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We devote this paper to the axiomatization and the computability of PDL1, a variant of iteration-free PDL with 
fork. Concerning the axiomatization, our results are based on the following: although the program operation of 
fork is not modally definable in the ordinary language of PDL, it becomes definable in a modal language 
strengthened by the introduction of propositional quantifiers. Instead of using axioms to define the program 
operation of fork in the language of PDL enlarged with propositional quantifiers, we add an unorthodox rule of 
proof that makes the canonical model standard for the program operation of fork and we use large programs 
for the proof of the Truth Lemma. Concerning the computability, we prove by a selection procedure that PDL1 

has a strong finite property, hence is decidable.

1. Introduction

Propositional dynamic logic (PDL) is an applied non-classical logic designed for reasoning about the behavior of pro-
grams [10]. The definition of its syntax is based on the idea of associating with each program α of some programming 
language the modal operator [α], formulas of the form [α]φ being read “every execution of the program α from the present 
state leads to a state bearing the formula φ”. Completeness and complexity results for the standard version of PDL in which 
programs are built up from program variables and tests by means of the operations of composition, union and iteration 
are given in [15,16]. A number of interesting variants have been obtained by extending or restricting the syntax or the 
semantics of PDL in different ways [7,9,14,19].

Some of these variants extend the ordinary semantics of PDL by considering sets W of states structured by means of 
a function ⋆ from the set of all pairs of states into the set of all states [5,11–13]: the state x is the result of applying the 
function ⋆ to the states y, z iff the information concerning x can be separated in a first part concerning y and a second part 
concerning z. The binary function ⋆ considered in [5,11] has its origin in the addition of an extra binary operation of fork 
denoted ∇ in relation algebras: in [5, Section 2], whenever x and y are related via R and z and t are related via S , states 
in x ⋆ z and states in y ⋆ t are related via R∇ S whereas in [11, Chapter 1], whenever x and y are related via R and x and z
are related via S , x and states in y ⋆ z are related via R∇ S .

This addition of fork in relation algebras gives rise to a variant of PDL which includes the program operation of fork 
denoted 1. In this variant, for all programs α and β , one can use the modal operator [α1β], formulas of the form [α1β]φ

being read “every execution in parallel of the programs α and β from the present state leads to a state bearing the formula 
φ”. The binary operation of fork ∇ considered in Benevides et al. [5, Section 2] gives rise to PRSPDL, a variant of PDL with 
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fork whose axiomatization has been given in [2]. In this paper, we attack the problem of axiomatizing and deciding PDL1
0 , 

a variant of iteration-free PDL with fork whose semantics is based on the interpretation of the binary operation of fork ∇
considered in Frias [11, Chapter 1].

The difficulty in axiomatizing PRSPDL or PDL1
0 originates in the fact that the program operations of fork considered 

above are not modally definable in the ordinary language of PDL. We overcome this difficulty by means of tools and 
techniques developed in [1,3,4]. Our results are based on the following: although fork is not modally definable, it becomes 
definable in a modal language strengthened by the introduction of propositional quantifiers. Instead of using axioms to 
define the program operation of fork in the language of PDL enlarged with propositional quantifiers, we add an unorthodox 
rule of proof that makes the canonical model standard for the program operation of fork and we use large programs for the 
proof of the Truth Lemma.

The difficulty in deciding PRSPDL or PDL1
0 originates in the semantics of the fork. For instance, in a tableau method, 

some successors of the current state must be considered together, because they will later be composed by the binary 
function ⋆. Moreover, in PDL1

0 , an additional layer of complexity arises by the fact that the binary modalities ◦, ⊲ and ⊳
are somehow the inverses of each other. To overcome all these difficulties, we prove a strong finite model property using 
a selection procedure which, given a pointed model satisfying a formula, selects the states needed by the formula to be 
satisfied. We prove that this procedure terminates in a computable deterministic time.

We will first present the syntax (Section 2) and the semantics (Section 3) of PDL1
0 and continue with results concerning 

the expressivity of PDL1
0 (Section 4), the axiomatization/completeness of PDL1

0 (Sections 5 and 6) and the decidability/com-

plexity of PDL1
0 (Section 7). We assume the reader is at home with tools and techniques in modal logic and dynamic logic. 

For more on this, see [6,15]. The proofs of some of our results can be found in the Annex.

2. Syntax

This section presents the syntax of PDL1
0 . As usual, we will follow the standard rules for omission of the parentheses.

Definition. The set PRG of all programs and the set FRM of all formulas are inductively defined as follows:

• α, β ::= a | (α; β) | (α1β) | φ?;
• φ, ψ ::= p | ⊥ | ¬φ | (φ ∨ ψ) | [α]φ | (φ ◦ ψ) | (φ ⊲ ψ) | (φ ⊳ ψ);

where a ranges over a countably infinite set of program variables and p ranges over a countably infinite set of propositional 
variables.

We will use α, β, . . . for programs and φ, ψ, . . . for formulas. The other Boolean constructs for formulas are defined as 
usual. A number of other modal constructs for formulas can be defined in terms of the primitive ones as follows.

Definition. The modal constructs for formulas 〈·〉·, (·◦̄·), (·⊲̄·) and (·⊳̄·) are defined as follows: 〈α〉φ ::= ¬[α]¬φ; (φ◦̄ψ) ::=
¬(¬φ ◦ ¬ψ); (φ⊲̄ψ) ::= ¬(¬φ ⊲ ¬ψ); (φ⊳̄ψ) ::= ¬(¬φ ⊳ ¬ψ). Moreover, for all formulas φ, let φ0 ::= ¬φ and φ1 ::= φ.

It is well worth noting that programs and formulas are finite strings of symbols coming from a countable alphabet. It 
follows that there are countably many programs and countably many formulas. The construct ·; · comes from the class of 
algebras of binary relations [20]: the program α; β firstly executes α and secondly executes β . As for the construct ·1·, it 
comes from the class of proper fork algebras [11, Chapter 1]: the program α1β performs a kind of parallel execution of α
and β . The construct [·]· comes from the language of PDL [10,15]: the formula [α]φ says that “every execution of α from 
the present state leads to a state bearing the information φ”. As for the constructs · ◦ ·, · ⊲ · and · ⊳ ·, they come from the 
language of conjugated arrow logic [8,18]: the formula φ ◦ ψ says that “the present state is a combination of states bearing 
the information φ and ψ”, the formula φ ⊲ ψ says that “the present state can be combined to its left with a state bearing 
the information φ giving us a state bearing the information ψ” and the formula φ ⊳ ψ says that “the present state can be 
combined to its right with a state bearing the information ψ giving us a state bearing the information φ”.

Example. The formula [a1b](p ◦ q) says that “the parallel execution of a and b from the present state always leads to a 
state resulting from the combination of states bearing the information p and q”.

Obviously, programs are built up from program variables and tests by means of the constructs ·; · and ·1·. Let 
α(φ1?, . . . , φn?) be a program with (φ1?, . . . , φn?) a sequence of some of its tests. The result of the replacement of 
φ1?, . . . , φn? in their places with other tests ψ1?, . . . , ψn? is another program which will be denoted α(ψ1?, . . . , ψn?). Now, 
we introduce the function f from the set of all programs into itself defined as follows.

Definition. Let f be the function from the set of all programs into itself inductively defined as follows:



• f (a) = a;

• f (α; β) = f (α); ⊤?; f (β);

• f (α1β) = ( f (α); ⊤?)1( f (β); ⊤?);

• f (φ?) = φ?.

Example. If α = a1b, f (α) = (a; ⊤?)1(b; ⊤?).

The function f will be used later in our axiomatization and in our completeness proof of PDL1
0 . Now, we introduce 

parametrized actions and admissible forms.

Definition. The set of all parametrized actions and the set of all admissible forms are inductively defined as follows:

• ᾰ, β̆ ::= (ᾰ; β) | (α; β̆) | (ᾰ1β) | (α1β̆) | ¬φ̆?;

• φ̆, ψ̆ ::= ♯ | [ᾰ]⊥ | (φ̆◦̄ψ) | (φ◦̄ψ̆) | (φ̆⊲̄ψ) | (φ⊲̄ψ̆) | (φ̆⊳̄ψ) | (φ⊳̄ψ̆);

where ♯ is a new propositional variable, α, β range over PRG and φ, ψ range over FRM.

We will use ᾰ, β̆, . . . for parametrized actions and φ̆, ψ̆, . . . for admissible forms. It is well worth noting that 
parametrized actions and admissible forms are finite strings of symbols coming from a countable alphabet. It follows that 
there are countably many parametrized actions and countably many admissible forms. Remark that in each parametrized 
action ᾰ, ♯ has a unique occurrence. The result of the replacement of ♯ in its place in ᾰ with a formula ψ is a program 
which will be denoted ᾰ(ψ). As well, remark that in each admissible form φ̆ , ♯ has a unique occurrence. The result of the 
replacement of ♯ in its place in φ̆ with a formula ψ is a formula which will be denoted φ̆(ψ).

Example. For all programs α, α; ¬[¬♯?]⊥? is a parametrized action whereas for all formulas φ, φ◦̄[¬♯?]⊥ is an admissible 
form. The result of the replacement of ♯ in its place in α; ¬[¬♯?]⊥? with a formula ψ is the program α; ¬[¬ψ?]⊥?. The 
result of the replacement of ♯ in its place in φ◦̄[¬♯?]⊥ with a formula ψ is the formula φ◦̄[¬ψ?]⊥.

3. Semantics

Our task is now to present the semantics of PDL1
0 .

Definition. A frame is a 3-tuple F = (W , R, ⋆) where W is a nonempty set of states, R is a function from the set of all 
program variables into the set of all binary relations between states and ⋆ is a function from the set of all pairs of states 
into the set of all sets of states.

