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Abstract. Defined by Gelfond in 1991 (G91), epistemic specifications
(or programs) are an extension of logic programming under stable models
semantics that introduces subjective literals. A subjective literal allows
checking whether some regular literal is true in all (or in some of) the
stable models of the program, being those models collected in a set
called world view. One epistemic program may yield several world views
but, under the original G91 semantics, some of them resulted from self-
supported derivations. During the last eight years, several alternative
approaches have been proposed to get rid of these self-supported world
views. Unfortunately, their success could only be measured by studying
their behaviour on a set of common examples in the literature, since
no formal property of “self-supportedness” had been defined. To fill this
gap, we extend in this paper the idea of unfounded set from standard
logic programming to the epistemic case. We define when a world view
is founded with respect to some program and propose the foundedness

property for any semantics whose world views are always founded. Using
counterexamples, we explain that the previous approaches violate found-
edness, and proceed to propose a new semantics based on a combination
of Moore’s Autoepistemic Logic and Pearce’s Equilibrium Logic. The
main result proves that this new semantics precisely captures the set of
founded G91 world views.

1 Introduction

The language of epistemic specifications, proposed by Gelfond in 1991 [4], extends
disjunctive logic programs (under the stable model [6] semantics) with modal
constructs called subjective literals. Using these constructs, it is possible to check
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whether a regular literal l is true in every stable model (written K l) or in some
stable model (written M l) of the program. For instance, the rule:

a ← ¬K b (1)

means that a must hold if we cannot prove that all the stable models con-
tain b. The definition of a “satisfactory” semantics for epistemic specifications has
proved to be a non-trivial enterprise, as shown by the list of different attempts
proposed so far [2,4,5,9,20–22]. The main difficulty arises because subjective
literals query the set of stable models but, at the same time, occur in rules that
determine those stable models. As an example, the program consisting of:

b ← ¬K a (2)

and (1) has now two rules defining atoms a and b in terms of the presence of those
same atoms in all the stable models. To solve this kind of cyclic interdependence,
the original semantics by Gelfond [4] (G91) considered different alternative world
views or sets of stable models. In the case of program (1)–(2), G91 yields two
alternative world views1, [{a}] and [{b}], each one containing a single stable
model, and this is also the behaviour obtained in the remaining approaches
developed later on. The feature that made G91 unconvincing, though, was the
generation of self-supported world views. A prototypical example for this effect
is the epistemic program consisting of the single rule:

a ← K a (3)

whose world views under G91 are [∅] and [{a}]. The latter is considered as
counter-intuitive by all authors2 because it relies on a self-supported derivation:
a is derived from K a by rule (3), but the only way to obtain K a is rule (3) itself.
Although the rejection of world views of this kind seems natural, the truth is
that all approaches in the literature have concentrated on studying the effects
on individual examples, rather than capturing the absence of self-supportedness
as a formal property. To achieve such a goal, we would need to establish some
kind of derivability condition in a very similar fashion as done with unfounded
sets [3] for standard logic programs. To understand the similarity, think about
the (tautological) rule a ← a. The classical models of this rule are ∅ and {a}, but
the latter cannot be a stable model because a is not derivable applying the rule.
Intuitively, an unfounded set is a collection of atoms that is not derivable from
a given program and a fixed set of assumptions, as happens to {a} in the last
example. As proved by [12], the stable models of any disjunctive logic program
are precisely its classical models that are founded, that is, that do not admit any
unfounded set. As we can see, the situation in (3) is pretty similar to a ← a but,
this time, involves derivability through subjective literals. An immediate option

1 For the sake of readability, sets of propositional interpretations are embraced with
[ ] rather than { }.

2 This includes Gelfond himself, who proposed a new variant in [5] motivated by this
same example and further modified this variant later on in [9].



is, therefore, extending the definition of unfounded sets for the case of epistemic
programs – this constitutes, indeed, the first contribution of this paper.

