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Abstract. Possibilistic logic (PL) is more than thirty years old. The
paper proposes a survey of its main developments and applications in
artificial intelligence, together with a short presentation of works in
progress. PL amounts to a classical logic handling of certainty-qualified
statements. Certainty is estimated in the setting of possibility theory
as a lower bound of a necessity set-function. An elementary possibilis-
tic formula is a pair made of a classical logic formula, and a certainty
level belonging to a bounded scale. Basic PL handles only conjunctions
of such formulas, and PL bases can be viewed as classical logic bases
layered in terms of certainty. Semantics is in terms of epistemic states
represented by fuzzy sets of interpretations. A PL base is associated
with an inconsistency level above which formulas are safe from incon-
sistency. Applications include reasoning with default rules, belief revi-
sion, Bayesian possibilistic networks, information fusion, and preference
modeling (in this latter case, certainty is turned into priority). Different
extensions of basic PL are briefly reviewed, where levels take values in
lattices, are replaced by vectors of levels, or are handled in a purely sym-
bolic manner (without being instantiated). This latter extension may
be of interest for explanation purposes. A paraconsistent treatment of
inconsistency is also discussed. Still another extension allows for associ-
ating possibilistic formulas with sets of agents or sources that support
them. In generalized possibilistic logic (GPL), negation and disjunction
can be applied as well as conjunction, to possibilistic formulas. It may
be viewed as a fragment of modal logic (such as KD45) where modalities
cannot be nested. GPL can be still extended to a logic involving both
objective and non-nested multimodal formulas. Applications of GPL to
the modeling of ignorance, to the representation of answer set programs,
to reasoning about other agents’ beliefs, and to a logic of argumentation
are outlined. Generally speaking, the interest and the strength of PL
relies on a sound alliance between classical logic and possibility theory
which offers a rich representation setting allowing an accurate modeling
of partial ignorance. The paper focuses more on ideas than on techni-
calities and provides references for details (Invited talk presented by the
second author).
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1 Introduction

An important part of the pieces of information one has to deal with are pervaded
with uncertainty. In other words, we have to handle statements that are not
all fully certain. This does not mean that we are always able to quantify the
certainty of a given piece of information in a precise manner. This calls for a
setting that may be qualitative. Moreover, the fact that one has no certainty
at all in favor of some statement should not entail that we have some certainty
about the opposite statement, since one may be fully ignorant about a situation.
This rules out probabilities (Prob(A) = 0 entails Prob(notA) = 1).

Possibility theory has not this drawback since uncertainty about A is assessed
in terms of two dual set functions, called possibility and necessity measures, by
Π(A) and N(A) = 1 − Π(notA), and N(A) = 0 = N(notA) in case of total
ignorance about A. Moreover, possibility theory may be numerical or qualita-
tive [47]. In the first case, possibility measures and the dual necessity measures
can be regarded respectively as upper bounds and lower bounds of ill-known
probabilities; they are also particular cases of plausibility and belief functions
respectively [41,72]. In fact, possibility measures and necessity measures consti-
tute the simplest, non trivial, imprecise probabilities system [73]. Second, when
qualitative, possibility theory provides a natural approach to the grading of pos-
sibility and necessity modalities on finite scales in an ordinal way.

Possibility theory has a logical counterpart, called possibilistic logic (PL)
[35,37,48,50], which remains close to classical logic, and propagates certainty
in a qualitative manner, retaining the weakest link in a chain of inferences. As
this survey is going to show, PL logic turns to be an unexpectedly versatile tool.
The paper is organized as follows. We give a short background on possibility
theory in Sect. 2. Section 3 is devoted to basic PL, which handles conjunctions
of PL formulas, made of a classical logic formula associated with a lower bound
of necessity measure. Section 4 provides an overview of various applications of
basic PL to default reasoning, belief revision, information fusion, decision under
uncertainty, and uncertainty handling in databases; some other applications are
briefly mentioned, as well as the close relationship of PL bases with possibilistic
networks. Section 5 covers different extensions of PL where classical logic for-
mulas may be associated with values in lattices, with vectors of certainty levels,
with purely symbolic (non instantiated) values, with paraconsistent valuations,
or still with sets of agents or sources that support them. Section 6 deals with
generalized possibilistic logic, a two-tiered logic having a powerful representa-
tion ability for modeling uncertain epistemic states, which can capture answer
set programming. Section 7 points out potential applications to multiple agent
reasoning and to argumentative reasoning.

2 Short Refresher on Possibility Theory

Possibility theory originates in Zadeh’s paper [75] and has been more extensively
investigated in [40,41]. Zadeh starts from the idea of a possibility distribution to
which he associates a possibility measure. A possibility distribution is a mapping



π from a set of states, or universe of discourse, U (it may be an attribute domain,
the set of interpretation of a propositional language, etc) to a totally ordered
scale S, with top denoted by 1 and bottom by 0. It is assumed that S is equipped
with an order-reversing map denoted by λ ∈ S �→ 1−λ. Different types of scales
may be used from a finite scale S = {1 = λ1 > . . . λn > λn+1 = 0} in the
qualitative case, to the unit interval in the quantitative case, see [52] for other
options. π(u) = 0 means that state u is rejected as impossible; π(u) = 1 means
that state u is totally possible (= plausible). The larger π(u), the more possible
the state u is. If the universe U is exhaustive, at least one of the elements in S
should be the actual world, so that ∃u, π(u) = 1 (normalization). This condition
expresses the consistency of the epistemic state described by π.

