
HAL Id: hal-02378387
https://hal.science/hal-02378387v1

Submitted on 25 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Splitting Epistemic Logic Programs
Pedro Calabar, Jorge Fandinno, Luis Fariñas del Cerro

To cite this version:
Pedro Calabar, Jorge Fandinno, Luis Fariñas del Cerro. Splitting Epistemic Logic Programs. Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2019), Jun 2019,
Philadelphia, PA, United States. pp.120-133, �10.1007/978-3-030-20528-7_10�. �hal-02378387�

https://hal.science/hal-02378387v1
https://hal.archives-ouvertes.fr


Any correspondence concerning this service should be sent 
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr 

This is an author’s version published in: 
http://oatao.univ-toulouse.fr/24815 

Official URL 

DOI : https://doi.org/10.1007/978-3-030-20528-7_10 

Open  Archive  Toulouse  Archive  Ouverte 

OATAO is an open access repository that collects the work of Toulouse 
researchers and makes it freely available over the web where possible 

To cite this version: Calabar, Pedro and Fandinno, Jorge and 
Fariñas del Cerro, Luis Splitting Epistemic Logic Programs. (2019) 
In: International Conference on Logic Programming and 
Nonmonotonic Reasoning (LPNMR 2019), 3 June 2019 - 7 June 
2019 (Philadelphia, PA, United States). 



Splitting Epistemic Logic Programs

Pedro Cabalar1(B), Jorge Fandinno2, and Luis Fariñas del Cerro2
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Abstract. Epistemic logic programs constitute an extension of the
stable models semantics to deal with new constructs called subjective

literals. Informally speaking, a subjective literal allows checking whether
some regular literal is true in all or some stable models. As it can be
imagined, the associated semantics has proved to be non-trivial, as the
truth of subjective literals may interfere with the set of stable models
it is supposed to query. As a consequence, no clear agreement has been
reached and different semantic proposals have been made in the litera-
ture. Unfortunately, comparison among these proposals has been limited
to a study of their effect on individual examples, rather than identifying
general properties to be checked. In this paper, we propose an extension
of the well-known splitting property for logic programs to the epistemic
case. We formally define when an arbitrary semantics satisfies the epis-

temic splitting property and examine some of the consequences that can
be derived from that, including its relation to conformant planning and to
epistemic constraints. Interestingly, we prove (through counterexamples)
that most of the existing proposals fail to fulfill the epistemic splitting
property, except the original semantics proposed by Gelfond in 1991.

1 Introduction

The language of epistemic specifications, proposed by Gelfond in 1991 [3], con-
stituted an extension of disjunctive logic programming that introduced modal 
operators to quantify over the set of stable models [5] of a program. These 
new constructs were later incorporated as an extension of the Answer Set Pro-
gramming (ASP) paradigm in different implemented solvers (see [8] for a recent 
survey). The new constructs, subjective literals, have the form K l and M l and 
allow respectively checking whether regular literal l is true in every stable model 
(cautious consequence) or in some stable model (brave consequence). In many 
cases, these subjective literals can be seen as simple queries, but what makes
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them really interesting is their use in rule bodies, which may obviously affect
the set of stable models they are meant to quantify. This feature makes them
suitable for modelling introspection but, at the same time, easily involves cyclic
specifications whose intuitive behaviour is not always easy to define. For instance,
the semantics of an epistemic logic program may yield alternative sets of stable
models, each set being called a world view. Deciding the intuitive world views
of a cyclic specification has motivated a wide debate in the literature. In fact,
in Gelfond’s original semantics (G91) [3] or in its extension [12], some cyclic
examples manifested self-supportedness, so in [4] Gelfond himself and, later on,
other authors [2,6,10,11] proposed different variants trying to avoid unintended
results. Unfortunately, comparison among these variants was limited to studying
their effect on a set of “test” examples, leading to a lack of confidence as any
proposal is always subject to the appearance of new counterintuitive examples. A
next methodological step would consist in defining formal properties to be estab-
lished and that would cover complete families of examples and, hopefully, could
help to reach an agreement on some language fragments. For instance, one would
expect that, at least, the existing approaches agreed on their interpretation of
acyclic specifications. Regretfully, as we will see, this is not the case.