Once the property of founded world views is explicitly stated, the paper pro-
poses a new semantics for epistemic specifications, called Founded Autoepistemic
Equilibrium Logic (FAEEL), that fulfills that requirement. In the spirit of [2,22],
our proposal actually constitutes a full modal non-monotonic logic where K
becomes the usual necessity operator applicable to arbitrary formulas. Formally,
FAEEL is a combination of Pearce’s Equilibrium Logic [17], a well-known logical
characterisation of stable models, with Moore’s Autoepistemic Logic (AEL) [15],
one of the most representative approaches among modal non-monotonic logics.
The reason for choosing Equilibrium Logic is quite obvious, as it has proved its
utility for characterising other extensions of ASP, including the already men-
tioned epistemic approaches in [2,22]. As for the choice of AEL, it shares with
epistemic specifications the common idea of agent’s introspection where Kϕ

means that ϕ is one of the agent’s beliefs. The only difference is that those
beliefs are just classical models in the case of AEL whereas epistemic specifica-
tions deal with stable models instead. Interestingly, the problem of self-supported
models has also been extensively studied in AEL [11,13,16,18], where the for-
mula K a → a, analogous to (3), also yields an unfounded world view3 [{a}].
Our solution consists in combining the monotonic bases of AEL and Equilib-
rium Logic (the modal logic KD45 and the intermediate logic of Here-and-There
(HT) [8], respectively), but defining a two-step models selection criterion that
simultaneously keeps the agent’s beliefs as stable models and avoids unfounded
world views from the use of the modal operator K. As expected, we prove that
FAEEL guarantees the property of founded world views, among other features.
Our main result, however, goes further and asserts that the FAEEL world views
of an epistemic program are precisely the set of founded G91 world views. We
reach, in this way, an analogous situation to the case of standard logic program-
ming, where stable models are the set of founded classical models of the program.

The rest of the paper is organised as follows. Section 2 and 3 respectively
revisit the background knowledge about equilibrium logic and epistemic specifi-
cations necessary for the rest of the paper. Section 4 introduces the foundedness
property for epistemic logic programs. In Sect. 5, we introduce FAEEL and show
that its world views precisely coincide with the set of founded G91 world views.
Finally, Sect. 6 concludes the paper.

2 Background

We begin recalling the basic definitions of equilibrium logic and its relation to
stable models. We start from the syntax of propositional logic, with formulas
built from combinations of atoms in a set AT with operators ∧,∨,⊥ and → in
the usual way. We define the derived operators ϕ ↔ ψ

def= (ϕ → ψ) ∧ (ψ → ϕ),
(ϕ ← ψ) def= (ψ → ϕ), ¬ϕ

def= (ϕ → ⊥) and ⊤ def= ¬⊥.

3 Technically, AEL is defined in terms of theory expansions but each one can be char-
acterised by a canonical S5-model with the same form of a world view [14,19].



A propositional interpretation T is a set of atoms T ⊆ AT . We write T |= ϕ

to represent that T classically satisfies formula ϕ. An HT-interpretation is a pair
〈H,T 〉 (respectively called “here” and“there”) of propositional interpretations
such that H ⊆ T ⊆ AT ; it is said to be total when H = T . We write 〈H,T 〉 |= ϕ

to represent that 〈H,T 〉 satisfies a formula ϕ under the recursive conditions:

– 〈H,T 〉 |= ⊥
– 〈H,T 〉 |= p iff p ∈ H

– 〈H,T 〉 |= ϕ ∧ ψ iff 〈H,T 〉 |= ϕ and 〈H,T 〉 |= ψ

– 〈H,T 〉 |= ϕ ∨ ψ iff 〈H,T 〉 |= ϕ or 〈H,T 〉 |= ψ

– 〈H,T 〉 |= ϕ → ψ iff both (i) T |= ϕ → ψ and (ii) 〈H,T 〉 |= ϕ or 〈H,T 〉 |= ψ

As usual, we say that 〈H,T 〉 is a model of a theory Γ , in symbols 〈H,T 〉 |= Γ , iff
〈H,T 〉 |= ϕ for all ϕ ∈ Γ . It is easy to see that 〈T, T 〉 |= Γ iff T |= Γ classically.
For this reason, we will identify 〈T, T 〉 simply as T and will use ‘|=’ indistinctly.
By CL[Γ ] we denote the set of all classical models of Γ . Interpretation 〈T, T 〉 = T

is a stable (or equilibrium) model of a theory Γ iff T |= Γ and there is no H ⊂ T

such that 〈H,T 〉 |= Γ . We write SM[Γ ] to stand for the set of all stable models
of Γ . Note that SM[Γ ] ⊆ CL[Γ ] by definition.