A possibility distribution π is said to be at least as specific as another π′ if
and only if for each state of affairs u: π(u) ≤ π′(u) [74]. Then, π is at least as
restrictive and informative as π′, since it rules out at least as many states with
at least as much strength. In this setting, extreme forms of partial knowledge
can be captured, namely: (i) complete knowledge: for some u0, π(u0) = 1 and
π(u) = 0,∀u �= u0 (only u0 is possible); (ii) complete ignorance: π(u) = 1,∀u ∈ U
(all states are possible).

Two dual set functions are associated with a possibility distribution, namely
a possibility measure Π and a necessity measure N : ∀A ⊆ U ,

Π(A) = supu∈A π(u); N(A) = 1 − Π(Ac) = infs/∈A 1 − π(u),

with Ac = U \ A. Π(A) (resp. N(A)) evaluates to what extent A is consistent
with π (resp. A is certainly implied by π). Generally, Π(U) = N(U) = 1 and
Π(∅) = N(∅) = 0 (since π is normalized to 1). In the Boolean case, the possibility
distribution reduces to a disjunctive (epistemic) set E ⊆ U , and possibility and
necessity are s.t.: (i) Π(A) = 1 if A ∩ E �= ∅, and 0 otherwise; (ii) N(A) = 1 if
E ⊆ A, and 0 otherwise.

Possibility measures satisfy a characteristic “maxitivity” property Π(A ∪ B)
= max(Π(A),Π(B)), and necessity measures a “minitivity” property N(A∩B)
= min(N(A), N(B)). On infinite spaces, these axioms must hold for infinite fam-
ilies of sets. As a consequence, of the normalization of π, min(N(A), N(Ac)) = 0
and max(Π(A),Π(Ac)) = 1, or equivalently Π(A) = 1 whenever N(A) > 0,
namely that something somewhat certain should be first fully possible, i.e.
consistent with the available information. Moreover, one cannot be somewhat
certain of both A and Ac, without being inconsistent. But we only have
N(A ∪ B) ≥ max(N(A), N(B)). This goes well with the idea that one may be
certain about the event A ∪ B, without being really certain about more specific
events such as A and B.

Human knowledge is often expressed by statements to which belief degrees
are attached. Certainty-qualified pieces of uncertain information of the form “A
is certain to degree α” can then be modeled by the constraint N(A) ≥ α. It
represents a family of possible epistemic states π that obey this constraint. The
least specific possibility distribution among them exists and is defined by [41]:
π(A,α)(u) = 1 if u ∈ A, π(A,α)(u) = 1 − α otherwise. If α = 1 we get the charac-
teristic function of A. If α = 0, we get total ignorance. It is a key building-block



to construct possibility distributions from several pieces of uncertain knowledge.
It is instrumental in PL semantics.

There are two other set functions: (i) a measure of guaranteed possibility or
strong possibility [31,47]: ∆(A) = infu∈A π(u) which estimates to what extent
all states in A are possible according to evidence. ∆(A) can be used as a degree of
evidential support for A, and its dual conjugate ∇ such that ∇(A) = 1−∆(Ac) =
supu�∈A 1−π(u). ∇(A) evaluates the degree of potential or weak necessity of A, as
it is 1 only if some state u out of A is impossible. Thus, the functions ∆ and ∇ are
decreasing wrt set inclusion (in full contrast with Π and N which are increasing).
They satisfy the characteristic properties ∆(A ∪ B) = min(∆(A),∆(B)) and
∇(A ∩ B) = max(∇(A),∇(B)).

Interestingly enough, the four evaluations of an event A and the four eval-
uations of its opposite Ac can be organized in a cube of opposition [49] (see
below), whose front and back facets are graded extension of the traditional
square of opposition [67]. Counterparts of the characteristic properties of the
square of opposition do hold. First, the diagonals (in dotted lines) of these
facets link dual measures through the involutive order-reversing function 1− (·).
The vertical edges of the cube, as well as the diagonals of the side facets,
which are bottom-oriented arrows, correspond to entailments here expressed by
inequalities. Indeed, provided that π and 1 − π are both normalized, we have
for all A, max(N(A),∆(A)) ≤ min(Π(A),∇(A)). The thick black lines of the
top facets express mutual exclusiveness under the form min(N(A), N(Ac)) =
min(∆(A),∆(Ac)) = min(N(A),∆(Ac)) = min(∆(A), N(Ac)) = 0. Dually,
the double lines of the bottom facet correspond to max(Π(A),Π(Ac)) =
max(∇(A),∇(Ac)) = max(Π(A),∇(Ac)) = max(∇(A),Π(Ac)) = 1. Thus, the
following cube summarizes the interplay between the different set functions in
possibility theory.

∇(A)

Π(A) Π(Ac)

∇(Ac)

∆(A)

N(A) N(Ac)

∆(Ac)

3 Basic Possibilistic Logic

A basic PL formula is a pair (a, α) made of a classical logic formula a associated
with a certainty level α ∈ (0, 1], viewed as a lower bound of a necessity measure,
i.e., (a, α) is semantically understood as N(a) ≥ α. Formulas of the form (a, 0),
contain no information (N(a) ≥ 0 always holds), and are not considered. Thanks
to the minitivity property of necessity measures for conjunction, i.e., N(a∧ b) =
min(N(a), N(b)), a PL base, i.e., a set of PL formulas, can be always put in an
equivalent clausal form.