In this paper we propose a candidate property, we call epistemic splitting,
that not only defines an intuitive behaviour for stratified epistemic specifica-
tions but also goes further, extending the splitting theorem [9], well-known for
standard logic programs, to the epistemic case. Informally speaking, we say that
an epistemic logic program can be split if a part of the program (the top) only
refers to the atoms of the other part (the bottom) through subjective literals.
A given semantics satisfies epistemic splitting if, given any split program, it is
possible to get its world views by first obtaining the world views of the bottom
and then using the subjective literals in the top as “queries” on the bottom part
previously obtained. If epistemic splitting holds, the semantics immediately sat-
isfies other properties. For instance, if the use of epistemic operators is stratified,
the program has a unique world view at most. Similarly, epistemic constraints
(those only consisting of subjective literals) can be guaranteed to only rule out
candidate world views. As we will see, however, only the G91 semantics satis-
fies epistemic splitting among the previously cited approaches. So, somehow, the
recent attempts to fix the behaviour of cycles has neglected the attention on the
effects produced on acyclic specifications. In fact, a different property of epis-
temic splitting was already proved in [13] as a method to compute world views
for this semantics. However, this definition is based on a “safety” condition that
needs to be checked for all possible world views and is specific for G91 semantics,
so it is harder to justify as a general property required for other approaches.

The rest of the paper is organised as follows. First, we motivate the main idea
through a well-known example. After that, we recall basic definitions of (non-
epistemic) ASP and splitting, introduce the language of epistemic specifications
and define the G91 semantics. In the next section, we proceed to define the
property of epistemic splitting and study some of its consequences. Then, we
formally prove that G91 satisfies this property while we provide counterexamples
for the other approaches, concluding the paper after that.



2 Motivation

To illustrate the intuition behind our proposal, let us consider the well-known
standard example introduced in [3].

Example 1. A given college uses the following set of rules to decide whether a
student X is eligible for a scholarship:

eligible(X) ← high(X) (1)

eligible(X) ← minority(X), fair(X) (2)

∼eligible(X) ← ∼fair(X),∼high(X) (3)

Here, ‘∼’ stands for strong negation and high(X) and fair(X) refer to the grades
of student X. We want to encode the additional college criterion “The students
whose eligibility is not determined by the college rules should be interviewed by
the scholarship committee” as another rule in the program. ⊓⊔

The problem here is that, for deciding whether eligible(X) “can be determined,”
we need to check if it holds in all the answer sets of the program, that is, if it is
one of the cautious consequences of the latter. For instance, if the only available
information for some student mike is the disjunction

fair(mike) ∨ high(mike) (4)

we get that program {(1)–(4)} has two stable models, {high(mike),
eligible(mike)} and {fair(mike)} so eligible(mike) cannot be determined and
an interview should follow. Of course, if we just want to query cautious and
brave consequences of the program, we can do it inside ASP. For instance, the
addition of constraint:

⊥ ← eligible(mike)

allows us to decide if eligible(mike) is a cautious consequence by just checking
that the resulting program has no answer sets. The difficulty comes from the need
to derive new information from a cautious consequence. This is where subjective
literals come into play. Rule

interview(X) ← notK eligible(X), notK ∼eligible(X) (5)

allows us to prove that interview(X) holds whenever neither eligible(X) nor
∼eligible(X) are cautious consequences of {(1)–(4)}. Recall that Kl holds when
the literal l is true in all stable models of the program. The novel feature here
is that (5) is also part of the program, and so, it affects the answer sets queried
by K too, which would actually be:

{fair(mike), interview(mike)} (6)

{high(mike), eligible(mike), interview(mike)} (7)