We will use x, y, . . . for states. The set W of states in a frame F = (W , R, ⋆) is to be regarded as the set of all possible 
states in a computation process. The function R from the set of all program variables into the set of all binary relations 
between states associates with each program variable a the binary relation R(a) on W with xR(a)y meaning that “y can be 
reached from x by performing program variable a”. The function ⋆ from the set of all pairs of states into the set of all sets 
of states associates with each pair (x, y) of states the subset x ⋆ y of W with z ∈ x ⋆ y meaning that “z is a combination of 
x and y”.

Definition. A model on the frame F = (W , R, ⋆) is a 4-tuple M = (W , R, ⋆, V ) where V is a valuation on F , i.e. a function 
from the set of all propositional variables into the set of all sets of states.

In the model M = (W , R, ⋆, V ), the valuation V associates with each propositional variable p the subset V (p) of W
with x ∈ V (p) meaning that “propositional variable p is true at state x in M”. We now define the property “state y can be 
reached from state x by performing program α in M” — in symbols xRM(α)y — and the property “formula φ is true at 
state x in M” — in symbols x ∈ VM(φ).

Definition. In model M = (W , R, ⋆, V ), RM : α 7→ RM(α) ⊆ W × W and VM : φ 7→ VM(φ) ⊆ W are inductively defined 
as follows:

• xRM(a)y iff xR(a)y;

• xRM(α; β)y iff there exists z ∈ W such that xRM(α)z and zRM(β)y;

• xRM(α1β)y iff there exists z, t ∈ W such that xRM(α)z, xRM(β)t and y ∈ z ⋆ t;

• xRM(φ?)y iff x = y and y ∈ VM(φ);

• x ∈ VM(p) iff x ∈ V (p);



• x /∈ VM(⊥);

• x ∈ VM(¬φ) iff x /∈ VM(φ);

• x ∈ VM(φ ∨ ψ) iff either x ∈ VM(φ), or x ∈ VM(ψ);

• x ∈ VM([α]φ) iff for all y ∈ W , if xRM(α)y, y ∈ VM(φ);

• x ∈ VM(φ ◦ ψ) iff there exists y, z ∈ W such that x ∈ y ⋆ z, y ∈ VM(φ) and z ∈ VM(ψ);

• x ∈ VM(φ ⊲ ψ) iff there exists y, z ∈ W such that z ∈ y ⋆ x, y ∈ VM(φ) and z ∈ VM(ψ);

• x ∈ VM(φ ⊳ ψ) iff there exists y, z ∈ W such that y ∈ x ⋆ z, y ∈ VM(φ) and z ∈ VM(ψ).

It follows that

Proposition 1. Let M = (W , R, ⋆, V ) be a model. For all x ∈ W , we have: x ∈ VM(〈α〉φ) iff there exists y ∈ W such that xRM(α)y

and y ∈ VM(φ); x ∈ VM(φ◦̄ψ) iff for all y, z ∈ W , if x ∈ y ⋆ z, either y ∈ VM(φ), or z ∈ VM(ψ); x ∈ VM(φ⊲̄ψ) iff for all y, z ∈ W , 
if z ∈ y ⋆ x, either y ∈ VM(φ), or z ∈ VM(ψ); x ∈ VM(φ⊳̄ψ) iff for all y, z ∈ W , if y ∈ x ⋆ z, either y ∈ VM(φ), or z ∈ VM(ψ).

Example. Let M = (W , R, ⋆, V ) be the model defined by:

• W = {x, y, z, t};
• R(a) = {(x, y)}, R(b) = {(x, z)}, otherwise R is the empty function;
• y ⋆ z = {t}, otherwise ⋆ is the empty function;
• V (p) = {y}, V (q) = {z}, otherwise V is the empty function.

Obviously, xRM(a1b)t and t ∈ VM(p ◦ q). Hence, x ∈ VM(〈a1b〉(p ◦ q)).

We now define the property “state z can be reached from state x by performing parametrized action ᾰ via state y in 
M” — in symbols xR̆M(ᾰ, y)z — and the property “admissible form φ̆ is true at state x via state y in M” — in symbols 
x ∈ V̆M(φ̆, y).

Definition. In model M = (W , R, ⋆, V ), R̆M : (ᾰ, y) 7→ R̆M(ᾰ, y) ⊆ W × W and V̆M : (φ̆, y) 7→ V̆M(φ̆, y) ⊆ W are 
inductively defined as follows:

• xR̆M(ᾰ; β, y)z iff there exists t ∈ W such that xR̆M(ᾰ, y)t and tRM(β)z;

• xR̆M(α; β̆, y)z iff there exists t ∈ W such that xRM(α)t and t R̆M(β̆, y)z;
• xR̆M(ᾰ1β, y)z iff there exists t, u ∈ W such that xR̆M(ᾰ, y)t , xRM(β)u and z ∈ t ⋆ u;

• xR̆M(α1β̆, y)z iff there exists t, u ∈ W such that xRM(α)t , xR̆M(β̆, y)u and z ∈ t ⋆ u;

• xR̆M(¬φ̆?, y)z iff x = z and z ∈ V̆M(φ̆, y);
• x ∈ V̆M(♯, y) iff x = y;

• x ∈ V̆M([ᾰ]⊥, y) iff there exists z ∈ W such that xR̆M(ᾰ, y)z;
• x ∈ V̆M(φ̆◦̄ψ, y) iff there exists z, t ∈ W such that x ∈ z ⋆ t , z ∈ V̆M(φ̆, y) and t /∈ VM(ψ);

• x ∈ V̆M(φ◦̄ψ̆, y) iff there exists z, t ∈ W such that x ∈ z ⋆ t , z /∈ VM(φ) and t ∈ V̆M(ψ̆, y);
• x ∈ V̆M(φ̆⊲̄ψ, y) iff there exists z, t ∈ W such that t ∈ z ⋆ x, z ∈ V̆M(φ̆, y) and t /∈ VM(ψ);

• x ∈ V̆M(φ⊲̄ψ̆, y) iff there exists z, t ∈ W such that t ∈ z ⋆ x, z /∈ VM(φ) and t ∈ V̆M(ψ̆, y);
• x ∈ V̆M(φ̆⊳̄ψ, y) iff there exists z, t ∈ W such that z ∈ x ⋆ t , z ∈ V̆M(φ̆, y) and t /∈ VM(ψ);

• x ∈ V̆M(φ⊳̄ψ̆, y) iff there exists z, t ∈ W such that z ∈ x ⋆ t , z /∈ VM(φ) and t ∈ V̆M(ψ̆, y).

It follows that

Proposition 2. Let M = (W , R, ⋆, V ) be a model. Let ψ be a formula. Let ᾰ be a parametrized action. For all x, z ∈ W , the following 
conditions are equivalent: xRM(ᾰ(ψ))z; there exists y ∈ W such that xRM(ᾰ, y)z and y /∈ VM(ψ). Let φ̆ be an admissible form. 
For all x ∈ W , the following conditions are equivalent: x ∈ VM(φ̆(ψ)); for all y ∈ W , if x ∈ VM(φ̆, y), y ∈ VM(ψ).

The concept of validity is defined in the usual way as follows.

Definition. We shall say that a formula φ is valid in a model M, in symbols M |= φ, iff VM(φ) = W . A formula φ is said 
to be valid in a frame F , in symbols F |= φ, iff for all models M on F , M |= φ. We shall say that a formula φ is valid in 
a class C of frames, in symbols C |= φ, iff for all frames F in C , F |= φ.

For technical reasons, we now consider three particular classes of frames.



Definition. A frame F = (W , R, ⋆) is said to be separated iff for all x, y, z, t, u ∈ W , if u ∈ x ⋆ y and u ∈ z ⋆ t , x = z and y = t . 
We shall say that a frame F = (W , R, ⋆) is deterministic iff for all x, y, z, t ∈ W , if z ∈ x ⋆ y and t ∈ x ⋆ y, z = t . A frame 
F = (W , R, ⋆) is said to be serial iff for all x, y ∈ W , there exists z ∈ W such that z ∈ x ⋆ y.

In separated frames, there is at most one way to decompose a given state; in deterministic frames, there is at most one 
way to combine two given states; in serial frames, it is always possible to combine two given states. Frias [11, Chapter 1]

only considers separated, deterministic and serial frames. Here are some valid formulas and admissible rules of proof.

Proposition 3 (Validity). The following formulas are valid in the class of all frames:

(A1) [α](φ → ψ) → ([α]φ → [α]ψ);

(A2) 〈α; β〉φ ↔ 〈α〉〈β〉φ;

(A3) 〈α1β〉φ → 〈α〉((φ ∧ ψ) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (φ ∧ ¬ψ));

(A4) 〈φ?〉ψ ↔ φ ∧ ψ ;

(A5) (φ → ψ)◦̄χ → (φ◦̄χ → ψ ◦̄χ);

(A6) φ◦̄(ψ → χ) → (φ◦̄ψ → φ◦̄χ);

(A7) (φ → ψ)⊲̄χ → (φ⊲̄χ → ψ ⊲̄χ);

(A8) φ⊲̄(ψ → χ) → (φ⊲̄ψ → φ⊲̄χ);

(A9) (φ → ψ)⊳̄χ → (φ⊳̄χ → ψ ⊳̄χ);

(A10) φ⊳̄(ψ → χ) → (φ⊳̄ψ → φ⊳̄χ);

(A11) φ ◦ ¬(φ ⊲ ¬ψ) → ψ ;

(A12) φ ⊲ ¬(φ ◦ ¬ψ) → ψ ;

(A13) ¬(¬φ ⊳ ψ) ◦ ψ → φ;

(A14) ¬(¬φ ◦ ψ) ⊳ ψ → φ;

(A15) [(α; φ?)1(β; ψ?)](φ ◦ ψ);

(A16) 〈α(φ?)〉ψ → 〈α((φ ∧ χ)?)〉ψ ∨ 〈α((φ ∧ ¬χ)?)〉ψ ;

(A17) 〈 f (α)〉φ ↔ 〈α〉φ .