Syntactic Aspects. Here we only consider the case of (basic) possibilistic propo-

sitional logic, i.e., PL formulas (a, α) are s.t. a is a formula in a propositional
language; for (basic) possibilistic first order logic, the reader is referred to [37].

Axioms and Inference Rules. The PL axioms [37] are those of propositional logic,
where each axiom schema is now supposed to hold with certainty 1. Its inference
rules are:

– if β ≤ α then (a, α) ⊢ (a, β) (certainty weakening).
– (¬a ∨ b, α), (a, α) ⊢ (b, α), ∀α ∈ (0, 1] (modus ponens).

We may also use the certainty weakening rule with the following PL-resolution
rule:

– (¬a ∨ b, α), (a ∨ c, α) ⊢ (b ∨ c, α), ∀α ∈ (0, 1] (resolution).

Using certainty weakening, it is easy to see that the following inference rule is
valid:

– (¬a ∨ b, α), (a ∨ c, β) ⊢ (b ∨ c,min(α, β)) (weakest link resolution).

So in a reasoning chain, the certainty level of the conclusion is the smallest of the
certainty levels of the formulas involved in the premises. The following inference
rule, we call formula weakening holds also as a consequence of α-β-resolution.

– if a ⊢ b then (a, α) ⊢ (b, α), ∀α ∈ (0, 1] (formula weakening).

Inference and Consistency. Let Γ = {(ai, αi), i = 1, ...,m} be a set of possibilis-
tic formulas. In a way quite similar to propositional logic, proving Γ ⊢ (a, α)
amounts to proving Γ, (¬a, 1) ⊢ (⊥, α) by repeated application of the weak-
est link-resolution rule. Moreover, note that Γ ⊢ (a, α) if and only if Γα ⊢
(a, α) if and only if (Γα)∗ ⊢ a, where Γα = {(ai, αi) ∈ Γ, αi ≥ α} and
Γ ∗ = {ai | (ai, αi) ∈ Γ}. The certainty levels stratify the knowledge base Γ
into nested level cuts Γα, i.e. Γα ⊆ Γβ if β ≤ α. A consequence (a, α) from Γ
can only be obtained from formulas having a certainty level at least equal to α,
so from formulas in Γα; then a is a classical consequence from the PL knowledge
base (Γα)∗, and α = max{β|(Γβ)∗ ⊢ a}.

The inconsistency level of Γ is defined by inc(Γ ) = max{α|Γ ⊢ (⊥, α)}.
The possibilistic formulas in Γ whose level is strictly above inc(Γ ) are safe from
inconsistency, namely inc({(ai, αi)|(ai, αi) ∈ Γ and αi > inc(Γ )}) = 0. Indeed,
if α > inc(Γ ), (Γα)∗ is consistent. The classical consistency of Γ ∗ is equivalent
to inc(Γ ) = 0.

Semantic Aspects. The semantics of PL [37] is expressed in terms of possibil-
ity distributions, and necessity measures on the set Ω of interpretations of the
language. A PL formula (a, α) encodes the statement N(a) ≥ α. Its semantics is
given by the following possibility distribution π(a,α) defined in agreement with
certainty qualification:

∀ω ∈ Ω, π(a,α)(ω) = 1 if ω � a and π(a,α)(ω) = 1 − α if ω � ¬a



where ω is any interpretation of the considered propositional language. Intu-
itively, this means that any interpretation that is a counter-model of a, is all
the less possible as a is more certain, i.e. as α is higher. It can be easily checked
that the associated necessity measure is such that N(a,α)(a) = α, and π(a,α) is
the least informative possibility distribution (i.e. maximizing possibility degrees)
such that this constraint holds. In fact, any possibility distribution π such that
∀ω, π(ω) ≤ π(a,α)(ω) is such that its associated necessity measure N satisfies
N(a) ≥ N(a,α)(a) = α (hence is more committed).

The base Γ is semantically associated with the possibility distribution:

πΓ (ω) = mini=1,...,m π(ai,αi)(ω) = mini=1,...,m max([ai](ω), 1 − αi)

where [ai] is the characteristic function of the models of ai, namely [ai](ω) = 1 if
ω � ai and [ai](ω) = 0 otherwise. Thus, the least informative induced possibility
distribution πΓ is obtained as the min-based conjunction of the fuzzy sets of
interpretations (with membership functions π(ai,αi)), representing each formula.
It can be checked that NΓ (ai) ≥ αi for i=1, . . . ,m, where NΓ is the necessity
measure defined from πΓ . Note that we may only have an inequality here since
Γ may, for instance, include two formulas associated to equivalent propositions,
but with distinct certainty levels. The semantic entailment is defined by Γ �

(a, α) if and only if ∀ω, πΓ (ω) ≤ π{(a,α)}(ω). PL is sound and complete [37] wrt
this semantics: Γ ⊢ (a, α) if and only if Γ � (a, α).

