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Remarks about the unification type of
several non-symmetric non-transitive
modal logics
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France.

Abstract

The problem of unification in a normal modal logic L can be defined as follows: given a formula ϕ, determine whether there

exists a substitution σ such that σ(ϕ) is in L. In this paper, we prove that for several non-symmetric non-transitive modal

logics, there exists unifiable formulas that possess no minimal complete set of unifiers.

Keywords: Normal modal logics, non-symmetric modal logics, non-transitive modal logics, unification problem, types of

modal logics,

1 Introduction

The problem of unification in a normal modal logic L can be defined as follows: given a formula

ϕ(x1, . . . , xm) where x1, . . . , xm are variables, determine whether there exist formulas ψ1, . . . ,ψm

such that ϕ(ψ1, . . . ,ψm) is in L. The computability of the problem of unification in transitive normal

modal logics like S4 and GL has been solved by Rybakov [22–24] who proved that it is decidable.

With respect to its computational complexity, the problem of unification was mostly unexplored

before the work of Jer˘ábek [20] who established its membership in NEXPTIME in several normal

modal logics extending K4 such as S4 and GL. See also [15, 17, 18, 25, 29] for a study of the problem

of unification in different normal modal logics.

Within the context of the problem of unification in a normal modal logic L, an important question

is the following: when a formula is unifiable, has it a minimal complete set of unifiers? When the

answer is ‘yes’, how large is this set? This question concerns the determination of the type of L for

the problem of unification. Considering the type of unification in a normal modal logic L is justified

from the following perspectives: deciding the unifiability of equivalences like ϕ ↔ ψ in L helps us

to understand what is the overlap between the properties ϕ and ψ correspond to in L [1]; methods

for deciding the unifiability of formulas in L can be used to improve the efficiency of automated

theorem provers in L [2].

Ghilardi [16] has proved that the unification type of transitive normal modal logics like S4 and

GL is finitary. Within the context of tense logics and epistemic logics, Dzik [11–13] has studied the

relationships between the unification type of a fusion of modal logics and the unification types of

the modal logics composing this fusion. He has also proved that some variants of the normal modal

logics studied by Jansana [19] are unitary; these variants being sound and complete with respect to
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classes of frames satisfying conditions generalizing symmetry and transitivity. The unification type 
of normal modal logics such as common knowledge logics and linear temporal logics has also been 
studied by Babenyshev and Rybakov [3] and Rybakov [26–28].

Nevertheless, still, very little is known about the problem of unification in some of the 
most popular normal modal logics. For example, the types of the problem of unification in 
the normal modal logics KB, KDB and KTB are still unknown [12, Chapter 5]. As well, the 
types of the problem of unification in the normal modal logics K5, KD5, K45, K4.3 and 
KD4.3 are unknown too. In this paper, following a line of reasoning suggested by Jer̆àbek 
[21] within the context of K and furthered by Balbiani and Gencer [4] within the context of 
KD, we prove that for several non-symmetric non-transitive modal logics like KT, there exists 
unifiable formulas that possess no minimal complete set of unifiers. Such modal logics are called 
nullary.

The section-by-section breakdown of the paper is as follows. Sections 2–4 introduce the basic 
definitions about normal modal logics. In Section 5, we introduce the basic definitions about 
unification. In Section 6, we analyse a specific formula from the point of view of some of its unifiers 
in normal modal logics. In Section 7, we elaborate a sufficient condition for the nullariness of 
normal modal logics (the adequacy condition) and we give examples of adequate and non-adequate 
normal modal logics. In Section 8, we prove that if a normal modal logic is adequate then it is 
nullary.

2 Syntax

Formulas Let VAR be a set of variables (with typical members denoted x, y, etc) and CON be a set 
of constants (with typical members denoted p, q, etc). The set of all formulas (with typical members 
denoted ϕ, ψ , etc) is inductively defined as follows:

• ϕ,ψ ::= x | p | ⊥ | ¬ϕ | (ϕ ∨ ψ) | ¤ϕ.

We adopt the standard rules for omission of the parentheses. Let (x1, x2, . . .) be an enumeration

of VAR without repetition and (p1, p2, . . .) be an enumeration of CON without repetition. We write

ϕ(x1, . . . , xm, p1, . . . , pn) to denote a formula whose variables form a subset of {x1, . . . , xm} and

whose constants form a subset of {p1, . . . , pn}. Let ϕ(x1, . . . , xm, p1, . . . , pn) be such a formula.

The result of the uniform replacement in each of their occurrences of the variables x1, . . . , xm by

the formulas ψ1, . . . ,ψm and of the constants p1, . . . , pn by the formulas χ1, . . . ,χn is denoted

ϕ(ψ1, . . . ,ψm,χ1, . . . ,χn).

Abbreviations The Boolean connectives ⊤, ∧, → and ↔ are defined by the usual abbreviations.

Let ♦ be the modal connective defined as follows:

• ♦ϕ ::= ¬¤¬ϕ.

For all k ≥ 0, the modal connective ¤k is inductively defined as follows:

• ¤ 0ϕ ::= ϕ,

• ¤ k+1ϕ ::= ¤¤kϕ.

For all k ≥ 0, the modal connective ♦k is inductively defined as follows:

• ♦0ϕ ::= ϕ,

• ♦k+1ϕ ::= ♦♦kϕ.



Example: For all formulas ϕ, ¤2ϕ is ¤¤ϕ and ♦2ϕ is ♦♦ϕ.

For all finite words w over CON, the modal connective [w] is inductively defined as follows:

• [ǫ]ϕ ::= ϕ,

• [ pw]ϕ ::= ¤( p → [w]ϕ).

Example: For all constants p, q and for all formulas ϕ, [ pq]ϕ is ¤( p → ¤(q → ϕ)).

For all finite words w over CON and for all k ≥ 0, the modal connective [w]k is inductively defined

as follows:

• [∈]0ϕ ::= ϕ,

• [ pw]k+1ϕ ::= [w][w]kϕ.

Example: For all constants p, q and for all formulas ϕ, [ pq]2ϕ is ¤(vp → ¤(q → ¤(p → ¤(q →

ϕ)))).

For all finite words w over CON and for all k ≥ 0, the modal connective [w]≤k is inductively

defined as follows:

• [w]≤0ϕ ::= ϕ,

• [w]≤k+1ϕ ::= [w]≤kϕ ∧ [w]k+1ϕ.

Example: For all constants p, q and for all formulas ϕ, [ pq]≤2ϕ is ϕ∧¤( p → ¤(q → ϕ))∧¤( p →

¤(q → ¤( p → ¤(q → ϕ)))).

Degrees The degree of a formula ϕ (in symbols deg(ϕ)) is the non-negative integer inductively

defined as follows:

• deg(x) = 0,

• deg(p) = 0,

• deg(⊥) = 0,

• deg(¬ϕ) = deg(ϕ),

• deg(ϕ ∨ ψ) = max{deg(ϕ), deg(ψ)},

• deg(¤ϕ) = deg(ϕ) + 1.

Example: For all constants p, q and for all formulas ϕ, deg([ pq]2ϕ) is deg(ϕ) + 4.

Substitutions A substitution is a function σ associating to each variable x a formula σ(x).

Following the standard assumption considered in the literature about unification [1, 12, 16], we

will always assume that substitutions move at most finitely many variables. For all formulas

ϕ(x1, . . . , xm, p1, . . . , pn), let σ(ϕ(x1, . . . , xm, p1, . . . , pn)) be ϕ(σ(x1), . . . , σ(xm), p1, . . . , pn).

Example: If σ is the substitution such that σ(x) = p, σ(y) = q and for all variables z distinct from

x and y, σ(z) = z and ϕ is the formula (x → p) ∧ (y → q) ∧ (x → [ q]y) ∧ (y → [ p]x) then σ(ϕ) is

( p → p) ∧ (q → q) ∧ ( p → [ q] q) ∧ (q → [ p] p).

The composition σ ◦ τ of the substitutions σ and τ is the substitution associating to each variable

x the formula τ(σ (x)).



3 Semantics

Frames A frame is a couple F = (W , R) where W is a non-empty set of possible worlds and R is a 
binary relation on W . In a frame F = (W , R), for all n ≥ 0, the binary relation Rn on W is inductively 
defined as follows:

• R0 = Id, i.e. the identity relation on W ,

• Rn+1 = R ◦ Rn, i.e. the composition of the binary relations R and Rn on W .