Proposition 4 (Validity). The following formula is valid in the class of all separated frames:

(A18) p ◦ q → (p◦̄⊥) ∧ (⊥◦̄q).

Proposition 5 (Admissibility). The following rules of proof preserve validity in the class of all frames:

(MP) from φ and φ → ψ , infer ψ ;

(N) from φ , infer [α]φ; from φ , infer φ◦̄ψ ; from φ , infer ψ ◦̄φ .

(A1) is the distribution axiom of PDL, (A2) is the composition axiom, (A4) is the test axiom, (A5)–(A10) are the dis-
tribution axioms of conjugated arrow logic and (A11)–(A14) are the tense axioms of conjugated arrow logic whereas (A3)
and (A15)–(A18) are axioms concerning specific properties of the program operation of fork or the constructs · ◦ ·, · ⊲ · and 
· ⊳ ·. (MP) is the modus ponens rule of proof and (N) is the necessitation rule of proof. They are probably familiar to the
reader. As for the following rule of proof, it concerns specific properties of the program operation of fork and the constructs
· ⊲ · and · ⊳ ·.

Proposition 6 (Admissibility). The following rule of proof preserves validity in the class of all separated frames:

(FOR) from {φ̆(〈α〉((ψ ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (ψ ∧ ¬p))) : p is a propositional variable}, infer φ̆(〈α1β〉ψ).

Proof. Suppose that for all propositional variables p, φ̆(〈α〉((ψ ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (ψ ∧ ¬p))) is valid in the class of all 
separated frames. Suppose φ̆(〈α1β〉ψ) is not valid in the class of all separated frames. Hence, there exists a separated model 
M = (W , R, ⋆, V ) and there exists x ∈ W such that x /∈ VM(φ̆(〈α1β〉ψ)). By Proposition 2, there exists y ∈ W such that 
x ∈ V̆M(φ̆, y) and y /∈ VM(〈α1β〉ψ). Let p be a propositional variable not occurring in φ̆, α, β, ψ and V ′ : q 7→ V ′(q) ⊆
W be such that V ′ ∼p V and V ′(p) = {z: there exists t, u ∈ W such that yRM(β)u and z ∈ t ⋆ u}. Since x ∈ V̆M(φ̆, y), 
x ∈ V̆ (W ,R,⋆,V ′)(φ̆, y). Since for all propositional variables p, φ̆(〈α〉((ψ ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (ψ ∧ ¬p))) is valid in the class of 
all separated frames and M is separated, x ∈ V (W ,R,⋆,V ′)(φ̆(〈α〉((ψ ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (ψ ∧ ¬p)))). By Proposition 2, since 
x ∈ V̆ (W ,R,⋆,V ′)(φ̆, y), y ∈ V (W ,R,⋆,V ′)(〈α〉((ψ ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (ψ ∧ ¬p))). Thus, either y ∈ V (W ,R,⋆,V ′)(〈α〉((ψ ∧ p) ⊳ ⊤)), 
or y ∈ V (W ,R,⋆,V ′)(〈β〉(⊤ ⊲ (ψ ∧ ¬p))).

Case y ∈ V (W ,R,⋆,V ′)(〈α〉((ψ ∧ p) ⊳ ⊤)). Hence, there exists z ∈ W such that yR(W ,R,⋆,V ′)(α)z and z ∈ V (W ,R,⋆,V ′)((ψ ∧

p) ⊳ ⊤). Thus, there exists t, u ∈ W such that t ∈ z ⋆ u and t ∈ V (W ,R,⋆,V ′)(ψ ∧ p). Therefore, t ∈ V (W ,R,⋆,V ′)(ψ) and there



exists v, w ∈ W such that yRM(β)w and t ∈ v ⋆ w . Since t ∈ z ⋆u and M is separated, w = u. Since yRM(β)w , yRM(β)u. 
Since p does not occur in α, V ′ ∼p V and yR(W ,R,⋆,V ′)(α)z, yRM(α)z. Since yRM(β)u and t ∈ z ⋆ u, yRM(α1β)t . Since p
does not occur in ψ , V ′ ∼p V and t ∈ V (W ,R,⋆,V ′)(ψ), t ∈ VM(ψ). Since yRM(α1β)t , y ∈ VM(〈α1β〉ψ): a contradiction.

Case y ∈ V (W ,R,⋆,V ′)(〈β〉(⊤ ⊲(ψ ∧¬p))). Hence, there exists z ∈ W such that yR(W ,R,⋆,V ′)(β)z and z ∈ V (W ,R,⋆,V ′)(⊤ ⊲(ψ ∧

¬p)). Thus, there exists t, u ∈ W such that u ∈ t ⋆ z and u ∈ V (W ,R,⋆,V ′)(ψ ∧ ¬p). Therefore, for all v, w ∈ W , if yRM(β)w , 
u /∈ v ⋆ w . Since u ∈ t ⋆ z, not yRM(β)z. Since p does not occur in β and V ′ ∼p V , not yR(W ,R,⋆,V ′)(β)z: a contradiction. ⊣

There is an important point we should make: (FOR) is an infinitary rule of proof, i.e. it has an infinite set of formulas as
preconditions. In some ways, it is similar to the rule for intersection from [3,4].

4. Expressivity

This section studies the expressivity of PDL1
0 .

Definition. Let C be a class of frames. We shall say that C is modally definable by the formula φ iff for all frames F , F is 
in C iff F |= φ.

The following propositions show elementary classes of frames that are modally definable.

Proposition 7. The elementary classes of frames defined by the first-order sentences in the hereunder table are modally definable by 
the associated formulas.

1. ∀x ∃y y ∈ x ⋆ x 〈⊤?1⊤?〉⊤

2. ∀x ∀y ∀z (y ∈ x ⋆ x∧ z ∈ x ⋆ x → y = z) 〈⊤?1⊤?〉p → [⊤?1⊤?]p

3. ∀x ∀y (y ∈ x ⋆ x → x ∈ x ⋆ y) p → [⊤?1⊤?](p ⊲ p)

4. ∀x ∀y (y ∈ x ⋆ x → x ∈ y ⋆ x) p → [⊤?1⊤?](p ⊳ p)

5. ∀x ∀y ∀z (z ∈ x ⋆ y ↔ z ∈ y ⋆ x) p ◦ q ↔ q ◦ p

6. ∀x ∃y ∃z x ∈ y ⋆ z ⊤ ◦ ⊤

7. ∀x ∃y ∃z y ∈ z ⋆ x ⊤ ⊲ ⊤

8. ∀x ∃y ∃z z ∈ x ⋆ y ⊤ ⊳ ⊤

9. ∀x ∀y ∀z ∀t (t ∈ (x ⋆ y) ⋆ z ↔ t ∈ x ⋆ (y ⋆ z)) (p ◦ q) ◦ r ↔ p ◦ (q ◦ r)

10. ∀x ∀y ∀z x /∈ y ⋆ z ⊥◦̄⊥

Proposition 8. The class of all separated frames is modally definable by the formula p ◦ q → (p◦̄⊥) ∧ (⊥◦̄q).

The following proposition shows an elementary class of frames that is not modally definable.

Proposition 9. The class of all deterministic frames is not modally definable.

As for the class of all serial frames,

Proposition 10. The class of all serial frames is not modally definable.

In other respect, the formula 〈φ?〉ψ ↔ φ∧ψ , being valid in the class of all frames, seems to indicate that for all formulas, 
there exists an equivalent test-free formula. It is interesting to observe that this assertion is false.

Proposition 11. For all test-free formulas φ , 〈⊤?1⊤?〉⊤ ↔ φ is not valid in the class of all separated deterministic frames.

The following proposition illustrates the fact that the program operation of fork cannot be defined from the fork-free 
fragment of the language.

Proposition 12. Let a be a program variable. For all fork-free formulas φ , 〈a1a〉⊤ ↔ φ is not valid in the class of all separated 
deterministic frames.



The following proposition illustrates the fact that, in the presence of propositional quantifiers, the program operation of 
fork becomes definable from the fork-free fragment of the language in the class of all separated frames.

Proposition 13. Let M = (W , R, ⋆, V ) be a separated model and x ∈ W . For all admissible forms φ̆, for all programs α, β , for all 
formulas ψ and for all propositional variables p, if p does not occur in φ̆, α, β, ψ , the following conditions are equivalent: (1) x ∈
VM(φ̆(〈α1β〉ψ)); (2) for all V ′ : q 7→ V ′(q) ⊆ W , if V ′ ∼p V , x ∈ V (W ,R,⋆,V ′)(φ̆(〈α〉((ψ ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (ψ ∧ ¬p)))).

Proof. (1) → (2). By Proposition 2. Left to the reader.
(2) → (1). Similar to the proof of Proposition 6. ⊣

More precisely, in the presence of propositional quantifiers, the formulas 〈α1β〉φ and ∀p(〈α〉((φ ∧ p) ⊳⊤) ∨〈β〉(⊤ ⊲ (φ ∧

¬p))) are logically equivalent in the class of all separated frames. The implication 〈α1β〉φ → ∀p(〈α〉((φ ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲
(φ∧¬p))) can be expressed without propositional quantifiers by formulas: 〈α1β〉φ → 〈α〉((φ∧ψ) ⊳⊤) ∨〈β〉(⊤ ⊲(φ∧¬ψ))). 
See axiom (A3) in Proposition 3. As for the implication ∀p(〈α〉((φ ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (φ ∧ ¬p))) → 〈α1β〉φ, it can be 
expressed by a rule of proof. The simplest form of such a rule of proof is: from {〈α〉((φ ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (φ ∧ ¬p)) : p is 
a propositional variable}, infer 〈α1β〉φ. See Proposition 6.

