region of unstable KH mode. Figure 1 shows the distribution of input and output

sensors. Input sensors are radially distributed at x/D = 2. The output sensors are distributed between
x/D = 3 and x/D = 5 at a fixed radial position, r/D = 0.4. The shading area shows the mean flow. The
distribution of sensors with respect to the radial rms profiles of pressure, streamwise velocity and radial
velocity is also shown. The MIMO transfer-function, given in equation 2, was computed separately for each
variable. The SISO estimations were performed with the input located at the same radial position as the
outputs, r/D = 0.4, and each input-output pair was computed separately using equation 3.

Figure 2 shows estimates of the time signals of fluctuating pressure, streamwise velocity and radial velocity
given by MIMO and SISO transfer functions compared with the time signals from the LES. The output
sensor is located at x/D = 3. Pressure fluctuations have been non-dimensionalised as p′ = p/ρ0c

2
o, where ρ0

is the ambient density and c0 the ambient sound speed, and velocities have been non-dimensionalised by the
jet exit velocity, Uj. We note that the SISO predictions are reasonably good, both in terms of amplitude
and phase. Only minor improvements are observed in the time signals with the addition of other sensors
in the MIMO model. However, a more pronounced difference can be seen by looking at the power spectral
density (PSD) estimates, shown in Figure 3 as a function of Strouhal number for the same output position.
It can be seen that the MIMO approach improves estimates over a wide range of Strouhal numbers, for the
three variables tested. It is also interesting to note that around St = 0.6, at the peak of the spectrum, both
methods perform equally well, and the estimates are remarkably good. The interpretation for this trend will
be discussed in more detail in section §IV.B.

Figure 4 shows the estimates of two-point coherence between output sensors placed at x/D = 3 and
x/D = 4. Here a striking difference can be seen between SISO and MIMO: in the SISO model, coherence
between input and output is, by construction, equal to one. Therefore coherence decay between two points
separated in the flow cannot be described [24]. However, the addition of the other sensors improves coherence
predictions significantly, and the agreement between MIMO and LES data is good. The difference between
SISO and MIMO to predict coherence decay can be further appreciated in figure 5, which shows coherence
maps as a function of Strouhal number based on pressure measurements, for outputs located between x/D = 3
and x/D = 5, respectively at the beginning and the end of the red zone shown in figure 1. The reference
point is at x/D = 3. It can be observed that the MIMO model reproduces well the coherence map of the
LES, for a wide range of Strouhal numbers, in contrast to the SISO, which yields unit coherence.

Figures 6-9 show the same set of results for inputs and outputs placed in the stable KH zone. Estimations
were again made in the shear-layer, at r/D = 0.4. The same trends observed in the unstable zone also hold in
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(a)

(b) (c) (d)

Fig. 1 Top: Distribution of input (blue) and output (red) points in the jet. Bottom: dis-
tribution of input sensors in the shear-layer: rms plots of pressure (left), streamwise velocity
(middle) and radial velocity (right). Input sensors are at streamwise position x/D = 2.

the stable zone: the MIMO transfer functions improve estimates of power spectral density over a broad range
of the Strouhal number and reproduce the two-point coherence with globally reasonable accuracy. The dips
in coherence seen at St > 1 for the SISO result in figures 3 and 8 are due to the fact that, at these Strouhal
numbers, the phase of the transfer function deteriorates, as explained previously.

An important parameter in flow control is the distance between sensor and actuator. Estimation accuracy
generally decreases with increasing separation distance between input and output [13], which imposes a
limitation as to how far apart sensor and actuator can be set. It is thus interesting to assess the ability
of SISO and MIMO transfer functions in the unstable and stable KH zones to predict the evolution of the
disturbance amplitude with increasing separation distance between input and output.

Figure 10 shows predictions of power spectral density of pressure with increasing streamwise separation for
two Strouhal numbers: St = 0.6, at the peak of the spectrum in the unstable KH zone, where the estimates
are most accurate; and St = 0.2, at which the agreement between SISO and LES data is poorer at the unstable
zone. Inputs are located at two different streamwise positions: x/D = 2 (unstable KH zone) and x/D = 6
(stable zone). Note that the MIMO model performs equally well in both zones and that estimates are quite
good even for separation distances as high as 8 jet diameters. The predictions of the SISO model, on the other
hand, have the tendency of gradually deteriorating when the output is moved further downstream. However,
in the unstable zone at St = 0.6 (near the peak of the spectrum), SISO and MIMO provide estimates of
similar accuracy for separations distances up to 3 jet diameters. This suggests that, for close separation
distances, closed-loop control strategies based on single-input measurements, like the one applied in [13], may
be successful if implemented in the unstable zone.

