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The problem of unification in a normal modal logic L can be defined as follows: given a formula ϕ, determine whether there exists a substitution σ such that σ (ϕ) is in L. In this paper, we prove that for several non-symmetric non-transitive modal logics, there exists unifiable formulas that possess no minimal complete set of unifiers.

Introduction

The problem of unification in a normal modal logic L can be defined as follows: given a formula ϕ(x 1 , . . . , x m ) where x 1 , . . . , x m are variables, determine whether there exist formulas ψ 1 , . . . , ψ m such that ϕ(ψ 1 , . . . , ψ m ) is in L. The computability of the problem of unification in transitive normal modal logics like S4 and GL has been solved by Rybakov [START_REF] Rybakov | A criterion for admissibility of rules in the model system S4 and the intuitionistic logic[END_REF][START_REF] Rybakov | Bases of admissible rules of the logics S4 and Int[END_REF][START_REF] Rybakov | Admissibility of Logical Inference Rules[END_REF] who proved that it is decidable. With respect to its computational complexity, the problem of unification was mostly unexplored before the work of Jer˘ábek [START_REF] Jeȓàbek | Complexity of admissible rules[END_REF] who established its membership in NEXPTIME in several normal modal logics extending K4 such as S4 and GL. See also [START_REF] Gencer | Unifiability in extensions of K4[END_REF][START_REF] Ghilardi | Filtering unification and most general unifiers in modal logic[END_REF][START_REF] Iemhoff | On the admissible rules of intuitionistic propositional logic[END_REF][START_REF] Rybakov | Construction of an explicit basis for rules admissible in modal system S4[END_REF][START_REF] Rybakov | An essay on unification and inference rules for modal logics[END_REF] for a study of the problem of unification in different normal modal logics.

Within the context of the problem of unification in a normal modal logic L, an important question is the following: when a formula is unifiable, has it a minimal complete set of unifiers? When the answer is 'yes', how large is this set? This question concerns the determination of the type of L for the problem of unification. Considering the type of unification in a normal modal logic L is justified from the following perspectives: deciding the unifiability of equivalences like ϕ ↔ ψ in L helps us to understand what is the overlap between the properties ϕ and ψ correspond to in L [START_REF] Baader | Unification in modal and description logics[END_REF]; methods for deciding the unifiability of formulas in L can be used to improve the efficiency of automated theorem provers in L [START_REF] Babenyshev | A tableau method for checking rule admissibility in S4[END_REF].

Ghilardi [START_REF] Ghilardi | Best solving modal equations[END_REF] has proved that the unification type of transitive normal modal logics like S4 and GL is finitary. Within the context of tense logics and epistemic logics, Dzik [START_REF] Dzik | Unitary unification of S5 modal logics and its extensions[END_REF][START_REF] Dzik | Unification Types in Logic[END_REF][START_REF] Dzik | Remarks on projective unifiers[END_REF] has studied the relationships between the unification type of a fusion of modal logics and the unification types of the modal logics composing this fusion. He has also proved that some variants of the normal modal logics studied by Jansana [START_REF] Jansana | Some logics related to von Wright's logic of place[END_REF] are unitary; these variants being sound and complete with respect to classes of frames satisfying conditions generalizing symmetry and transitivity. The unification type of normal modal logics such as common knowledge logics and linear temporal logics has also been studied by Babenyshev and Rybakov [START_REF] Babenyshev | Unification in linear temporal logic LTL[END_REF] and Rybakov [START_REF] Rybakov | Unification in common knowledge logics[END_REF][START_REF] Rybakov | Logical consecutions in discrete linear temporal logic[END_REF][START_REF] Rybakov | Multi-modal and temporal logics with universal formula-reduction of admissibility to validity and unification[END_REF].

Nevertheless, still, very little is known about the problem of unification in some of the most popular normal modal logics. For example, the types of the problem of unification in the normal modal logics KB, KDB and KTB are still unknown [START_REF] Dzik | Unification Types in Logic[END_REF]Chapter 5]. As well, the types of the problem of unification in the normal modal logics K5, KD5, K45, K4.3 and KD4.3 are unknown too. In this paper, following a line of reasoning suggested by Jeȓàbek [START_REF] Jeȓàbek | Blending margins: the modal logic K has nullary unification type[END_REF] within the context of K and furthered by Balbiani and Gencer [START_REF] Balbiani | KD is nullary[END_REF] within the context of KD, we prove that for several non-symmetric non-transitive modal logics like KT, there exists unifiable formulas that possess no minimal complete set of unifiers. Such modal logics are called nullary.

The section-by-section breakdown of the paper is as follows. Sections 2-4 introduce the basic definitions about normal modal logics. In Section 5, we introduce the basic definitions about unification. In Section 6, we analyse a specific formula from the point of view of some of its unifiers in normal modal logics. In Section 7, we elaborate a sufficient condition for the nullariness of normal modal logics (the adequacy condition) and we give examples of adequate and non-adequate normal modal logics. In Section 8, we prove that if a normal modal logic is adequate then it is nullary.

Syntax

Formulas Let VAR be a set of variables (with typical members denoted x, y, etc) and CON be a set of constants (with typical members denoted p, q, etc). The set of all formulas (with typical members denoted ϕ, ψ, etc) is inductively defined as follows:

• ϕ, ψ ::= x | p | ⊥ | ¬ϕ | (ϕ ∨ ψ) | ϕ.
We adopt the standard rules for omission of the parentheses. Let (x 1 , x 2 , . . .) be an enumeration of VAR without repetition and (p 1 , p 2 , . . .) be an enumeration of CON without repetition. We write ϕ(x 1 , . . . , x m , p 1 , . . . , p n ) to denote a formula whose variables form a subset of {x 1 , . . . , x m } and whose constants form a subset of {p 1 , . . . , p n }. Let ϕ(x 1 , . . . , x m , p 1 , . . . , p n ) be such a formula. The result of the uniform replacement in each of their occurrences of the variables x 1 , . . . , x m by the formulas ψ 1 , . . . , ψ m and of the constants p 1 , . . . , p n by the formulas χ 1 , . . . , χ n is denoted ϕ(ψ 1 , . . . , ψ m , χ 1 , . . . , χ n ).