For all n ≥ 1, we shall say that a frame F = (W ,R) is n-bounded if for all s, t ∈ W , not

sRnt. We shall say that a frame F = (W ,R) is serial if for all s ∈ W , there exists t ∈ W

such that sRt. We shall say that a frame F = (W ,R) is ref lexive if for all s ∈ W , sRs. For all

n ≥ 1, we shall say that a frame F = (W ,R) is n-ancestral if for all s, t ∈ W , if sRnt then

there exists u ∈ W such that tRu. For all n ≥ 1, we shall say that a frame F = (W ,R) is n-

deterministic if for all s ∈ W and for all t1, . . . , tn+1 ∈ W , if sRt1, . . ., sRtn+1 then there exists

distinct i, j ≥ 1 such that i, j ≤ n + 1 and ti = tj. We shall say that a frame F = (W ,R) is

symmetric if for all s, t ∈ W , if sRt then tRs. We shall say that a frame F = (W ,R) is transitive

if for all s, t, u ∈ W , if sRt and tRu then sRu. For all m, n ≥ 1, if (m, n) 6= (2, 1) then we shall

say that a frame F = (W ,R) is (m, n)-compositional if for all s, t ∈ W , if sRmt then sRnt. For

all n ≥ 1, let Cbou
n be the class of all n-bounded frames. Let CK, CKD and CKT be, respectively,

the class of all frames, the class of all serial frames and the class of all ref lexive frames. Remark

that CKT ⊆ CKD. For all n ≥ 1, let C anc
n be the class of all n-ancestral frames. Remark that for

all n ≥ 1, CKD ⊆ C anc
n . For all n ≥ 1, let C det

n be the class of all n-deterministic frames. Let

CKB, CKDB and CKTB be, respectively, the class of all symmetric frames, the class of all symmetric

serial frames and the class of all symmetric ref lexive frames. Let CK4 be the class of all transitive

frames. For all m, n ≥ 1, if (m, n) 6= (2, 1) then let C n
m be the class of all (m, n)-compositional

frames.

Models A model based on a frame F = (W ,R) is a triple M = (W ,R,V) where V is a function

assigning to each variable x a subset V(x) of W and to each constant p a subset V(p) of W . Given a

model M = (W ,R,V), the satisfiability of a modal formula ϕ at s ∈ W (in symbols M , s |H ϕ) is

inductively defined as follows:

• M , s |H x if s ∈ V(x),

• M , s |H p if s ∈ V(p),

• M , s 6|H ⊥,

• M , s |H ¬ϕ if M , s 6|H ϕ,

• M , s |H ϕ ∨ ψ if M , s |H ϕ or M , s |H ψ ,

• M , s |H ¤ϕ if for all t ∈ W , if sRt then M , t |H ϕ.

We shall say that a formula ϕ is true in a model M = (W ,R,V) (in symbols M |H ϕ) if ϕ is satisfied

at all s ∈ W .

Validity We shall say that a formula ϕ is valid in a frame F (in symbols F |H ϕ) if ϕ is true in all

models based on F. We shall say that a formula ϕ is valid in a class C of frames (in symbols C |H ϕ)

if ϕ is valid in all frames in C.



4 Normal modal logics

A normal modal logic is a set L of formulas such that

• L contains all tautologies,

• L contains all formulas of the form ¤(ϕ → ψ) → (¤ϕ → ¤ψ),

• L is closed under the rule of modus ponens
ϕ ϕ→ψ

ψ
,

• L is closed under the rule of generalization
ϕ

¤ϕ
,

• L is closed under the rule of uniform substitution
ϕ(x1,...,xm,p1,...,pn)

ϕ(ψ1,...,ψm,χ1,...,χn)
.

It is evident that for all classes C of frames, the set of all C-valid formulas is a normal modal logic.

LEMMA 4.1

Let L be a normal modal logic. For all k ≥ 0, for all formulas ϕ and for all constants p, q,

• [qp]k[q]⊥ → [ qp]k+1[q]⊥ ∈ L,

• [qp]≤kϕ ∧ [ qp]k[q]⊥ → [ q][ pq]≤k[ p]ϕ ∈ L,

• [qp]≤k[q]ϕ → [ q][ pq]≤kϕ ∈ L,

• [qp]k[q]⊥ → [ q][ pq]k[ p]⊥ ∈ L.

PROOF. Left to the reader. ¤

LEMMA 4.2

Let L be a normal modal logic. For all k ≥ 0, for all formulas ϕ,ψ and for all constants p, q, if

ϕ → [ q]ψ ∈ L and ψ → [ p]ϕ ∈ L then ϕ → [ qp]≤k(ϕ ∧ [ q]ψ) ∈ L.

PROOF. Left to the reader. ¤

It is evident that the set of all normal modal logics is closed under arbitrary intersections. For

all n ≥ 1, let K bou
n be the least normal modal logic containing the formula ¤n⊥. Let K, KD

and KT be, respectively, the least normal modal logic, the least normal modal logic containing all

formulas of the form ¤χ → ♦χ and the least normal modal logic containing all formulas of the

form ¤χ → χ . Remark that KD ⊆ KT. For all n ≥ 1, let K anc
n be the least normal modal logic

containing the formula ¤2n−1♦⊤. Remark that for all n ≥ 1, K anc
n ⊆ KD. For all n ≥ 1, let

Altn be the least normal modal logic containing all formulas of the form
∨

{¤(
∧

{χj : j ≥ 1 is

such that j ≤ i} → χi+1) : i ≥ 0 is such that i ≤ n}. Let KB, KDB and KTB be, respectively,

the least normal modal logic containing all formulas of the form χ → ¤♦χ , the least normal

modal logic containing all formulas of the form χ → ¤♦χ and ¤χ → ♦χ and the least normal

modal logic containing all formulas of the form χ → ¤♦χ and ¤χ → χ . Let K4 be the least

normal modal logic containing all formulas of the form ¤χ → ¤¤χ . For all m, n ≥ 1, if

(m, n) 6= (2, 1) then let K n
m be the least normal modal logic containing all formulas of the form

♦mχ → ♦nχ .

PROPOSITION 4.3

For all n ≥ 1, K bou
n is sound and complete with respect to C bou

n .

PROOF. Let n ≥ 1. It is evident that the canonical frame for K bou
n is in C bou

n . Hence, the result

follows from the standard canonical model construction in normal modal logics as developed in [8,

Chapter 4]. ¤

PROPOSITION 4.4

K, KD and KT are, respectively, sound and complete with respect to CK, CKD and CKT.



PROOF. See [8, Chapter 4] for a proof. ¤

PROPOSITION 4.5

For all n ≥ 1, K anc
n is sound and complete with respect to C anc

n .

PROOF. Let n ≥ 1. It is evident that the canonical frame for K anc
n is in C anc

n . Hence, the result

follows from the standard canonical model construction in normal modal logics as developed in [8,

Chapter 4]. ¤

PROPOSITION 4.6

For all n ≥ 1, Altn is sound and complete with respect to C det
n .

PROOF. See [9, Chapters 3 and 4] for a proof. ¤

PROPOSITION 4.7

KB, KDB and KTB are, respectively, sound and complete with respect to CKB, CKDB and CKTB.

PROOF. See [8, Chapter 4] for a proof. ¤

PROPOSITION 4.8

K4 is sound and complete with respect to CK4.

PROOF. See [8, Chapter 4] for a proof. ¤

PROPOSITION 4.9

For all m, n ≥ 1, if (m, n) 6= (2, 1) then K n
m is sound and complete with respect to C n

m.

PROOF. See [10, Chapter 3] for a proof. ¤

5 Unification

Let L be a normal modal logic. In this section, we shall introduce the basic definitions about

unification in L.

Unifiers We shall say that a formula ϕ is L-unifiable if there exists a substitution σ such that

σ(ϕ) ∈ L. In that case, σ is an L-unifier of ϕ.

Example: If σ is the substitution such that σ(x) = p, σ(y) = q and for all variables z distinct from

x and y, σ(z) = z and ϕ is the formula (x → p) ∧ ( y → q) ∧ (x → [ q] y) ∧ ( y → [ p] x) then σ is a

K-unifier of ϕ.