3 G91 Semantics for Epistemic Theories

In this section we provide a straightforward generalisation of G91 allowing its
application to arbitrary modal theories. Formulas are extended with the necessity
operator K according to the following grammar:

ϕ ::= ⊥ | a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | Kϕ for any atom a ∈ AT .

An (epistemic) theory is a set of formulas. In our context, the epistemic reading
of Kψ is that “ψ is one of the agent’s beliefs.” Thus, a formula ϕ is said to be
subjective if all its atom occurrences (having at least one) are in the scope of
K. Analogously, ϕ is said to be objective if K does not occur in ϕ. For instance,
¬K a ∨ K b is subjective, ¬a ∨ b is objective and ¬a ∨ K b none of the two.

To represent the agent’s beliefs we will use a set W of propositional interpre-
tations. We call belief set to each element I ∈ W and belief view to the whole
set W. The difference between belief and knowledge is that the former may not
hold in the real world. Thus, satisfaction of formulas will be defined with respect
to an interpretation I ⊆ AT , possibly I ∈ W, that accounts for the real world:
the pair (W, I) is called belief interpretation (or interpretation in modal logic
KD45). Modal satisfaction is also written (W, I) |= ϕ (ambiguity is removed by
the interpretation on the left) and follows the conditions:

– (W, I) |= ⊥,
– (W, I) |= a iff a ∈ I, for any atom a ∈ AT ,
– (W, I) |= ψ1 ∧ ψ2 iff (W, I) |= ψ1 and (W, I) |= ψ2,
– (W, I) |= ψ1 ∨ ψ2 iff (W, I) |= ψ1 or (W, I) |= ψ2,
– (W, I) |= ψ1 → ψ2 iff (W, I) |= ψ1 or (W, I) |= ψ2, and



– (W, I) |= Kψ iff (W, J) |= ψ for all J ∈ W.

Notice that implication here is classical, that is, ϕ → ψ is equivalent to
¬ϕ ∨ ψ in this context. A belief interpretation (W, I) is a belief model of Γ iff
(W, J) |= ϕ for all ϕ ∈ Γ and all J ∈ W ∪ {I}. We say that W is an epistemic
model of Γ , and abbreviate this as W |= Γ , iff (W, J) |= ϕ for all ϕ ∈ Γ and
all J ∈ W. Belief models defined in this way correspond to modal logic KD45
whereas epistemic models correspond to S5.

Example 1. Take the theory Γ1 = {¬K b → a} corresponding to rule (1). An
epistemic model W |= Γ1 must satisfy: 〈W, J〉 |= K b or 〈W, J〉 |= a, for all
J ∈ W. We get three epistemic models from K b, [{b}], [{a, b}], and [{b}, {a, b}]
and the rest of cases must force a true, so we also get [{a}] and [{a}, {a, b}]. In
other words, Γ1 has the same epistemic models as K b ∨ K a. ⊓⊔

Note that rule (1) alone did not seem to provide any reason for believing b, but we
got three epistemic models above satisfying K b. Thus, we will be interested only
in some epistemic models (we will call world views) that minimize the agent’s
beliefs in some sense. To define such a minimisation we rely on the following
syntactic transformation provided by [21].

Definition 1 (Subjective reduct). The subjective reduct of a theory Γ with
respect to a belief view W, also written Γ W, is obtained by replacing each maximal
subformula of the form Kϕ by: ⊤, if W |= Kϕ; by ⊥, otherwise. Notice that
Γ W is a classical, non-modal theory. ⊓⊔

Finally, we impose a fixpoint condition where, depending on whether each belief
set I ∈ W is required to be a stable model of the reduct or just a classical model,
we get G91 or AEL semantics, respectively.