So, there is a kind of cyclic reasoning: operators K and M are used to query a
set of stable models that, in their turn, may depend on the application of that
query. In the general case, this kind of cyclic reasoning is solved by resorting to
multiple world views, but in our particular example, however, this does not seem
to be needed. One would expect that separating the queried part {(1)–(4)} and
the rule that makes the query (5) should be correct, since the first four rules do
not depend on (5) and the latter exclusively consults them without interacting
with their results. This same reasoning could be applied if we added one more
level such as, for instance, by including the rule:

appointment(X) ← K interview(X) (8)

The two answer sets of program {(1)–(5)} contain interview(mike) and so
appointment(mike) can be added to both answer sets incrementally. This method
of analysing a program by division into independent parts shows a strong resem-
blance to the splitting theorem [9], well-known in standard ASP. Splitting is
applicable when the program can be divided into two parts, the bottom and the
top, in such a way that the bottom never refers to head atoms in the top. When
this happens, we can first compute the stable models of the bottom and then, for
each one, simplify the top accordingly, getting new stable models that complete
the information. We could think about different ways of extending this method
for the case of epistemic logic programs, depending on how restrictive we want
to be on the programs where it will be applicable. However, we will choose a
very conservative case, looking for a wider agreement on the proposed behaviour.
The condition we will impose is that our top program can only refer to atoms in
the bottom through epistemic operators. In this way, the top is seen as a set of
rules that derive facts from epistemic queries on the bottom. Thus, each world
view W of the bottom will be used to replace the subjective literals in the top
by their truth value with respect to W . For the sake of completeness, we recall
next the basic definitions of ASP and splitting, to proceed with a formalization
of epistemic splitting afterwards.

3 Background of ASP and Epistemic Specifications

Given a set of atoms At, a regular literal is either an atom or a truth constant1,
that is a ∈ At ∪ {⊤,⊥}, or its default negation, not a. A rule r is an implication
of the form:

a1 ∨ · · · ∨ an ← L1, . . . , Lm (9)

with n ≥ 0 and m ≥ 0, where each ai ∈ At is an atom and each Lj a regular
literal. The left hand disjunction of (9) is called the rule head and abbreviated
as Head(r). When n = 0, it corresponds to ⊥ and r is called a constraint. The
right hand side of (9) is called the rule body and abbreviated as Body(r). When

1 For a simpler description of program transformations, we allow truth constants with
their usual meaning.



m = 0, the body corresponds to ⊤ and r is called a fact (in this case, the body
and the arrow symbol are usually omitted). A (regular) program Π is a (possibly
infinite) set of rules. We write Atoms(F ) to represent the set of atoms occurring
in any syntactic construct F (a literal, head, body, rule or program). A proposi-
tional interpretation I is a set of atoms. We assume that strong negation ‘∼a’ is
just another atom in At and that the constraint ⊥ ← a,∼a is implicitly included
in the program. We allow the use of variables, but understood as abbreviations
of their possible ground instances. Given any syntactic construct F , we write
I |= F to stand for “I satisfies F” in classical propositional logic, where the
commas correspond to conjunctions, ‘not’ corresponds (under this interpreta-
tion) to classical negation and ‘←’ is just a reversed material implication. An
interpretation I is a (classical) model of a program Π if it satisfies all its rules.
The reduct of a program Π with respect to some propositional interpretation I,
in symbols ΠI , is obtained by replacing in Π every negative literal not a by ⊤ if
I |= not a or by ⊥ otherwise. A propositional interpretation I is a stable model
of a program Π iff it is a ⊆-minimal model of ΠI . By SM[Π], we denote the set
of all stable models of Π. The following is a well-known property in ASP.

Property 1 (Supraclassicality). Any stable model of a (regular) program Π is
also a classical model of Π.

We extend now the syntax of ASP to the language of epistemic specifications.
Given a set of atoms At, we call subjective literal to any expression of the form
K l, M l, not K l or not M l, for any regular literal l. We keep the same syntax
for rules as in (9) excepting that body literals Lj can also be subjective literals

now. Given rule r we define the sets Bodyreg(r) and Bodysub(r) respectively
containing the regular and the subjective literals in Body(r). Rules or programs
are regular if they do not contain subjective literals. We say that a rule is a
subjective constraint if it is a constraint, Head(r) = ⊥, and its body exclusively
consists of subjective literals, that is Body(r) = Bodysub(r).