In PRSPDL, the variant of PDL introduced by Benevides et al. [5], storing and recovering programs are considered. 
Within our context, let us momentarily add to the syntax the programs s1 , s2 , r1 and r2 with intended semantics in a 
model M = (W , R, ⋆, V ) defined as follows:

• xRM(s1)y iff there exists z ∈ W such that y ∈ x ⋆ z;

• xRM(s2)y iff there exists z ∈ W such that y ∈ z ⋆ x;

• xRM(r1)y iff there exists z ∈ W such that x ∈ y ⋆ z;

• xRM(r2)y iff there exists z ∈ W such that x ∈ z ⋆ y.

The following propositions illustrate the fact that the programs s1 , s2 , r1 and r2 cannot be defined from our language.

Proposition 14. Let i ∈ {1, 2}. For all si-free formulas φ , 〈si1si〉⊤ ↔ φ is not valid in the class of all separated frames.

Proof. We only consider the case i = 1. Suppose there exists a formula φ in our language such that 〈s11s1〉⊤ ↔ φ is valid 
in the class of all separated frames. Let M = (W , R, ⋆, V ) and M′ = (W ′, R ′, ⋆′, V ′) be the models defined by

• W = {x, y1, y2, z1, z2, t1, t2},
• R is the empty function,
• x ⋆ y1 = {z1}, x ⋆ y2 = {z2}, z1 ⋆ z2 = {t1}, z2 ⋆ z1 = {t2}, otherwise ⋆ is the empty function,
• V is the empty function,
• W ′ = {x′

1, x
′
2, y

′
1, y

′
2, z

′
1, z

′
2, t

′
1, t

′
2},

• R ′ is the empty function,
• x′

1 ⋆′ y′
1 = {z′1}, x

′
2 ⋆′ y′

2 = {z′2}, z
′
1 ⋆′ z′2 = {t′1}, z

′
2 ⋆′ z′1 = {t′2}, otherwise ⋆′ is the empty function,

• V ′ is the empty function.

Clearly, x ∈ VM(〈s11s1〉⊤) but x′
1 /∈ VM′ (〈s11s1〉⊤). Hence, since 〈s11s1〉⊤ ↔ φ is supposed to be valid, it must be the 

case that x ∈ VM(φ) and x′
1 /∈ VM′ (φ). But we will prove that if x ∈ VM(φ) then x′

1 ∈ VM(φ). First remark that for 
all s1-free program α and all w ∈ W , if xRM(α)w then w = x. Then define the function r from W to W by r(x) = x, 
r(y1) = y2 , r(y2) = y1 , r(z1) = z2 , r(z2) = z1 , r(t1) = t2 and r(t2) = t1 . It can easily be checked that for all w1, w2 ∈ W and 
all s1-free program α, w1RM(α)w2 iff r(w1)RM(α)r(w2). Now define the function f from W ′ to W by f (x′

1) = f (x′
2) = x, 

f (y′
1) = y1 , f (y′

2) = y2 , f (z′1) = z1 , f (z′2) = z2 , f (t′1) = t1 and f (t′2) = t2 . Define also the binary relation Z between W
and W ′ such that (w, w ′) ∈ Z iff w = f (w ′) or r(w) = f (w ′). We prove that for all n > 0, all s1-free formula ψ , all s1-free 
program α, all w1 ∈ W and all w ′

1, w
′
2 ∈ W ′:

1. if the number of occurrences of symbols in ψ is n and (w1, w ′
1) ∈ Z then w1 ∈ VM(ψ) iff w ′

1 ∈ VM′ (ψ);

2. if the number of occurrences of symbols in α is n then w ′
1RM′ (α)w ′

2 iff f (w ′
1)RM(α) f (w ′

2).

The proof is by induction on n, left to the reader. ⊣

Proposition 15. Let i ∈ {1, 2}. For all ri-free formulas φ , 〈(a; ri)1(ri; a)〉⊤ ↔ φ is not valid in the class of all separated frames.

Proof. We only consider the case i = 1. Suppose there exists a formula φ in our language such that 〈r11r1〉⊤ ↔ φ is valid 
in the class of all separated frames. Let M = (W , R, ⋆, V ) and M′ = (W ′, R ′, ⋆′, V ′) be the models defined by



• W = {x, y, z, s, t, u, v},

• R(a) = {(x, s), (z, t)}, otherwise R is the empty function,
• z ⋆ y = {x}, u ⋆ t = {s, v}, otherwise ⋆ is the empty function,
• V is the empty function,
• W ′ = {x′

1, x
′
2, y

′
1, y

′
2, z

′
1, z

′
2, s

′
1, s

′
2, t

′
1, t

′
2, u

′
1, u

′
2, v

′
1, v

′
2},

• R ′(a) = {(x′
1, s

′
2), (x

′
2, s

′
1), (z

′
1, t

′
1), (z

′
2, t

′
2)}, otherwise R ′ is the empty function,

• for all j ∈ {1, 2}, z′j ⋆
′ y′

j = {x′
j} and u′

j ⋆
′ t′j = {s′j, v

′
j}, otherwise ⋆′ is the empty function,

• V ′ is the empty function.

Clearly, x ∈ VM(〈(a; r1)1(r1; a)〉⊤) but x′
1 /∈ VM′ (〈(a; r1)1(r1; a)〉⊤). Hence, since 〈(a; r1)1(r1; a)〉⊤ ↔ φ is supposed to be 

valid, it must be the case that x ∈ VM(φ) and x′
1 /∈ VM′ (φ). But we will prove that if x ∈ VM(φ) then x′

1 ∈ VM(φ). First 
remark that for all r1-free program α and all w1, w2 ∈ W such that w1RM(α)w2:

• if w2 = u then w1 = u,

• if w2 ∈ {x, y, z} then w1 ∈ {x, y, z}, and
• if w1 ∈ {s, t, u, v} then w2 ∈ {s, t, u, v}.

Then, define the functions f1 and f2 from W to W ′ such that for all j ∈ {1, 2}, f j(x) = x′
j , f j(y) = y′

j , f j(z) = z′j , f j(s) = s′j ,

f j(t) = t′j , f j(u) = u′
j and f j(v) = v ′

j . For all w
′ ∈ W ′ , there is exactly one pair (w, j) ∈ W × {1, 2} such that w ′ = f i(w);

hence we also define the function g from W ′ to W such that for all w ′ ∈ W ′ there is i ∈ {1, 2} such that f i(g(w ′)) = w ′ . 
We prove that for all n > 0, all r1-free formula ψ , all r1-free program α, all w1, w2 ∈ W and all w ′

1 ∈ W ′:

1. if the number of occurrences of symbols in ψ is n then w1 ∈ VM(ψ) iff f1(w1) ∈ VM′ (ψ) iff f2(w1) ∈ VM′ (ψ);

2. if the number of occurrences of symbols in α is n − 1 and w1 = g(w ′
1) then w1RM(α)w2 iff there is w ′

2 ∈ W ′ such

that w2 = g(w ′
2) and w ′

1RM′ (α)w ′
2;

3. if the number of occurrences of symbols in α is n and w1 ∈ {s, t, u, v} or w2 ∈ {x, y, z} then w1RM(α)w2 iff

f1(w1)RM′ (α) f1(w2) iff f2(w1)RM′ (α) f2(w2).

The proof is by induction on n, left to the reader. ⊣

5. Axiom system

We now define PDL1
0 .

Definition. Let PDL1
0 be the least set of formulas that contains all instances of propositional tautologies, that contains the 

formulas (A1)–(A18) considered in Propositions 3 and 4 and that is closed under the rules of proof (MP), (N) and (FOR)

considered in Propositions 5 and 6.

It is easy to establish the soundness for PDL1
0 :

Proposition 16 (Soundness for PDL1
0 ). Let φ be a formula. If φ ∈ PDL1

0 , φ is valid in the class of all separated frames.

The completeness for PDL1
0 is more difficult to establish and we defer proving it till next section. In the meantime, it is 

well worth noting that for all separated models M = (W , R, ⋆, V ) and for all x ∈ W , {φ : x ∈ VM(φ)} is a set of formulas 
that contains PDL1

0 and that is closed under the rule of proof (MP). Now, we introduce theories.

Definition. A set S of formulas is said to be a theory iff PDL1
0 ⊆ S and S is closed under the rules of proof (MP) and (FOR).

We will use S, T , . . . for theories. Obviously, the least theory is PDL1
0 and the greatest theory is the set of all formulas. 

Not surprisingly, we have

Lemma 1. Let S be a theory. The following conditions are equivalent: S is equal to the set of all formulas; there exists a formula φ such 
that φ ∈ S and ¬φ ∈ S; ⊥ ∈ S.

Referring to Lemma 1, we define what it means for a theory to be consistent.

Definition. We shall say that a theory S is consistent iff for all formulas φ, either φ /∈ S , or ¬φ /∈ S .



By Lemma 1, there is only one inconsistent theory: the set of all formulas. Now, we define what it means for a theory 
to be maximal.

Definition. A theory S is said to be maximal iff for all formulas φ, either φ ∈ S , or ¬φ ∈ S .

We will use the following lemma without explicit reference:

Lemma 2. Let S be a maximal consistent theory. We have: ⊥ /∈ S; for all formulas φ , ¬φ ∈ S iff φ /∈ S; for all formulas φ, ψ , φ ∨ψ ∈ S

iff either φ ∈ S, or ψ ∈ S.

To know more about theories, we need yet another definition.

Definition. If α is a program, φ is a formula and S is a theory, let [α]S = {φ : [α]φ ∈ S} and S + φ = {ψ : φ → ψ ∈ S}.