Moreover, we have inc(Γ ) = 1 − maxω∈Ω πΓ (ω), which acknowledges the
fact that the normalization of πΓ is equivalent to the classical consistency of Γ ∗.
Thus, an important feature of PL is its ability to deal with inconsistency.

4 Applications of Basic Possibilistic Logic

Before briefly surveying different uses of basic PL, we mention possibilistic net-
works as another compact representation setting that can be related to PL.

Possibilistic Networks. We first need to define conditioning in possibility
theory. Conditional possibility can be defined similarly to probability theory
using a Bayesian-like equation of the form [42] Π(B ∩ A) = Π(B | A) ⋆ Π(A)
where Π(A) > 0 and ⋆ may be the minimum or the product; moreover N(B | A)
= 1 − Π(Bc | A). If operation ⋆ is the minimum, the equation Π(B ∩ A) =
min(Π(B | A),Π(A)) fails to characterize Π(B | A), and we must resort to the
minimal specificity principle to define a qualitative conditioning [41]: Π(B | A)
= 1 if Π(B ∩ A) = Π(A) > 0, Π(B | A) = Π(B ∩ A) otherwise. It is clear
that N(B | A) > 0 if and only if Π(B ∩ A) > Π(Bc ∩ A). Note also that
N(B | A) = N(Ac ∪ B) if N(B | A) > 0. In the numerical setting, we must

choose ⋆ = product that preserves continuity, so that Π(B | A) = Π(B∩A)
Π(A)

which makes possibilistic and probabilistic conditionings very similar, and then
gradual positive reinforcement of possibility is allowed.

There are several notions of possibilistic independence between events. Let us
just mention two main directions (see [9] for details, discussions and reference):



– Unrelatedness: Π(A ∩ B) = min(Π(A),Π(B)). When it does not hold, it
indicates an epistemic form of mutual exclusion between A and B. It is sym-
metric but sensitive to negation. When it holds for all pairs made of A,B and
their complements, it is an epistemic version of logical independence, useful
in default reasoning.

– Causal independence: N(B | A) = N(B). This notion is different from the
former one and stronger. It is a form of directed epistemic independence
whereby learning A does not affect the certainty of B. It is neither symmetric
not insensitive to negation. A weaker qualitative version is N(B | A) >
0 and N(B) > 0.

Graphical Structures. Like joint probability distributions, joint possibility dis-
tributions can be decomposed into a conjunction of conditional possibility dis-
tributions (using ⋆ = minimum, or product), once an ordering of the vari-
ables is chosen, in a way similar to Bayes nets [13]. A joint possibility distribu-
tion associated with ordered variables X1, . . . , Xn, can be decomposed by the
chain rule

π(X1, . . . , Xn) = π(Xn | X1, . . . , Xn−1) ⋆ · · · ⋆ π(X2 | X1) ⋆ π(X1).

Since possibilistic nets and PL bases are compact representations of possibility
distributions, it should not come as a surprise that possibilistic nets can be directly
translated into PL bases and vice-versa, both when conditioning is based on min-
imum or on product [13]. Hybrid representations formats have been introduced
where local PL bases are associated to the nodes of a graphical structure rather
than conditional possibility tables [25]. An important feature of the PL setting is
the existence of equivalent representation formats: set of prioritized logical formu-
las, preorders on interpretations (possibility distributions) at the semantical level,
possibilistic nets, but also set of conditionals of the form Π(a ∧ b) > Π(a ∧ ¬b).
There are algorithms for translating one format in another [13].

Default Reasoning. PL can be used for describing the normal course of things.
A default rule “if a then b, generally” is understood formally as the constraint
Π(a ∧ b) > Π(a ∧ ¬b) on a possibility measure Π describing the semantics of
the available knowledge. It expresses that in the context where a is true, there
exists situations where having b true is strictly more plausible than any situations
where b is false in the same context. Any finite consistent set of constraints of
the above form, representing a set of defaults D = {ai ❀ bi, i = 1, · · · , n}, is
compatible with a non-empty family of possibility measures Π, and induces a
partially defined ranking on the set of interpretations, that can be completed
according to the principle of minimal specificity, e.g. [18]. This principle assigns
to each world ω the highest possibility level without violating the constraints.
This defines a unique complete preorder. The method then consists in turning
each default ai ❀ bi into a possibilistic clause (¬ai ∨ bi, N(¬ai ∨ bi)), where N
is computed from the greatest possibility distribution π induced by the set of
constraints corresponding to the default knowledge base, as already explained.
We thus obtain a PL base K. This encodes the generic knowledge embedded in



the default rules. Then we apply the possibilistic inference for reasoning with
the formulas in K encoding the defaults together with the available factual
knowledge encoded as fully certain possibilistic formulas in a base F . However,
the conclusions that can be obtained from K ∪ F with a certainty level strictly
greater than the level of inconsistency of this base are safe. Roughly speaking,
it turns out that in this approach, the most specific rules w.r.t. a given context
remain above the level of inconsistency. Such an approach has been proved to be
in full agreement with the Kraus-Lehmann-Magidor postulates-based approach
to nonmonotonic reasoning [60]. More precisely, two nonmonotonic entailments
can be defined in the possibilistic setting, the one presented above, based on the
least specific possibility distribution compatible with the constraints encoding
the set of defaults, and another one more cautious, where one considers that b
can be deduced in the situation where all we know is F = {a} iff the inequality
Π(a ∧ b) > Π(a ∧ ¬b) holds true for all the Π compatible with the constraints
encoding the set of defaults. The first entailment coincides with the rational
closure inference [63], while the later corresponds to the (cautious) preferential
entailment [60]; see [15,45].

