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Temporal Epistemic Gossip Problems

Martin C. Cooper(B), Andreas Herzig, Frédéric Maris, and Julien Vianey

IRIT, CNRS, Univ. Toulouse, 31062 Toulouse Cedex 9, France
{martin.cooper,andreas.herzig,frederic.maris,julien.vianey}@irit.fr

Abstract. Gossip problems are planning problems where several agents have to share 
information (‘secrets’) by means of phone calls between two agents. In epistemic 
gossip problems the goal can be to achieve higher-order knowledge, i.e., knowledge 
about other agents’ knowledge; to that end, in a call agents communicate not only 
secrets, but also agents’ knowledge of secrets, agents’ knowledge about other 
agents’ knowledge about secrets, etc. Temporal epistemic gossip problems moreover 
impose constraints on the times of calls. These constraints are of two kinds: either 
they stipulate that a call between two agents must necessarily be made at some 
time point, or they stipulate that a call can be made within some possible (set of) 
interval(s). In the non-temporal version, calls between two agents are either always 
possible or always impossible. We investigate the complexity of the plan existence 
problem in this gen-eral setting. Concerning the upper bound, we prove that it is in 
NP in the general case, and that it is in P when the problem is non-temporal and 
the goal is a positive epistemic formula. As for the lower bound, we prove NP-
completeness for two fragments: problems with possibly neg-ative goals even in the 
non-temporal case, and problems with temporal constraints even if the goal is a set 
of positive atoms.

Keywords: Epistemic planning · Temporal planning · Gossip problem · Complexity 
· Epistemic logic

1 Introduction

The epistemic gossip problem defined in [11,12,21] is a problem in which n agents 
each have a secret. Agents communicate by calling other agents: during a call 
the two agents share all their knowledge, not only the secrets they have learned 
but also epistemic information concerning which agents know which informa-
tion. The goal of this problem concerns agents’ knowledge about other agents’ 
secrets at various epistemic depths. For example, the goal may be shared knowl-
edge of depth 2: all agents know that all agents know all secrets. Such goals 
can be described as logical formulas in Dynamic Epistemic Logic of Proposi-
tional Assignments and Observation DEL-PAO [17,18]. This setting generalises 
the well-known gossip problem [12,16] which has recently been analysed in the 
framework of dynamic epistemic logics [6]. We consider it to be an exemplary
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case of epistemic planning [7,8,20,22] in which communication actions are used
to spread knowledge among a network of agents.

Here, we enrich this setting by allowing to limit any communication to a
set of instants (such as an interval during which the two agents involved in the
call are both available). For an example, one can think of satellites on different
orbits which can only communicate when they ‘see’ each other. In a more down-
to-earth example, the interval during which a mobile communication is available
is often limited by the charge capacity of the battery. Another variant we study
is when certain calls must occur at given instants (for example for maintenance
or security reasons).

What follows applies to either one-way or two-way communication and to
either sequential or parallel communication. During a one-way call (such as a
letter or email) information only passes in one direction, whereas during a two-
way call (such as a telephone conversation) information passes in both directions.
In the case of parallel communication, several calls between distinct pairs of
agents may take place simultaneously, but an agent can only call one other
agent at the same instant. The sequential version, in which only one call can
take place at the same time, is of interest when the aim is to minimise the total
number of calls.

We show that the temporal epistemic gossip problem is in NP even for a
complex goal given in the form of a CNF and in the presence of constraints on the
instants when calls can or must take place. This positive result, when compared
to classical planning which is PSPACE-complete [9], follows from the reasonable
assumption that knowledge is never destroyed. Moreover, we show that in the
absence of temporal constraints and negative goals, temporal epistemic gossiping
is in P. We then show maximality of this tractable subproblem in the sense that
the problem becomes NP-complete in the following cases: in the presence of
temporal constraints (even as weak as a simple upper bound on the execution
time of a plan) and in the presence of negative goals (such as agent i should not
learn the secret of agent j).

2 Definitions

First of all, we introduce a general framework for epistemic planning before
focussing on the specific subproblem of epistemic gossiping.