Abbreviations

The Boolean connectives ⊤, ∧, → and ↔ are defined by the usual abbreviations. Let ♦ be the modal connective defined as follows:

• ♦ϕ ::= ¬ ¬ϕ.
For all k ≥ 0, the modal connective k is inductively defined as follows:

• 0 ϕ ::= ϕ, • k+1 ϕ ::= k ϕ.
For all k ≥ 0, the modal connective ♦ k is inductively defined as follows:

• ♦ 0 ϕ ::= ϕ, • ♦ k+1 ϕ ::= ♦♦ k ϕ.
Example: For all formulas ϕ, 2 ϕ is ϕ and

♦ 2 ϕ is ♦♦ϕ.
For all finite words w over CON, the modal connective [w] is inductively defined as follows:

• [ǫ]ϕ ::= ϕ, • [ pw]ϕ ::= ( p → [ w]ϕ).
Example: For all constants p, q and for all formulas ϕ, [ pq]ϕ is ( p → (q → ϕ)).

For all finite words w over CON and for all k ≥ 0, the modal connective [w] k is inductively defined as follows:

• [∈] 0 ϕ ::= ϕ, • [ pw] k+1 ϕ ::= [w][ w] k ϕ.
Example: For all constants p, q and for all formulas ϕ, [ pq] 2 ϕ is (vp → (q → (p → (q → ϕ)))).

For all finite words w over CON and for all k ≥ 0, the modal connective [w] ≤k is inductively defined as follows:

• [w] ≤0 ϕ ::= ϕ, • [w] ≤k+1 ϕ ::= [w] ≤k ϕ ∧ [ w] k+1 ϕ.
Example: For all constants p, q and for all formulas ϕ, [ pq] ≤2 ϕ is ϕ ∧ ( p → (q → ϕ))∧ ( p → (q → ( p → (q → ϕ)))).

Degrees

The degree of a formula ϕ (in symbols deg(ϕ)) is the non-negative integer inductively defined as follows:

• deg(x) = 0, • deg(p) = 0, • deg(⊥) = 0, • deg(¬ϕ) = deg(ϕ), • deg(ϕ ∨ ψ) = max{deg(ϕ), deg(ψ)}, • deg( ϕ) = deg(ϕ) + 1.
Example: For all constants p, q and for all formulas ϕ, deg

([ pq] 2 ϕ) is deg(ϕ) + 4.
Substitutions A substitution is a function σ associating to each variable x a formula σ (x).

Following the standard assumption considered in the literature about unification [START_REF] Baader | Unification in modal and description logics[END_REF][START_REF] Dzik | Unification Types in Logic[END_REF][START_REF] Ghilardi | Best solving modal equations[END_REF], we will always assume that substitutions move at most finitely many variables. For all formulas ϕ(x 1 , . . . , x m , p 1 , . . . , p n ), let σ (ϕ(x 1 , . . . , x m , p 1 , . . . , p n )) be ϕ(σ (x 1 ), . . . , σ (x m ), p 1 , . . . , p n ).

Example: If σ is the substitution such that σ (x) = p, σ (y) = q and for all variables z distinct from x and y, σ (z) = z and ϕ is the formula

(x → p) ∧ (y → q) ∧ (x → [ q]y) ∧ (y → [ p]x) then σ (ϕ) is ( p → p) ∧ (q → q) ∧ ( p → [ q] q) ∧ (q → [ p] p).
The composition σ • τ of the substitutions σ and τ is the substitution associating to each variable x the formula τ (σ (x)).

Frames A frame is a couple F = (W, R) where W is a non-empty set of possible worlds and R is a binary relation on W. In a frame F = (W, R), for all n ≥ 0, the binary relation R n on W is inductively defined as follows:

• R 0 = Id, i.e. the identity relation on W ,

• R n+1 = R • R n , i.e. the composition of the binary relations R and R n on W .

For all n ≥ 1, we shall say that a frame F = (W , R) is n-bounded if for all s, t ∈ W , not sR n t. We shall say that a frame F = (W , R) is serial if for all s ∈ W , there exists t ∈ W such that sRt. We shall say that a frame F = (W , R) is ref lexive if for all s ∈ W , sRs. For all n ≥ 1, we shall say that a frame F = (W , R) is n-ancestral if for all s, t ∈ W , if sR n t then there exists u ∈ W such that tRu. For all n ≥ 1, we shall say that a frame F = (W , R) is ndeterministic if for all s ∈ W and for all t 1 , . . . , t n+1 ∈ W , if sRt 1 , . . ., sRt n+1 then there exists distinct i, j ≥ 1 such that i, j ≤ n + 1 and t i = t j . We shall say that a frame 

F = (W , R) is symmetric if for all s, t ∈ W , if sRt then tRs. We shall say that a frame F = (W , R) is transitive if for all s, t, u ∈ W , if sRt and tRu then sRu. For all m, n ≥ 1, if (m, n) = (2, 1) then we shall say that a frame F = (W , R) is (m, n)-compositional if for all s, t ∈ W , if sR m t then sR n t. For all n ≥ 1, let C bou
Models A model based on a frame F = (W , R) is a triple M = (W , R, V )
where V is a function assigning to each variable x a subset V (x) of W and to each constant p a subset V (p) of W . Given a model M = (W , R, V ), the satisfiability of a modal formula ϕ at s ∈ W (in symbols M, s | ϕ) is inductively defined as follows:

• M, s | x if s ∈ V (x), • M, s | p if s ∈ V (p), • M, s | ⊥, • M, s | ¬ϕ if M, s | ϕ, • M, s | ϕ ∨ ψ if M, s | ϕ or M, s | ψ, • M, s | ϕ if for all t ∈ W , if sRt then M, t | ϕ.
We shall say that a formula ϕ is true in a model