PL can be also applied to inductive logic programming (ILP). Indeed having
a stratified set of first-order logic rules as an hypothesis in ILP is of interest for
learning both rules covering normal cases and more specific rules for exceptional
cases [71].

Belief Revision. Since nonmonotonic reasoning and belief revision can be
closely related, PL finds application also in belief revision. In fact, compara-
tive necessity relations (which can be encoded by necessity measures) [28] are
nothing but the epistemic entrenchment relations [43] that underly well-behaved
belief revision processes [57]. This enables the PL setting to provide syntactic
revision operators that apply to possibilistic knowledge bases, including the case
of uncertain inputs [21,46,70]. Note that in PL, where formulas (a, α) are pieces
of belief with certain levels, the epistemic entrenchment of formulas is made
explicit through these levels. Besides, in a revision process it is expected that
all formulas independent of the validity of the input information should remain
in the revised state of belief; this idea may receive a precise meaning using a
definition of possibilistic causal independence between events [29].

Updating in a dynamic world obeys other principles than the revision of
a belief state by an input information in a static world. It is linked to the
idea of Lewis’ imaging, whose a possibilistic counterpart is proposed in [44]. A
PL transposition of Kalman filtering that combines the ideas of updating and
revision can be found in [19].

In contrast with static beliefs, expected to be closed under conjunctions,
(positive) desires are such that endorsing a ∨ b as a desire means to desire
a and to desire b. However, desiring both a and ¬a does not sound rational;
so when a new desire is added to the set of desires of an agent, a revision
process is necessary. Just as belief revision relies on an epistemic entrenchment
relation (and thus on a necessity measure), well-behaved desire revision relies on
a guaranteed possibility function ∆ [39].



Information Fusion. The combination of possibility distributions can be equiv-
alently performed in terms of PL bases: The syntactic counterpart of the point-
wise combination of two possibility distributions π1 and π2 into a distribution
π1 ⊛ π2 by any monotonic combination operator ⊛ such that 1 ⊛ 1 = 1, can
be computed, following an idea first proposed in [26]. Namely, if the PL base
Γ1 is associated with π1 and the base Γ2 with π2, a PL base Γ1⊛2 semantically
equivalent to π1 ⊛ π2 is given by [16]:

{(ai, 1 − (1 − αi) ⊛ 1) s.t. (ai, αi) ∈ Γ1} ∪ {(bj , 1 − 1 ⊛ (1 − βj)) s.t. (bj , βj) ∈ Γ2}

∪ {(ai ∨ bj , 1 − (1 − αi) ⊛ (1 − βj)) s.t. (ai, αi) ∈ Γ1, (bj , βj) ∈ Γ2}.

For ⊛ = min,we get Γ1⊕2 = Γ1 ∪ Γ2 with πΓ1∪Γ2
= min(π1, π2) as expected

(conjunctive combination). For ⊛ = max (disjunctive combination), we get
Γ1⊕2 = {(ai ∨ bj , min(αi, βj)) s.t. (ai, αi) ∈ Γ1, and (bj , βj) ∈ Γ2}. With
non idempotent ⊕ operators, some reinforcement effects may be obtained. See
[20,58,69] for further studies on possibilistic logic merging operators. Besides,
this approach can be also applied to the syntactic encoding of the merging of
classical logic bases based on Hamming distance (where distances are computed
between each interpretation and the different classical logic bases, thus giving
birth to counterparts of possibility distributions) [14].

Decision Under Uncertainty. Possibility theory provides a valuable setting
for qualitative decision under uncertainty where a pessimistic and an optimistic
decision criterion have been axiomatized [53]. The counterpart of these criteria,
when knowledge and preferences are under the form of two distinct PL bases, is
given by the definitions [38]:

– the pessimistic utility u∗(d) of decision d is the maximal α ∈ S s.t. Kα∧d ⊢PL

Pν(α),

– the optimistic utility u∗(d) of d is the maximal ν(α) ∈ S s.t. Kα ∧d∧Pα �≡ ⊥,

where S is a finite bounded totally ordered scale, ν the ordered reversing map of
this scale; Kα is a set of classical logic formulas gathering the pieces of knowledge
that are certain at a level at least α, and where Pβ is a set of classical logic

formulas made of a set of goals (modeling preferences) whose priority level is
strictly greater than β. An optimal pessimistic decision leads for sure to the
satisfaction of all goals in Pν(α) with a priority as low as possible, using only a

part Kα of knowledge which has high certainty. An optimal optimistic decision
maximizes the consistency of all the more or less important goals with all the
more or less certain pieces of knowledge.

Other Applications. In a computational perspective, possibilistic logic has
also impacted logic programming [1,6,65,66]. Besides, the possibilistic handling
of uncertainty in description logic [68,76] has also computational advantages,
in particular in the case of the possibilistic DL-Lite family [11,12]. Another
application is the encoding of control access policies [22]. Lastly, PL has been
recently shown to be of interest in database design where the presence of tuples in
the database is possible only to some extent, and where functional dependencies
are certain only to some extent [59,64].