Let Prop be a countable set of propositional variables and Agt a finite set of
agents. A knowledge operator is of the form Ki with i ∈ Agt . An atom of depth d

is any sequence of knowledge operators Ki of length d followed by a propositional
variable. (So when the depth is 0 then the atom is just a propositional variable.)
Atoms are noted α, α′, etc. The atom Kip is of depth 1 and reads “agent i

knows that p”; the atom KjKip is of depth 2 and reads “j knows that i knows

that p”; and so on. The set of all atoms of depth at most d is noted ATM ≤d.
Observe that if the depth of atom α ∈ ATM ≤d is strictly less than d then Kiα

also belongs to ATM ≤d. The set of atoms that are about the mutual knowledge



of α by agents i and j up to depth d is:

ATM
≤d
i,j (α) = {Kk1

. . . Kkr
α | k1, . . . , kr ∈ {i, j} and r + depth(α) ≤ d}

Finally, the set of boolean formulas Fmlbool is comprised of formulas with the
following grammar, where α ∈ ATM ≤d:

ϕ ::=α | ¬ϕ | (ϕ ∧ ϕ)

A state is an assignment of truth values to all atoms in ATM ≤d and is
represented by the set of atoms which are assigned the value true. Satisfaction
of a boolean formula φ in a state s, noted s |= φ, is defined in the usual way.

A conditional action is a pair a = 〈pre(a), eff (a)〉 where:

– pre(a) ∈ Fmlbool is a boolean formula: the precondition of a;

– eff (a) ⊆ Fmlbool × 2ATM≤d

× 2ATM≤d

is a set of triples ce of the form

〈cnd(ce), ceff +(ce), ceff −(ce)〉,

the conditional effects of a, where cnd(ce) is a boolean formula (the condi-
tion) and ceff +(ce) and ceff −(ce) are sets of atoms (added and deleted atoms
respectively).

The result of executing action a in a state s is the state (s ∪ e+) \ e−, where
e+ =

⋃

ce∈eff (a),s|=cnd(ce) ceff +(ce) and e− =
⋃

ce∈eff (a),s|=cnd(ce) ceff −(ce).

In the case of the gossip problem, Prop = {sij | i, j ∈ Agt} where sij reads “i

knows j’s secret”. So Kksij means that agent k knows that i knows j’s secret. The
actions in the gossip problem are calls between two agents leading to an update
of the two agents’ knowledge. In one-way calls, after a call from agent i to agent
j, agent j knows everything that agent i knew before the call and both know
that they know these atoms. Indeed, they both know that they both know that
they know these atoms, and so on up to the maximum epistemic depth d.1 More
formally, call(i, j) = 〈pre(call(i, j)), eff (call(i, j))〉 with pre(call(i, j)) = ⊤ and

eff (call(i, j)) = {〈Kiα,ATM
≤d
ij (α), ∅〉 | α ∈ ATM ≤d} ∪ {〈⊤,ATM

≤d
ij (sji), ∅〉}.

Two-way calls have the same effect as two simultaneous one-way calls.
An instance of the depth-d temporal epistemic gossip problem (TEGP) is

given by a tuple Π = 〈Init ,Goal ,Agt , Ip, In〉:

Init ⊆ ATM ≤d such that Init contains every sii, for i ∈ Agt

Goal ∈ Fmlbool is a conjunction of clauses

Ip ⊆ N × (N ∪ {∞}) × Agt × Agt

In ⊆ N × Agt × Agt

where Init is the initial state; Goal is the goal we want to achieve in the form of
a CNF formula (that we identify with a set of clauses); Ip is the set of intervals

1 More generally, the caller’s knowledge becomes common knowledge between i and
j. We however have no common knowledge operator in our framework.



during which two agents can call each other and In is the set of instants when
two agents must call each other. The set In of necessary calls may correspond
to calls that have been programmed in the network for some other purpose. We
suppose that In is included in Ip, in the sense that for every 〈t, i, j〉 ∈ In there
is a 〈t1, t2, i, j〉 ∈ Ip such that t1 ≤ t ≤ t2. In this paper we always consider the
initial state Init = {sii | i ∈ Agt} in which all agents know their own secrets.

A set of calls A between agents induces a partial function between states, i.e.

from 2ATM≤d

to 2ATM≤d

. For a state s ∈ 2ATM≤d

:

A(s) =



































⊥ if ∃a ∈ A : s � pre(a), or ∃a1, a2 ∈ A :

a1 = call(i1, j1) and a2 = call(i2, j2)

with {i1, j1} ∩ {i2, j2} �= ∅

s ∪
⋃

a∈A,
ce∈eff (a),

and s|=cnd(ce)

ceff +(ce) otherwise

Note that ⊥ is not a state: a result ⊥ represents a failure of the simultaneous
execution of the set of actions A, either because a precondition does not hold or
because one agent would be participating in two calls at the same time (which
we assume to be impossible).