M = (W , R, V ) (in symbols M | ϕ) if ϕ is satisfied at all s ∈ W .
Validity We shall say that a formula ϕ is valid in a frame F (in symbols F | ϕ) if ϕ is true in all models based on F. We shall say that a formula ϕ is valid in a class C of frames (in symbols

C | ϕ) if ϕ is valid in all frames in C.
A normal modal logic is a set L of formulas such that

• L contains all tautologies,

• L contains all formulas of the form

(ϕ → ψ) → ( ϕ → ψ),
• L is closed under the rule of modus ponens ϕ ϕ→ψ ψ ,

• L is closed under the rule of generalization ϕ ϕ , • L is closed under the rule of uniform substitution ϕ(x 1 ,...,x m ,p 1 ,...,p n ) ϕ(ψ 1 ,...,ψ m ,χ 1 ,...,χ n ) . It is evident that for all classes C of frames, the set of all C-valid formulas is a normal modal logic. LEMMA 4.1 Let L be a normal modal logic. For all k ≥ 0, for all formulas ϕ and for all constants p, q,

• [qp] k [q]⊥ → [ qp] k+1 [q]⊥ ∈ L, • [qp] ≤k ϕ ∧ [ qp] k [q]⊥ → [ q][ pq] ≤k [ p]ϕ ∈ L, • [qp] ≤k [q]ϕ → [ q][ pq] ≤k ϕ ∈ L, • [qp] k [q]⊥ → [ q][ pq] k [ p]⊥ ∈ L.
PROOF. Left to the reader. LEMMA 4.2 Let L be a normal modal logic. For all k ≥ 0, for all formulas ϕ, ψ and for all constants p, q, if ϕ

→ [ q]ψ ∈ L and ψ → [ p]ϕ ∈ L then ϕ → [ qp] ≤k (ϕ ∧ [ q]ψ) ∈ L.

PROOF. Left to the reader.

It is evident that the set of all normal modal logics is closed under arbitrary intersections. For all n ≥ 1, let K bou n be the least normal modal logic containing the formula n ⊥. Let K, KD and KT be, respectively, the least normal modal logic, the least normal modal logic containing all formulas of the form χ → ♦χ and the least normal modal logic containing all formulas of the form χ → χ. Remark that KD ⊆ KT. For all n ≥ 1, let K anc n be the least normal modal logic containing the formula 2n-1 ♦⊤. Remark that for all n ≥ 1, K anc n ⊆ KD. For all n ≥ 1, let Alt n be the least normal modal logic containing all formulas of the form { ( {χ j : j ≥ 1 is such that j ≤ i} → χ i+1 ) : i ≥ 0 is such that i ≤ n}. Let KB, KDB and KTB be, respectively, the least normal modal logic containing all formulas of the form χ → ♦χ , the least normal modal logic containing all formulas of the form χ → ♦χ and χ → ♦χ and the least normal modal logic containing all formulas of the form χ → ♦χ and χ → χ. Let K4 be the least normal modal logic containing all formulas of the form χ 

→ χ . For all m, n ≥ 1, if (m, n) = (2,

Unification

Let L be a normal modal logic. In this section, we shall introduce the basic definitions about unification in L.

Unifiers

We shall say that a formula ϕ is L-unifiable if there exists a substitution σ such that σ (ϕ) ∈ L. In that case, σ is an L-unifier of ϕ.

Example: If σ is the substitution such that σ (x) = p, σ (y) = q and for all variables z distinct from x and y, σ (z) = z and ϕ is the formula

(x → p) ∧ ( y → q) ∧ (x → [ q] y) ∧ ( y → [ p] x) then σ is a K-unifier of ϕ.
We shall say that a substitution σ is L-equivalent to a substitution τ (in symbols σ ≃ L τ ) if for all variables x, σ (x) ↔ τ (x) ∈ L.

Example: If σ and τ are the substitutions such that σ (x) = p, τ (x) = p ∧ p, σ (y) = ♦q ∨ q, τ ( y) = ♦q and for all variables z distinct from x and y, σ (z) = z and τ (z) = z then σ ≃ KT τ . PROOF. Left to the reader. See [START_REF] Baader | Unification in modal and description logics[END_REF][START_REF] Dzik | Unification Types in Logic[END_REF] for details about the binary relation ≃ L .

We shall say that a substitution σ is more L-general than a substitution τ (in symbols σ L τ ) if there exists a substitution υ such that σ • υ ≃ L τ . PROOF. Left to the reader. See [START_REF] Baader | Unification in modal and description logics[END_REF][START_REF] Dzik | Unification Types in Logic[END_REF] for details about the binary relation L .

We shall say that a set Σ of substitutions is L-minimal if for all σ , τ ∈ Σ, if σ L τ then σ ≃ L τ . We shall say that a set Σ of L-unifiers of an L-unifiable formula ϕ is L-complete if for all L-unifiers σ of ϕ, there exists τ ∈ Σ such that τ L σ .

Types An important question is the following: when a formula is L-unifiable, has it an L-minimal L-complete set of L-unifiers? When the answer is 'yes', how large is this set? We shall say that an L-unifiable formula

• ϕ is L-nullary if there exists no L-minimal L-complete set of L-unifiers of ϕ,
• ϕ is L-infinitary if there exists an L-minimal L-complete set of L-unifiers of ϕ but there exists no finite one, • ϕ is L-finitary if there exists a finite L-minimal L-complete set of L-unifiers of ϕ but there exists no with cardinality 1, • ϕ is L-unitary if there exists an L-minimal L-complete set of L-unifiers of ϕ with cardinality 1.

We shall say that

• L is of unification type nullary if there exists an L-nullary formula, • L is of unification type infinitary if every L-unifiable formula is L-infinitary or L-finitary or L-unitary and there exists an L-infinitary formula, • L is of unification type finitary if every L-unifiable formula is L-finitary or L-unitary and there exists an L-finitary formula, • L is of unification type unitary if every L-unifiable formula is L-unitary.

