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Abstract—This paper proposes a new tracking algorithm
associated to high frequency (HF) signal injection techniques for
sensorless control of Interior Permanent Synchronous Machine
(IPMSM). The proposed strategy allows to overcome the knowl-
edge of the machine parameters and HF signal characteristics
which are the main drawbacks of the existing tracking algorithms
(phase-locked loop (PLLs), mechanical system observers, inverse
of tangent). Several simulation experimental results are provided
to verify and to test the robustness of the proposed sensorless
control method in the framework of electric propulsion used in
automotive applications.
Index Terms—Traching algorithm, Sensorless, sliding mode,

IPMSM

I. INTRODUCTION

Controlled IPMS motor drives without mechanical speed

sensors at the motor shaft have the attractions of low cost

and high reliability [1]. In the literature, sensorless control

methods for PMSM drives are divided into two main categories

according to the operation speed region. The first one is called

model based technique these methods [2], [3], [4], [5] are

utilized in middle- and high-speed regions [6]. In the low-

speed region, a second category based on high frequency (HF)

signal injection methods can be employed [7], [8], [9]. A

hybrid position estimation strategy combining the two different

methods can achieve whole-speed-range sensorless operation

[10].

In the literature of high-frequency injection (HFI) position

estimation, there exist several tracking algorithms (PLLs [11],

mechanical observers [12], the inverse of tangent [13]). These

methods suffer from the knowledge of machine parameters

(Ld ,Lq inductances, inertia J, viscous friction Kf ,...) and the
dependency of injected signal characteristics (frequency ωc,
magnitude Vc). The present paper proposes a robust solution
for rotor position tracking in HFI techniques, using a vari-

able structure observer. The proposed solution has following

advantages:

• robustness against machine parameters variations (induc-
tances, inertia,...) and independence from injected signal

characteristics (magnitude, frequency).

• operating in all speed ranges, not only at low speed.

• operating with all torque ranges (robustness versus the
magnetic saturation).

• possibility to be associated to all HF signal injection

methods (especially adaptive frequency signal injection

methods).

The robustness and the efficiency of the proposed method are

illustrated in case of interior permanent magnet synchronous

machine (IPMSM). The pulsating injection method is used in

order to introduce the proposed strategy of rotor position/speed

estimation (note that others HF injection methods can be also

used). Performances of the proposed strategy are highlighted

by several simulation and experimental tests.

II. HF IPMSM MODELS

The complex notation, Zab is adopted in this paper where the
subscript b refers to a stator quantity, whereas the superscript
a is either a rotor (r) or stator (s) quantity that allows to know
whether the quantity is expressed in the stator (αβ ) or in the
rotor (dq) reference frame.
The HF models [14] are obtained by considering following

assumptions:

• The HF impedance of the machine is dominated by self-
stator inductance (Rs< jωcLs), it means that the influence
of the stator resistance is neglected.

• In the rotor reference frame, the two axis (dq) being
decoupled from each others.

• The rotating Back-EMF is neglected.

Stationary frame voltage model:

vs
¯

s �
dψs
¯

s

dt
. (1)

Stationary frame flux-current model:

ψs
¯

s = L0is
¯

s+L2is
¯

s∗e j2θ . (2)

From (2), the current expression is deduced

is
¯

s =
1

L02−L22 (L0ψs¯
s−L2ψs

¯

s∗e j2θ ). (3)

where L0 =
Ld+Lq
2 and L2 =

Ld−Lq
2 are respectively the average

and differential inductances.
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III. PULSATING INJECTION-BASED METHOD

A. Injected voltage

In this part, the HF injected voltage signal [15] is used, in

a fixed direction, and added to the d axis output voltage. The

carrier signal in the estimated (d̂q̂) frame can be expressed as

vr̂s =−Vc sin(ωct)
[
1

0

]
(4)

where Vc and ωc are respectively the magnitude and the carrier
frequency of the injected signal.

The HF injected voltage in the stator reference frame is

expressed [
vα
vβ

]
=−Vc sin(ωct)

[
cos(θ̂)
sin(θ̂)

]
. (5)

B. Current resulting from the injected voltage

The stator flux generated by the high frequency signal

injection can be obtained by integrating the injected voltage

given in (5) by using (1):

ψs
¯

s =
∫

−Vc sin(ωct)
[
cos(θ̂)
sin(θ̂)

]
dt =

Vc
ωc
cos(ωct)

[
cos(θ̂)
sin(θ̂)

]

(6)

From (6) and (3), the high frequency stator current is

expressed by:

is
¯

s =
Vc

ωc(L02−L22) (L0e
jθ̂ −L2e j(2θ−θ̂))cos(ωct) (7)

The general current expression is given by:

is
¯

s = Icp cos(ωct)e jθ̂ − Icn cos(ωct)e j(2θ−θ̂) + iss1 (8)

where,

Icp =
L0Vc

ωc(L20−L22)
(9)

Icn =
L2Vc

ωc(L20−L22)
(10)

and iss1 are respectively the magnitude of the positive compo-
nent, the negative component and the fundamental component

of the stator current. The stator current (8) is expressed in the

estimated frame:

ir̂s =
[
id̂
iq̂

]
=

[
Icp− Icn cos(2(θ − θ̂))
−Icn sin(2(θ − θ̂))

]
cos(ωct)+ iss1e

− jθ̂ . (11)

C. Signal processing and error extraction

Several signal processing techniques have been proposed

in the literature [16]. One of these approaches is based on

HPF (high pass filter) to remove the fundamental component.