5 Extensions of Basic Possibilistic Logic

This section surveys various extensions of basic PL where logical formulas are
no longer associated with simple levels valued in a linearly ordered scale.

Lattices. A first idea is to use lattices of values instead of a scale. Examples
are: (i) a timed PL where logical formulas are associated with fuzzy sets of time
instants where the formula is known as being certain to some extent. Semanti-
cally, it leads to define necessity measures valued in a distributive lattice; (ii)
a logic of supporters [61], where formulas a are associated with sets of logical
arguments in their favor, (iii) an interval-based PL [23] where levels are replaced
by intervals, modeling imprecise certainty.

Vectors of Certainty Levels. An obvious consequence of the PL resolution
rule is that only the smallest weight of the formulas used in a proof is retained.
Thus no difference is made between, e.g., getting (b, β) from (¬a∨b, 1) and (a, β),
or getting it from (¬c∨d, 1), (¬d∨ b, α) and (c, β) assuming α ≥ β, although we
may find the first proof stronger. This idea can be captured by a new resolution
rule (¬a∨b,α); (a∨c,β) ⊢ (b∨c,αβ) where α and β are lists of weights, and αβ

is the list obtained as the concatenation of α and β. In the above example, the
first proof yields (b, (1, β)), while the second one leads to (b, (1, α, β)). Assuming
a finite scale, we have then to rank-order the proofs according to their strength.
This can be done by a refinement of min-based ordering, called leximin [48]
which amounts to a lexicographic ordering of the vectors once they have been
completed with 1’s for making them of equal length, and increasingly reordered.
This can be equivalently encoded by treating the vectors as multisets, replacing
αβ by the union ⊗ of the corresponding multisets, and defining an associative
operation ⊕ that selects the multiset containing the least possible value with
a number of occurrences lower than its occurrence in the other multiset (after
discarding the values common in equal number in the two multi sets). See [30]
for the semiring structure based on ⊕ and ⊗. On this basis an extended PL
could be fully developed.

Purely Symbolic Levels. Another extension of interest is to consider that
the values of certainty levels associated to formulas (still assumed to belong to a
totally ordered scale) may be unknown, while the relative ordering between some
of them may be known. In such a case, we have to process these levels in a purely
symbolic manner, i.e., computing the level from a derived formula as a symbolic
expression. For instance, Γ = {(a, α), (¬a∨b, β), (b, γ)} ⊢ (b,max(min(α, β), γ)).
There still exists a partial order between formulas based on the partial order
between symbolic levels (e.g., max(min(α, β), α, γ) ≥ min(α, δ) for any values of
α, β, γ, δ). See [24] for details and [27] for the proof of completeness.

The use of symbolic levels may serve explanation purposes by providing a
tool for tracing the impact of the certainty of some pieces of information on a
conclusion of interest, as early suggested in [56]. Possibilistic logic formulas with
symbolic weights have been used in preference modeling [10]. Then, interpre-
tations (corresponding to the different alternatives) are compared in terms of



symbolic vectors acknowledging the satisfaction or the violation of the formulas
associated with the different (conditional) preferences, using suitable order rela-
tions. Thus, partial orderings of interpretations can be obtained, and may be
refined in case some additional information on the relative priority of the prefer-
ences is given. Another use may concern access rights: The different contexts of
an ontology, like the access rights of a user, the trust level or the level of detail
requested by the user, my be expressed by elements of a lattice, leading to a
calculus similar to PL with symbolic weights [3].

Paraconsistent Valuations. An extension of the possibilistic inference has
been proposed for handling paraconsistent information [17]. The idea is the fol-
lowing. Given a PL base Γ , we build a set Γ o of bi-weighted formulas: for each
formula (a, α) in Γ , we compute triples (a, β, γ) where β (resp. γ) is the highest
degree with which a (resp. ¬a) is supported in Γ (a is said to be supported in Γ
at least at degree β if there is a consistent sub-base of (Γβ)∗ that entails a, with
Γ ∗

β = {ai | (ai, αi) ∈ Γ, αi ≥ β}).
Clearly the set of formulas of the form (a, β, 0) in Γ o is not paraconsistent,

and thus leads to safe conclusions. However, one may obtain a larger set of
consistent conclusions from Γ o as explained now. This requires two evaluations:
(i) the undefeasibility degree of a consistent set A of formulas: UD(A) = min{β |
(a, β, γ) ∈ Γ o and a ∈ A}; (ii) the unsafeness degree of a consistent set A
of formulas: US(A) = max{γ|(a, β, γ) ∈ Γ o and a ∈ A}. Then an entailment
⊢SS , named safely supported consequence relation, is defined by Γ o ⊢SS b if
and only ∃ a minimal consistent subset A that classically entails b such that
UD(A) > US(A). It can be shown that the set {b | Γ o ⊢SS b} is classically
consistent [17]. See [32,51] for details, discussions and other approaches to the
handling of inconsistency in the PL setting.