See [START_REF] Baader | Unification in modal and description logics[END_REF] for a proof that S5 is unitary, [START_REF] Balbiani | KD is nullary[END_REF] for a proof that KD is nullary, [START_REF] Balbiani | Unification in modal logic Alt 1[END_REF] for a proof that Alt 1 is nullary, [START_REF] Ghilardi | Best solving modal equations[END_REF] for a proof that K4 and S4 are finitary and [START_REF] Jeȓàbek | Blending margins: the modal logic K has nullary unification type[END_REF] for a proof that K is nullary. By the way, the proof given in [START_REF] Baader | Unification in modal and description logics[END_REF] that S5 is unitary can be easily adapted to a proof that K bou 1 is unitary (the unification type of K bou n is not known when n ≥ 2). In other respect, the proof given in [START_REF] Balbiani | Unification in modal logic Alt 1[END_REF] that Alt 1 is nullary can be easily adapted for all n ≥ 2 to a proof that Alt n is nullary. We shall say that L is filtering if for all L-unifiable formulas ϕ and for all L-unifiers σ , τ of ϕ, there exists an L-unifier µ of ϕ such that µ L σ and µ L τ . When L is filtering, given two Lunifiers of an L-unifiable formula, there is always an L-unifier that is more L-general than both of them. Hence, in this case, it is known that L is unitary or L is nullary. See [START_REF] Ghilardi | Filtering unification and most general unifiers in modal logic[END_REF] for a proof that if K4 ⊆ L then L is filtering iff K4.2 + ⊆ L. See also [START_REF] Balbiani | Unification in epistemic logics[END_REF] for a proof that K45 and KD45 are filtering. The purpose of Sections 6-8 is to elaborate a sufficient condition for the nullariness of L.

Remarks Note that the proof of the nullariness of K given by Jeȓàbek [START_REF] Jeȓàbek | Blending margins: the modal logic K has nullary unification type[END_REF] only assumed that the language contains at least one variable. As well, note that the proof of the nullariness of KD given by Balbiani and Gencer [START_REF] Balbiani | KD is nullary[END_REF] only assumed that the language contains at least one variable and one constant. As for the nullariness of Alt 1 given by Balbiani and Tinchev [START_REF] Balbiani | Unification in modal logic Alt 1[END_REF], it only assumed that the language contains at least one variable. This means that when the language contains no constant, K and Alt 1 are still nullary whereas the unification type of KD is still unknown. In the case where the language contains infinitely many constants, one is talking about unification with constants and in the case where the language contains no constant, one is talking about elementary unification. In Sections 6-8, we will always assume that the language of modal logic contains at least two distinct variables and two distinct constants. Hence, our results in the forthcoming sections only concern unification with constants.

Analysis of a specific formula

Let L be a normal modal logic. In this section, we shall analyse a specific formula from the point of view of some of its L-unifiers, namely the formula

• ϕ = (x → p) ∧ (y → q) ∧ (x → [ q] y) ∧ (y → [ p] x)
in which x, y are distinct variables and p, q are distinct constants, i.e. ϕ is the conjunction of the 4 following formulas:

• x → p, • y → q, • x → [ q] y, • y → [ p] x.
Remark that Jeȓàbek [START_REF] Jeȓàbek | Blending margins: the modal logic K has nullary unification type[END_REF] has used the formula x →

x to prove that K is nullary and Balbiani and Gencer [START_REF] Balbiani | KD is nullary[END_REF] have used the formula

(x → p) ∧ (x → [ p] x) to prove that KD is nullary.
Remark that in order to present our line of reasoning, we have to assume that the language of modal logic contains at least two distinct variables and two distinct constants.

Let σ ⊥ be the substitution defined as follows:

• σ ⊥ (x) = ⊥, • σ ⊥ ( y) = ⊥,
• for all variables z distinct from x and y, σ ⊥ (z) = z.

LEMMA 6.1 σ ⊥ is an L-unifier of ϕ.
PROOF. Remark that σ ⊥ (ϕ) is the conjunction of the 4 following formulas:

• ⊥ → p, • ⊥ → q, • ⊥ → [ q]⊥, • ⊥ → [ p]⊥. Hence, σ ⊥ (ϕ) ∈ L. Thus, σ ⊥ is an L-unifier of ϕ.
Let σ ⊤ be the substitution defined as follows:

• σ ⊤ (x) = p, • σ ⊤ ( y) = q,
• for all variables z distinct from x and y, σ ⊤ (z) = z. LEMMA 6.2 σ ⊤ is an L-unifier of ϕ.

PROOF. Remark that σ ⊤ (ϕ) is the conjunction of the 4 following formulas:

• p → p, • q → q, • p → [ q] q, • q → [ p] p.
Hence, σ ⊤ (ϕ) ∈ L. Thus, σ ⊤ is an L-unifier of ϕ. LEMMA 6.3 Let σ be a substitution. The following conditions are equivalent:

1. σ ⊤ • σ ≃ L σ , 2. σ ⊤ L σ , 3. σ (x) ↔ p ∈ L and σ ( y) ↔ q ∈ L. PROOF. (1) ⇒ (2)
. By definition of L .