In the next lemmas, we summarize some properties of theories.

Lemma 3. Let S be a theory. For all programs α and for all formulas φ , we have: (1) [φ?]S = S + φ; (2) [α]S is a theory; (3) S + φ is 
a theory; (4) φ , S + φ is the least theory containing S and φ; (5) S + φ is consistent iff ¬φ /∈ S.

Lemma 4. Let S be a theory. If S is consistent, for all formulas φ , either S + φ is consistent, or there exists a formula ψ such that the 
following conditions are satisfied: S + ψ is consistent; ψ → ¬φ ∈ PDL1

0 ; if φ is in the form χ̆(〈α1β〉θ) of a conclusion of the rule of 
proof (FOR), there exists a propositional variable p such that ψ → ¬χ̆(〈α〉((θ ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (θ ∧ ¬p))) ∈ PDL1

0 .

Proof. Suppose S is consistent. Suppose S + φ is not consistent. By Lemma 3, ¬φ ∈ S . Obviously, there are finitely many, 
say k ≥ 0, representations of φ in the form of a conclusion of the rule of proof (FOR): χ̆1(〈α11β1〉θ1), . . . , χ̆k(〈αk1βk〉θk). 
We define by induction a sequence (ψ0, . . . , ψk) of formulas such that for all l ∈ N , if l ≤ k, the following conditions are 
satisfied: S + ψl is consistent; ψl → ¬φ ∈ PDL1

0 ; for all m ∈ N , if 1 ≤ m ≤ l, there exists a propositional variable p such 
that ψl → ¬χ̆m(〈αm〉((θm ∧ p) ⊳ ⊤) ∨ 〈βm〉(⊤ ⊲ (θm ∧ ¬p))) ∈ PDL1

0 . First, let ψ0 = ¬φ. Obviously, the following conditions 
are satisfied: S + ψ0 is consistent; ψ0 → ¬φ ∈ PDL1

0 . Second, let l ≥ 1 be such that l ≤ k and the formulas ψ0, . . . , ψl−1

have already been defined. Hence, S + ψl−1 is consistent; ψl−1 → ¬φ ∈ PDL1
0 ; for all m ∈ N , if 1 ≤ m ≤ l − 1, there exists 

a propositional variable p such that ψl−1 → ¬χ̆m(〈αm〉((θm ∧ p) ⊳ ⊤) ∨ 〈βm〉(⊤ ⊲ (θm ∧ ¬p))) ∈ PDL1
0 . Third, since S + ψl−1

is consistent and ψl−1 → ¬φ ∈ PDL1
0 , φ /∈ S + ψl−1 . Since S + ψl−1 is closed under the rule of proof (FOR), there exists a 

propositional variable p such that χ̆l(〈αl〉((θl ∧ p) ⊳⊤) ∨〈βl〉(⊤ ⊲(θl ∧¬p))) /∈ S+ψl−1 . Let ψl = ψl−1 ∧¬χ̆l(〈αl〉((θl ∧ p) ⊳⊤) ∨
〈βl〉(⊤ ⊲ (θl ∧ ¬p))). Obviously, the following conditions are satisfied: S + ψl is consistent; ψl → ¬φ ∈ PDL1

0 ; for all m ∈ N , 
if 1 ≤m ≤ l, there exists a propositional variable p such that ψl → ¬χ̆m(〈αm〉((θm ∧ p) ⊳ ⊤) ∨ 〈βm〉(⊤ ⊲ (θm ∧ ¬p))) ∈ PDL1

0 . 
Finally, the reader may easily verify that the following conditions are satisfied: S + ψk is consistent; ψk → ¬φ ∈ PDL1

0 ; if 
φ is in the form χ̆(〈α1β〉θ) of a conclusion of the rule of proof (FOR), there exists a propositional variable p such that 
ψk → ¬χ̆(〈α〉((θ ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (θ ∧ ¬p))) ∈ PDL1

0 . ⊣

Now, we are ready for the Lindenbaum Lemma.

Lemma 5 (Lindenbaum Lemma). Let S be a theory. If S is consistent, there exists a maximal consistent theory containing S.

Proof. Suppose S is consistent. Since there are countably many formulas, there exists an enumeration φ1, φ2, . . . of the 
set of all formulas. Let T0, T1, . . . be the sequence of consistent theories inductively defined as follows. First, let T0 = S . 
Obviously, T0 is consistent. Second, let n ≥ 1 be such that consistent theories T0, . . . , Tn−1 have already been defined. Third, 
by Lemma 4, either Tn−1 + φn is consistent, or there exists a formula ψ such that the following conditions are satisfied: 
Tn−1 + ψ is consistent; ψ → ¬φn ∈ PDL1

0 ; if φn is in the form χ̆(〈α1β〉θ) of a conclusion of the rule of proof (FOR), there 
exists a propositional variable p such that ψ → ¬χ̆(〈α〉((θ ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (θ ∧ ¬p))) ∈ PDL1

0 . In the former case, let 
Tn = Tn−1 + φn . In the latter case, let Tn = Tn−1 + ψ . Obviously, Tn is consistent. Finally, the reader may easily verify that 
T0 ∪ T1 ∪ . . . is a maximal consistent theory containing S . ⊣

To define the canonical frame of PDL1
0 in next section, we need yet another definition.

Definition. If S and T are theory, let S ◦ T = {φ ◦ ψ : φ ∈ S and ψ ∈ T }.

To end this section, we present useful results.



Lemma 6. Let φ, ψ be formulas and ⊗ ∈ {◦, ⊲, ⊲}. For all maximal consistent theories S, if φ ⊗ ψ ∈ S, for all formulas χ , we have: 
(1) either (φ ∧ χ) ⊗ ψ ∈ S, or there exists a formula θ such that the following conditions are satisfied: (φ ∧ θ) ⊗ ψ ∈ S; θ → ¬χ ∈

PDL1
0 ; if χ is in the form τ̆ (〈α1β〉µ) of a conclusion of the rule of proof (FOR), there exists a propositional variable p such that

θ → ¬τ̆ (〈α〉((µ ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (µ ∧ ¬p))) ∈ PDL1
0 ; (2) either φ ⊗ (ψ ∧ χ) ∈ S, or there exists a formula θ such that the

following conditions are satisfied: φ ⊗ (ψ ∧ θ) ∈ S; θ → ¬χ ∈ PDL1
0 ; if χ is in the form τ̆ (〈α1β〉µ) of a conclusion of the rule of

proof (FOR), there exists a propositional variable p such that θ → ¬τ̆ (〈α〉((µ ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (µ ∧ ¬p))) ∈ PDL1
0 .

Lemma 7. Let φ, ψ be formulas. For all maximal consistent theories S, we have: (1) if φ ◦ψ ∈ S, there exist maximal consistent theories 
T , U such that T ◦ U ⊆ S, φ ∈ T and ψ ∈ U; (2) if φ ⊲ ψ ∈ S, there exist maximal consistent theories T , U such that T ◦ S ⊆ U , φ ∈ T

and ψ ∈ U; (3) if φ ⊳ ψ ∈ S, there exist maximal consistent theories T , U such that S ◦ U ⊆ T , φ ∈ T and ψ ∈ U .

6. Completeness

Now, for the canonical frame of PDL1
0 .

Definition. The canonical frame of PDL1
0 is the 3-tuple Fc = (Wc, Rc, ⋆c) where Wc is the set of all maximal consistent 

theories, Rc is the function from the set of all program variables into the set of all binary relations between maximal 
consistent theories defined by SRc(a)T iff [a]S ⊆ T and ⋆c is the function from the set of all pairs of maximal consistent 
theories into the set of all sets of maximal consistent theories defined by U ∈ S ⋆c T iff S ◦ T ⊆ U .

We show first that

Lemma 8. Fc is separated.

Now, for the canonical valuation of PDL1
0 and the canonical model of PDL1

0 .

Definition. The canonical model of PDL1
0 is the 4-tuple Mc = (Wc, Rc, ⋆c, V c) where V c is the canonical valuation of PDL1

0 , 
i.e. the function from the set of all propositional variables into the set of all sets of maximal consistent theories defined by
S ∈ V c(p) iff p ∈ S .

For the proof of the Truth Lemma, we have to consider large programs.

Definition. The set of all large programs is inductively defined as follows:

• A ::= a | (A; B) | (A1B) | S̄?;

where for all consistent theories S , S̄ is a new symbol.

We will use A, B, . . . for large programs. Let us be clear that each large program is a finite string of symbols com-

ing from an uncountable alphabet. It follows that there are uncountably many large programs. For convenience, we omit 
the parentheses in accordance with the standard rules. It is essential that large programs are built up from program vari-
ables and symbols for consistent theories by means of the operations ; and 1. Let A( S̄1?, . . . , S̄n?) be a large program 
with ( S̄1, . . . , S̄n) a sequence of some of its symbols for consistent theories. The result of the replacement of S̄1, . . . , S̄n
in their places with other symbols T̄1, . . . , T̄n for consistent theories is another large program which will be denoted 
A(T̄1?, . . . , T̄n?).

Definition. A large program A( S̄1?, . . . , S̄n?) with ( S̄1, . . . , S̄n) the sequence of all its symbols for consistent theories will be 
defined to be maximal if the theories S1, . . . , Sn are maximal.

It appears that large programs, either maximal, or not, can be associated with sets of programs.

Definition. The kernel function ker : A 7→ ker(A) ⊆ PRG is inductively defined as follows:

• ker(a) = {a};

• ker(A; B) = {α; β : α ∈ ker(A) and β ∈ ker(B)};

• ker(A1B) = {α1β : α ∈ ker(A) and β ∈ ker(B)};

• ker( S̄) = {φ? : φ ∈ S}.

The following lemmas play an important role in the proof of the completeness for PDL1
0 .