We can define the concept of model of a program, in a similar way as we
did for classical models in regular ASP. A modal interpretation M = 〈W, I〉 is
pair where I is a propositional interpretation and W ⊆ 2At is a non-empty set
of propositional interpretations. A modal interpretation M = 〈W, I〉 satisfies a
literal L, written 〈W, I〉 |= L, if

1. 〈W, I〉 |= ⊤,
2. 〈W, I〉 �|= ⊥,
3. 〈W, I〉 |= a if a ∈ I, for any atom a ∈ At,
4. 〈W, I〉 |= K l if 〈W, I ′〉 |= l for all I ′ ∈ W ,
5. 〈W, I〉 |= M l if 〈W, I ′〉 |= l for some I ′ ∈ W , and
6. 〈W, I〉 |= not L if 〈W, I〉 �|= L.

Since for a subjective literal L, 〈W, I〉 |= L does not depend on I, we sometimes
write W |= L. For a rule r of the form (9), we write 〈W, I〉 |= r iff either
〈W, I〉 |= ai for some 1 ≤ i ≤ n or 〈W, I〉 �|= Lj for some 1 ≤ j ≤ m. We say
that 〈W, I〉 is a model of a program Π, written 〈W, I〉 |= Π, if it satisfies all



its rules. Among the possible models of an epistemic logic program, all semantic
approaches agree on selecting some preferred models called world views, each one
being characterized by the W component. These world views satisfy a similar
property to that of supraclassicality (Property 1) in non-epistemic ASP. In this
case, however, rather than talking about classical models, we resort to modal
logic S5, so all world views of a program are also S5 models of the program. This
property can be formally stated as follows:

Property 2 (Supra-S5). A semantics satisfies supra-S5 when for every world view
W of an epistemic program Π and for every I ∈ W , 〈W, I〉 |= Π. ⊓⊔

To the best of our knowledge, all existing semantics satisfy supra-S5. Another
property that is shared by all semantics is that, when Π is a regular ASP program
(it has no modal epistemic operators) then it has a unique world view containing
all the stable models of Π. We will formalize this property in the following way.

Property 3 (Supra-ASP). A semantics satisfies supra-ASP if for any regular pro-
gram Π either Π has a unique world view W = SM[Π] �= ∅ or SM[Π] = ∅ and
Π has no world view at all. ⊓⊔

Originally, some semantics like [3] or [12], allowed empty world views W = ∅
when the program has no stable models, rather than leaving the program without
world views. Since this feature is not really essential, we exclusively refer to non-
empty world views in this paper.

We define next a useful transformation extending the idea of the reduct to
epistemic specifications, and generalized for a given signature.

Definition 1 (Subjective reduct). The subjective reduct of a program Π

with respect to a set of propositional interpretations W and a signature U ⊆
At, also written ΠW

U , is obtained by replacing each subjective literal L with
Atoms(L) ⊆ U by; ⊤ if W |= L or by ⊥ otherwise. When U = At we just
write ΠW . ⊓⊔

We use the same notation ΠW as for the standard reduct, but ambiguity is
removed by the type of W (a set of interpretations now). This subjective reduct
can be used to define [3] (G91) semantics in the following way.

Definition 2 (G91-world view). A non-empty set of interpretations W is a
G91-world view of an epistemic program Π if W = SM[ΠW ]. ⊓⊔

We will not provide the formal definitions of the rest of semantics compared
in this paper, since none of them satisfies our goal property of epistemic splitting.
In those cases, it will suffice with providing counterexamples and the reader can
check their behaviour by resorting to the corresponding original definition.

4 Epistemic Splitting

We proceed now to introduce our definition of the epistemic splitting property.
To do so, we begin extending the idea of splitting set from [9]. For space reasons,
we refer the reader to [9] for the formal definition of splitting set.