(

) ⇒ (3). Suppose σ ⊤ L σ . Let τ be a substitution such that σ ⊤ • τ ≃ L σ . Hence, τ (σ ⊤ (x)) ↔ σ (x) ∈ L and τ (σ ⊤ ( y)) ↔ σ ( y) ∈ L. Since τ (σ ⊤ (x)) = p and τ (σ ⊤ ( y)) = q, therefore σ (x) ↔ p ∈ L and σ ( y) ↔ q ∈ L. (3) ⇒ (1). Suppose σ (x) ↔ p ∈ L and σ ( y) ↔ q ∈ L. Since σ (σ ⊤ (x)) = p and σ (σ ⊤ ( y)) = q, therefore σ (σ ⊤ (x)) ↔ σ (x) ∈ L and σ (σ ⊤ ( y)) ↔ σ ( y) ∈ L. 2 
Moreover, since for all variables z distinct from x and y, σ (σ ⊤ (z)) = σ (z), therefore for all variables z distinct from x and y, σ (σ ⊤ (z)) ↔ σ (z) ∈ L. Hence, σ ⊤ • σ ≃ L σ For all k ≥ 0, let σ k be the substitution defined as follows:

• σ k (x) = p ∧ [ qp] ≤k (x ∧ [ q] y) ∧ [ qp] k [ q]⊥, • σ k (y) = q ∧ [ pq] ≤k (y ∧ [ p]x) ∧ [ pq] k [ p]⊥,
• for all variables z distinct from x and y, σ k (z) = z. LEMMA 6.4 For all k ≥ 0, σ k is an L-unifier of ϕ.

PROOF. Let k ≥ 0. Remark that σ k (ϕ) is the conjunction of the 4 following formulas:

• p ∧ [ qp] ≤k (x ∧ [ q]y) ∧ [ qp] k [ q]⊥ → p, • q ∧ [ pq] ≤k (y ∧ [ p]x) ∧ [ pq] k [ p]⊥ → q, • p ∧ [ qp] ≤k (x ∧ [ q]y) ∧ [ qp] k [q]⊥ → [ q](q ∧ [ pq] ≤k (y ∧ [ p]x) ∧ [ pq] k [ p]⊥), • q ∧ [ pq] ≤k (y ∧ [ p]x) ∧ [ pq] k [ p]⊥ → [ p](p ∧ [ qp] ≤k (x ∧ [ q]y) ∧ [ qp] k [ q]⊥).
Hence, by Lemma 4.1, σ k (ϕ) ∈ L. Thus, σ k is an L-unifier of ϕ. LEMMA 6.5 Let σ be a substitution. If σ is an L-unifier of ϕ then for all k ≥ 0, the following conditions are equivalent:

1. σ k • σ ≃ L σ , 2. σ k L σ , 3. σ (x) → [ qp] k [ q]⊥ ∈ L and σ (y) → [ pq] k [ p]⊥ ∈ L.
PROOF. Suppose σ is an L-unifier of ϕ. Let k ≥ 0.

(1) ⇒ (2). By definition of L .

(2) ⇒ (3). Suppose σ k L σ . Let τ be a substitution such that

σ k • τ ≃ L σ . Hence, τ (σ k (x)) ↔ σ (x) ∈ L and τ (σ k ( y)) ↔ σ ( y) ∈ L. Since τ (σ k (x)) = p ∧ [ qp] ≤k (τ (x) ∧ [ q]τ (y)) ∧ [ qp] k [ q]⊥ and τ (σ k ( y)) = q ∧ [ pq] ≤k (τ ( y) ∧ [ p]τ (x)) ∧ [ pq] k [ p]⊥, therefore p ∧ [ qp] ≤k (τ (x) ∧ [ q]τ ( y)) ∧ [ qp] k [ q]⊥ ↔ σ (x) ∈ L and q ∧ [ pq] ≤k (τ ( y) ∧ [ p]τ (x)) ∧ [ pq] k [ p]⊥ ↔ σ ( y) ∈ L. Thus, σ (x) → [ qp] k [ q]⊥ ∈ L and σ (y) → [ pq] k [ p]⊥ ∈ L. (3) ⇒ (1). Suppose σ (x) → [ qp] k [ q]⊥ ∈ L and σ ( y) → [ pq] k [ p]⊥ ∈ L. Since σ is an L-unifier of ϕ, therefore σ (ϕ) ∈ L. Since σ (ϕ) = (σ (x) → p) ∧ (σ ( y) → q) ∧ (σ (x) → [ q]σ ( y)) ∧ (σ ( y) → [ p]σ (x)), therefore (σ (x) → p) ∧ (σ ( y) → q) ∧ (σ (x) → [ q]σ ( y)) ∧ (σ ( y) → [ p]σ (x)) ∈ L.
Hence, the 4 following formulas are in L:

• σ (x) → p, • σ (y) → q, • σ (x) → [ q]σ (y), • σ (y) → [ p]σ (x). Since σ (x) → [ qp] k [ q]⊥ ∈ L and σ (y) → [ pq] k [ p]⊥ ∈ L, therefore by Lemma 4.2, σ (x) → p ∧ [ qp] ≤k (σ (x)∧[ q]σ ( y))∧[ qp] k [ q]⊥ ∈ L and σ ( y) → q∧[ pq] ≤k (σ ( y)∧[ p]σ (x))∧[ pq] k [ p]⊥ ∈ L. In other respect, p ∧ [ qp] ≤k (σ (x) ∧ [ q]σ ( y)) ∧ [ qp] k [ q]⊥ → σ (x) ∈ L and q ∧ [ pq] ≤k (σ ( y) ∧ [ p]σ (x)) ∧ [ pq] k [p]⊥ → σ (y) ∈ L. Since σ (σ k (x)) = p ∧ [ qp] ≤k (σ (x) ∧ [ q]σ ( y)) ∧ [ qp] k [ q]⊥ and σ (σ k ( y)) = q ∧ [ pq] ≤k (σ ( y) ∧ [ p]σ (x)) ∧ [ pq] k [ p]⊥, therefore σ (σ k (x)) ↔ σ (x) ∈ L and σ (σ k ( y)) ↔ σ ( y) ∈ L.
Moreover, since for all variables z distinct from x and y, σ (σ k (z)) = σ (z), therefore for all variables z distinct from x and y, σ

(σ k (z)) ↔ σ (z) ∈ L. Thus, σ k • σ ≃ L σ LEMMA 6.6 For all k, l ≥ 0, σ l L σ k iff p∧[ qp] k [ q]⊥ → [ qp] l [ q]⊥ ∈ L and q∧[ pq] k [ p]⊥ → [ pq] l [ p]⊥ ∈ L. PROOF. Let k, l ≥ 0.
(⇒). Suppose σ l L σ k . Hence, by Lemma 6.5,