Definition 2 (AEL and G91 world views). A belief view W is called an
AEL-world view of a theory Γ iff W = CL[Γ W], and is called a G91-world view
of Γ iff W = SM[Γ W]. ⊓⊔

Example 2 (Example 1 revisited). Take any W such that W |= K b. Then, Γ W
1 =

{⊥ → a} with CL[Γ W
1 ] = [∅, {a}, {b}, {a, b}] and SM[Γ W

1 ] = [∅]. None of the two
satisfy K b so W cannot be fixpoint for G91 or AEL. If W |= K b instead, we
get Γ W

1 = {⊤ → a}, whose classical models are {a} and {a, b}, but only the
former is stable. As a result, W = [{a}, {a, b}] is the unique AEL world view and
W = [{a}] the unique G91 world view. ⊓⊔

Example 3. Take now the theory Γ3 = {K a → a} corresponding to rule (3). If
W |= K a we get Γ W

3 = {⊤ → a} and CL[Γ W
3 ] = SM[Γ W

3 ] = {a} so W = [{a}] is
an AEL and G91 world view. If W |= K a, the reduct becomes Γ W

3 = {⊥ → a},
a classical tautology with unique stable model ∅. As a result, W = [∅, {a}] is the
other AEL world view, while W = [∅] is the a second G91 world view. ⊓⊔



As we can see, the difference between AEL and G91 is that we use classical
CL[Γ W] instead of stable SM[Γ W] models, respectively. It is well known that
adding the excluded middle axiom a ∨ ¬a for all atoms makes equilibrium logic
collapse into classical logic. This leads us to the following result.

Theorem 1. W is an AEL world view of some theory Γ iff W is a G91-world
view of Γ ∪ {a ∨ ¬a | a ∈ AT }. ⊓⊔

4 Founded World Views of Epistemic Specifications

As we explained in the introduction, world view [{a}] of {K a → a} is considered
to be “self-supported” in the literature but, unfortunately, there is no formal
definition for such a concept, to the best of our knowledge. To cover this lack,
we proceed to extend here the idea of unfounded sets from disjunctive logic
programs to the epistemic case. For this purpose, we focus next on the original
language of epistemic specifications [4] (a fragment of epistemic theories closer
to logic programs) on which most approaches have been actually defined.

Let us start by introducing some terminology. An objective literal is either
an atom a ∈ AT , its negation ¬a or its double negation ¬¬a. A subjective literal
is any of the formulas4 K l, ¬K l or ¬¬K l where l an objective literal. A literal
is either an objective or a subjective literal, and is called negative if it contains
negation and positive otherwise. A rule is a formula of the form

a1 ∨ . . . ∨ an ← B1 ∧ . . . ∧ Bm (4)

with n ≥ 0, m ≥ 0 and m + n > 0, where each ai is an atom and each Bj

is a literal. For any rule r like (4), we define its body as Body(r) def= B1 ∧
. . . ∧ Bm and its head Head(r) def= a1 ∨ . . . ∨ an, which we sometimes use as
the set of atoms {a1, . . . , an}. When n = 0, Head(r) = ⊥ and the rule is a
constraint, whereas if m = 0 then Body(r) = ⊤ and the rule is a fact. The set
Body+

ob(r) collects all atoms occurring in positive objective literals in the body
while Body+

sub(r) collects all atoms occurring in positive subjective literals. An
epistemic specification or program is a set of rules. As with formulas, a program
without occurrences of K is said to be objective (it corresponds to a standard
disjunctive logic program with double negation).

Definition 3 (Unfounded set). Let Π be a program and W a belief view. An
unfounded set S with respect to Π and W is a non-empty set of pairs where, for
each 〈X, I〉 ∈ S, we have that X and I are sets of atoms and there is no rule
r ∈ Π with Head(r) ∩ X = ∅ satisfying:

1. (W, I) |= Body(r)
2. Body+

ob(r) ∩ X = ∅

4 We focus here on the study of the operator K, but epistemic specifications also allow
a second operator M l whose relation to K is also under debate and, for this reason,
we leave it future work.



3. (Head(r) \ X) ∩ I = ∅
4. Body+

sub(r) ∩ Y = ∅ with Y =
⋃

{ X ′ | 〈X ′, I ′〉 ∈ S }. ⊓⊔

The definition works in a similar way to standard unfounded sets [12, Defini-
tion 3.1]. In fact, the latter corresponds to the first three conditions above, except
that we use (W, I) to check Body(r), as it may contain now subjective literals.
Intuitively, each I represents some potential belief set (or stable model) and X is
some set of atoms without a “justifying” rule, that is, there is no r ∈ Π allowing
a positive derivation of atoms in X. A rule like that should have a true Body(r)
(condition 1) but not because of positive literals in X (condition 2) and is not
used to derive other head atoms outside X (condition 3). The novelty in our
definition is the addition of condition 4: to consider r a justifying rule, we addi-
tionally require not using any positive literal K a in the body such that atom a

also belongs to any of the unfounded components X ′ in S.