Definition 3 (Epistemic splitting set). A set of atoms U ⊆ At is said to
be an epistemic splitting set of a program Π if for any rule r in Π one of the
following conditions hold

(i) Atoms(r) ⊆ U ,
(ii) (Atoms(Bodyreg(r) ∪ Head(r))) ∩ U = ∅

We define an splitting of Π as a pair 〈BU (Π), TU (Π)〉 satisfying BU (Π) ∩
TU (Π) = ∅, BU (Π) ∪ TU (Π) = Π, all rules in BU (Π) satisfy (i) and all rules
in TU (Π) satisfy (ii). ⊓⊔

With respect to the original definition of splitting set, we have replaced the con-
dition for the top program, Atoms(Head(r)) ∩ U = ∅, by the new condition (ii),
which in other words means that the top program may only refer to atoms U in
the bottom through epistemic operators. Note that this introduces a new kind
of “dependence,” so that, as happens with head atoms, regular literals in the
body also depend on atoms in subjective literals. For instance, if U = {p, q}, the
program Π1 = {p ∨ q , s ← p,K q} would not be splittable due to the second
rule, since s �∈ U and we would also need the regular literal p �∈ U . The reason
for this restriction is to avoid imposing (to a potential semantics) a fixed way of
evaluating p with respect to the world view [{p}, {q}] for the bottom.

Another observation is that we have kept the definition of BU (Π) and TU (Π)
non-deterministic, in the sense that some rules can be arbitrarily included in
one set or the other. These rules correspond to subjective constraints on atoms
in U , since these are the only cases that may satisfy conditions (i) and (ii)
simultaneously.

If we retake our example program Π2 = {(1)–(5)}, we can see that the set
U consisting of atoms high(mike), fair(mike), eligible(mike),minority(mike)
and their corresponding strong negations is an epistemic splitting set that divides
the program into the bottom BU (Π2) = {(1)–(4)} and the top TU (Π2) = {(5)}.
As in regular splitting, the idea is computing first the world views of the bot-
tom program BU (Π) and for each one, W , simplifying the corresponding sub-
jective literals in the top program. Given an epistemic splitting set U for a
program Π and set of interpretations W , we define EU (Π,W ) def= TU (Π)W

U ,
that is, we make the subjective reduct of the top with respect to W and sig-
nature U . A pair 〈Wb,Wt〉 is said to be a solution of Π with respect to an
epistemic splitting set U if Wb is a world view of BU (Π) and Wt is a world
view of EU (Π,Wb). Notice that this definition is semantics-dependent in the
sense that each alternative semantics for epistemic specifications will define its
own solutions for a given U and Π, since it defines the selected world views
for a program in a different way. Back to our example, notice that BU (Π2) is
a regular program without epistemic operators. Thus, any semantics satisfy-
ing supra-ASP will provide Wb = [{fair(mike)}, {high(mike), eligible(mike)}]
as the unique world view for the bottom. The corresponding simplification
of the top would be EU (Π2,Wb) containing (after grounding) the single rule
interview(mike) ← not ⊥, not ⊥ Again, this program is regular and its unique
world view would be Wt = [{interview(mike)}]. Now, in the general case, to
reconstruct the world views for the global program we define the operation:



Wb ⊔ Wt = { Ib ∪ It | Ib ∈ Wb and It ∈ Wt }

(remember that both the bottom and the top may produce multiple world views,
depending on the program and the semantics we choose). In our example, Wb ⊔
Wt would exactly contain the two stable models (6) and (7) we saw in the
introduction.

Property 4 (Epistemic splitting). A semantics satisfies epistemic splitting if for
any epistemic splitting set U of any program Π: W is a world view of Π iff there
is a solution 〈Wb,Wt〉 of Π with respect to U such that W = Wb ⊔ Wt. ⊓⊔

In the example, this means that the world view we obtained in two steps
is indeed the unique world view of the whole program, under any semantics
satisfying epistemic splitting. Uniqueness of world view was obtained in this
case because both the bottom program BU (Π2) and the top, after simplification,
EU (Π2,Wb) were regular programs and we assumed supra-ASP. In fact, as we
see next, we can still get a unique world view (at most) when there are no
cyclic dependences among subjective literals. This mimics the well-known result
for stratified negation in logic programming. Let us define a modal dependence
relation among atoms in a program Π so that dep(a, b) is true iff there is a rule
r ∈ Π such that a ∈ Atoms(Head(r) ∪ Bodyreg(r)) and b ∈ Atoms(Bodysub(r)).

