

Very Fast Acquisition of Tilt series in Environmental TEM Tomography: Tips and Tricks

Thierry EPICIER¹, Thomas GRENIER², Hussein BANJAK², Voichita MAXIM², Siddardha KONETI¹, Lucian ROIBAN¹

¹Univ. Lyon, INSA-Lyon, Université C. Bernard Lyon 1, **MATEIS**, umr 5510 CNRS, Villeurbanne, France.

²Univ. Lyon, INSA-Lyon, Université C. Bernard Lyon 1, **CREATIS**, umr 5220 CNRS, INSERM U1206, Villeurbanne, F.

Acquiring 2D projections series for 'tilt' Electron Tomography (ET) in TEM

classical optimistic step-by-step 'tilt' **Bright Field* tomography**

Rotation angular amplitude	140°
Angular step increment	2°
Re-alignment at each tilt	<u>15 sec</u>
Exposure time of each image*	<u>0.1 sec</u>
Time to proceed to the next tilt	0.1 sec
Total acquisition time	(≈ 18 min

Adapted from S. KONETI et al., Mater. Characterisation, 151 (2019), 495

*STEM: typically > 5 sec at least for $2K^2$ images

- Under gas and temperature in ETEM, morphologies change rapidly
- The longer the experiment, the higher the electron dose (irradiation damages)

ETEM 80 kV, 500°C 3mbar O₂ Total time 2 min (speed x8)

Continuous rotation and 'video' recording of 2D projections \Im

'step-by-step' series of 2D *BF* images ≈ ±70° angular range

Continuous tilt: ±70° angular range in **5 sec** (140° at the fastest speed of the FEI-TITAN goniometer)

OneView camera 100 fps in 2kx2k **G**GATAN

'tilted' electron tomography by continuous rotation

M. GEMMI et al., J. Appl. Cryst. 48 (2015) 718 diffraction B.L. NANNENGA et al., Nature Methods 11 (2014) 927

BF image V. MIGUNOV et al., Sci. Rep., 5 14516 (2015)

www.esrf.eu (European SRF, Eu)

X-Ray CT

J. VILLANOVA et al., Mat. Today 207 (2017), 354

Continuous rotation and 'video' recording of 2D projections \Im

'step-by-step' series of 2D *BF* images ≈ ±70° angular range

Continuous tilt: ±70° angular range in 5 sec (140° at the fastest speed of the FEI-TITAN goniometer)

OneView camera 100 fps in 2kx2k **G**GATAN

ANR

Is it a good idea to take time to adjust properly the eucentric?.. $\Im a$ ANR

* Is it a good idea to take time to adjust properly the eucentric?.. $\int \mu$

• Eucentric re-adjustment *frequently* needed during heating experiments

$Pd@SiO_{2}$ on SiN_{x} membrane 72.0° After 35' at 400°C,H₂ 4 mbar 100 nm After 60' at 500°C, H₂ 4 mbar **Deformation of** the membrane

• Reproducibility of (X,Y) DRIFTS as a function of tilting parameters

50% of Fastest tilt speed, continous tilt

Fastest tilt speed, discontinous tilt

• Fast measurement of appropriate (δX , δY) corrections

Tilt +70 to -70° Mag 16K Image 1Kx1K

• Fast measurement of appropriate (δX , δY) corrections

Tilt +70 to -70° Mag 16K Image 1Kx1K 100 fps actual time 5 sec

• Fast measurement of appropriate (δX , δY) corrections

display speed x0.5

Post-mortem FAST re-centering (at the ETEM)

tracking procedure based on the Normed Cross-Correlation in Fourier Space (NCCFS)

J.P. LEWIS, Vision Interface, (1995) 120

 $argmax B \frac{\sum_{m,n=1}^{M,N} Im1(m,n). Im2(m,n)}{\sqrt{\sum_{m,n=1}^{M,N} Im2(m,n)^2}}$

Normed Cross-Correlation in Fourier Space (NCCFS)

J.P. LEWIS, Vision Interface, (1995) 120

"The algorithm described in this paper was developed for the movie *Forest Gump* (1994)... Special effects sequences in that movie included ...the addition of a contemporary actor into historical film and video sequences"

• Reading "GatanDoll" DM4 'in situ' recorded sequences

.

Here: **1K images**, **50 fps over +73/-70° in about 6 sec**

300 DM4 files 4.6 Mo each total 1.37 Go 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0000.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0001.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0002.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0003.dm4 300C 5E-05 Hour 00 Minute 00 Second 00 Frame 0004.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0005.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0006.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0007.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0008.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0009.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0010.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0011.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0012.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0013.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0014.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0015.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0016.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0017.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0018.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0019.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0020.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0021.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0022.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0023.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0024.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0025.dm4

300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0026.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0027.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0028.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0029.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0030.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0031.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0032.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0033.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0034.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0035.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0036.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0037.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0038.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0039.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0040.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0041.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0042.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0043.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0044.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0045.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0046.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0047.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0048.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0049.dm4 300C_5E-05_Hour_00_Minute_00_Second_00_Frame_0050.dm4

T. Epicier et al.

Fast acquisition in Practice...

• Application of an adequate set of correction drifts ($\delta X, \delta Y$)

(user's) choice of 28 corrections sent during the tomographic acquisition Home-made software suites (using TEM Scripting © FEI)

• Application of an adequate set of correction drifts ($\delta X, \delta Y$)

(user's) choice of 28 corrections sent during the tomographic acquisition

• Application of an adequate set of correction drifts ($\delta X, \delta Y$)

• Example of an elementary drift correction (over 28)

Performed with the image shifts microscope controls

≈ only one frame significantly blurred, less than 1.5° angular amplitude affected

. Epicier et al.

ADF step-by-step (2°),

+75° / -67.8°,

≈ 90 min

• Is Bright Field tomography adequate for crystalline objects?..

BF step-by-step (2°),

+73.4° / -66.6°,

2 min 42 sec

2kx2k

Dwell Time 2.5 µs: Acquisition **10 s**

T. EPICIER et al., Catal. Today, 334 15 (2019), 68

• Images are acquired during the rotation of the object: aren't they all BLURRED?

• Images are acquired during the rotation of the object: aren't they all BLURRED?

The 'rotation blur' is NOT the most significant blur source

CONCLUSION (summary of the approach)

total time less than 3 minutes

Fast acquisition at a lower mag than the final mag

50-100 fps typically 1k x 1k tilt $-\alpha_{max}/+\alpha_{max}$ in 5-10 s α_{max} upt to 72°, Widlfire heating holder

Fast acquisition at the final mag

100 fps 2k x 2k tilt - α_{max} /+ α_{max} in down to 5 s

. Epicier et al.

ACKNOWLEDGEMENTS

Mimoun AOUINE, University Lyon I, F

Anne-Sophie GAY, Amandine CABIAC, IFPen, Solaize, F (

• Consortium Lyon – St-Etienne de Microscopie

French ANR project '3DCLEAN' n°15-CE09-0009-01, LabeX 'IMUST' University of Lyon

www.metsa.fr · MCTSJ

1K series, 100 fps, mag 16 500 Tracking every 25 frames, time of analysis ≈ 8 s