Subsets of Agents. Another early proposed idea, in an information fusion
perspective, is to associate each formula with a set of distinct explicit sources
that support its truth [36]. Then formulas are associated with sets of sources.
This has led to the proposal of a “multiple agent” logic (ma-L) where formulas
are of the form (a,A), where A denotes a subset of agents and the formula
means that at least all the agents in A believe that a is true. In spite of an
obvious formal parallel with PL, (a,A) should not only be seen as another way
of expressing the strength of the support in favor of a (the larger A, the stronger
the support) [33], but also as a piece of information linking a proposition with
a particular subset of agents. ma-L has two inference rules: (i) if B ⊆ A then
(a,A) ⊢ (a,B) (subset weakening); (ii) (¬a∨ b, A), (a,A) ⊢ (b, A), ∀A ∈ 2ALL \∅
(modus ponens). As a consequence, we also have the resolution rule if A ∩ B �=
∅, then (¬a ∨ b, A), (a ∨ c,B) ⊢ (b ∨ c, A ∩ B). If A ∩ B = ∅, the resulting
information is trivial: (a, ∅) is a formula of no use. An inconsistent subset of
agents for Γ can be defined as

inc-s(Γ ) =
⋃

{A ⊆ All | Γ ⊢ (⊥, A)} and inc-s(Γ ) = ∅ if ∄A s.t. Γ ⊢ (⊥, A).

Clearly, inc-s(Γ ) = ∅ does not imply the consistency of Γ ◦ = {ai|(ai, Ai) ∈ Γ ,
i = 1,m}. It contrasts with possibilistic logic. Just consider the example



Γ = {(a,A), (¬a,A)}, then inc-s(Γ ) = A ∩ A = ∅ while Γ ◦ is inconsistent.
This is compatible with situations where agents contradict each other. Yet, the
consistency of Γ ◦ does entail inc-s(Γ ) = ∅. What matters in ma-L is the collec-
tive consistency of subsets of agents (while the collection of the beliefs held by
the whole set of agents may be inconsistent).

The semantics of ma-L is expressed in terms of set-valued possibility distribu-
tions, and set-valued possibility and necessity measures. Namely, the semantics of
formula (a,A) is given by set-valued distribution π{(a,A)}: ∀ω ∈ Ω,π{(a,A)}(ω) =
All if ω |= a, π{(a,A)}(ω) = Ac if ω |= ¬a where Ac = All \ A, and the formula
(a,A) is understood as expressing the constraint N(a) ⊇ A where N is a set-
valued necessity measure. Soundness and completeness results can be established
with respect to this semantics [7].

Basic PL and ma-L may be combined in a possibilistic multiple agent logic
(Pma-L). Formulas are pairs (a, F ) where F is a fuzzy subset of All. One may
in particular consider the fuzzy sets F = (α/A) s.t. (α/A)(k) = α if k ∈ A, and
(α/A)(k) = 0 if k ∈ Ac; it encodes the piece of information “at least all agents
in A believe a at least at level α”. Interpretations are then associated with fuzzy
sets of agents. Soundness and completeness of Pma-L has been established [8].

6 Generalized Possibilistic Logic

In basic possibilistic logic, only conjunctions of possibilistic logic formulas are
allowed. But since (a, α) is semantically interpreted as N(a) ≥ α, a possibilistic
formula can be manipulated as a propositional formula that is true (if N(a) ≥ α)
or false (if N(a) < α). Then possibilistic formulas can be combined with all
propositional connectives, including disjunction and negation. This is generalized

possibilistic logic (GPL) [34,55]. GPL is a two-tiered propositional logic, in which
propositional formulas are encapsulated by weighted modal operators interpreted
in terms of uncertainty measures from possibility theory. Let Λk = {0, 1

k , 2
k , ..., 1}

with k ∈ N \ {0} be a finite set of certainty degrees, and let Λ+
k = Λk \ {0}.

The language of GPL, Lk
N

, with k + 1 certainty levels is built on top of the
propositional language L as follows: (i) If a ∈ L, α ∈ Λ+

k , then Nα(a) ∈ Lk
N

; (ii)
if ϕ ∈ Lk

N
, ψ ∈ Lk

N
, then ¬ϕ and ϕ ∧ ψ are also in Lk

N
.

Here we use the notation Nα(a), instead of (a, α), emphasizing the closeness
with modal logic. So, an agent asserting Nα(a) has an epistemic state π such
that N(a) ≥ α > 0. Hence ¬Nα(a) stands for N(a) < α, which, given the
finiteness of the set of considered certainty degrees, means N(a) ≤ α − 1

k and

thus Π(¬a) ≥ 1−α+ 1
k . Let ν(α) = 1−α+ 1

k . Then, ν(α) ∈ Λ+
k iff α ∈ Λ+

k , and

ν(ν(α)) = α,∀α ∈ Λ+
k . Thus, we can write Πα(p) ≡ ¬Nν(α)(¬p). In particular,

Π1(a) ≡ ¬N 1

k

(¬a) if k > 1. So, in GPL, one can distinguish between the absence

of sufficient certainty that a is true (¬Nα(a)) and the stronger statement that
a is somewhat certainly false (Nα(¬a)).