We shall say that a substitution σ is L-equivalent to a substitution τ (in symbols σ ≃L τ ) if for all

variables x, σ(x) ↔ τ(x) ∈ L.

Example: If σ and τ are the substitutions such that σ(x) = ¤ p, τ(x) = ¤ p ∧ p, σ(y) = ♦q ∨ q,

τ( y) = ♦q and for all variables z distinct from x and y, σ(z) = z and τ(z) = z then σ ≃KT τ .

LEMMA 5.1

The binary relation ≃L is ref lexive, symmetric and transitive on the set of all substitutions.

PROOF. Left to the reader. See [1, 12] for details about the binary relation ≃L. ¤

We shall say that a substitution σ is more L-general than a substitution τ (in symbols σ ¹L τ ) if

there exists a substitution υ such that σ ◦ υ ≃L τ .



LEMMA 5.2

The binary relation ¹L is ref lexive and transitive on the set of all substitutions. Moreover, it contains

≃L.

PROOF. Left to the reader. See [1, 12] for details about the binary relation ¹L. ¤

We shall say that a set Σ of substitutions is L-minimal if for all σ , τ ∈ Σ , if σ ¹L τ then σ ≃L τ .

We shall say that a set Σ of L-unifiers of an L-unifiable formula ϕ is L-complete if for all L-unifiers

σ of ϕ, there exists τ ∈ Σ such that τ ¹L σ .

Types An important question is the following: when a formula is L-unifiable, has it an L-minimal

L-complete set of L-unifiers? When the answer is ‘yes’, how large is this set? We shall say that an

L-unifiable formula

• ϕ is L-nullary if there exists no L-minimal L-complete set of L-unifiers of ϕ,

• ϕ is L-infinitary if there exists an L-minimal L-complete set of L-unifiers of ϕ but there exists

no finite one,

• ϕ is L-finitary if there exists a finite L-minimal L-complete set of L-unifiers of ϕ but there exists

no with cardinality 1,

• ϕ is L-unitary if there exists an L-minimal L-complete set of L-unifiers of ϕ with cardinality 1.

We shall say that

• L is of unification type nullary if there exists an L-nullary formula,

• L is of unification type infinitary if every L-unifiable formula is L-infinitary or L-finitary or

L-unitary and there exists an L-infinitary formula,

• L is of unification type finitary if every L-unifiable formula is L-finitary or L-unitary and there

exists an L-finitary formula,

• L is of unification type unitary if every L-unifiable formula is L-unitary.

See [1] for a proof that S5 is unitary, [4] for a proof that KD is nullary, [6] for a proof that Alt1
is nullary, [16] for a proof that K4 and S4 are finitary and [21] for a proof that K is nullary. By

the way, the proof given in [1] that S5 is unitary can be easily adapted to a proof that K bou
1 is

unitary (the unification type of K bou
n is not known when n ≥ 2). In other respect, the proof given

in [6] that Alt1 is nullary can be easily adapted for all n ≥ 2 to a proof that Altn is nullary. We

shall say that L is filtering if for all L-unifiable formulas ϕ and for all L-unifiers σ , τ of ϕ, there

exists an L-unifier µ of ϕ such that µ ¹L σ and µ ¹L τ . When L is filtering, given two L-

unifiers of an L-unifiable formula, there is always an L-unifier that is more L-general than both

of them. Hence, in this case, it is known that L is unitary or L is nullary. See [17] for a proof

that if K4 ⊆ L then L is filtering iff K4.2+ ⊆ L. See also [5] for a proof that K45 and KD45

are filtering. The purpose of Sections 6–8 is to elaborate a sufficient condition for the nullariness

of L.

Remarks Note that the proof of the nullariness of K given by Jer̆àbek [21] only assumed that

the language contains at least one variable. As well, note that the proof of the nullariness

of KD given by Balbiani and Gencer [4] only assumed that the language contains at least

one variable and one constant. As for the nullariness of Alt1 given by Balbiani and Tinchev

[6], it only assumed that the language contains at least one variable. This means that when

the language contains no constant, K and Alt1 are still nullary whereas the unification type

of KD is still unknown. In the case where the language contains infinitely many constants,



one is talking about unification with constants and in the case where the language contains 
no constant, one is talking about elementary unification. In Sections 6–8, we will always 
assume that the language of modal logic contains at least two distinct variables and two 
distinct constants. Hence, our results in the forthcoming sections only concern unification with 
constants.

6 Analysis of a specific formula

Let L be a normal modal logic. In this section, we shall analyse a specific formula from the point of 
view of some of its L-unifiers, namely the formula

• ϕ = (x → p) ∧ (y → q) ∧ (x → [ q] y) ∧ (y → [ p] x)

in which x, y are distinct variables and p, q are distinct constants, i.e. ϕ is the conjunction of the 4

following formulas:

• x → p,

• y → q,

• x → [ q] y,

• y → [ p] x.

Remark that Jer̆àbek [21] has used the formula x → ¤ x to prove that K is nullary and

Balbiani and Gencer [4] have used the formula (x → p) ∧ (x → [ p] x) to prove that KD

is nullary.

Remark that in order to present our line of reasoning, we have to assume that the language of

modal logic contains at least two distinct variables and two distinct constants.

Let σ⊥ be the substitution defined as follows:

• σ⊥(x) = ⊥,

• σ⊥( y) = ⊥,

• for all variables z distinct from x and y, σ⊥(z) = z.

LEMMA 6.1

σ⊥ is an L-unifier of ϕ.

PROOF. Remark that σ⊥(ϕ) is the conjunction of the 4 following formulas:

• ⊥ → p,

• ⊥ → q,

• ⊥ → [ q]⊥,

• ⊥ → [ p]⊥.

Hence, σ⊥(ϕ) ∈ L. Thus, σ⊥ is an L-unifier of ϕ. ¤

Let σ⊤ be the substitution defined as follows:

• σ⊤(x) = p,

• σ⊤( y) = q,

• for all variables z distinct from x and y, σ⊤(z) = z.



LEMMA 6.2

σ⊤ is an L-unifier of ϕ.

PROOF. Remark that σ⊤(ϕ) is the conjunction of the 4 following formulas:

• p → p,

• q → q,

• p → [ q] q,

• q → [ p] p.

Hence, σ⊤(ϕ) ∈ L. Thus, σ⊤ is an L-unifier of ϕ. ¤

LEMMA 6.3

Let σ be a substitution. The following conditions are equivalent:

1. σ⊤ ◦ σ ≃L σ ,

2. σ⊤ ¹L σ ,

3. σ(x) ↔ p ∈ L and σ( y) ↔ q ∈ L.

PROOF. (1) ⇒ (2). By definition of ¹L.

(2) ⇒ (3). Suppose σ⊤ ¹L σ . Let τ be a substitution such that σ⊤ ◦ τ ≃L σ . Hence, τ(σ⊤(x)) ↔

σ(x) ∈ L and τ(σ⊤( y)) ↔ σ( y) ∈ L. Since τ(σ⊤(x)) = p and τ(σ⊤( y)) = q, therefore σ(x) ↔

p ∈ L and σ( y) ↔ q ∈ L.

(3) ⇒ (1). Suppose σ(x) ↔ p ∈ L and σ( y) ↔ q ∈ L. Since σ(σ⊤(x)) = p and σ(σ⊤( y)) = q,

therefore σ(σ⊤(x)) ↔ σ(x) ∈ L and σ(σ⊤( y)) ↔ σ( y) ∈ L. Moreover, since for all variables

z distinct from x and y, σ(σ⊤(z)) = σ(z), therefore for all variables z distinct from x and y,

σ(σ⊤(z)) ↔ σ(z) ∈ L. Hence, σ⊤ ◦ σ ≃L σ ¤

For all k ≥ 0, let σk be the substitution defined as follows:

• σk(x) = p ∧ [ qp]≤k(x ∧ [ q] y) ∧ [ qp]k[ q]⊥,

• σk(y) = q ∧ [ pq]≤k(y ∧ [ p]x) ∧ [ pq]k[ p]⊥,

• for all variables z distinct from x and y, σk(z) = z.

LEMMA 6.4

For all k ≥ 0, σk is an L-unifier of ϕ.