Definition 4 (Founded world view). Let Π be a program and W be a belief
view. We say that W is unfounded if there is some unfounded-set S s.t., for
every 〈X, I〉 ∈ S, we have I ∈ W and X ∩ I = ∅. W is called founded otherwise.

⊓⊔

When Π is an objective program, each pair 〈X, I〉 corresponds to a standard
unfounded set X of some potential stable model I in the traditional sense of [12].

Example 4. Given the single disjunctive rule a ∨ b suppose we check the
(expected) world view W = [{a}, {b}]. For I = {a} and X = {a}, rule a ∨ b

satisfies the four conditions and justifies a. The same happens for I = {b} = X.
So, W is founded. However, suppose we try with W

′ = [{a, b}] instead. For
I = {a, b} we can form X = {a} and X ′ = {b} and in both cases, the only rule
in the program, a ∨ b, violates condition 3. As a result, W

′ is unfounded due to
the set S

′ = {〈{b}, {a, b}〉, 〈{a}, {a, b}〉}. ⊓⊔

To illustrate how condition 4 works, let us continue with Example 3.

Example 5 (Example 3 continued). Theory Γ3 = {K a → a} is also a program.
Given belief set W = [{a}] we can observe that S = [〈{a}, {a}〉] makes W

unfounded because the unique rule in Γ3 does not fulfill condition 4: we cannot
derive a from a rule that contains a ∈ Body+

sub(r). On the other hand, the other
G91 world view, W = [∅], is trivially founded. ⊓⊔

Since Definition 4 only depends on some epistemic program and its selected
world views, we can raise it to a general property for any epistemic semantics.

Property 1 (Foundedness). A semantics satisfies foundedness when all the world
views it assigns to any program Π are founded. ⊓⊔

Approaches proposed after G91 do remove unfounded world views in the
examples studied in the literature, but unfortunately, this does not mean that
they generally satisfy foundedness. Let us consider a common counterexample.



Example 6. Take the epistemic logic program:

a ∨ b a ← K b b ← K a (Π1)

whose G91-world views are W = [{a}, {b}] and W
′ = [{a, b}]. These are, indeed,

the two cases we analysed in Example 4. W is again founded because a ∨ b

keeps justifying both possible 〈X, I〉 pairs, that is, [〈{a}, {a}〉] and [〈{b}, {b}〉].
However, for W

′ we still have the unfounded set S
′ = [〈{a}, {a, b}〉, 〈{b}, {a, b}〉]

which violates condition 3 for the first rule as before, but also condition 4 for the
other two rules. ⊓⊔

Note how S
′ allows us to spot the root of the derivability problem: to justify a in

〈{a}, {a, b}〉 we cannot use a ← K b because b is part of the unfounded structure
X in the other pair 〈{b}, {a, b}〉, and vice versa. Since the variants by Gelfond
in [5] (G11) and Kahl et al. [9] (K15) also assign the unfounded world view W

′

to Π1 (in fact, they coincide with G91 for this program), we can conclude that
G11 and K15 do not satisfy foundedness either.

A more elaborated strategy is adopted by the recent approaches by Fariñas
et al. [2] (F15) and Shen and Eiter [20] (S17), that treat the previous world views
as candidate solutions5, but select the ones with minimal knowledge in a sec-
ond step. This allows removing the unfounded world view [{a, b}] in Example 6,
because the other solution [{a}, {b}] provides less knowledge. Unfortunately, this
strategy does not suffice to guarantee foundedness, since other formulas (such
as constraints) may remove the founded world view, as explained below.

Example 7 (Example 6 continued). Take the program Π2 = Π1 ∪ {⊥ ← ¬K a}.
The constraint rules out W = [{a}, {b}] because the latter satisfies ¬K a. In
G91, G11, F15 and S17, only world view W

′ = [{a, b}] is left, so knowledge
minimisation has no effect. However, W

′ is still unfounded in Π2 since constraints
do not affect that feature (their empty head never justifies any atom). ⊓⊔

As a conclusion, semantics F15 and S17 do not satisfy foundedness either.