Definition 4. We say that an epistemic program Π is epistemically stratified if
we can assign an integer mapping λ : At → N to each atom such that λ(a) > λ(b)
for any pair of atoms a, b satisfying dep(a, b). ⊓⊔

Take, for instance, the extended program Π3 = {(1)–(5), (8)}. We can assign
atoms high(mike), fair(mike), minority(mike) and eligible(mike) layer 0. Then
interview(mike) could be assigned layer 1 and, finally, appointment(mike) can
be located at layer 2. So, Π3 is epistemically stratified.

Theorem 1. Let Π be a finite, epistemically stratified program. Then, any
semantics satisfying supra-ASP and epistemic splitting assigns, at most, a unique
world view to Π. ⊓⊔

The proof of the theorem just relies on multiple applications of splitting to
each layer backwards and the fact that each simplification EU (Π,Wb) will be a
regular program. This is very easy to see in the extended example Π3. We can
split the program using as U all atoms but appointment(mike) to get a bottom
Π2 and a top {(8)}. Program Π2 can be split in its turn as we saw before,
producing the unique world view [(6), (7)]. Then EU (Π3, {(6), (7)}) contains
the single rule appointment(mike) ← ⊤ that is a regular program whose unique
world view is [{appointment(mike)}] and, finally, the combination of these two
world views yields again a unique world view [(6) ∪{appointment(mike)}, (7)
∪{appointment(mike)}].

Another consequence of epistemic splitting is that subjective constraints will
have a monotonic behaviour. Note first that, for a subjective constraint r, we can
abbreviate 〈W, I〉 |= r as W |= r since the I component is irrelevant. Addition-
ally, W |= r means that Body(r) = Bodysub(r) is falsified, since Head(r) = ⊥.



Property 5 (subjective constraint monotonicity). A semantics satisfies subjective
constraint monotonicity if, for any epistemic program Π and any subjective
constraint r, W is a world view of Π ∪ {r} iff both W is a world view of Π and
W |= r. ⊓⊔

Theorem 2. Epistemic splitting implies subjective constraint monotonicity. ⊓⊔

To conclude the exploration of consequences of epistemic splitting, let us
consider a possible application to conformant planning. To this aim, consider
the following simple example.

Example 2. To turn on the light in a room, we can toggle one of two lamps l1
or l2. In the initial state, lamp l1 is plugged but we ignore the state of l2. Our
goal is finding a plan that guarantees we get light in the room in one step.

A logic program that encodes this scenario for a single transition2 could be Π4:

plugged(l1) light ← toggle(L), plugged(L)

plugged(l2) ∨ ∼plugged(l2) ⊥ ← toggle(l1), toggle(l2)

for L ∈ {l1, l2}. As we can see, toggle(l1) would constitute a conformant plan,
since we obtain light regardless of the initial state, while this does not hap-
pen with plan toggle(l2). In order to check whether a given sequence of actions
A0, . . . , An is a valid conformant plan one would expect that, if we added those
facts to the program, a subjective constraint should be sufficient to check that
the goal holds in all the possible outcomes. In our example, we would just use:

⊥ ← not K light (10)

and check that the program Π4 ∪ {toggle(L)}∪ {(10)} has some world view,
varying L ∈ {l1, l2}. Subjective constraint monotonicity guarantees that the
addition of this “straighforward” formalisation has the expected meaning.