PROOF. Let k ≥ 0. Remark that σk(ϕ) is the conjunction of the 4 following formulas:

• p ∧ [ qp]≤k(x ∧ [ q]y) ∧ [ qp]k[ q]⊥ → p,

• q ∧ [ pq]≤k(y ∧ [ p]x) ∧ [ pq]k[ p]⊥ → q,

• p ∧ [ qp]≤k(x ∧ [ q]y) ∧ [ qp]k[q]⊥ → [ q](q ∧ [ pq]≤k(y ∧ [ p]x) ∧ [ pq]k[ p]⊥),

• q ∧ [ pq]≤k(y ∧ [ p]x) ∧ [ pq]k[ p]⊥ → [ p](p ∧ [ qp]≤k(x ∧ [ q]y) ∧ [ qp]k[ q]⊥).

Hence, by Lemma 4.1, σk(ϕ) ∈ L. Thus, σk is an L-unifier of ϕ. ¤

LEMMA 6.5

Let σ be a substitution. If σ is an L-unifier of ϕ then for all k ≥ 0, the following conditions are

equivalent:

1. σk ◦ σ ≃L σ ,

2. σk ¹L σ ,

3. σ(x) → [ qp]k[ q]⊥ ∈ L and σ(y) → [ pq]k[ p]⊥ ∈ L.



PROOF. Suppose σ is an L-unifier of ϕ. Let k ≥ 0.

(1) ⇒ (2). By definition of ¹L.

(2) ⇒ (3). Suppose σk ¹L σ . Let τ be a substitution such that σk ◦ τ ≃L σ . Hence, τ(σk(x)) ↔

σ(x) ∈ L and τ(σk( y)) ↔ σ( y) ∈ L. Since τ(σk(x)) = p ∧ [ qp]≤k(τ (x) ∧ [ q]τ(y)) ∧ [ qp]k[ q]⊥

and τ(σk( y)) = q ∧ [ pq]≤k(τ ( y) ∧ [ p]τ(x)) ∧ [ pq]k[ p]⊥, therefore p ∧ [ qp]≤k(τ (x) ∧ [ q]τ( y)) ∧

[ qp]k[ q]⊥ ↔ σ(x) ∈ L and q ∧ [ pq]≤k(τ ( y) ∧ [ p]τ(x)) ∧ [ pq]k[ p]⊥ ↔ σ( y) ∈ L. Thus,

σ(x) → [ qp]k[ q]⊥ ∈ L and σ(y) → [ pq]k[ p]⊥ ∈ L.

(3) ⇒ (1). Suppose σ(x) → [ qp]k[ q]⊥ ∈ L and σ( y) → [ pq]k[ p]⊥ ∈ L. Since σ is an L-unifier

of ϕ, therefore σ(ϕ) ∈ L. Since σ(ϕ) = (σ (x) → p)∧ (σ ( y) → q)∧ (σ (x) → [ q]σ( y))∧ (σ ( y) →

[ p]σ(x)), therefore (σ (x) → p) ∧ (σ ( y) → q) ∧ (σ (x) → [ q]σ( y)) ∧ (σ ( y) → [ p]σ(x)) ∈ L.

Hence, the 4 following formulas are in L:

• σ(x) → p,

• σ(y) → q,

• σ(x) → [ q]σ(y),

• σ(y) → [ p]σ(x).

Since σ(x) → [ qp]k[ q]⊥ ∈ L and σ(y) → [ pq]k[ p]⊥ ∈ L, therefore by Lemma 4.2, σ(x) → p ∧

[ qp]≤k(σ (x)∧[ q]σ( y))∧[ qp]k[ q]⊥ ∈ L and σ( y) → q∧[ pq]≤k(σ ( y)∧[ p]σ(x))∧[ pq]k[ p]⊥ ∈ L.

In other respect, p ∧ [ qp]≤k(σ (x) ∧ [ q]σ( y)) ∧ [ qp]k[ q]⊥ → σ(x) ∈ L and q ∧ [ pq]≤k(σ ( y) ∧

[ p]σ(x)) ∧ [ pq]k[p]⊥ → σ(y) ∈ L. Since σ(σk(x)) = p ∧ [ qp]≤k(σ (x) ∧ [ q]σ( y)) ∧ [ qp]k[ q]⊥

and σ(σk( y)) = q ∧ [ pq]≤k(σ ( y) ∧ [ p]σ(x)) ∧ [ pq]k[ p]⊥, therefore σ(σk(x)) ↔ σ(x) ∈ L and

σ(σk( y)) ↔ σ( y) ∈ L. Moreover, since for all variables z distinct from x and y, σ(σk(z)) = σ(z),

therefore for all variables z distinct from x and y, σ(σk(z)) ↔ σ(z) ∈ L. Thus, σk ◦ σ ≃L σ ¤

LEMMA 6.6

For all k, l ≥ 0, σl ¹L σk iff p∧[ qp]k[ q]⊥ → [ qp]l[ q]⊥ ∈ L and q∧[ pq]k[ p]⊥ → [ pq]l[ p]⊥ ∈ L.

PROOF. Let k, l ≥ 0.

(⇒). Suppose σl ¹L σk . Hence, by Lemma 6.5, σk(x) → [ qp]l[q]⊥ ∈ L and σk(y) →

[ pq]l[p]⊥ ∈ L. Since σk(x) = p∧[ qp]≤k(x∧[ q] y)∧[ qp]k[ q]⊥ and σk( y) = q∧[ pq]≤k( y∧[ p]x)∧

[ pq]k[ p]⊥, therefore p ∧ [ qp]≤k(x ∧ [ q] y) ∧ [ qp]k[ q]⊥ → [ qp]l[ q]⊥ ∈ L and q ∧ [ pq]≤k( y ∧

[ p]x) ∧ [ pq]k[ p]⊥ → [ pq]l[ p]⊥ ∈ L. Thus, uniformly replacing in each of their occurrences the

variables x and y by, respectively, the formulas ⊤ and ⊤, p ∧ [ qp]k[ q]⊥ → [ qp]l[ q]⊥ ∈ L and

q ∧ [ pq]k[ p]⊥ → [ pq]l[ p]⊥ ∈ L.

(⇐). Suppose p ∧ [ qp]k[ q]⊥ → [ qp]l[ q]⊥ ∈ L and q ∧ [ pq]k[ p]⊥ → [ pq]l[ p]⊥ ∈ L. Hence,

p ∧ [ qp]≤k(x ∧ [ q] y) ∧ [ qp]k[ q]⊥ → [ qp]l[ q]⊥ ∈ L and q ∧ [ pq]≤k( y ∧ [ p]x) ∧ [ pq]k[ p]⊥ →

[ pq]l[ p]⊥ ∈ L. Since σk(x) = p ∧ [ qp]≤k(x ∧ [ q] y) ∧ [ qp]k[ q]⊥ and σk( y) = q ∧ [ pq]≤k( y ∧

[ p] x) ∧ [ pq]k[ p]⊥, therefore σk(x) → [ qp]l[q]⊥ ∈ L and σk( y) → [ pq]l[ p]⊥ ∈ L. Thus, by

Lemma 6.5, σl ¹L σk . ¤

7 Adequate modal logics

Let L be a normal modal logic. In this section, we shall elaborate a sufficient condition for the

nullariness of L: the adequacy condition. Before elaborating it, we shall elaborate a weaker condition:

the coherence condition. We shall say that L is coherent if for all distinct constants p, q and for all

k ≥ 0,

• p ∧ [ qp]k+1[ q]⊥ → [ qp]k[ q]⊥ 6∈ L.



LEMMA 7.1

Let n ≥ 1. For all distinct constants p, q, p ∧ [ qp]n+1[ q]⊥ → [ qp]n[ q]⊥ ∈ Kbou
n .

PROOF. Left to the reader. ¤

LEMMA 7.2

For all distinct constants p, q and for all k ≥ 0, p ∧ [ qp]k+1[ q]⊥ → [ qp]k[q]⊥ 6∈ KT.

PROOF. Let k ≥ 0. Let F = (W ,R) be the frame such that W = N and for all s, t ∈ W , sRt iff

t = s or t = s + 1. Obviously, F is in CKT. Let M = (W ,R,V) be the model based on F such that

V(p) = {2i : i ≥ 0 is such that i ≤ k + 1} and V(q) = {2i + 1 : i ≥ 0 is such that i ≤ k}. Obviously,

M , 0 |H p ∧ [ qp]k+1[q]⊥ and M , 0 6|H [ qp]k[q]⊥. Since KT is sound with respect to CKT and F is in

CKT, therefore p ∧ [ qp]k+1[q]⊥ → [ qp]k[q]⊥ 6∈ KT. ¤

LEMMA 7.3

Let n ≥ 1. For all distinct constants p, q and for all k ≥ 0, p ∧ [ qp]k+1[q]⊥ → [ qp]k[q]⊥ 6∈ Altn.