Lemma 9. Let α(φ?) be a program. For all maximal consistent theories S, if 〈α(φ?)〉⊤ ∈ S, for all formulas ψ , we have: either 〈α((φ ∧

ψ)?)〉⊤ ∈ S, or there exists a formula χ such that the following conditions are satisfied: 〈α((φ ∧ χ)?)〉⊤ ∈ S; χ → ¬ψ ∈ PDL1
0 ; 

if ψ is in the form θ̆ (〈β1γ 〉τ ) of a conclusion of the rule of proof (FOR), there exists a propositional variable p such that χ →

¬θ̆ (〈β〉((τ ∧ p) ⊳ ⊤) ∨ 〈γ 〉(⊤ ⊲ (τ ∧ ¬p))) ∈ PDL1
0 .

Lemma 10 (Diamond Lemma). Let α be a program and φ be a formula. For all maximal consistent theories S, if [α]φ /∈ S, there exists 
a maximal program A and there exists a maximal consistent theory T such that f (α) ∈ ker(A), for all programs β , if β ∈ ker(A), 
[β]S ⊆ T and φ /∈ T .

With this established, we are ready for the Truth Lemma.

Lemma 11 (Truth Lemma). Let α be a program. For all maximal consistent theories S, T , the following conditions are equivalent: 
SRMc

(α)T ; there exists a maximal program A such that f (α) ∈ ker(A) and for all programs β , if β ∈ ker(A), [β]S ⊆ T . Let φ be a 
formula. For all maximal consistent theories S, the following conditions are equivalent: S ∈ VMc

(φ); φ ∈ S.

Proof. Let P (·) be the property about programs and formulas defined as follows:

• for all programs α, P (α) iff for all maximal consistent theories S, T , SRMc
(α)T iff there exists a maximal program A

such that f (α) ∈ ker(A) and for all programs β , if β ∈ ker(A), [β]S ⊆ T ;

• for all formulas φ, P (φ) iff for all maximal consistent theories S , S ∈ VMc
(φ) iff φ ∈ S .

The proof that P (·) holds for all programs and for all formulas will be done by induction on the formation of programs and 
formulas.

Hypothesis. Let α be a program such that for all expressions exp (either a program, or a formula), if exp is an expression 
strictly occurring in α, P (exp) holds.

Step. We demonstrate P (α) holds.

Case α = a. Left to the reader.

Case α = β; γ . Let S, T be maximal consistent theories.

• Suppose SRMc
(β; γ )T . We demonstrate there exists a maximal program A such that f (β); ⊤?; f (γ ) ∈ ker(A) and

for all programs δ, if δ ∈ ker(A), [δ]S ⊆ T . Since SRMc
(β; γ )T , there exists a maximal consistent theory U such that

SRMc
(β)U and U RMc

(γ )T . Since P (β) and P (γ ), there exists a maximal program A′ such that f (β) ∈ ker(A′) and

for all programs δ′ , if δ′ ∈ ker(A′), [δ′]S ⊆ U and there exists a maximal program A′′ such that f (γ ) ∈ ker(A′′) and

for all programs δ′′ , if δ′′ ∈ ker(A′′), [δ′′]U ⊆ T . Since ⊤ ∈ U , f (β); ⊤?; f (γ ) ∈ ker(A′; Ū ; A′′). Now, let δ′; φ?; δ′′ ∈

ker(A′; Ū ; A′′) and ψ ∈ [δ′; φ?; δ′′]S . Hence, δ′ ∈ ker(A′), φ ∈ U , δ′′ ∈ ker(A′′) and [δ′; φ?; δ′′]ψ ∈ S . Thus, [δ′](φ →

[δ′′]ψ) ∈ S . Therefore, φ → [δ′′]ψ ∈ [δ′]S . Since δ′ ∈ ker(A′), [δ′]S ⊆ U . Since φ → [δ′′]ψ ∈ [δ′]S , φ → [δ′′]ψ ∈ U . Since
φ ∈ U , [δ′′]ψ ∈ U . Consequently, ψ ∈ [δ′′]U . Since δ′′ ∈ ker(A′′), [δ′′]U ⊆ T . Since ψ ∈ [δ′′]U , ψ ∈ T . Hence, for all pro-
grams δ, if δ ∈ ker(A′; Ū ; A′′), [δ]S ⊆ T . Since f (β); ⊤?; f (γ ) ∈ ker(A′; Ū ; A′′), it suffices to take A = A′; Ū ; A′′ .

• Suppose there exists a maximal program A such that f (β); ⊤?; f (γ ) ∈ ker(A) and for all programs δ, if δ ∈ ker(A),

[δ]S ⊆ T . We demonstrate SRMc
(β; γ )T . Since f (β); ⊤?; f (γ ) ∈ ker(A), there exists a maximal program A′ , there

exists a maximal consistent theory U and there exists a maximal program A′′ such that f (β) ∈ ker(A′), f (γ ) ∈ ker(A′′)

and A = A′; Ū ; A′′ . Now, let δ′ ∈ ker(A′) and φ ∈ [δ′]S . Hence, [δ′]φ ∈ S . Let δ′′ ∈ ker(A′′). Since [δ′]φ ∈ S , [δ′](¬φ →

[δ′′]⊥) ∈ S . Thus, [δ′; ¬φ?; δ′′]⊥ ∈ S . Therefore, ⊥ ∈ [δ′; ¬φ?; δ′′]S . Since T is consistent, by Lemma 1, ⊥ /∈ T . Since for
all programs δ, if δ ∈ ker(A), [δ]S ⊆ T and ⊥ ∈ [δ′; ¬φ?; δ′′]S , δ′; ¬φ?; δ′′ /∈ ker(A). Since A = A′; Ū ; A′′ , δ′ ∈ ker(A′) and

δ′′ ∈ ker(A′′), ¬φ /∈ U . Since U is maximal, φ ∈ U . Consequently, for all δ′ ∈ ker(A′), [δ′]S ⊆ U . Since f (β) ∈ ker(A′) and

P (β), SRMc
(β)U . Now, let δ′′ ∈ ker(A′′) and φ ∈ [δ′′]U . Hence, [δ′′]φ ∈ U . Let δ′ ∈ ker(A′). Thus, [δ′]([δ′′]φ → [δ′′]φ) ∈

S . Therefore, [δ′; [δ′′]φ?; δ′′]φ ∈ S . Consequently, φ ∈ [δ′; [δ′′]φ?; δ′′]S . Since δ′ ∈ ker(A′), [δ′′]φ ∈ U and δ′′ ∈ ker(A′′),

δ′; [δ′′]φ?; δ′′ ∈ ker(A′; Ū ; A′′). Since A = A′; Ū ; A′′ , δ′; [δ′′]φ?; δ′′ ∈ ker(A). Since for all programs δ, if δ ∈ ker(A), [δ]S ⊆

T , δ′; [δ′′]φ?; δ′′ ∈ ker(A) and φ ∈ [δ′; [δ′′]φ?; δ′′]S , φ ∈ T . Hence, for all δ′′ ∈ ker(A′′), [δ′′]U ⊆ T . Since f (γ ) ∈ ker(A′′)

and P (γ ), U RMc
(γ )T . Since SRMc

(β)U , SRMc
(β; γ )T .

Case α = β1γ . Let S, T be maximal consistent theories.

• Suppose SRMc
(β1γ )T . We demonstrate there exists a maximal program A such that ( f (β); ⊤?)1( f (γ ); ⊤?) ∈ ker(A)

and for all programs δ, if δ ∈ ker(A), [δ]S ⊆ T . Since SRMc
(β1γ )T , there exist maximal consistent theories U , V such

that SRMc
(β)U , SRMc

(γ )V and T ∈ U ⋆c V . Since P (β) and P (γ ), there exists a maximal program A′ such that
f (β) ∈ ker(A′) and for all programs δ′ , if δ′ ∈ ker(A′), [δ′]S ⊆ U and there exists a maximal program A′′ such that
f (γ ) ∈ ker(A′′) and for all programs δ′′ , if δ′′ ∈ ker(A′′), [δ′′]S ⊆ V . Since ⊤ ∈ U and ⊤ ∈ V , ( f (β); ⊤?)1( f (γ ); ⊤?) ∈



ker((A′; Ū )1(A′′; V̄ )). Now, let (δ′; φ?)1(δ′′; ψ?) ∈ ker((A′; Ū )1(A′′; V̄ )) and χ ∈ [(δ′; φ?)1(δ′′; ψ?)]S . Hence, δ′ ∈

ker(A′), φ ∈ U , δ′′ ∈ ker(A′′), ψ ∈ V and [(δ′; φ?)1(δ′′; ψ?)]χ ∈ S . Since S is consistent, 〈(δ′; φ?)1(δ′′; ψ?)〉¬χ /∈ S . 
Since S is closed under the rule of proof (FOR), there exists a propositional variable p such that 〈δ′; φ?〉((¬χ ∧ p) ⊳
⊤) ∨ 〈δ′′; ψ?〉(⊤ ⊲ (¬χ ∧ ¬p)) /∈ S . Thus, 〈δ′; φ?〉((¬χ ∧ p) ⊳ ⊤) /∈ S and 〈δ′′; ψ?〉(⊤ ⊲ (¬χ ∧ ¬p)) /∈ S . Since S is max-