A plan is a relation P ⊆ N×Agt ×Agt . Given a plan P and a natural number
t, the set of calls happening at instant t is P (t) = {(i, j) : (t, i, j) ∈ P}. We use
|P | to denote the number of distinct instants t for which P (t) �= ∅. We use TP (k)
to denote the k-th instant (in strictly increasing order of time) at which a call
happens in P : i.e. TP (1) < . . . < TP (|P |) and ∀t, P (t) �= ∅ ⇔ ∃k ∈ {1, . . . , |P |},
T (k) = t. Our modelling of time by the natural numbers implicitly imposes a
fixed duration of one time unit for each call.

Given a TEGP Π = 〈Init ,Goal ,Agt , Ip, In〉, a plan P satisfies the temporal

constraints of Π if and only if all the necessary calls are in P and every call in P

is possible; formally: In ⊆ P and for every 〈t, i, j〉 ∈ P there is a 〈t1, t2, i, j〉 ∈ Ip

such that t1 ≤ t ≤ t2. Moreover, P solves the TEGP if and only if it satisfies the
temporal constraints and there is a sequence of states 〈s0, · · · , s|P |〉 such that

– s0 = Init

– s|P | |= Goal

– sk+1 = P (TP (k + 1))(sk) for every k with 0 ≤ k < |P |

where P (Tp(k+1)) is the set of actions at instant Tp(k+1) and P (Tp(k+1))(sk)
is the result of executing these actions in state sk. By the definition above of
A(s), the set of actions P (Tp(k + 1)) at instant Tp(k + 1) cannot contain two
calls involving the same agent. In the sequential version of the TEGP, a solution
plan P must also satisfy ∀t, card(P (t)) ≤ 1.

A TEGP defines in a natural way a call digraph G in which the vertices are
the agents and the directed edges the possible calls. In the two-way version, G

is a graph.



Example 1. Consider a network of five servers (which we call a, b, c, d and e)
where each server can only communicate with a subset of the others. Note that
all calls are assumed to be one-way in this example. As part of the maintenance
program, a, b, c and d send a backup of their data to e every night and these
backups can be sent to any server during the day (between 8:00 and 18:00).
The others servers can communicate with each other at any moment if there is
a communication link between them. The communication graph is depicted in
Fig. 1.

There is some information on the server b that needs to be transferred to a,
and c must know that the transfer is done. As the servers have different access
rights, the information on server a should not be communicated to c. In the
TEGP this can be represented by Goal = Kcsab ∧ ¬sca. There is a family of
solution plans for this problem: call(b, a) at instant t1, call(b, d) at instant t2,
call(d, c) at instant t3, where t1 < t2 < t3 (together with the necessary calls
call(a, e) at instant 2, call(b, e) at instant 4, call(c, e) at instant 20 and call(d, e)
at instant 22).

a b

〈{〈0, ∞〉}, ∅〉

c

〈{〈0, ∞〉}, ∅〉

d

〈{〈0, ∞〉}, ∅〉

〈{〈0, ∞〉}, ∅〉

e

〈{〈2, 2〉}, {2}〉

〈{〈8, 18〉}, ∅〉 〈{〈4, 4〉}, {4}〉

〈{〈8, 18〉}, ∅〉

〈{〈20, 20〉}, {20}〉

〈{〈8, 18〉}, ∅〉 〈{〈22, 22〉}, {22}〉

〈{〈8, 18〉}, ∅〉

Fig. 1. Call graph for Example 1 involving necessary calls with e. A double-ended arrow
represents two directed edges (i.e., the possibility of one-way calls in both directions).

On the same network, another question that we can ask is whether c can know
a’s data without a being aware of this. In this case, the goal is sca ∧ ¬Kasca.



The answer is ‘yes’ since the following plan establishes the goal: the necessary
call(a, e) at instant 2, followed by call(e, c) at an instant t ∈ [8, 18] (together
with the other necessary calls call(b, e) at instant 4, call(c, e) at instant 20 and
call(d, e) at instant 22).