Consequently (11) reads

ir̂s =
[
id̂c
iq̂c

]
=

[
Icp− Icn cos2(θ − θ̂)
−Icn sin2(θ − θ̂)

]
cos(ωct). (12)

Then a heterodyning process followed by a LPF (low pass

filter) to extract only the position information contained in

the current negative sequence is applied. The position error

expression can be deduced from the second component of (12)

multiplied by cos(ωct) as follows:

ε = LPF(cos(ωct)iq̂c)
= LPF(−Icn sin2(θ − θ̂)cos(ωct)2)

= LPF((− Icn
2
sin2(θ − θ̂))(1− sin(ωct)2)) (13)

Finally, ε can be expressed as:

ε =− Icn
2
sin(2(θ − θ̂)). (14)

The above developed pulsating method is summarized in Fig.1

where ir∗q is the second component of the current reference ir∗s .
In this figure, the block "Robust estimation of θ and ω" which
represents the main contribution is not developed before, it will

be the subject of the next section.

cos(ωct)

θ̂ ω̂

HPF LPF ε
e−jθ̂

a, b, c

αβ

ia
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id̂
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Free machine parameters
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characteristics
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iq̂
ir∗q

+

−

Figure 1. Scheme of rotor position/speed estimation based on pulsating
injection technique

IV. PROPOSED ROBUST ROTOR POSITION/SPEED

ESTIMATION

A. Motivating idea

Expression error (14) is linked to the knowledge of the

current negative sequence Icn defined in (10). As Icn depends
both on machine parameters (inductances Ld , Lq) and injected
signal characteristics (magnitude Vc and frequency ωc). All
tracking algorithms cited below are not robust to Icn variations
for the rotor position/speed estimation of IPM machines in all

speed/torque operation ranges.

The novelty of the proposed strategy consists to use only

the sign of the position error in the correction term of the esti-

mation algorithm, instead of using the position error ε defined
in (14). The position estimation error θ − θ̂ is supposed to be
small, i.e. θ � θ̂ , (14) becomes

σ = sign(−IcnΔθ) = sign(−Icn)sign(Δθ) (15)

In general case −Icn > 0 because Lq > Ld , then (15) can be
written as follows

σ = sign(Δθ) (16)

where sign(Δθ) is the sigmoid function of the form:

sign(Δθ) :

⎧⎨
⎩
1 if Δθ > 0
−1 if Δθ < 0
0 if Δθ = 0
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and Δθ = θ − θ̂ . It can be argued that equation (15) doesn’t
depend on machine parameters (Ld , Lq, J, Kf , ...) and injected
signal characteristics (Vc, ωc). Only the sign of the position
error is required to estimate the rotor position/speed of IPMSM

by the proposed (17)-(18) auto sliding mode observer

˙̂ω = Kωσ (17)
˙̂θ = ω̂+Kθσ . (18)

Assumption 1: The speed variation is assumed to be

small with respect to position and electrical quantities in the

machine.

From assumption 1, the mechanical double integrator system

of position/speed which is used to design the observer (17)-

(18) is given by:

ω̇ = 0 (19)

θ̇ = ω (20)

B. Stability analysis

Let be (21)-(22) the position and the speed estimation errors

between system (19)-(20) and observer (17)-(18)

eω = ω− ω̂ (21)

eθ = Δθ (22)

whose dynamics are given by:

ėω = −Kωσ (23)

ėθ = eω −Kθσ (24)

Theorem 1: Suppose that the assumption 1 holds. Then,
the observation algorithm (17)-(18) with parameters Kω > 0

and Kθ > 0 ensures the convergence of estimation position

and speed dynamic errors (23)-(24) to zero in a finite-time.

proof: The first step is to analyze the stability of the posi-
tion estimation error dynamic (24). For that let consider the

following candidate Lyapunov function Vθ

Vθ =
1

2
e2θ (25)

whose derivative reads

V̇θ = eθ ėθ = eθ (eω −Kθ sign(eθ ))
= eθ eω − eθKθ sign(eθ )� |eθ ||eω |−Kθ |eθ | (26)

Le be

K1 =−|eω |+Kθ > 0 (27)

then (26) can rewritten as

V̇θ ≤−K1|eθ | (28)

which implies that the position estimation error eθ (22)

converges to zero in finite-time t1 > 0 and for all t ≥ t1, one
has

ėθ = eθ = 0. (29)

Expression (29) means that the sliding condition is reached.