imal, [δ′; φ?]¬((¬χ ∧ p) ⊳ ⊤) ∈ S and [δ′′; ψ?]¬(⊤ ⊲ (¬χ ∧ ¬p)) ∈ S . Therefore, [δ′](φ → ¬((¬χ ∧ p) ⊳ ⊤)) ∈ S and 
[δ′′](ψ → ¬(⊤ ⊲ (¬χ ∧¬p))) ∈ S . Consequently, φ → ¬((¬χ ∧ p) ⊳⊤) ∈ [δ′]S and ψ → ¬(⊤ ⊲ (¬χ ∧¬p)) ∈ [δ′′]S . Since 
δ′ ∈ ker(A′), [δ′]S ⊆ U . Since φ → ¬((¬χ ∧ p) ⊳⊤) ∈ [δ′]S , φ → ¬((¬χ ∧ p) ⊳⊤) ∈ U . Since φ ∈ U , ¬((¬χ ∧ p) ⊳⊤) ∈ U . 
Since δ′′ ∈ ker(A′′), [δ′′]S ⊆ V . Since ψ → ¬(⊤ ⊲ (¬χ ∧ ¬p)) ∈ [δ′′]S , ψ → ¬(⊤ ⊲ (¬χ ∧ ¬p)) ∈ V . Since ψ ∈ V , 
¬(⊤ ⊲(¬χ ∧¬p)) ∈ V . Since T ∈ U ⋆c V and ¬((¬χ ∧ p) ⊳⊤) ∈ U , ¬((¬χ ∧ p) ⊳⊤) ◦¬(⊤ ⊲(¬χ ∧¬p)) ∈ T . Hence, χ ∈ T . 
Thus, for all programs δ, if δ ∈ ker((A′; Ū )1(A′′; V̄ )), [δ]S ⊆ T . Since ( f (β); ⊤?)1( f (γ ); ⊤?) ∈ ker((A′; Ū )1(A′′; V̄ )), it 
suffices to take A = (A′; Ū )1(A′′; V̄ ).

• Suppose there exists a maximal program A such that ( f (β); ⊤?)1( f (γ ); ⊤?) ∈ ker(A) and for all programs δ, if
δ ∈ ker(A), [δ]S ⊆ T . We demonstrate SRMc

(β1γ )T . Since ( f (β); ⊤?)1( f (γ ); ⊤?) ∈ ker(A), there exists a maxi-

mal program A′ , there exists a maximal consistent theory U , there exists a maximal program A′′ and there ex-
ists a maximal consistent theory V such that f (β) ∈ ker(A′), f (γ ) ∈ ker(A′′) and A = (A′; Ū )1(A′′; V̄ ). Now, let
δ′ ∈ ker(A′) and φ ∈ [δ′]S . Hence, [δ′]φ ∈ S . Thus, [δ′](¬φ → ⊥) ∈ S . Therefore, [δ′; ¬φ?]⊥ ∈ S . Let δ′′ ∈ ker(A′′).

Since [δ′; ¬φ?]⊥ ∈ S , [(δ′; ¬φ?)1(δ′′; ⊤?)]⊥ ∈ S . Consequently, ⊥ ∈ [(δ′; ¬φ?)1(δ′′; ⊤?)]S . Since T is consistent, ⊥ /∈ T .

Since for all programs δ, if δ ∈ ker(A), [δ]S ⊆ T and ⊥ ∈ [(δ′; ¬φ?)1(δ′′; ⊤?)]S , (δ′; ¬φ?)1(δ′′; ⊤?) /∈ ker(A). Since
A = (A′; Ū )1(A′′; V̄ ), δ′ ∈ ker(A′) and δ′′ ∈ ker(A′′), ¬φ /∈ U . Since U is maximal, φ ∈ U . Hence, for all δ′ ∈ ker(A′),

[δ′]S ⊆ U . Since f (β) ∈ ker(A′) and P (β), SRMc
(β)U . The proof that SRMc

(γ )V is similar. Now, let φ ∈ U and ψ ∈ V .

Let δ′ ∈ ker(A′) and δ′′ ∈ ker(A′′). Since A = (A′; Ū )1(A′′; V̄ ), φ ∈ U and ψ ∈ V , (δ′; φ?)1(δ′′; ψ?) ∈ ker(A). Since
for all programs δ, if δ ∈ ker(A), [δ]S ⊆ T , [(δ′; φ?)1(δ′′; ψ?)]S ⊆ T . Thus, [(δ′; φ?)1(δ′′; ψ?)](φ ◦ ψ) ∈ S . Therefore,
φ ◦ ψ ∈ [(δ′; φ?)1(δ′′; ψ?)]S . Since [(δ′; φ?)1(δ′′; ψ?)]S ⊆ T , φ ◦ ψ ∈ T . Consequently, for all φ ∈ U and for all ψ ∈ V ,

φ ◦ ψ ∈ T . Hence, T ∈ U ⋆c V . Since SRMc
(β)U and SRMc

(γ )V , SRMc
(β1γ )T .

Case α = ψ?. Let S, T be maximal consistent theories.

• Suppose SRMc
(ψ?)T . We demonstrate there exists a maximal program A such that ψ? ∈ ker(A) and for all programs

β , if β ∈ ker(A), [β]S ⊆ T . Since SRMc
(ψ?)T , S = T and T ∈ VMc

(ψ). Since P (ψ), ψ ∈ T . Since S = T , ψ ∈ S . Hence,
ψ? ∈ ker( S̄). Now, let χ? ∈ ker( S̄). Thus, χ ∈ S . By Lemma 3, [χ?]S = S . Since S = T , [χ?]S ⊆ T . Therefore, for all
programs β , if β ∈ ker( S̄), [β]S ⊆ T . Since ψ? ∈ ker( S̄), it suffices to take A = S̄ .

• Suppose there exists a maximal program A such that ψ? ∈ ker(A) and for all programs β , if β ∈ ker(A), [β]S ⊆ T . We

demonstrate SRMc
(ψ?)T . Since ψ? ∈ ker(A), there exists a maximal consistent theory U such that ψ ∈ U and A = Ū .

Since for all programs β , if β ∈ ker(A), [β]S ⊆ T , for all formulas χ , if χ ∈ U , [χ?]S ⊆ T . Since ψ ∈ U and ⊤ ∈ U ,

[ψ?]S ⊆ T and [⊤?]S ⊆ T . Since ⊤ ∈ S , by Lemma 3, [⊤?]S = S . Since [⊤?]S ⊆ T , S ⊆ T . Since S is maximal and T is

consistent, S = T . Since [ψ?]S ⊆ T and [ψ?]ψ ∈ S , ψ ∈ T . Since P (ψ), T ∈ VMc
(ψ). Since S = T , SRMc

(ψ?)T .

Hypothesis. Let φ be a formula such that for all expressions exp (either a program, or a formula), if exp is an expression 
strictly occurring in φ, P (exp) holds.

Step. We demonstrate P (φ) holds.

Case φ = p. Left to the reader.

Cases φ = ⊥, φ = ¬ψ and φ = ψ ∨ χ . Left to the reader.

Case φ = [β]ψ . Let S be a maximal consistent theory.

• Suppose S ∈ VMc
([β]ψ). We demonstrate [β]ψ ∈ S . If not, by Lemma 10, there exists a maximal program A and there

exists a maximal consistent theory T such that f (β) ∈ ker(A), for all programs γ , if γ ∈ ker(A), [γ ]S ⊆ T and ψ /∈ T .

Since P (β) and P (ψ), SRMc
(β)T and T /∈ VMc

(ψ). Hence, S /∈ VMc
([β]ψ): a contradiction.

• Suppose [β]ψ ∈ S . We demonstrate S ∈ VMc
([β]ψ). If not, there exists a maximal consistent theory T such that

SRMc
(β)T and T /∈ VMc

(ψ). Since P (β) and P (ψ), there exists a maximal program A such that f (β) ∈ ker(A) and for
all programs γ , if γ ∈ ker(A), [γ ]S ⊆ T and ψ /∈ T . Hence, [ f (β)]S ⊆ T . Since [β]ψ ∈ S , [ f (β)]ψ ∈ S . Thus, ψ ∈ [ f (β)]S .

Since [ f (β)]S ⊆ T , ψ ∈ T : a contradiction.

Case φ = ψ ◦ χ . Let S be a maximal consistent theory.

• Suppose S ∈ VMc
(ψ ◦ χ). We demonstrate ψ ◦ χ ∈ S . Since S ∈ VMc

(ψ ◦ χ), there exist maximal consistent theories
T , U such that S ∈ T ⋆c U , T ∈ VMc

(ψ) and U ∈ VMc
(χ). Since P (ψ) and P (χ), ψ ∈ T and χ ∈ U . Since S ∈ T ⋆c U ,

ψ ◦ χ ∈ S .



d : φ

d : ∼φ

d : φ ∨ ψ

d : φ d : ψ

d : 〈α〉φ

d : α d + size(α) : φ

d : φ?

d : φ

d : α;β

d : α d + size(α) : β

d : α1β

d : α d : β

d : φ ◦ ψ

d + 1 : φ d + 1 : ψ

d : φ ⊲ ψ

d + 1 : φ d + 1 : ψ

d : φ ⊳ ψ

d + 1 : φ d + 1 : ψ

Fig. 1. Rules for the decomposition of localized programs and formulas.

• Suppose ψ ◦ χ ∈ S . We demonstrate S ∈ VMc
(ψ ◦ χ). Since ψ ◦ χ ∈ S , by Item (1) of Lemma 7, there exist maximal

consistent theories T , U such that S ∈ T ⋆c U , ψ ∈ T and χ ∈ U . Since P (ψ) and P (χ), T ∈ VMc
(ψ) and U ∈ VMc

(χ).

Since S ∈ T ⋆c U , S ∈ VMc
(ψ ◦ χ).

Cases φ = ψ ⊲ χ and φ = ψ ⊳ χ . Similar to the case φ = ψ ◦ χ . ⊣

Now, we are ready for the completeness for PDL1
0 .

Proposition 17 (Completeness for PDL1
0 ). Let φ be a formula. If φ is valid in the class of all separated frames, φ ∈ PDL1

0 .