This method would only allow testing if the sequence of actions constitutes
a conformant plan, but does not allow generating those actions. A desirable
feature would be the possibility of applying the well-known ASP methodology
of separating the program into three sections: generate, define and test. In our
case, the “define” and the “test” sections would respectively be Π4 and (10),
but we still miss a “generate” part, capable of considering different alternative
conformant plans. The problem in this case is that we cannot use a simple choice:

toggle(L) ∨ ∼toggle(L)

because this would allow a same action to be executed in some of the stable
models and not executed in others, all inside a same world view. Let us assume
that our epistemic semantics has some way to non-deterministically generate

2 For simplicity, we omit time arguments or inertia, as they are not essential for the
discussion.



a world view in which either K a or K not a holds using a given set of rules3

Choice(a). Then, take the program Π5 consisting of rules

Choice(toggle(L)) (11)

with L ∈ {l1, l2} plus Π4 and (10). If our semantics satisfies epistemic splitting,
it is safe to obtain the world views in three steps: generate first the alternative
world views for toggle(l1) and toggle(l2) using (11), apply Π4 and rule out those
world views not satisfying the goal light in all situations using (10). To fulfill the
preconditions for applying splitting, we would actually need to replace regular
literal toggle(L) by K toggle(L) in all the bodies of Π4, but this is safe in the
current context. Now, we take the bottom program to obtain 4 possible world
views W0 = [{toggle(l1)}], W1 = [{toggle(l2)}], W2 = [{toggle(l1), toggle(l2)}]
and W3 = [∅]. When we combine them with the top Π4 we obtain W ′

0 consisting
of two stable models:

{toggle(l1), plugged(l2), light, . . . } {toggle(l1),∼plugged(l2), light, . . . }

and W ′
1 consisting of other two stable models:

{toggle(l2), plugged(l2), light, . . . } {toggle(l2),∼plugged(l2), . . . }

where the latter does not contain light. Finally, constraint (10) would rule
out W ′

1.
To sum up, epistemic splitting provides a natural way of formulating con-

formant planning problems by a separation into three sections: a generation
part, the usual encoding of the actions scenario and a test part consisting of a
subjective constraint to guarantee that the goal is always reached.

5 Splitting in Some Existing Semantics

In this section we study the property of epistemic splitting for the approaches
mentioned in the introduction. We will begin by stating that G91 actually sat-
isfies this property. The proof of the following theorm can be found in the
appendix.

Main Theorem. Semantics G91 satisfies epistemic splitting. ⊓⊔

A similar proof can be developed to show that [12], that generalises4 [3] from
subjective literals to subjective formulas, also satisfies epistemic splitting.

To illustrate the behaviour of other semantics with respect to splitting, we
will use several examples. Let us take the program Π6 consisting of rules:

a ∨ b (12)

c ∨ d ← not K a (13)

3 For instance, in the G91-semantics, this could be just the rule a ← not K not a.
Other semantics may have alternative ways of expressing this intended behaviour.

4 In fact, [12] defines several semantics but, among them, we refer here to the epistemic
stable model semantics.



The set U = {a, b} splits the program into the bottom (12) and the top (13).
The bottom has a unique world view Wb = [{a}, {b}] so K a does not hold and
the top is simplified as EU (Π6,Wb) containing the unique rule

c ∨ d ← not ⊥ (14)

This program has a unique world view Wt = [{c}, {d}] that, combined with Wb

yields [{a, c}, {b, c}, {a, d}, {b, d}] as the unique solution for Π6, for any semantics
satisfying epistemic splitting (and so, also for G91). Let us elaborate the example
a little bit further. Suppose we add now the constraint:

⊥ ← c (15)

The top must also include this rule and has now a unique stable model, yielding
the world view Wt = [{d}], so the world view for the complete program would
be [{a, d}, {b, d}]. Finally, let us forbid the inclusion of atom d too:

⊥ ← d (16)

so we consider Π7 = {(12), (13), (15), (16)}. This last constraint leaves the sim-
plified top program EU (Π6,Wb) = {(14), (15), (16)} without stable models, so
epistemic splitting would yield that program Π7 has no world view at all. This is
the result we obtain, indeed, in [3,4]5 and in [12]. Surprisingly, recent approaches
like [2,6,10,11] yield world view [{a}], violating the epistemic splitting property.
For instance, in the case of [6], the reduct of Π7 with respect to [{a}] is the
program

a ← not b c ∨ d ← not a ⊥ ← c

b ← not a ⊥ ← d

which has a unique stable model {a}. As a second example, take the program
Π8 consisting of the same bottom program (12) and the rule:

c ← K a (17)