PROOF. Let k ≥ 0. Let F = (W ,R) be the frame such that W = N and for all s, t ∈ W , sRt

iff t = s + 1. Obviously, F is in Cdet
n . Let M = (W ,R,V) be the model based on F such that

V( p) = {2i : i ≥ 0 is such that i ≤ k +1} and V(q) = {2i+1 : i ≥ 0 is such that i ≤ k}. Obviously,

M , 0 |H p ∧ [ qp]k+1[q]⊥ and M , 0 6|H [ qp]k[q]⊥. Since Altn is sound with respect to Cdet
n and F is

in Cdet
n , therefore p ∧ [ qp]k+1[q]⊥ → [ qp]k[q]⊥ 6∈ Altn. ¤

LEMMA 7.4

For all distinct constants p, q and for all k ≥ 0, p ∧ [ qp]k+1[q]⊥ → [ qp]k[q]⊥ ∈ KB.

PROOF. Left to the reader. ¤

LEMMA 7.5

For all distinct constants p, q and for all k ≥ 0, p ∧ [ qp]k+1[q]⊥ → [ qp]k[q]⊥ 6∈ K4.

PROOF. Let k ≥ 0. Let F = (W ,R) be the frame such that W = Q and for all s, t ∈ W , sRt iff

s < t. Obviously, F is in CK4. Let M = (W ,R,V) be the model based on F such that V( p) =

{2i : i ≥ 0 is such that i ≤ k + 1} and V(q) = {2i + 1 : i ≥ 0 is such that i ≤ k}. Obviously,

M , 0 |H p ∧ [ qp]k+1[q]⊥ and M , 0 6|H [ qp]k[q]⊥. Since K4 is sound with respect to CK4 and F is in

CK4, therefore p ∧ [ qp]k+1[q]⊥ → [ qp]k[q]⊥ 6∈ K4. ¤

LEMMA 7.6

Let m, n ≥ 1. If (m, n) 6= (2, 1) then for all distinct constants p, q and for all k ≥ 0,

p ∧ [ qp]k+1[q]⊥ → [ qp]k[q]⊥ 6∈ Kn
m.

PROOF. Similar to the proof of Lemma 7.5. ¤

PROPOSITION 7.7

Let n ≥ 1. If Kbou
n ⊆ L then L is not coherent.

PROOF. By Lemma 7.1. ¤

PROPOSITION 7.8

If L ⊆ KT then L is coherent.

PROOF. By Lemma 7.2. ¤

PROPOSITION 7.9

Let n ≥ 1. If L ⊆ K anc
n then L is coherent.
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PROOF. By Lemma 7.2.

PROPOSITION 7.10
Let n ≥ 1. If L ⊆ Altn then L is coherent.

PROOF. By Lemma 7.3.

PROPOSITION 7.11
If KB ⊆ L then L is not coherent.

PROOF. By Lemma 7.4.

PROPOSITION 7.12
If L ⊆ K4 then L is coherent.

PROOF. By Lemma 7.5.

PROPOSITION 7.13

Let m, n ≥ 1. If (m, n) 6= (2, 1) and L ⊆ Km
n then L is coherent.

PROOF. By Lemma 7.6.
¤

Now, we are ready to elaborate the adequacy condition. We shall say that L is adequate if L is

coherent and for all formulas ϕ,ψ , for all distinct constants p, q and for all k ≥ 0, if deg(ϕ) ≤ 2k

then

• if ϕ → [ qp]k[q][ p]ϕ ∈ L then ϕ → [ qp]k[q]⊥ ∈ L or p → ϕ ∈ L,

• if ϕ → [ qp]k[q]ψ ∈ L then ϕ → [ qp]k⊥ ∈ L or q → ψ ∈ L.

PROPOSITION 7.14

Let n ≥ 1. If K bou
n ⊆ L then L is not adequate.

PROOF. By Proposition 7.7. ¤

PROPOSITION 7.15

The normal modal logic K is adequate.

PROOF. By Proposition 7.8, it suffices to prove that for all formulas ϕ,ψ , for all distinct constants

p, q and for all k ≥ 0, if deg(ϕ) ≤ 2k then

• if ϕ → [ qp]k[q][ p]ϕ ∈ K then ϕ → [ qp]k[q]⊥ ∈ K or p → ϕ ∈ K,

• if ϕ → [ qp]k[q]ψ ∈ K then ϕ → [ qp]k⊥ ∈ K or q → ψ ∈ K.

Let ϕ,ψ be formulas and k ≥ 0 be such that deg(ϕ) ≤ 2k.

Suppose ϕ → [ qp]k[q]⊥ 6∈ K and p → ϕ 6∈ K. Since K is complete with respect to CK, therefore

let F = (W ,R) be a frame in CK such that F 6|H ϕ → [ qp]k[q]⊥ and F′ = (W ′,R′) be a frame in CK

such that F′ 6|H p → ϕ. Let M = (W ,R,V) be a model based on F such that M 6|H ϕ → [ qp]k[q]⊥

and M ′ = (W ′,R′,V ′) be a model based on F′ such that and M ′ 6|H p → ϕ. Let s ∈ W be such

that M , s 6|H ϕ → [ qp]k[q]⊥ and s′ ∈ W ′ be such that M ′, s′ 6|H p → ϕ. Hence, M , s |H ϕ, M , s 6|H

[ qp]k[q]⊥, M ′, s′ |H p and M ′, s′ 6|H ϕ. Let t1, . . . , tk , tk+1 ∈ V(q) and u1, . . . , uk ∈ V(p) be such

that sRt1Ru1 . . . RtkRukRtk+1. Let Ms = (Ws,Rs,Vs) be the unravelling of M around s. In particular,

(s), (s, t1), (s, t1, u1), . . ., (s, t1, u1, . . . , tk), (s, t1, u1, . . . , tk , uk) and (s, t1, u1, . . . , tk , uk , tk+1) are in

Ws. Moreover, (s)Rs(s, t1)Rs(s, t1, u1) . . . Rs(s, t1, u1, . . . , tk)Rs(s, t1, u1, . . . , tk , uk)Rs(s, t1, u1, . . . , tk ,

uk , tk+1). The reader may easily verify that for all (s0, . . . , sn) ∈ Ws and for all formulas χ , if



deg(χ) + n ≤ 2k then M , sn |H χ iff Ms, (s0, . . . , sn) |H χ . Since M , s |H ϕ, therefore Ms, (s) |H ϕ.

Let M ′′ be (W ′′,R′′,V ′′) where

• W ′′ = Ws ∪ W ′,

• R′′ = Rs ∪ R′ ∪ {((s, t1, u1, . . . , tk , uk , tk+1), s
′)},

• V ′′ = Vs ∪ V ′.

The reader may easily verify that for all (s0, . . . , sn) ∈ Ws and for all formulas χ , if deg(χ)+n ≤ 2k

then Ms, (s0, . . . , sn) |H χ iff M ′′, (s0, . . . , sn) |H χ . Since Ms, (s) |H ϕ, therefore M ′′, (s) |H ϕ. The

reader may also easily verify that for all t′ ∈ W ′ and for all formulas χ , M ′, t′ |H χ iff M ′′, t′ |H χ .

Since M ′, s′ |H p and M ′, s′ 6|H ϕ, therefore M ′′, s′ |H p and M ′′, s′ 6|H ϕ. Since t1, . . . , tk , tk+1 ∈

V(q), u1, . . . , uk ∈ V(p), (s)Rs(s, t1)Rs(s, t1, u1) . . . Rs(s, t1, u1, . . . , tk)Rs(s, t1, u1, . . . , tk , uk)Rs(s,

t1, u1, . . . , tk , uk , tk+1) and M ′′, (s) |H ϕ, therefore M ′′, (s) 6|H ϕ → [ qp]k[q][ p]ϕ. Thus, ϕ →

[ qp]k[q][ p]ϕ 6∈ K.