5 Founded Autoepistemic Equilibrium Logic

We present now the semantics proposed in this paper, introducing Founded
Autoepistemic Equilibrium Logic (FAEEL). The basic idea is an elaboration of
the belief (or KD45) interpretation (W, I) already seen but replacing belief sets
by HT pairs. Thus, we extend now the idea of belief view W to a non-empty set of
HT-interpretations W = {〈H1, T1〉, . . . , 〈Hn, Tn〉} and say that W is total when
Hi = Ti for all of them, coinciding with the form of belief views W = {T1, . . . , Tn}
we had so far. Similarly, a belief interpretation is now redefined as (W, 〈H,T 〉),
or simply (W,H, T ), where W is a belief view and 〈H,T 〉 stands for the real
world, possibly not in W. Next, we redefine the satisfaction relation from a com-
bination of modal logic KD45 and HT. A belief interpretation I = (W,H, T )
satisfies a formula ϕ, written I |= ϕ, iff:

5 In [2], these candidate world views are called epistemic equilibrium models while
selected world views receive the name of autoepistemic equilibrium models.



– I |= ⊥,
– I |= a iff a ∈ H, for any atom a ∈ AT ,
– I |= ψ1 ∧ ψ2 iff I |= ψ1 and I |= ψ2,
– I |= ψ1 ∨ ψ2 iff I |= ψ1 or I |= ψ2,
– I |= ψ1 → ψ2 iff both: (i) I |= ψ1 or I |= ψ2; and (ii) (Wt, T ) |= ψ1 or

(Wt, T ) |= ψ2, where W
t = {Ti | 〈Hi, Ti〉 ∈ W}.

– I |= Kψ iff (W,Hi, Ti) |= ψ for all 〈Hi, Ti〉 ∈ W.

For total belief interpretations, this new satisfaction relation collapses to the
one in Sect. 3 (that is, KD45). Interpretation (W,H, T ) is a belief model of Γ iff
(W,Hi, Ti) |= ϕ for all 〈Hi, Ti〉 ∈ W ∪ {〈H,T 〉} and all ϕ ∈ Γ – additionally,
when 〈H,T 〉 ∈ W, we further say that W is an epistemic model of Γ , abbreviated
as W |= Γ .

Proposition 1 (Persistence). (W,H, T ) |= ϕ implies (Wt, T ) |= ϕ. ⊓⊔

A belief model just captures collections of HT models which need not be in
equilibrium. To make the agent’s beliefs correspond to stable models we impose
a particular minimisation criterion on belief models.

Definition 5. We define the partial order I ′ � I for belief interpretations I ′ =
(W′,H ′, T ′) and I = (W,H, T ) when the following three conditions hold:

1. T ′ = T and H ′ ⊆ H, and
2. for every 〈Hi, Ti〉 ∈ W, there is some 〈H ′

i, Ti〉 ∈ W
′, with H ′

i ⊆ Hi.
3. for every 〈H ′

i, Ti〉 ∈ W
′, there is some 〈Hi, Ti〉 ∈ W, with H ′

i ⊆ Hi. ⊓⊔

As usual, I ′ ≺ I means I ′ � I and I ′ = I. The intuition for I ′ � I is that I ′

contains less information than I for each fixed Ti component. As a result, I ′ |= ϕ

implies I |= ϕ for any formula ϕ without implications other than ¬ψ = ψ → ⊥.

Definition 6. A total belief interpretation I = (W, T ) is said to be an equilib-
rium belief model of some theory Γ iff I is a belief model of Γ and there is no
other belief model I ′ of Γ such that I ′ ≺ I. ⊓⊔

By EQB[Γ ] we denote the set of equilibrium belief models of Γ . As a final step,
we impose a fixpoint condition to minimise the agent’s knowledge as follows.