Right now, by using condition (29) (ėθ = 0) in (24), one has

eω = Kθ sign(eθ ). (30)

It can be seen from (27) that Kθ > 0, one can deduce

sign(eω) = sign(eθ ) (31)

Similarly, the stability of the speed estimation error dynamic

(23) can be analyzed. Let us define the following candidate

Lyapunov function

Vω =
1

2
e2ω (32)

By taking into account (31) in (23), the time derivative of (32)

is given by

V̇ω = eω ėω =−Kωeωsign(eω) (33)

that becomes

V̇ω ≤−Kω |eω | (34)

where Kω is a positive constant. This implies that the error

speed estimation eω converges to zero in finite time t2 > 0 for
all t ≥ t2.
From (34) and (28), the finite time convergence of the pro-

posed observer (17)-(18) is obtained. This ends the proof.

C. Tuning

• Parameters Kω > 0 and Kθ > 0 are chosen according to
the stability analysis.

• The injected signal frequency is chosen to be greater
than the the nominal machine fundamental frequency

and less than the switching inverter frequency (to verify

the Shannon property, it should be at most half of the

switching frequency).

• The injected signal magnitude is chosen small enough in
order to avoid torque ripples and the machine warming.

1Kω

Kθ

s

1
s θ̂

ω̂

σε

Figure 2. Proposed strategy scheme
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V. SIMULATION AND EXPERIMENTAL RESULTS

Simulations and Experiments were carried out. The sam-

pling period is chosen to 10−4s and the PWM frequency

is set to 10kHz. The DC voltage is set to 400V. The motor
parameters are given in table I.

Figure 3. Motor set-up
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Figure 4. Inductances profiles

The purpose of the used speed benchmark (see the first figure

of Fig. 5) is to validate self-sensing control algorithms of the

IPMSM in difficult paths. The nominal machine fundamental

frequency is 105Hz. Injected signal characteristics are chosen:
ωc = 1000.2.π(Rad/s) and Vc = 4(V ). Consequently, the cut-
off frequency of the HPF is set at FHPF = 600Hz. The cut-
off frequency of the LPF is set at FLPF = 20Hz and the
observer parameter values are chosen as follows kθ = 150

and kω = 1250. For the simulation, IPMSM inductances are

considered very badly known, to prove the insensitivity of the

proposed strategy to these variations, the proposed sensorless

control strategy is tested under inductances variations. The

system performance is tested under +100% of the inductances

values. To be more close to real-time tests, a white noise

is added to current measurements. Simulation and experi-

mental results shown in Fig.6 and Fig.5 display following

variables: the measured and the estimated mechanical speeds,

the speed estimation error, the measured and the estimated

electrical positions, the electrical position estimation error,

the reference and the measured current id and the reference

and the measured current iq. Notice that, position and speed
measurements are only given for comparison with position and

speed estimations. From Fig. 5 and Fig. 6, it can be seen that

the proposed strategy:

• Gives a good speed estimation. The estimated speed tracks
well the measured one, the speed error is centered around zero.

However, a small error appears in the acceleration phase which

is due to the fact that the speed variation is neglected.

• Gives a good position estimation. The electrical position
estimation error is less than ± 5 degrees. Moreover, the two

last plots of Fig. 5 and Fig. 6 display the control stability under

nominal steady state mode operation with full torque.

The obtained results confirm the effectiveness and the robust-

ness of the proposed estimation strategy.

Figure 5. Simulations results
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Figure 6. Experimental results

Simulation results are obtained by considering an arbi-

trary inductances profile shown in Fig. 4, these profiles are

introduced to test the robustness of the proposed tracking

strategy. The same test is made with the PLL algorithm, once

the inductance profiles are considered (see Fig. 4), the PLL

algorithm diverges immediately.

VI. CONCLUSION

In this paper, a robust solution for the rotor position/speed

estimation is developed. The proposed strategy is associated

to a standard HF signal injection method. Classical techniques

used to extract the rotor position/speed information depend on

electrical and mechanical machine parameters and injected sig-

nal characteristics. The theoretical development, the simulation

and the experimental results prove that the proposed strategy

does not longer depend on machine parameters and injected

signal characteristics, which permit to operate the machine in

all speed/torque ranges. These properties allow to the proposed

strategy to be a strong candidate to replace PLLs and the

mechanical observer widely used in the literature. However,

the proposed observer is based on assumption 1. Our future

work, that is in progress, will be focused on:

• Design tracking algorithm by taking into account the

speed dynamics of the motor.

• Deals with the cross-saturation-phenomenon.
• Reduce the number of filters to reduce the implementation
cost and complexity.

• Estimate the phase-shift related to the inverter, high-pass
filter and sampling time.

Table I
MOTOR PARAMETERS

Speed 2100 rpm Torque 9Nm
J 0.0073 kg.m2 Φ f 0.33Wb
Rs 1.4 Ω Ld 5.7 mH
p 3 Lq 9.9 mH
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