The semantics of GPL is as in PL defined in terms of normalized possibility
distributions over propositional interpretations, where possibility degrees are



limited to Λk. A model of a GPL formula Nα(a) is any Λk-valued possibility
distribution π such that N(a) ≥ α, where N is the necessity measure induced
by π, and then the standard definition for π |= ϕ1 ∧ ϕ2 π |= ¬ϕ. As usual, π is
called a model of a set of GPL formulas Γ , written π |= Γ , if π is a model of each
formula in Γ . We write Γ |= φ, for Γ a set of GPL formulas and φ a GPL formula,
iff every model of Γ is also a model of φ. Note that a formula in GPL will not
always have a least specific possibility distribution that satisfies it. For instance,
the set of possibility distributions satisfying the disjunction ‘Nα(a) ∨ Nα(b)’ no
longer has a unique least informative model as it is the case for conjunction in
PL. The soundness and completeness of the following axiomatization of GPL
holds with respect to the above semantics [55]:

(PL) TheHilbert axioms of classical logic; (K)Nα(a→b)→(Nα(a)→Nα(b));
(N) N1(⊤); (D) Nα(a) → Π1(a); (W) Nα1

(a) → Nα2
(a), if α1 ≥ α2.

with modus ponens as the only inference rule.
Note that when α is fixed we get a fragment of the modal logic KD. See [5]
for a survey of studies of the links between modal logics and possibility theory,
and extensions of GPL with objective and non-nested multimodal formulas, as
in KD45 and S5.

7 Applications of Generalized Possibilistic Logic

Nonmonotonic Logic Programming. A remarkable application of GPL is its
capability to encode answer set programs, using a 3-valued scale Λ2 = {0, 1/2, 1}.
Then, we can discriminate between propositions we are fully certain of and
propositions we consider only more plausible than not. It is enough to encode
nonmonotonic ASP rules (with negation as failure) within GPL and lay bare
their epistemic semantics. For instance, the ASP rule a ← b ∧ not c is encoded
as N1(b)∧Π1(¬c) → N1(a) in GPL. See [55] for theoretical results, and [54] for
the GPL encoding of Pearce equilibrium logic.

Multiple Agent Reasoning. We consider the muddy children problem: Two
children come home from garden. The father sees their muddy foreheads. They
sit by him. Father declares at least one of them has a muddy forehead. Then he
asks them whoever has mud on the forehead to stand up. None does. Then the
question is asked again. Both stand up. Why? Informally, the children did not
stand up in the first place because they do not see their own forehead and they
see the other is muddy, but as the latter did not stand up it means he did not
know either it was muddy because he sees the former is muddy.

Since there is no uncertainty, we use a particular case of GPL, where k = 1
with value scale Λ1, known as Meta-Epistemic Logic (MEL) [4]; ✷a is iden-
tified with N1(a) and ✸a with Π1(a). Moreover Π1(a) ≡ ¬N1(¬a). For the
example, we consider the point of view of one child (say child 1): we say “I”.
The other is “You”. We use a standard propositional language L with variables



V = {mI ,mY , sY } (for I am muddy, you are muddy, you stand up). We use one
MEL modality ✷Y standing for “I know that You know” Each pure propositional
formula a ∈ L not in the scope of ✷Y is interpreted as “I know a” (modality
✷I) is not explicitly used because we exclude for the reference agent (“I”) the
possibility of declaring ignorance). So “My” knowledge is the following:

1. Father’s public announcement: I know one of us is muddy and I know You
know it too: mI ∨ mY ; ✷Y (mI ∨ mY );

2. I know that You know whether I am muddy or not (You see me): ✷Y mI ∨
✷Y ¬mI ;

3. I know that you ignore if You are muddy or not (like me): ¬✷Y mY ∧¬✷Y ¬mY ;
4. I know that if You knew I was not muddy and that one of us is muddy

anyway, then You would know that you are muddy: ✷Y ¬mI∧✷Y (mI∨mY ) →
✷Y (mY );

5. I know that if You knew you were muddy You would stand up when invited
too: ✷Y (mY ) → sY ; we also have ✷Y (mY ) → mY .

I see You did not stand up, so I add ¬sY to my knowledge

base, and I reason as follows: ¬sY ,✷Y (mY )→sY

¬✷Y (mY ) . You did not stand up

because you did not know if you were muddy (and now I know it).
¬✷Y (mY ),✷Y (mI∨mY ),✷Y ¬mI∧✷Y (mI∨mY )→✷Y (mY )

¬✷Y ¬mI

. As one of us at least is muddy
and you have no knowledge to claim you are muddy, it means that I know You
cannot claim I am not muddy. ¬✷Y ¬mI ,✷Y mI∨✷Y ¬mI

✷Y mI

. Since it is wrong that you
know I am not muddy, while you know if I am muddy or not, it is because you
know I am muddy. ✷Y mI ,✷Y mI→mI

mI

. Now I know that You know I am muddy,
so, I know I am muddy, and I will stand up next time I am invited to.

Argumentative Reasoning. A logic of arguments similar to GPL has been
outlined in [2]. The basic formulas are pairs (x, y) (“y is a reason for x”), which
are manipulated as propositional formulas using ∧,∨,¬ connectives. Thus, e.g.,
we allow the use of negation in three places: (x,¬y), (¬x, y), ¬(x, y), making also
difference between (x, y) and (¬y∨x,⊤), and (¬x∨x′, y), (x∨z, y′) ⊢ (x′∨z, y∧y′)
is a valid inference rule.

8 Conclusion

This survey has covered old results and works in progress about PL, a simple,
but quite powerful approach to the handling of uncertainty that remains as close
as possible to classical logic. For complexity issues of PL and GPL the reader is
referred to [62] and [55].
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