σ k (x) → [ qp] l [q]⊥ ∈ L and σ k (y) → [ pq] l [p]⊥ ∈ L. Since σ k (x) = p∧[ qp] ≤k (x∧[ q] y)∧[ qp] k [ q]⊥ and σ k ( y) = q∧[ pq] ≤k ( y∧[ p]x)∧ [ pq] k [ p]⊥, therefore p ∧ [ qp] ≤k (x ∧ [ q] y) ∧ [ qp] k [ q]⊥ → [ qp] l [ q]⊥ ∈ L and q ∧ [ pq] ≤k ( y ∧ [ p]x) ∧ [ pq] k [ p]⊥ → [ pq] l [ p]⊥ ∈ L.
Thus, uniformly replacing in each of their occurrences the variables x and y by, respectively, the formulas ⊤ and ⊤, p ∧

[ qp] k [ q]⊥ → [ qp] l [ q]⊥ ∈ L and q ∧ [ pq] k [ p]⊥ → [ pq] l [ p]⊥ ∈ L. (⇐). Suppose p ∧ [ qp] k [ q]⊥ → [ qp] l [ q]⊥ ∈ L and q ∧ [ pq] k [ p]⊥ → [ pq] l [ p]⊥ ∈ L. Hence, p ∧ [ qp] ≤k (x ∧ [ q] y) ∧ [ qp] k [ q]⊥ → [ qp] l [ q]⊥ ∈ L and q ∧ [ pq] ≤k ( y ∧ [ p]x) ∧ [ pq] k [ p]⊥ → [ pq] l [ p]⊥ ∈ L. Since σ k (x) = p ∧ [ qp] ≤k (x ∧ [ q] y) ∧ [ qp] k [ q]⊥ and σ k ( y) = q ∧ [ pq] ≤k ( y ∧ [ p] x) ∧ [ pq] k [ p]⊥, therefore σ k (x) → [ qp] l [q]⊥ ∈ L and σ k ( y) → [ pq] l [ p]⊥ ∈ L. Thus, by Lemma 6.5, σ l L σ k .

Adequate modal logics

Let L be a normal modal logic. In this section, we shall elaborate a sufficient condition for the nullariness of L: the adequacy condition. Before elaborating it, we shall elaborate a weaker condition: the coherence condition. We shall say that L is coherent if for all distinct constants p, q and for all k ≥ 0,

• p ∧ [ qp] k+1 [ q]⊥ → [ qp] k [ q]⊥ ∈ L. LEMMA 7.1 Let n ≥ 1. For all distinct constants p, q, p ∧ [ qp] n+1 [ q]⊥ → [ qp] n [ q]⊥ ∈ K bou n . PROOF.
Left to the reader. LEMMA 7.2 For all distinct constants p, q and for all k ≥ 0, p ∧ [ qp] k+1 [ q]⊥ → [ qp] k [q]⊥ ∈ KT.

PROOF. Let k ≥ 0. Let F = (W , R) be the frame such that W = N and for all s, t ∈ W , sRt iff t = s or t = s + 1. Obviously, F is in C KT . Let M = (W , R, V ) be the model based on F such that V (p) = {2i : i ≥ 0 is such that i ≤ k + 1} and V (q) = {2i + 1 : i ≥ 0 is such that i ≤ k}. Obviously, M, 0 | p ∧ [ qp] k+1 [q]⊥ and M, 0 | [ qp] k [q]⊥. Since KT is sound with respect to C KT and F is in

C KT , therefore p ∧ [ qp] k+1 [q]⊥ → [ qp] k [q]⊥ ∈ KT. LEMMA 7.3
Let n ≥ 1. For all distinct constants p, q and for all k ≥ 0, p ∧ [ qp] k+1 [q]⊥ → [ qp] k [q]⊥ ∈ Alt n . PROOF. Let k ≥ 0. Let F = (W , R) be the frame such that W = N and for all s, t ∈ W , sRt iff t = s + 1. Obviously, F is in C det n . Let M = (W , R, V ) be the model based on F such that V ( p) = {2i : i ≥ 0 is such that i ≤ k + 1} and V (q) = {2i + 1 : i ≥ 0 is such that i ≤ k}. Obviously, M, 0 | p ∧ [ qp] k+1 [q]⊥ and M, 0 | [ qp] k [q]⊥. Since Alt n is sound with respect to C det n and F is in C det n , therefore p ∧ [ qp] k+1 [q]⊥ → [ qp] k [q]⊥ ∈ Alt n . LEMMA 7.4 For all distinct constants p, q and for all k ≥ 0, p ∧ [ qp] k+1 [q]⊥ → [ qp] k [q]⊥ ∈ KB.

PROOF. Left to the reader. LEMMA 7.5 For all distinct constants p, q and for all k ≥ 0, p ∧ [ qp] k+1 [q]⊥ → [ qp] k [q]⊥ ∈ K4.

PROOF. Let k ≥ 0. Let F = (W , R) be the frame such that W = Q and for all s, t ∈ W , sRt iff s < t. Obviously, F is in C K4 . Let M = (W , R, V ) be the model based on F such that V ( p) = {2i : i ≥ 0 is such that i ≤ k + 1} and V (q) = {2i + 1 : i ≥ 0 is such that i ≤ k}. Obviously, M, 0 | p ∧ [ qp] k+1 [q]⊥ and M, 0 | [ qp] k [q]⊥. Since K4 is sound with respect to C K4 and F is in C K4 , therefore p ∧ [ qp] k+1 [q]⊥ → [ qp] k [q]⊥ ∈ K4. 

n

  be the class of all n-bounded frames. Let C K , C KD and C KT be, respectively, the class of all frames, the class of all serial frames and the class of all ref lexive frames. Remark that C KT ⊆ C KD . For all n ≥ 1, let C anc n be the class of all n-ancestral frames. Remark that for all n ≥ 1, C KD ⊆ C anc n . For all n ≥ 1, let C det n be the class of all n-deterministic frames. Let C KB , C KDB and C KTB be, respectively, the class of all symmetric frames, the class of all symmetric serial frames and the class of all symmetric ref lexive frames. Let C K4 be the class of all transitive frames. For all m, n ≥ 1, if (m, n) = (2, 1) then let C n m be the class of all (m, n)-compositional frames.