3 Membership in NP

Proposition 1. Let m be the number of clauses in the CNF of the goal. Let d be

the depth of atoms for the problem. If a plan for an instance of a TEGP exists,

then there is a plan with md(n − 1) + |In| calls or less

Proof. Let α ∈ ATM ≤d be an atom. Kiα can only be true if there is a path in
the graph G between i and some agent who knows α. Without loss of generality,
we can assume that this path is cycle-free. In the worst case the length of this
path is n − 1. Then, for any atom with an epistemic depth d, at most d(n − 1)
calls are needed for this atom to be true, by the concatenation of d paths of
length n − 1.

The number of calls needed for a disjunction of formulas to be true is the
maximum of the number of calls needed for each formula. In a CNF, there are
only disjunctions over atoms, so the number of calls needed for a disjunction is
d(n − 1).

The number of calls needed for a conjunction of formulas is the sum of the
number of calls needed for every formula, which here is at most d(n−1). So, with
m being the number of conjunctions in the CNF of the goal, at most md(n − 1)
calls are needed for a problem with only possible calls.

Thus, if a plan P exists, then P contains a subset Q of md(n − 1) calls
which are sufficient to establish all positive atoms in the goal. For a problem
with necessary calls, it can happen that the plan Q does not contain all the
necessary calls In of P ; but adding these necessary calls to Q to form a plan Q′

cannot destroy positive goals. All negative atoms in the goal are also valid after
execution of Q′ since all calls, and in particular the ones in P but not in Q′, only
establish positive atoms. Thus Q′ is a plan of at most md(n − 1) + |In| calls.

4 A Subproblem of the Temporal Gossip Problem in P

We say that a TEGP instance is positive if its goal is a CNF containing only
positive atoms. A special case of TEGP is the class of positive non-temporally-
constrained epistemic gossip problems Π = 〈Init ,Goal ,Agt , Ip, In〉 where Ip =
{〈0,∞, i, j〉 : (i, j) ∈ E}, for some E, and Goal is a positive CNF. In this case,
E is the set of edges in the call digraph: if a call is possible (as specified by E),
it is possible at any instant. On the other hand, there is no restriction on the
set of necessary calls In.

Proposition 2. The class of positive non-temporally-constrained epistemic gos-

sip problems can be solved in polynomial time.



Proof. There is a simple polynomial-time algorithm for positive non-temporally-
constrained epistemic gossip problems: make all possible calls in some fixed order
and repeat this operation md(n−1)+ |In| times. Call this sequential plan Q. By
the proof of Proposition 1, if a solution plan exists, there is a sequential solution
plan P of length at most md(n − 1) + |In|. The actions of P necessarily appear
as a subsequence of Q. Since the goal and preconditions of actions contain only
positive atoms, the extra actions of Q cannot destroy any goals or preconditions.
It follows that if a solution plan exists, then Q is also a solution plan. Thus
this simple algorithm solves the class of positive non-temporally-constrained
epistemic gossip problems in polynomial time.

Given an arbitrary instance of TEGP, we can construct a positive non-
temporally-constrained instance by ignoring negative goals and temporal con-
straints (specified by Ip). This is a polynomial-time solvable relaxation of the
original TEGP instance. This provides a relaxation which is inspired by the well-
known delete-free relaxation of classical planning problems and is orthogonal to
the relaxation of temporal planning problems based on establisher-uniqueness
and monotonic fluents [13].

5 NP-completeness When Execution Time Is Bounded

The simplest temporal constraint is just a time limit on the execution of a plan.
In the case of sequential plans this simply corresponds to placing a bound on
plan length (which is equal to the number of calls) whereas in the parallel case
execution time corresponds to the number of steps. We show in this section that
this single constraint (a time limit on plan execution) is sufficient to render the
epistemic gossip problem NP-complete. It is worth noting that the PSPACE
complexity of classical planning is not affected by the possibility of placing an
arbitrary limit on plan length, but the special case of delete-free planning passes
from P to NP-hard when a bound is placed on plan length [9]. We show that
this remains true for the specific case of gossiping problems.

We begin by studying the sequential case of TEGP.

Proposition 3. The epistemic gossip problem with no temporal constraints but

with a bound on the number of calls is NP-complete, even when the goal is a

conjunction of positive atoms.