Definition 7. A belief view W is called an equilibrium world view of Γ iff:

W = { T | (W, T ) ∈ EQB[Γ ] } ⊓⊔

Example 8 (Example 5 continued). Back to Γ3 = {K a → a}, remember its
unique founded G91-world view was [∅]. It is easy to see that I = ([∅], ∅) ∈
EQB[Γ3] because ([∅], ∅) |= Γ3 and no smaller belief model can be obtained.
Moreover, [∅] is an equilibrium world view of Γ3 since no other T ∈ [∅] satisfies
([∅], T ) ∈ EQB[Γ3]. The only possibility is ([∅], {a}) but it fails because there is
a smaller belief model ([∅], ∅, {a}) satisfying K a → a. As for the other potential
world view [{a}], it is not in equilibrium: we already have I ′ = ([{a}], {a}) ∈
EQB[Γ3] because the smaller interpretation I ′′ = ([〈∅, {a}〉], {a}, {a}) also sat-
isfies Γ3. In particular, note that I ′′ |= K a and, thus, clearly satisfies K a → a.

⊓⊔



The logic induced by equilibrium world views is called Founded Autoepistemic
Equilibrium Logic (FAEEL). A first important property is:

Theorem 2. FAEEL satisfies foundedness. ⊓⊔

A second interesting feature is that equilibrium world views are also G91-
world views though the converse may not be the case (as we just saw in Exam-
ple 8). This holds, not only for programs, but in general for any theory:

Theorem 3. For any theory Γ , its equilibrium world views are also G91-world
views of Γ . ⊓⊔

In other words, FAEEL is strictly stronger than G91, something that, as we
see next, is not the case in other approaches in the literature.

Example 9. The following program:

a ∨ b c ← K a ⊥ ← ¬c (Π3)

has no G91-world views, but according to G11, K15, F15 and S17 has world
view [{a, c}]. This example was also used in [1] to show that these semantics do
not satisfy another property, called there epistemic splitting. ⊓⊔

Example 10 (Example 6 continued). Take again program Π1 whose G91-world
views were W = [{a}, {b}] and W

′ = [{a, b}]. Since W
′ is unfounded, it cannot

be an equilibrium world view (Theorem2), leaving W as the only candidate
(Theorem 3). Let us check that this is in fact an equilibrium world view. First,
note that I = ([{a}, {b}], {a}) ∈ EQB[Π1] because there is no model I ′ of Π1

such that I ′ � I. In fact, it is easy to see that ([〈H1, {a}〉, 〈H2, {b}〉],H3, {a}) is
not a model of the rule a ∨ b if Hi = ∅ for any i ∈ {1, 2, 3}. Symmetrically, we
have that I ′ = ([{a}, {b}], {b}) ∈ EQB[Π1] too. Finally, we have to check that
no other T ∈ [{a}, {b}] can form an equilibrium belief model. For the case T = ∅,
it is easy to check that ([{a}, {b}], ∅) does not satisfy a ∨ b. For T = {a, b}, we
have that I ′′ = ([{a}, {b}], {a, b}) ∈ EQB[Π1] because, for instance, the smaller
I ′′′ = ([{a}, {b}], {a}, {a, b}) is a model of Π1. ⊓⊔

Theorems 2 and 3 assert that any equilibrium world view is a founded G91-
world view. The natural question is whether the opposite also holds. In Exam-
ples 8, 9 and 10 we did not find any counterexample, and this is in fact a general
property, as stated below.

Main Theorem. Given any program Π, its equilibrium world views coincide
with its founded G91-world views. ⊓⊔

An interesting observation is that in all the original examples of epistemic
specifications [4,7] used by Gelfond to introduce G91, modal operators occurred
in the scope of negation. Negated beliefs never incur unfoundedness, so this
feature could not be spotted using this family of examples. In fact, under this
syntactic restriction, FAEEL and G91 coincide.



program world views

a ∨ b [{a}, {b}]

a ∨ b
[{a}, {b}]

a ← K b

a ∨ b
[{a}]

a ← ¬K b

a ∨ b
[{a, c}, {b, c}]

c ← ¬K b

a ← ¬K b
[{a}] , [{b}]

b ← ¬K a

a ← ¬K¬a
[{a}]

a ← ¬K a

program G91/G11/FAEEL K15/F15/S17

a ← ¬K¬a [∅] , [{a}] [{a}]

a ∨ b
none [{a}]

a ← ¬K¬b

a ∨ b
[{a}] , [{a}, {b}] [{a}, {b}]

a ← K¬b

a ← b
[∅] , [{a, b}] [{a, b}]

b ← ¬K¬a

a ← ¬K¬b
[∅] , [{a}, {b}] [{a}, {b}]

b ← ¬K¬a

Fig. 1. On the left, examples where G91, G11, K15, F15, S17 and FAEEL agree. On
the right, examples where FAEEL/G91/G11 differ from K15/F15/S17.