LEMMA 5. 1

 1 The binary relation ≃ L is ref lexive, symmetric and transitive on the set of all substitutions.

LEMMA 5. 2

 2 The binary relation L is ref lexive and transitive on the set of all substitutions. Moreover, it contains ≃ L .

LEMMA 7. 6

 6 Let m, n ≥ 1. If (m, n) = (2, 1) then for all distinct constants p, q and for all k ≥ 0,p ∧ [ qp] k+1 [q]⊥ → [ qp] k [q]⊥ ∈ K n m . PROOF.Similar to the proof of Lemma 7.5. PROPOSITION 7.7 Let n ≥ 1. If K bou n ⊆ L then L is not coherent. PROOF. By Lemma 7.1. PROPOSITION 7.8 If L ⊆ KT then L is coherent. PROOF. By Lemma 7.2. PROPOSITION 7.9 Let n ≥ 1. If L ⊆ K anc n then L is coherent.

  1) then let K n m be the least normal modal logic containing all formulas of the form ♦ m χ → ♦ n χ. KD and KT are, respectively, sound and complete with respect to C K , C KD and C KT . PROOF. See [8, Chapter 4] for a proof. Alt n is sound and complete with respect to C det n . PROOF. See [9, Chapters 3 and 4] for a proof. PROPOSITION 4.7 KB, KDB and KTB are, respectively, sound and complete with respect to C KB , C KDB and C KTB . For all m, n ≥ 1, if (m, n) = (2, 1) then K n m is sound and complete with respect to C n m . PROOF. See [10, Chapter 3] for a proof.

	PROPOSITION 4.3 For all n ≥ 1, K bou n PROOF. Let n ≥ 1. It is evident that the canonical frame for K bou is sound and complete with respect to C bou n . n follows from the standard canonical model construction in normal modal logics as developed in [8, is in C bou n . Hence, the result Chapter 4]. PROPOSITION 4.4 For all n ≥ 1, K anc n is sound and complete with respect to C anc n . PROOF. Let n ≥ 1. It is evident that the canonical frame for K anc n is in C anc n . Hence, the result follows from the standard canonical model construction in normal modal logics as developed in [8, Chapter 4]. PROPOSITION 4.6 For all n ≥ 1, PROOF. See [8, Chapter 4] for a proof. PROPOSITION 4.8 K4 is sound and complete with respect to C K4 . PROOF. See [8, Chapter 4] for a proof. K, PROPOSITION 4.5 PROPOSITION 4.9
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PROOF. By Lemma 7.6. Now, we are ready to elaborate the adequacy condition. We shall say that L is adequate if L is coherent and for all formulas ϕ, ψ, for all distinct constants p, q and for all k ≥ 0, if deg(ϕ) ≤ 2k then PROOF. By Proposition 7.8, it suffices to prove that for all formulas ϕ, ψ, for all distinct constants p, q and for all k ≥ 0, if deg(ϕ) ≤ 2k then

Let ϕ, ψ be formulas and k ≥ 0 be such that deg(ϕ) ≤ 2k.

Suppose ϕ → [ qp] k [q]⊥ ∈ K and p → ϕ ∈ K. Since K is complete with respect to C K , therefore let F = (W , R) be a frame in

) be the unravelling of M around s. In particular, (s), (s, t 1 ), (s, t 1 , u 1 ), . . ., (s, t 1 , u 1 , . . . , t k ), (s, t 1 , u 1 , . . . , t k , u k ) and (s,

). The reader may easily verify that for all (s 0 , . . . , s n ) ∈ W s and for all formulas χ, if

The reader may easily verify that for all (s 0 , . . . , s n ) ∈ W s and for all formulas χ , if deg(χ

The reader may also easily verify that for all t ′ ∈ W ′ and for all formulas χ,

In particular, (s), (s, t 1 ), (s, t 1 , u 1 ), . . ., (s, t 1 , u 1 , . . . , t k ) and (s,

The reader may easily verify that for all (s 0 , . . . , s n ) ∈ W s and for all formulas χ , if deg(χ

The reader may easily verify that for all (s 0 , . . . , s n ) ∈ W s and for all formulas χ , if deg(χ

The reader may also easily verify that for all t ′ ∈ W ′ and for all formulas χ,

The normal modal logic KD is adequate.

PROOF. Similar to the proof of Proposition 7.15, seeing that the unravelling of M around s is serial when M is serial. PROPOSITION 7.17 The normal modal logic KT is adequate.

PROOF. Similar to the proof of Proposition 7.15, defining this time, in order to ensure that M ′′ is in C KT , M s = (W s , R s , V s ) to be the ref lexive closure of the unravelling of M around s. Note that this ref lexive closure is obtained by forcing each possible world to be related to itself. PROPOSITION 7.18 Let n ≥ 1. The normal modal logic K anc n is not adequate.