Proof. We will exhibit a polynomial-time reduction from the well-known NP-
complete problem SAT to the version of the epistemic gossip problem whose
question is whether there is a sequential solution plan of length at most L. To
do so, for a given set of clauses {C1, . . . , Cm} we need the following agents:

– an agent S (the source),
– literal agents, i.e., agents for every variable and every negation of a variable

(which we name, respectively, x+ and x−) for each variable x of the SAT
instance,



– clause agents, i.e., agents for every clause (which we name Ci for the ith
clause of the SAT instance).

Before performing this construction, we first add a dummy clause (x ∨ ¬x) for
each SAT variable x. This clearly does not change the semantics of the instance
but it does force us to specify the truth value of each variable in a solution of
the SAT instance.

The source agent S and clause agents can only communicate with literal
agents. The source agent S can communicate with every literal agent. A literal
agent can only communicate with S and those clauses it is a member of. The
graph G of communications is shown in Fig. 2 for a particular SAT instance. In
this example, C1 = (¬x ∨ y ∨ z), C2 = (¬y ∨ z) and the clauses C3, C4, C5 are
the dummy clauses (x ∨ ¬x), (y ∨ ¬y), (z ∨ ¬z).

A variable x is considered to be true (false) if S’s secret passes through
x+ (respectively, x−) in the solution plan on its way to the agent representing
the dummy clause (x ∨ ¬x). The bound on the number of actions will prevent
the possibility of S’s secret passing through both x+ and x−. So the choice of
whether S’s secret passes through x+ or x− determines an assignment to the
variable x in the SAT problem.

The goal of this instance of TEGP is that every clause agent knows the secret
of S (Goal =

∧

Ci
sCiS). Now set the bound on plan length to be L = 2n + m,

where n is the number of variables in the SAT instance and m the number of
clauses in the original instance. With the new dummy clauses, the total number
of clauses is n + m.

C1 C2C3 C4 C5

x+ x− y+ y−

z+ z−

S

Fig. 2. Representation of the formula (¬x ∨ y ∨ z) ∧ (¬y ∨ z) as a temporal epistemic
gossip problem in which the question is whether there is a plan using no more than 8
calls.

In a solution plan P we require at least n calls, one to either x+ or x−,
for the n SAT variables x, in order for S’s secret to be able to reach the agent
corresponding to the dummy clause x ∨ ¬x. P must also contain at least n + m

calls to the clause agents Ci (including the dummy clauses) to establish the



goals sCiS . A solution plan of length precisely 2n + m corresponds to a solution
of the corresponding SAT instance since such a plan defines a unique assignment
to all variables that satisfies all clauses. For example, the solution x = false,
y = false, z = true to the SAT instance of Fig. 2 corresponds to the following
solution plan of length 8: S calls x−; S calls y−; S calls z+; x− calls C1; z+ calls
C2; x− calls C3; y− calls C4; z+ calls C5. This reduction from SAT is clearly
polynomial.

Proposition 1 proves the existence of a polynomial-length certificate for pos-
itive instances of the decision version of TEGP. Such certificates (solutions) can
be verified in polynomial time. Thus TEGP ∈ NP. Since the epistemic gossip
problem with no temporal constraints but with a bound on the number of calls
is clearly still in NP, this completes the proof of NP-completeness.

The proof of Proposition 3 was given for the case of two-way communications.
It is trivial to adapt it to the case of one-way communications (for example, by
only allowing calls from S to literal agents and from literal agents to clause
agents).

We now consider the parallel version of the TEGP. Recall that in the parallel
version of the TEGP, several calls may take place at each step, provided no agent
is concerned by more than one call at each step.

Proposition 4. The parallel version of the epistemic gossip problem with no

temporal constraints except for a bound on the number of steps is NP-complete

even when the goal is a conjunction of positive atoms.

Proof. By the same argument as in the proof of Proposition 1, the problem is
in NP. We complete the proof by exhibiting a polynomial reduction from 3SAT
which is well known to be NP-complete. Given an instance I3SAT of 3SAT, by
introducing sufficiently many new variables x′ which are copies of old variables
x (together with the clauses x ∨ ¬x′, ¬x ∨ x′ to impose equality of x and x′) we
can transform I3SAT into an equivalent instance in which each literal does not
occur in more than three clauses. This is a polynomial reduction since we need
to introduce at most one copy of each variable x per clause in which it occurs in
I3SAT . Therefore, from now on, we suppose that each literal occurs in at most
two clauses in I3SAT .