As expected, all approaches agree that Π8 has a unique world view Wb =
[{a}, {b}] because K a is not satisfied and rule (17) is not applicable. Under
epistemic splitting, we get that EU (Π8,Wb) is the rule:

c ← ⊥ (18)

whose unique world view is [∅], so that Wb ⊔ [∅] = Wb. But let us further
elaborate the example taking Π ′

8 containing Π8 plus:

⊥ ← not c (19)

5 These two semantics actually produce empty world views, but as we said before, we
disregard them, as they just point out that the program has no solution.



Under epistemic splitting, the new top EU (Π ′
8,Wb) contains now (19) and (18)

which have no stable models. As a result, no world view can be combined with
Wb and we obtain that Π ′

8 has no world views at all. This is the result we
obtain under [3,12], which agree that the program is inconsistent. However, [4]
joins [2,6,10,11] in the group of approaches that provide the world view [{a, c}].
That is, in all these approaches, adding a constraint intended to remove all belief
sets that do not satisfy c, may surprisingly lead to justify c. Note that, according
to [3,12], the reduct of Π ′

8 with respect to [{a, c}] is {a ← not b, b ← not a, }
c ← ⊤, ⊥ ← not c which has two stable models, {a, c} and {b, c}, so [{a, c}] is not
a world view. In contrast, the reduct with respect to [4] and [6] is {a ← not b, }
b ← not a, c ← a, ⊥ ← not c which has a unique stable model {a, c}, so [{a, c}]
is a world view.

6 Conclusions

We have introduced a formal property for semantics of epistemic specifications.
This property that we call epistemic splitting has a strong resemblance to the
splitting theorem well-known for regular ASP programs. Epistemic splitting can
be applied when we can divide an epistemic logic program into a bottom part
for a subset U of atoms and a top part, that only refers to atoms in U through
subjective literals (those using modal epistemic operators). When this happens,
the property of splitting states that we should be able to compute the world views
of the program in two steps: first, computing the world views of the bottom and,
second, using each bottom world view W to replace subjective literals for atoms
in U in the top by their truth value with respect to W .

We have studied several consequences of epistemic splitting: for instance, if
the program is stratified with respect to subjective literals then it will have a
unique world view, at most. Another consequence is that constraints only consist-
ing of subjective literals will have a monotonic behaviour, ruling out world views
that satisfy the constraint body.6 We have also explored how epistemic splitting
may facilitate the simple application of the generate-define-test methodology,
well-known in ASP, to the formalisation of conformant planning. The applica-
tion of epistemic specifications to conformat planning was first discussed in [6],
though with a more complex formulation due to the lack of epistemic splitting.

Our study of the main semantics in the literature has shown that only the
original semantics [3] (G91), and its generalisation [12], satisfy epistemic splitting
while the rest of approaches we considered do not, as we showed with counterex-
amples. As said in the introduction, a different kind of epistemic splitting had
also been proved for G91 in [13], reinforcing the idea that this semantics can
be interpreted in a modular way. Notice that the sets of programs that can be
split under these two definitions is incomparable. We do not mean with this,
however, that G91 is always intuitive. As it is well-known, G91 suffers from self-
supportedness: for instance, the program consisting of the single rule p ← K p

6 The lack of monotonicity suffered by epistemic constraints in some semantics has
been recently discussed by [7].



yields two world views [∅] and [{p}] but the latter justifies p by the mere assump-
tion of K p without further evidence, something that seems counterintuitive.
What we claim instead is that G91 has a reasonable behaviour when subjective
literals are stratified. Unfortunately, later attempts to solve self-supportedness
on cyclic epistemic specifications have somehow spoiled that feature.
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