PROOF. Suppose the normal modal logic

n : a contradiction. In the latter case, q → ♦⊤ ∈ K anc n . Let F be the frame consisting of a single irref lexive element. Obviously, m is adequate. PROOF. Suppose m ≤ n. Hence, (m, n) = (2, 1) and by Proposition 7.13, it suffices to prove that for all formulas ϕ, ψ, for all distinct constants p, q and for all k ≥ 0, if deg(ϕ) ≤ 2k then

We will consider the case when 'm = 1 and n = 2', the reader being invited to adapt the following line of reasoning to the other cases. Remark that K 2 1 is the least normal modal logic containing all formulas of the form ♦χ → ♦♦χ . As well, remark that C 2 1 is the class of all dense frames, i.e. those frames F = (W , R) such that for all s, t ∈ W , if sRt then there exists u ∈ W such that sRu and uRt. Let ϕ, ψ be formulas and k ≥ 0 be such that deg(ϕ

Let M s = (W s , R s , V s ) be the dense closure of the unravelling of M around s. Note that this dense closure is obtained as the limit of the process consisting in adding an intermediate possible world between any two related possible worlds. In particular, (s), (s, t 1 ), (s, t 1 , u 1 ), . . ., (s, t 1 , u 1 , . . . , t k ), (s, t 1 , u 1 , . . . , t k , u k ) and (s,

). The reader may easily verify that for all (s 0 , . . . , s n ) ∈ W s and for all formulas χ, if deg(χ

The reader may easily verify that for all (s 0 , . . . , s n ) ∈ W s and for all formulas χ , if deg(χ

The reader may also easily verify that for all t ′ ∈ W ′ and for all formulas χ,

Let t 1 , . . . , t k ∈ V (q) and u 1 , . . . , u k ∈ V (p) be such that sRt 1 Ru 1 . . . Rt k Ru k . Let M s = (W s , R s , V s ) be the dense closure of the unravelling of M around s. In particular, (s), (s, t 1 ), (s, t 1 , u 1 ), . . ., (s, t 1 , u 1 , . . . , t k ) and (s, t 1 , u 1 , . . . , t k , u k ) are in W s . Moreover, (s)R s (s, t 1 )R s (s, t 1 , u 1 ) . . . R s (s, t 1 , u 1 , . . . , t k )R s (s, t 1 , u 1 , . . . , t k , u k ). The reader may easily verify that for all (s 0 , . . . , s n ) ∈ W s and for all formulas χ , if deg(χ

The reader may easily verify that for all (s 0 , . . . , s n ) ∈ W s and for all formulas χ , if deg(χ

The reader may also easily verify that for all t ′ ∈ W ′ and for all formulas χ, 

Unification in adequate normal modal logics

Let L be a normal modal logic. In this section, we shall prove that if L is adequate then L is nullary. Let ϕ be the formula considered in Section 6. Let σ ⊥ , σ ⊤ and for all k ≥ 0, σ k be the substitutions considered in Section 6. Remind that σ ⊥ , σ ⊤ and for all k ≥ 0, σ k are L-unifiers of ϕ.

Case 'σ (y) ↔ q ∈ L and σ ( y)

If L is adequate then there exists no L-minimal L-complete set of L-unifiers of ϕ.

PROOF. Suppose L is adequate and there exists an L-minimal L-complete set of L-unifiers of ϕ. Let Σ be an L-minimal L-complete set of L-unifiers of ϕ. By the fact that Σ is an L-complete set of L-unifiers of ϕ, let σ ∈ Σ be such that σ L σ ⊥ . Let k ≥ 0 be such that deg(σ (x)) ≤ 2k and deg(σ (y)) ≤ 2k. Since L is adequate and σ ∈ Σ, therefore by Lemma 8.1 and the fact that Σ is a set of L-unifiers of ϕ, σ ⊤ L σ or σ k L σ .

Case 'σ ⊤ L σ '. Since σ L σ ⊥ , therefore by Lemma 5.2, σ ⊤ L σ ⊥ . Let τ be a substitution such that σ ⊤ • τ ≃ L σ ⊥ . Hence, τ (σ ⊤ (x)) ↔ σ ⊥ (x) ∈ L and τ (σ ⊤ ( y)) ↔ σ ⊥ ( y) ∈ L. Since τ (σ ⊤ (x)) = p, σ ⊥ (x) = ⊥, τ (σ ⊤ ( y)) = q and σ ⊥ ( y) = ⊥, therefore p ↔ ⊥ ∈ L and q ↔ ⊥ ∈ L. Thus, ¬p ∧ ¬q ∈ L. Consequently, ⊥ ∈ L. Hence, L is not coherent. Thus, L is not adequate: a contradiction.

Case 'σ k L σ '. By the fact that Σ is an L-complete set of L-unifiers of ϕ, let τ ∈ Σ be such that τ k+1 [ p]⊥ ∈ L. Thus, by Lemma 6.6, σ k+1 L σ k . Since σ k L σ and τ L σ k+1 , therefore by Lemma 5.2, τ L σ . Since σ , τ ∈ Σ, therefore by the fact that Σ is an L-minimal set of substitutions, τ ≃ L σ . Since σ k L σ and τ L σ k+1 , therefore by Lemmas 5.1 and 5.2, σ k L σ k+1 . Consequently, by Lemma 6.6, p ∧ 

Conclusion and open problems

In this paper, we have proved that unification in a normal modal logic L is of nullary type when L is adequate. Remark that in order to present our proof above, we had to assume that the language of modal logic contains at least two distinct variables and two distinct constants. Note that the nullariness of K has been proved by Jeȓàbek [START_REF] Jeȓàbek | Blending margins: the modal logic K has nullary unification type[END_REF] who only assumed that the language contains at least one variable. This shows that K is nullary both for unification with constants and for elementary unification. As well, note that the nullariness of KD has been proved by Balbiani and Gencer [START_REF] Balbiani | KD is nullary[END_REF] who only assumed that the language contains at least one variable and one constant. This only shows that KD is nullary for unification with constants. As for the nullariness of Alt 1 , it has also been proved by Balbiani and Tinchev [START_REF] Balbiani | Unification in modal logic Alt 1[END_REF] who only assumed that the language contains at least one variable. This shows that Alt 1 is nullary both for unification with constants and for elementary unification. As mentioned in Section 5, the proof given in [START_REF] Balbiani | Unification in modal logic Alt 1[END_REF] that Alt 1 is nullary can be easily adapted for all n ≥ 2 to a proof that Alt n is nullary. Much remains to be done. See Tables 1 and2 for known facts and open problems in the determination of the type of unification with constants and the type of elementary unification in some of the most popular normal modal logics.