The results show that significant improvements in the estimation of flow disturbances in the jet can
be achieved by MIMO transfer functions with sensors distributed in the shear-layer. We interpret these
improvements as the effect of picking up information about different stable modes that have spatial support
in the shear-layer; these modes have been shown, on one hand, to be important for the continued growth of
disturbances in the zone where the KH mode becomes stable and, on the other, to provide a mechanism for
coherence decay [24].
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(a)

(b)

(c)

Fig. 2 Estimation of pressure (top), streamwise velocity (middle) and radial velocity (bottom)
at x/D = 3 by MIMO and SISO transfer functions based on input sensors placed at x/D = 2. t∗
is a non-dimensional time.

B. Convergence of MIMO estimates
MIMO results presented above have been obtained with 50 sensors. We now assess the convergence

of the MIMO estimates with increasing numbers of sensors distributed uniformly along the shear-layer,
spanning a fixed radial width, e.g., 0.2 6 r/D 6 0.7 for sensors placed at streamwise position x/D = 2,
and 0 6 r/D 6 0.8 for sensors placed at x/D = 6. For the PSD, the criterion to assess convergence is the
squared error between LES data and estimate; for the two-point coherence, we simply use the difference
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(a) (b) (c)

Fig. 3 Power spectrum density of pressure (left), streamwise velocity (middle) and radial
velocity (right) estimated at (x/D, r/D) = (3, 0.4) from input measurements made at x/D = 2.

(a) (b) (c)

Fig. 4 Two-point coherence estimated between (x/D, r/D) = (4, 0.4) and (x/D, r/D) = (3, 0.4)
based on pressure signal (left), streamwise velocity (middle) and radial velocity (right). Input
sensor were placed at x/D = 2. Color code is the same as in figure 3.

(a) (b) (c)

Fig. 5 Coherence maps based on pressure measurements between x/D = 3 and x/D = 5 for
LES data (left), MIMO prediction (middle) and SISO prediction (right). Reference point is
at x/D = 3 and output sensors are located at radial position r/D = 0.4.

∆γ2 = γ2
LES − γ2

est as a metric. The errors have been analysed in the frequency domain as a function of
Strouhal number.

Figure 11 shows the convergence of the estimates of power spectral density and coherence in the unstable
KH zone for different Strouhal numbers. In the convergence of power spectral density of pressure and radial
velocity, two clear trends can be noticed: i) the smallest errors and faster convergence have been achieved at
St = 0.6. At this Strouhal number, even a single sensor yields a very good estimate (less than 5% error.); ii)
the greatest errors and slowest convergence have been observed at St = 0.2. These trends can be interpreted
in light of recent results of resolvent analysis [27–29] for the same jet we consider. The gain spectrum of the
resolvent operator performed by [27, 28] has revealed a large separation between the gains of the optimal
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(a)

(b) (c) (d)

Fig. 6 Top: Distribution of input (blue) and output (red) points in the jet. Bottom: dis-
tribution of input sensors in the shear-layer: rms plots of pressure (left), streamwise velocity
(middle) and radial velocity (right). Input sensors are at streamwise position x/D = 6.

(a) (b) (c)

Fig. 7 Power spectrum density of pressure (left), streamwise velocity (middle) and radial
velocity (right) estimated at (x/D, r/D) = (7, 0.4) from input measurements made at x/D = 6.

and suboptimal modes in the range 0.3 6 St 6 2, with the largest gain separation being at St = 0.6 and the
smallest one being at St = 0.2.

These large and low gain separations indicate, repectively, a low- and high-rank behaviours of the jet.
This result has been confirmed by spectral orthogonal decomposition (SPOD [30]), whose gain also exhibit a
large separation between optimal and suboptimals in the same region of the spectrum [27, 29] hence revealing
a low-rank behaviour of the flow. This low-rank behaviour has been found to be more pronounced around
St = 0.6 ; it is consistent with, and largely explains the results in figure 11. The high-rank behaviour at
St = 0.2 is also consistent with the results of figure 11 for St = 0.2, which showed higher errors and slower
convergence with increasing number of sensors.