Suppose ϕ → [ qp]k⊥ 6∈ K and q → ψ 6∈ K. Since K is complete with respect to CK,

therefore let F = (W ,R) be a frame in CK such that F 6|H ϕ → [ qp]k⊥ and F′ = (W ′,R′) be

a frame in CK such that F′ 6|H q → ψ . Let M = (W ,R,V) be a model based on F such that

M 6|H ϕ → [ qp]k⊥ and M ′ = (W ′,R′,V ′) be a model based on F′ such that and M ′ 6|H q → ψ .

Let s ∈ W be such that M , s 6|H ϕ → [ qp]k⊥ and s′ ∈ W ′ be such that M ′, s′ 6|H q → ψ .

Hence, M , s |H ϕ, M , s 6|H [ qp]k⊥, M ′, s′ |H q and M ′, s′ 6|H ψ . Let t1, . . . , tk ∈ V(q) and

u1, . . . , uk ∈ V(p) be such that sRt1Ru1 . . . RtkRuk . Let Ms = (Ws,Rs,Vs) be the unravelling of

M around s. In particular, (s), (s, t1), (s, t1, u1), . . ., (s, t1, u1, . . . , tk) and (s, t1, u1, . . . , tk , uk) are in

Ws. Moreover, (s)Rs(s, t1)Rs(s, t1, u1) . . . Rs(s, t1, u1, . . . , tk)Rs(s, t1, u1, . . . , tk , uk). The reader may

easily verify that for all (s0, . . . , sn) ∈ Ws and for all formulas χ , if deg(χ) + n ≤ 2k then

M , sn |H χ iff Ms, (s0, . . . , sn) |H χ . Since M , s |H ϕ, therefore Ms, (s) |H ϕ. Let M ′′ be (W ′′,R′′,V ′′)

where

• W ′′ = Ws ∪ W ′,

• R′′ = Rs ∪ R′ ∪ {((s, t1, u1, . . . , tk , uk), s
′)},

• V ′′ = Vs ∪ V ′.

The reader may easily verify that for all (s0, . . . , sn) ∈ Ws and for all formulas χ , if deg(χ)+n ≤ 2k

then Ms, (s0, . . . , sn) |H χ iff M ′′, (s0, . . . , sn) |H χ . Since Ms, (s) |H ϕ, therefore M ′′, (s) |H ϕ. The

reader may also easily verify that for all t′ ∈ W ′ and for all formulas χ , M ′, t′ |H χ iff M ′′, t′ |H χ .

Since M ′, s′ |H q and M ′, s′ 6|H ψ , therefore M ′′, s′ |H q and M ′′, s′ 6|H ψ . Since t1, . . . , tk ∈

V(q), u1, . . . , uk ∈ V( p), (s)Rs(s, t1)Rs(s, t1, u1) . . . Rs(s, t1, u1, . . . , tk)Rs(s, t1, u1, . . . , tk , uk) and

M ′′, (s) |H ϕ, therefore M ′′, (s) 6|H ϕ → [ qp]k[q]ψ . Thus, ϕ → [ qp]k[q]ψ 6∈ K. ¤

PROPOSITION 7.16

The normal modal logic KD is adequate.

PROOF. Similar to the proof of Proposition 7.15, seeing that the unravelling of M around s is serial

when M is serial. ¤

PROPOSITION 7.17

The normal modal logic KT is adequate.

PROOF. Similar to the proof of Proposition 7.15, defining this time, in order to ensure that

M ′′ is in CKT, Ms = (Ws,Rs,Vs) to be the ref lexive closure of the unravelling of M around

s. Note that this ref lexive closure is obtained by forcing each possible world to be related

to itself. ¤



PROPOSITION 7.18

Let n ≥ 1. The normal modal logic K anc
n is not adequate.

PROOF. Suppose the normal modal logic K anc
n is adequate. Let ϕ = ⊤, ψ = ♦⊤. Obviously,

deg(ϕ) ≤ 2n. Moreover, ϕ → [ qp]n[q]ψ ∈ K anc
n . Since K anc

n is adequate and deg(ϕ) ≤ 2n,

therefore ϕ → [ qp]n⊥ ∈ K anc
n or q → ψ ∈ K anc

n . In the former case, [qp]n⊥ ∈ K anc
n . Let F be

the frame consisting of a single ref lexive element. Obviously, F |H Kanc
n and F 6|H [ qp]n⊥. Hence,

[qp]n⊥ 6∈ Kanc
n : a contradiction. In the latter case, q → ♦⊤ ∈ K anc

n . Let F be the frame consisting

of a single irref lexive element. Obviously, F |H K anc
n and F 6|H q → ♦⊤. Hence, q → ♦⊤ 6∈ K anc

n :

a contradiction. ¤

PROPOSITION 7.19

Let n ≥ 1. The normal modal logic Altn is adequate.

PROOF. Similar to the proof of Proposition 7.15, defining this time, in order to ensure that M ′′ is in

Cdet
n , Ms = (Ws,Rs,Vs) to be the restriction of the unravelling of M around s to the paths of length

at most 2k. ¤

PROPOSITION 7.20

If KB ⊆ L then L is not adequate.

PROOF. By Proposition 7.11. ¤

PROPOSITION 7.21

The normal modal logic K4 is not adequate.

PROOF. Suppose the normal modal logic K4 is adequate. Let ϕ = ¤ r and k = 1. Obviously,

deg(ϕ) ≤ 2k. Moreover, ϕ → [ qp]k[q][ p]ϕ ∈ K4. Since K4 is adequate and deg(ϕ) ≤ 2k, therefore

ϕ → [ qp]k[q]⊥ ∈ K4 or p → ϕ ∈ K4. In the former case, ¤ r → [ qp]k[q]⊥ ∈ K4. Let F be the

frame consisting of a single ref lexive element. Obviously, F |H K4 and F 6|H ¤ r → [ qp]k[q]⊥.

Hence, ¤ r → [ qp]k[q]⊥ 6∈ K4: a contradiction. In the latter case, p → ¤ r ∈ K4. Let F be the

frame consisting of a single ref lexive element. Obviously, F |H K4 and F 6|H p → ¤ r. Hence,

p → ¤ r 6∈ K4: a contradiction. ¤

PROPOSITION 7.22

Let m, n ≥ 1. If m ≤ n then the normal modal logic Kn
m is adequate.

PROOF. Suppose m ≤ n. Hence, (m, n) 6= (2, 1) and by Proposition 7.13, it suffices to prove that for

all formulas ϕ,ψ , for all distinct constants p, q and for all k ≥ 0, if deg(ϕ) ≤ 2k then

• if ϕ → [ qp]k[q][ p]ϕ ∈ K n
m then ϕ → [ qp]k[q]⊥ ∈ K n

m or p → ϕ ∈ K n
m,

• if ϕ → [ qp]k[q]ψ ∈ K n
m then ϕ → [ qp]k⊥ ∈ K n

m or q → ψ ∈ K n
m.

We will consider the case when ‘m = 1 and n = 2’, the reader being invited to adapt the following

line of reasoning to the other cases. Remark that K2
1 is the least normal modal logic containing all

formulas of the form ♦χ → ♦♦χ . As well, remark that C2
1 is the class of all dense frames, i.e. those

frames F = (W ,R) such that for all s, t ∈ W , if sRt then there exists u ∈ W such that sRu and uRt.

Let ϕ,ψ be formulas and k ≥ 0 be such that deg(ϕ) ≤ 2k.

Suppose ϕ → [ qp]k[q]⊥ 6∈ K 2
1 and p → ϕ 6∈ K 2

1 . Since K 2
1 is complete with respect

to C 2
1 , therefore let F = (W ,R) be a frame in C 2

1 such that F 6|H ϕ → [ qp]k[q]⊥ and

F′ = (W ′,R′) be a frame in C 2
1 such that F′ 6|H p → ϕ. Let M = (W ,R,V) be a model

based on F such that M 6|H ϕ → [ qp]k[q]⊥ and M ′ = (W ′,R′,V ′) be a model based on



F′ such that and M ′ 6|H p → ϕ. Let s ∈ W be such that M , s 6|H ϕ → [ qp]k[q]⊥ and

s′ ∈ W ′ be such that M ′, s′ 6|H p → ϕ. Hence, M , s |H ϕ, M , s 6|H [ qp]k[q]⊥, M ′, s′ |H p and

M ′, s′ 6|H ϕ. Let t1, . . . , tk , tk+1 ∈ V(q) and u1, . . . , uk ∈ V( p) be such that sRt1Ru1 . . . RtkRukRtk+1.