Proposition 2. For any theory where all occurrences of K are in the scope
of negation, we have that the equilibrium world views and the G91-world views
coincide. ⊓⊔

Proposition 2 also holds for semantics [21,22] that are conservative extensions
of G91, as well as for G11. Apart from foundedness, [1] recently proposed other
four properties for semantics of epistemic specifications. We analyse here three
of them, omitting the so-called epistemic splitting due to lack of space.

1. supra-ASP holds when, for any objective theory Γ , either Γ has a unique
world view W = SM[Γ ] = ∅ or SM[Γ ] = ∅ and Γ has no world view.

2. supra-S5 holds when every world view W of a theory Γ is also an S5-model
of Γ (that is, W |= Γ ).

3. subjective constraint monotonicity holds when, for any theory Γ and any
subjective constraint ⊥ ← ϕ, we have that W is a world view of Γ ∪{⊥ ← ϕ}
iff both W is a world view of Γ and W is not an S5-model of ϕ.

Proposition 3. FAEEL satisfies supra-ASP, supra-S5 and subjective constraint
monotonicity. ⊓⊔

All semantics discussed in this paper satisfy the above first two properties but
most of them fail for subjective constraint monotonicity, as first discussed in [10].
In fact, a variation of Example 9 can be used to show that K15, F15 and S17 do
not satisfy this property.

Example 11 (Example 9 continued). Suppose we remove the constraint (last rule)
from Π3 getting the program Π4 = {a ∨ b , c ← K a}. All semantics, including
G91 and FAEEL, agree that Π4 has a unique world view [{a}, {b}]. Suppose we
add now a subjective constraint Π5 = Π4 ∪ {⊥ ← ¬K c}. This addition leaves
G91 and FAEEL without world views (due to subjective constraint monotonic-
ity) the same happens for G11, but not for K15, F15 and S17, which provide a
new world view [{a, c}] not obtained before adding the subjective constraint. ⊓⊔



Tables 1 and 2 show a list of examples taken from Table 4 in [2] and their
world views according to different semantics.

program G91 G11/FAEEL K15 F15/S17

a ← ¬K¬b ∧ ¬b
[∅] , [{a}, {b}] [{a}, {b}]

b ← ¬K¬a ∧ ¬a

a ← K a [∅] , [{a}] [∅]

a ← K a
[{a}] none

a ← ¬K a

Fig. 2. Examples splitting different semantics. Examples 6 and 9 in the paper can be
used to further split FAEEL and G11.

6 Conclusions

In order to characterise self-supported world-views, already present in Gelfond’s
1991 semantics [4] (G91), we have extended the definition of unfounded sets from
standard logic programs to epistemic specifications. As a result, we proposed
the foundedness property for epistemic semantics, which is not satisfied by other
approaches in the literature. Our main contribution has been the definition of a
new semantics, based on the so-called Founded Autoepistemic Equilibrium Logic
(FAEEL), that satisfies foundedness. This semantics actually covers the syntax
of any arbitrary modal theory and is a combination of Equilibrium Logic and
Autoepistemic Logic. As a main result, we were able to prove that, for the syntax
of epistemic specifications, FAEEL world views coincide with the set of G91
world views that are founded. We showed how this semantics behaves on a set of
common examples in the literature and proved that it satisfies other three basic
properties: all world views are S5 models (supra-S5 ); standard programs have
(at most) a unique world view containing all the stable models (supra-ASP);
and subjective constraints just remove world views (monotonicity). FAEEL also
satisfies the property of epistemic splitting as proposed in [1], but we leave the
proof and discussion for future work, together with a formal comparison with
other approaches.

Acknowledgements. We are thankful to Michael Gelfond and David Pearce for their
helpful comments on early versions of this work and to the anonymous reviewers for
their valuable feedback in improving the paper.
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