We construct an instance I of the epistemic gossip problem which has a
parallel solution plan of length 2p if and only if I3SAT is satisfiable. We choose
the value of p to be strictly greater than n+3, where n is the number of variables
in I3SAT . To be concrete, we can choose p = n + 4. We add to I3SAT p − n new
dummy variables xn+1, . . . , xp none of which occur in the clauses of I3SAT . In
I there is an agent S (the source), literal agents x+

i , x−
i for each variable xi

(i = 1, . . . , p), and a clause agent Cj for each of the clauses Cj (j = 1, . . . , m)
of I3SAT . For each variable xi (i = 1, . . . , p), we also add a dummy-clause agent
Di which we can consider as representing the dummy clause xi ∨¬xi. Instead of
linking these basic agents directly, we place paths of new agents between these
basic agents. Between agent S and agent x+

i we add a path of length p + 1 − i.
Similarly, we add a new path of the same length between S and agent x−

i . For



C1 C2

D1 D2 D3 D4 D5 D6 D7

x+

1

7

x−

1

4
7

x+

2

4
7

x−

2

4
7

x+

3

4 4
7

x−

3

7

x+

4

7

x−

4

7

x+

5

7

x−

5

7

x+

6

7

x−

6

7

x+

7

7

x−

7

7

S

7 7 6 6 5 5 4 4 3 3 2 2 1 1

Fig. 3. Representation of the formula (¬x ∨ y ∨ z) ∧ (¬y ∨ z) as a temporal epistemic
gossip problem in which the question is whether there is a parallel plan using no more
than 14 steps.

i = 1, . . . , p, we add two new paths both of length p between the literal agents
x+

i and x−
i and the dummy-clause agent Di. For each clause Cj of I3SAT , we also

add three new paths of length q from the agents corresponding to the literals of
Cj to the agent Cj , where q = p − 2 = n + 1. The resulting network is shown in
Fig. 3 for an example instance. The numbers on edges in this figure represent the
length of the corresponding path. For example, there are 6 intermediate agents
(not shown so as not to clutter up the figure) between the agents S and x+

1 . The
goal of I is

(

p
∧

i=1

sDiS

)

∧





m
∧

j=1

sCjS





In order to establish the goal sDiS , the secret of S has to follow a path from
S to Di. The shortest paths from S to D1 are of length 2p and pass through
either x+

1 or x−
1 . Recall that our aim is to find a plan whose execution requires

at most 2p steps. Thus, to establish sD1S in 2p steps, during the first step, S

must call the first agent on the path to x+
1 or the first agent on the path to

x−
1 . The shortest path from S to D2 is of length 2p − 1, so during the second

step, S must call the first agent either on the path to x+
2 or the first agent

on the path to x−
2 . By a simple inductive argument, we can see that during

step i (i = 1, . . . , p), S must call the first agent on the path to x+
i or x−

i . We
can consider that the choice of whether S’s secret passes through x+

i or x−
i

determines an assignment to the variables xi. Due to the diminishing lengths of



these paths as i increases, S’s secret arrives simultaneously at the literal agents,
either x+

i or x−
i , for i = 1, . . . , p. Another p steps are then required to send in

parallel this secret to the dummy-clause agents Dj , for a total number of steps
of 2p. Almost simultaneously (within two time units), S’ secret arrives at the
clause agents Cj , provided it has passed through one of the agents corresponding
to the literals of Cj . The length of paths from literal agents (x+

i or x−
i ) to clause

agents Cj is q = p − 3 which is slightly less than p to allow for the fact that a
literal agent, say x+

i , may have to send S’s secret along at most four paths: first
towards Di, then towards the (at most) three clauses in which xi occurs.

It is important to note that S is necessarily occupied during the first p steps,
as described above, so if S were to try to send its secret both to x+

i and x−
i the

secret could not arrive via the second of these paths at a clause agent Cj in less
than 2p − n + q = 3p − n − 3 steps which is greater than the upper bound of 2p
steps (since p = n + 4). By our construction, the goal sCjS is established only if
the assignment to the variables xi determined by the solution plan satisfies the
clause Cj . Hence, parallel solution plans of length 2p steps correspond precisely
to solutions of I3SAT . We have therefore demonstrated a polynomial reduction
from 3SAT to the parallel version of the epistemic gossip problem with a bound
on the number of steps.

The following corollary follows from the fact that we can place an upper
bound L on the number of steps in a plan by simply imposing via Ip an interval
of possible instants [1, L] for all calls.

Corollary 1. TEGP is NP-complete.