Let Ms = (Ws,Rs,Vs) be the dense closure of the unravelling of M around s. Note that this

dense closure is obtained as the limit of the process consisting in adding an intermediate

possible world between any two related possible worlds. In particular, (s), (s, t1), (s, t1, u1),

. . ., (s, t1, u1, . . . , tk), (s, t1, u1, . . . , tk , uk) and (s, t1, u1, . . . , tk , uk , tk+1) are in Ws. Moreover,

(s)Rs(s, t1)Rs(s, t1, u1) . . . Rs(s, t1, u1, . . . , tk)Rs(s, t1, u1, . . . , tk , uk) Rs(s, t1, u1, . . . , tk , uk , tk+1). The

reader may easily verify that for all (s0, . . . , sn) ∈ Ws and for all formulas χ , if deg(χ) + n ≤ 2k

then M , sn |H χ iff Ms, (s0, . . . , sn) |H χ . Since M , s |H ϕ, therefore Ms, (s) |H ϕ. Let M ′′ be the

dense closure of (W ′′,R′′,V ′′) where

• W ′′ = Ws ∪ W ′,

• R′′ = Rs ∪ R′ ∪ {((s, t1, u1, . . . , tk , uk , tk+1), s
′)},

• V ′′ = Vs ∪ V ′.

The reader may easily verify that for all (s0, . . . , sn) ∈ Ws and for all formulas χ , if deg(χ)+n ≤ 2k

then Ms, (s0, . . . , sn) |H χ iff M ′′, (s0, . . . , sn) |H χ . Since Ms, (s) |H ϕ, therefore M ′′, (s) |H ϕ. The

reader may also easily verify that for all t′ ∈ W ′ and for all formulas χ , M ′, t′ |H χ iff M ′′, t′ |H χ .

Since M ′, s′ |H p and M ′, s′ 6|H ϕ, therefore M ′′, s′ |H p and M ′′, s′ 6|H ϕ. Since t1, . . . , tk , tk+1 ∈

V(q), u1, . . . , uk ∈ V(p), (s)Rs(s, t1)Rs(s, t1, u1) . . . Rs(s, t1, u1, . . . , tk)Rs(s, t1, u1, . . . , tk , uk)Rs(s,

t1, u1, . . . , tk , uk , tk+1) and M ′′, (s) |H ϕ, therefore M ′′, (s) 6|H ϕ → [ qp]k[q][ p]ϕ. Thus, ϕ →

[ qp]k[q][ p]ϕ 6∈ K2
1.

Suppose ϕ → [ qp]k⊥ 6∈ K2
1 and q → ψ 6∈ K2

1. Since K2
1 is complete with respect to C2

1 ,

therefore let F = (W ,R) be a frame in C2
1 such that F 6|H ϕ → [ qp]k⊥ and F′ = (W ′,R′) be

a frame in C2
1 such that F′ 6|H q → ψ . Let M = (W ,R,V) be a model based on F such that

M 6|H ϕ → [ qp]k⊥ and M ′ = (W ′,R′,V ′) be a model based on F′ such that and M ′ 6|H q → ψ .

Let s ∈ W be such that M , s 6|H ϕ → [ qp]k⊥ and s′ ∈ W ′ be such that M ′, s′ 6|H q → ψ . Hence,

M , s |H ϕ, M , s 6|H [ qp]k⊥, M ′, s′ |H q and M ′, s′ 6|H ψ . Let t1, . . . , tk ∈ V(q) and u1, . . . , uk ∈ V(p)

be such that sRt1Ru1 . . . RtkRuk . Let Ms = (Ws,Rs,Vs) be the dense closure of the unravelling of

M around s. In particular, (s), (s, t1), (s, t1, u1), . . ., (s, t1, u1, . . . , tk) and (s, t1, u1, . . . , tk , uk) are in

Ws. Moreover, (s)Rs(s, t1)Rs(s, t1, u1) . . . Rs(s, t1, u1, . . . , tk)Rs(s, t1, u1, . . . , tk , uk). The reader may

easily verify that for all (s0, . . . , sn) ∈ Ws and for all formulas χ , if deg(χ)+n ≤ 2k then M , sn |H χ

iff Ms, (s0, . . . , sn) |H χ . Since M , s |H ϕ, therefore Ms, (s) |H ϕ. Let M ′′ be the dense closure of

(W ′′,R′′,V ′′) where

• W ′′ = Ws ∪ W ′,

• R′′ = Rs ∪ R′ ∪ {((s, t1, u1, . . . , tk , uk), s
′)},

• V ′′ = Vs ∪ V ′.

The reader may easily verify that for all (s0, . . . , sn) ∈ Ws and for all formulas χ , if deg(χ)+n ≤ 2k

then Ms, (s0, . . . , sn) |H χ iff M ′′, (s0, . . . , sn) |H χ . Since Ms, (s) |H ϕ, therefore M ′′, (s) |H ϕ. The

reader may also easily verify that for all t′ ∈ W ′ and for all formulas χ , M ′, t′ |H χ iff M ′′, t′ |H χ .

Since M ′, s′ |H q and M ′, s′ 6|H ψ , therefore M ′′, s′ |H q and M ′′, s′ 6|H ψ . Since t1, . . . , tk ∈

V(q), u1, . . . , uk ∈ V(p), (s)Rs(s, t1)Rs(s, t1, u1) . . . Rs(s, t1, u1, . . . , tk)Rs(s, t1, u1, . . . , tk , uk) and

M ′′, (s) |H ϕ, therefore M ′′, (s) 6|H ϕ → [ qp]k[q]ψ . Thus, ϕ → [ qp]k[q]ψ 6∈ K2
1. ¤

PROPOSITION 7.23

Let m, n ≥ 1. If m > n and (m, n) 6= (2, 1) then the normal modal logic K n
m is not adequate.



PROOF. Similar to the proof of Proposition 7.21, defining this time ϕ = ¤nr and k = ⌈ n+2
2(m−n)

⌉

(m − n) − 1.
¤

8 Unification in adequate normal modal logics

Let L be a normal modal logic. In this section, we shall prove that if L is adequate then L is nullary.

Let ϕ be the formula considered in Section 6. Let σ⊥, σ⊤ and for all k ≥ 0, σk be the substitutions

considered in Section 6. Remind that σ⊥, σ⊤ and for all k ≥ 0, σk are L-unifiers of ϕ.

LEMMA 8.1

Let σ be a substitution and k ≥ 0. If L is adequate, σ is an L-unifier of ϕ, deg(σ (x)) ≤ 2k and

deg(σ (y)) ≤ 2k then σ⊤ ¹L σ or σk ¹L σ .

PROOF. Suppose L is adequate, σ is an L-unifier of ϕ, deg(σ (x)) ≤ 2k, deg(σ (y)) ≤ 2k, σ⊤ 6¹L σ

and σk 6¹L σ . Hence, by Lemma 6.3, σ(x) ↔ p 6∈ L or σ(y) ↔ q 6∈ L. Since σ is an L-unifier of

ϕ, therefore σ(ϕ) ∈ L. Since σ(ϕ) = (σ (x) → p) ∧ (σ (y) → q) ∧ (σ (x) → [ q]σ(y)) ∧ (σ (y) →

[ p]σ(x)), therefore (σ (x) → p) ∧ (σ (y) → q) ∧ (σ (x) → [ q]σ(y)) ∧ (σ (y) → [ p]σ(x)) ∈ L.

Thus, σ(x) → p ∈ L, σ(y) → q ∈ L, σ(x) → [ q]σ(y) ∈ L and σ(y) → [ p]σ(x) ∈ L. Since σ

is an L-unifier of ϕ and σk 6¹L σ , therefore by Lemma 6.5, σ(x) → [ qp]k[q]⊥ 6∈ L or σ( y) →

[ pq]k[ p]⊥ 6∈ L.