These interpretations do not apply for streamwise velocity, which does not present a clear trend concerning
the distribution of the error by Strouhal number. The oscillations seen in the convergence of the error in the
PSD suggest a greater sensitivity of the estimates of streamwise velocity concerning sensor placement, which
may be associated with the radial structure of the different stable modes.
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(a) (b) (c)

Fig. 8 Two-point coherence estimated between (x/D, r/D) = (8, 0.4) and (x/D, r/D) = (7, 0.4)
based on pressure signal (left), streamwise velocity (middle) and radial velocity (right). Input
sensor were placed at x/D = 6. Color code is the same as in figure 3.

(a) (b) (c)

Fig. 9 Coherence maps based on pressure measurements between x/D = 7 and x/D = 9 for
LES data (left), MIMO prediction (middle) and SISO prediction (right). Reference point is
at x/D = 7 and output sensors are located at radial position r/D = 0.4.

Regarding two-point coherence, for pressure and radial velocity the smallest errors and fastest convergence
were also observed at St = 0.6, as was the case for the PSD estimates. However, for streamwise velocity,
analogously to what was observed in the convergence of the PSD, there is no clear trend with respect to
Strouhal number.

Figure 12 shows the convergence of the estimates in the stable KH zone. Similar to what is observed in the
unstable KH zone for pressure and radial velocity, the smallest errors and number of sensors in the estimate
of PSD are obtained at St = 0.6, at the peak of the high gain separation. While this has been the case in the
unstable KH zone, this is not the case within the stable zone. As a matter of fact, for streamwise velocity
the smallest errors are found for St = 0.2, which is in the region of low rank separation. This disagreement
reveals than a certain caution is necessary when using results of the global resolvent analysis to interpret
local estimates. In this sense, a local analysis can also be instructive to shed some light on the discrepancies.
Comparison of figures 11 and 12 reveals that in the stable KH zone both SISO and MIMO models perform
better in the unstable KH zone and that the MIMO estimates concerning both PSD and coherence converge
with less sensors.

V. Conclusions
We have used MIMO transfer functions identified empirically from an LES database with a view to

improving estimates of SISO approches used in past studies [12, 13]. The main conclusions can be summarised
as follows:

• The estimation of single- and two-point statistics using empirical transfer functions can be improved
with the addition of sensors radially distributed across the shear-layer of the jet, as information from
multiple stable local modes may thus be incorporated in the estimation;
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(a) (b)

(c) (d)

Fig. 10 Evolution of the power spectrum density of pressure with streamwise distance for
two different Strouhal numbers. Top row: input sensors placed at x/D = 2 (unstable KH zone)
and outputs between x/D = 3 and x/D = 10. Bottom row: input sensors placed at x/D = 6
(stable KH zone) and outputs between x/D = 7 and x/D = 14. Outputs are located at the line
constant radial position, r/D = 0.4.

• MIMO estimates of the streamwise evolution of disturbance amplitudes perform equally well in unstable
and stable regions of the jet and provide good accuracy even for large separation distances between
input and output. On the other hand, the SISO model is most accurate in the unstable zone where,
for Strouhal numbers near the peak of the spectrum and small separation distances, its performance
is similar to that of the MIMO model. This suggests that control strategies based on a single-input
measurement may be appropriate in this zone;

• The convergence of the estimates with increasing number of sensors depends on Strouhal number and
streamwise position. The trends can be understood, to a certain extent, in terms of the high- and
low-rank wavepacket dynamics as predicted by global resolvent analyses.
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(a) (b) (c)

(d) (e) (f)

Fig. 11 Top row: convergence of the squared error of the power spectral density at x/D = 3
with increasing number of points in MIMO estimate for different Strouhal numbers. Bottom
row: convergence of two-point coherence estimate between x/D = 3 and x/D = 5. Left column:
pressure; middle column: streamwise velocity; right column: radial velocity. Sensors have
been placed at x/D = 2.

(a) (b) (c)

(d) (e) (f)

Fig. 12 Top row: convergence of the squared error of the power spectral density at x/D = 7
with increasing number of points in MIMO estimate for different Strouhal numbers. Bottom
row: convergence of two-point coherence estimate between x/D = 7 and x/D = 9. Left column:
pressure; middle column: streamwise velocity; right column: radial velocity. Sensors have
been placed at x/D = 6.
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