6 NP-completeness of Gossiping with Negative Goals

We show in this section that even without temporal constraints or a bound on
plan length, when we allow negative goals the problem of deciding the existence
of a solution plan is NP-complete.

Proposition 5. The epistemic gossip problem with possibly negative goals is

NP-complete even in the absence of any temporal constraints or bound on plan

length.

Proof. The same argument as in the proof of Proposition 1 shows that the prob-
lem belongs to NP since it is a subproblem of TEGP.

To complete the proof, it suffices to give a polynomial reduction from SAT.
Let ISAT be an instance of SAT. We will construct a call graph G and a set
of goals such that the corresponding instance IGossip of the epistemic gossip
problem is equivalent to ISAT . Recall that the nodes of the call graph G are the
agents and the edges of G the communication links between agents.

For each propositional variable x in ISAT , we add four nodes x+, x−, bx, dx

to G joined by the edges shown in Fig. 4(b). There is a source node S in G and
edges (S, x+), (S, x−) for each variable x in ISAT . For each clause Cj in ISAT ,



we add a node Cj joined to the nodes corresponding to the literals of Cj . This is
illustrated in Fig. 4(a) for the clause Cj = ¬x∨y∨z. The solution plan to IGossip

will make S’s secret transit through x+ (on its way from S to some clause node
Cj) if and only if x = true in the corresponding solution to ISAT .

For each clause Cj in ISAT , G contains a clause gadget as illustrated in
Fig. 4(a) for the clause ¬x ∨ y ∨ z. We also add sCjS to the set of goals. Clearly,
S’s secret must transit through one of the nodes corresponding to the literals of
Cj (x−, y+ or z+ in the example of Fig. 4) to achieve the goal sCjS .

To complete the reduction, it only remains to impose the constraint that a’s
secret transits through at most one of the nodes x+, x−, for each variable x of
ISAT . This is achieved by the negation gadget shown in Fig. 4(b) for each variable
x. We add the goals sdxbx

and ¬sdxS for each variable x, and the goal ¬sCjbx

for each variable x and each clause Cj (containing the literal x or ¬x). The
goal sdxbx

ensures that bx’s secret transits through x or ¬x. Now, recall that we
assume that during a call, agents communicate all their knowledge. Suppose that
bx’s secret transits through x+: then S’s secret cannot transit through x+ before
bx’s secret (because of the negative goal ¬sdxS) and cannot transit through x+

after bx’s secret (because of the negative goal ¬sCjbx
). By a similar argument, if

bx’s secret transits through x−, then S’s secret cannot transit through x+. Thus,
this gadget imposes that S’s secret transits through exactly one of the nodes x+,
x−.

We have shown that ISAT has a solution if and only if IGossip has a solution.
Since the reduction is clearly polynomial, this completes the proof.

Cj dx

x− y+
z+ x+ x−

bxS

(a) (b)

Fig. 4. (a) Gadget imposing the clause Cj = ¬x ∨ y ∨ z; (b) Gadget imposing the
choice between x and ¬x.

The NP-completeness shown in the proof of Proposition 5 for two-way com-
munication, would not be affected by a restriction to one-way communication.
Similarly NP-completeness holds for both the sequential and parallel versions of
the gossip problem.



7 Discussion and Conclusion

We have defined temporal epistemic gossip problems and have investigated their
complexity. Our results are in line with previous results concerning epistemic
planning: it is possible to add an epistemic dimension to planning, thus increasing
expressibility, without increasing complexity [10].

In our approach agents are not introspective: sij does not imply Kisij , and
Kksij does not imply KkKksij . This only concerns positive introspection: neg-
ative introspection cannot be expressed. Positive introspection can however be
enforced by adding axioms sij → Kisij , and Kksij → KkKksij . We however did
not do so in order to simplify presentation.

We have assumed a centralized approach in which a centralized planner
decides the actions of all agents. Several other researchers have recently studied
distributed versions of the classical gossip problem where the agents have to
decide themselves whom to call, based on the knowledge (and ignorance) they
have [1–5,14,15]. An interesting avenue of future research would be to consider
the epistemic gossip problem in this framework.

Several other variants of our centralized model could also be investigated,
including the precondition that i has to know the telephone number of j in
order to call j and telephone numbers are communicated in the same way as
secrets. In another variant, the secrets can be passwords which are no longer
constants since each agent i can change their own password [12].
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