Case ‘σ(x) ↔ p 6∈ L and σ(x) → [ qp]k[q]⊥ 6∈ L’. Since σ(x) → p ∈ L, therefore p →

σ(x) 6∈ L. Since L is adequate, deg(σ (x)) ≤ 2k and σ(x) → [ qp]k[q]⊥ 6∈ L, therefore σ(x) →

[ qp]k[q][ p]σ(x) 6∈ L. Hence, σ(x) → [ q]σ(y) 6∈ L or σ(y) → [ p]σ(x) 6∈ L: a contradiction.

Case ‘σ(x) ↔ p 6∈ L and σ(y) → [ pq]k[ p]⊥ 6∈ L’. Since σ(x) → p ∈ L, therefore p → σ(x) 6∈ L.

Since σ(y) → [ pq]k[ p]⊥ 6∈ L, therefore σ(y) → [ pq]k⊥ 6∈ L. Since L is adequate, deg(σ ( y)) ≤ 2k

and p → σ(x) 6∈ L, therefore σ( y) → [ pq]k[ p]σ(x) 6∈ L. Hence, σ(x) → [ q]σ( y) 6∈ L or

σ( y) → [ p]σ(x) 6∈ L: a contradiction.

Case ‘σ(y) ↔ q 6∈ L and σ(x) → [ qp]k[q]⊥ 6∈ L’. Since σ( y) → q ∈ L, therefore q → σ( y) 6∈

L. Since σ(x) → [ qp]k[q]⊥ 6∈ L, therefore σ(x) → [ qp]k⊥ 6∈ L. Since L is adequate, deg(σ (x)) ≤

2k and q → σ( y) 6∈ L, therefore σ(x) → [ qp]k[q]σ( y) 6∈ L. Hence, σ(x) → [ q]σ( y) 6∈ L or

σ( y) → [ p]σ(x) 6∈ L: a contradiction.

Case ‘σ(y) ↔ q 6∈ L and σ( y) → [ pq]k[ p]⊥ 6∈ L’. Since σ( y) → q ∈ L, therefore q →

σ(y) 6∈ L. Since L is adequate, deg(σ ( y)) ≤ 2k and σ( y) → [ pq]k[ p]⊥ 6∈ L, therefore σ( y) →

[ pq]k[p][ q]σ( y) 6∈ L. Hence, σ(x) → [ q]σ( y) 6∈ L or σ( y) → [ p]σ(x) 6∈ L: a contradiction. ¤

LEMMA 8.2

If L is adequate then there exists no L-minimal L-complete set of L-unifiers of ϕ.

PROOF. Suppose L is adequate and there exists an L-minimal L-complete set of L-unifiers of ϕ. Let

Σ be an L-minimal L-complete set of L-unifiers of ϕ. By the fact that Σ is an L-complete set of

L-unifiers of ϕ, let σ ∈ Σ be such that σ ¹L σ⊥. Let k ≥ 0 be such that deg(σ (x)) ≤ 2k and

deg(σ (y)) ≤ 2k. Since L is adequate and σ ∈ Σ , therefore by Lemma 8.1 and the fact that Σ is a

set of L-unifiers of ϕ, σ⊤ ¹L σ or σk ¹L σ .

Case ‘σ⊤ ¹L σ ’. Since σ ¹L σ⊥, therefore by Lemma 5.2, σ⊤ ¹L σ⊥. Let τ be a substitution

such that σ⊤ ◦ τ ≃L σ⊥. Hence, τ(σ⊤(x)) ↔ σ⊥(x) ∈ L and τ(σ⊤( y)) ↔ σ⊥( y) ∈ L. Since

τ(σ⊤(x)) = p, σ⊥(x) = ⊥, τ(σ⊤( y)) = q and σ⊥( y) = ⊥, therefore p ↔ ⊥ ∈ L and q ↔ ⊥ ∈ L.

Thus, ¬p ∧ ¬q ∈ L. Consequently, ⊥ ∈ L. Hence, L is not coherent. Thus, L is not adequate: a

contradiction.



Case ‘σk ¹L σ ’. By the fact that Σ is an L-complete set of L-unifiers of ϕ, let τ ∈ Σ be such that

τ ¹L σk+1. By Lemma 4.1, [qp]k[q]⊥ → [ qp]k+1[q]⊥ ∈ L and [ pq]k[ p]⊥ → [ pq]k+1[ p]⊥ ∈ L.

Hence, p ∧ [ qp]k[q]⊥ → [ qp]k+1[q]⊥ ∈ L and q ∧ [ pq]k[ p]⊥ → [ pq]k+1[ p]⊥ ∈ L. Thus, by

Lemma 6.6, σk+1 ¹L σk . Since σk ¹L σ and τ ¹L σk+1, therefore by Lemma 5.2, τ ¹L σ . Since

σ , τ ∈ Σ , therefore by the fact that Σ is an L-minimal set of substitutions, τ ≃L σ . Since σk ¹L σ

and τ ¹L σk+1, therefore by Lemmas 5.1 and 5.2, σk ¹L σk+1. Consequently, by Lemma 6.6,

p ∧ [ qp]k+1[q]⊥ → [ qp]k[q]⊥ ∈ L and q ∧ [ pq]k+1[ p]⊥ → [ pq]k[ p]⊥ ∈ L. Hence, L is not

coherent. Thus, L is not adequate: a contradiction. ¤

PROPOSITION 8.3

If L is adequate then L is nullary.

PROOF. By Lemma 8.2. ¤

COROLLARY 8.4

The following normal modal logics are nullary:

• the normal modal logics K, KD and KT,

• for all n ≥ 1, the normal modal logic Altn,

• for all m, n ≥ 1, if m ≤ n then the normal modal logic K n
m.

TABLE 1. Known facts and open problems in the determination of the

type of unification with constants in some of the most popular normal

modal logics

L Type of L for unif. with constants

K Nullary—[21]

KD Nullary—[4]

KT Nullary—Corollary 8.4

KB ?

KDB ?

KTB ?

K5 ?

KD5 ?

K45 Unitary or nullary—[5]

KD45 Unitary or nullary—[5]

S5 Unitary—[1]

K4 Finitary—[16]

S4 Finitary—[16]

K4.3 ?

KD4.3 ?

S4.3 Unitary—[14]

GL Finitary—[16]

K bou
1 Unitary—see Section 5

K bou
n when n ≥ 2 ?

Alt1 Nullary—[6]

Altn when n ≥ 2 Nullary—see Section 5

K n
m when m ≤ n Nullary—Corollary 8.4

K n
m when m > n and (m, n) 6= (2, 1) ?



TABLE 2. Known facts and open problems in the determination of

the type of elementary unification in some of the most popular normal

modal logics

L Type of L for elementary unif.

K Nullary—[21]

KD ?

KT ?

KB ?

KDB ?

KTB ?

K5 ?

KD5 ?

K45 Unitary or nullary—[5]

KD45 Unitary—[7]

S5 Unitary—[1]

K4 Finitary—[16]

S4 Finitary—[16]

K4.3 ?

KD4.3 ?

S4.3 Unitary—[14]

GL Finitary—[16]

K bou
1 Unitary—see Section 5

K bou
n when n ≥ 2 ?

Alt1 Nullary—[6]

Altn when n ≥ 2 Nullary—see Section 5

K n
m when m ≤ n ?

K n
m when m > n and (m, n) 6= (2, 1) ?

PROOF. By Propositions 7.15–7.17, 7.19, 7.22 and 8.3. ¤

9 Conclusion and open problems

In this paper, we have proved that unification in a normal modal logic L is of nullary type when L is

adequate. Remark that in order to present our proof above, we had to assume that the language

of modal logic contains at least two distinct variables and two distinct constants. Note that the

nullariness of K has been proved by Jer̆àbek [21] who only assumed that the language contains at

least one variable. This shows that K is nullary both for unification with constants and for elementary

unification. As well, note that the nullariness of KD has been proved by Balbiani and Gencer [4] who

only assumed that the language contains at least one variable and one constant. This only shows that

KD is nullary for unification with constants. As for the nullariness of Alt1, it has also been proved

by Balbiani and Tinchev [6] who only assumed that the language contains at least one variable. This

shows that Alt1 is nullary both for unification with constants and for elementary unification. As

mentioned in Section 5, the proof given in [6] that Alt1 is nullary can be easily adapted for all n ≥ 2

to a proof that Altn is nullary. Much remains to be done. See Tables 1 and 2 for known facts and open



problems in the determination of the type of unification with constants and the type of elementary

unification in some of the most popular normal modal logics.
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