7. Decidability

In this section, we prove that the logic axiomatized in the previous sections has a strong finite model property, hence is
decidable. The proof is by a selection procedure. We use the notation ∼φ which is defined by ∼φ = ψ if φ = ¬ψ for some 
ψ , otherwise ∼φ = ¬φ.

Definition. We use ν to denote an expression which may be either a program or a formula and |ν| to denote the number 
of occurrences of symbols in ν . To provide a more semantical measure on programs, the size function is defined inductively 
by:

size(φ?) = 0

size(a) = 1

size(α;β) = size(α) + size(β)

size(α1β) = min (size(α), size(β)) + 1

Obviously, if xRM(α)y and size(α) = 0 then x = y. Now we decompose expressions into subexpressions, associating a 
depth to each subformula.

Definition. A localized expression is a tuple d : ν where ν is an expression and d ∈ N is called the depth. Given any localized 
expression d : ν , the decomposition Cl(d : ν) of d : ν is the least set of localized expressions containing d : ν and closed by 
the application of the rules from Fig. 1. We write Cl(φ) for Cl(0 : φ).

The following lemma is standard.

Lemma 12. The cardinality of Cl(φ) is linear in |φ|.

Proof. We first replace the rule for negation by the rule producing d : φ from d : ¬φ, obtaining the closure Cl+(φ). 
Then it can be easily checked that the sum of the number of occurrences of symbols in the conclusions of the rules 
is strictly inferior to the number of occurrences of symbols in the premise. Finally, we observe that Cl(φ) ⊆ Cl+(φ) ∪
{

d : ¬ψ : d : ψ ∈ Cl+(φ)
}

. ⊣

More importantly, we have the following lemma.

Lemma 13. max {d : ∃ν,d : φ ∈ Cl(φ)} is linear in |φ|.



Input: A formula φ0 , a model Mo = (Wo, Ro, ⋆o, Vo) and an initial state w0 ∈ Wo such that w0 ∈ VMo (φ0).

1 initialisation

2 n = 0 ;

3 W s = {(0, 0, w0)} ;

4 Rs(a) = ∅ for all a ∈ 50 ;

5 (0,0, w0) ⋆s (0,0, w0) = ∅ ;

6 K = ∅ ;

7 end

8 while K 6= W s do

9 choose an unmarked state (k, d, w) ∈ W s \ K ;

10 while (k, d, w) /∈ K do

11 let V s(p) = {(kx,dx, x) ∈ W s : x ∈ Vo(p)} for all p ∈ 80 ;

12 if there exists d′ : 〈α〉φ ∈ Cl(φ0) such that size(α) > 0, d′ ≥ d, w ∈ VMo (〈α〉φ) and (k, d, w) /∈ VMs (〈α〉φ) then

13 choose y s.t. wRMo (α)y and y ∈ VMo (φ);

14 let dy = d + size(α) ;

15 let n = n + 1 ;

16 add (n, dy , y) to W s ;

17 call Link
(

Mo,Ms,n, (k,d, w), (n,dy , y),α
)

;

18 else if there exists d′ : φ ◦ ψ ∈ Cl(φ0) such that d′ ≥ d, w ∈ VMo (φ ◦ ψ) and there is no (kx, dx, x), (ky, dy , y) ∈ W s such that 
(k, d, w) ∈ (kx, dx, x) ⋆s (ky , dy , y) then

19 choose x and y s.t. w ∈ x ⋆s y, x ∈ VMo (φ) and y ∈ VMo (ψ);

20 add (n + 1,d + 1, x) and (n + 2,d + 1, y) to W s ;

21 add (k,d, w) to (n + 1,d + 1, x) ⋆s (n + 2,d + 1, y) ;

22 let n = n + 2 ;

23 else if there exists d′ : φ ⊲ ψ ∈ Cl(φ0) such that d′ ≥ d, w ∈ VMo (φ ⊲ ψ) and (k, d, w) /∈ VMs (φ ⊲ ψ) then

24 choose x and y s.t. y ∈ x ⋆s w , x ∈ VMo (φ) and y ∈ VMo (ψ);

25 add (n + 1,d + 1, x) and (n + 2,d + 1, y) to W s ;

26 add (n + 2,d + 1, y) to (n + 1,d + 1, x) ⋆s (k,d, w) ;

27 let n = n + 2 ;

28 else if there exists d′ : φ ⊳ ψ ∈ Cl(φ0) such that d′ ≥ d, w ∈ VMo (φ ⊳ ψ) and Ms, (d, w)⊳ /∈ Vφ(ψ) then

29 choose x and y s.t. x ∈ w ⋆s y, x ∈ VMo (φ) and y ∈ VMo (ψ);

30 add (n + 1,d + 1, x) and (n + 2,d + 1, y) to W s ;

31 add (n + 1,d + 1, x) to (k,d, w) ⋆s (n + 2,d + 1, y) ;

32 let n = n + 2 ;

33 else

34 add (k, d, w) to K ;
35 end

36 end

37 end

Procedure 1: Selection.

Proof. We first prove by induction on n that for all n > 0, if for some d ∈ N and program α, d : α ∈ Cl(φ) and size(α) = n, 
then there exists ν such that d + n − 1 : ν ∈ Cl(φ). Then it can be easily proved that if d : ν ∈ Cl(φ) for some d > 0 and ν , 
then there exists ν ′ such that d − 1 : ν ′ ∈ Cl(φ). ⊣

We now prove the strong finite model property for PDL1
0 interpreted over the class of separated frames. Given a formula 

ϕ0 , a model Mo and a state w0 such that w0 ∈ VMo
(ϕ0), a model Ms is constructed such that Ms satisfies ϕ0 and 

the number of states in Mo is bounded by an exponential in |ϕ0|. The construction of Ms is described by the procedure
Selection on this page. Selection uses the recursive procedure Link described on the next page. Whereas Selection ensures 
that the satisfiability of all subformulas is preserved, Link ensures that subprograms can be executed between states in Ms . 
The following lemmas are used to prove the strong finite model property.

Lemma 14. The procedure Selection terminates and the cardinality of W s is exponential in |φ0|.

Proof. We consider the tree (V , E) such that V = W s and there is a edge from (kx, dx, x) to (ky, dy, y) iff (ky, dy, y) has 
been added to W s while (kx, dx, x) was chosen in Selection. It can be easily proved by induction on |α| that during any 
call to Link with program argument α, the number of states added to W s is inferior or equal to 2 |α|. Hence, by Lemma 12, 
the branching factor of (V , E) is bounded by a quadratic function in |φ0|. To prove that the depth of (V , E) is bounded by 
a linear function in |φ0|, we use Lemma 13 and prove that d is strictly increasing along the branches of (V , E). For that 
matter, it suffices to verify that whenever Link(M0, Ms, n, (kx, dx, x), (ky, dy, y), α) is called while (kw , dw , w) is chosen in
Selection, then dx ≥ dw and dy > dw . ⊣

Lemma 15. Whenever Link is called, dy ≤ dx + size(α).

The following lemma is essential for the forthcoming Lemma 19 as it makes the proof for the dual modalities ◦̄, ⊳̄ and 
⊲̄ trivial.



Input: Two models Mo = (Wo, Ro, ⋆o, Vo) and Ms = (W s, Rs, ⋆s, V s), an integer n, two states (kx, dx, x), (ky, dy, y) ∈ W s and a program α such

that xRMo (α)y.

1 if α is of the form a ∈ 50 then

2 add
(

(kx,dx, x), (ky,dy , y)
)

to Rs(a) ;

3 else if α is of the form (β; γ ) then

4 if size(β) = 0 then

5 call Link
(

Mo,Ms,n, (kx,dx, x), (ky ,dy , y),γ
)

;

6 else if size(γ ) = 0 then

7 call Link
(

Mo,Ms,n, (kx,dx, x), (ky ,dy , y), β
)

;

8 else

9 choose z s.t. xRMo (β)z and zRMo (γ )y;

10 let n = n + 1 ;

11 let dz = dx + size(α) ;

12 add (n,dz, z) to W s ;

13 call Link (Mo,Ms,n, (kx,dx, x), (n,dz, z), β) ;

14 call Link
(

Mo,Ms,n, (n,dz, z), (ky ,dy , y),γ
)

;

15 end

16 else if α is of the form (β1γ ) then

17 if size(β) = 0 and size(γ ) = 0 then

18 add (ky , dy , y) to (kx, dx, x) ⋆s (kx, dx, x) ;

19 else if size(β) = 0 then

20 choose z s.t. xRMo (γ )z and y ∈ x ⋆o z;

21 let n = n + 1 ;

22 let dz = min
(

dy + 1,dx + size(γ )
)

;

23 add (n, dz, z) to W s ;

24 add (ky ,dy , y) to (kx, dx, x) ⋆s (n, dz, z) ;

25 call Link (Mo,Ms,n, (kx,dx, x), (n,dz, z),γ ) ;

26 else if size(γ ) = 0 then

27 choose w s.t. xRMo (β)w and y ∈ w ⋆o x;

28 let n = n + 1 ;

29 let dw = min
(

dy + 1,dx + size(β)
)

;

30 add (n,dw , w) to W s ;

31 add (ky ,dy , y) to (n,dw , w) ⋆s (kx, dx, x) ;

32 call Link (Mo,Ms,n, (kx,dx, x), (n,dw , w), β) ;

33 else

34 choose w and z s.t. xRMo (β)w , xRMo (γ )z and y ∈ w ⋆o z;

35 let n = n + 2 ;

36 let dw = min
(

dy + 1,dx + size(β),dx + size(γ ) + 1
)

;

37 let dz = min
(

dy + 1,dx + size(γ ),dx + size(β) + 1
)

;

38 add (n − 1,dw , w) and (n,dz, z) to W s ;

39 add (ky ,dy , y) to (n − 1,dw , w) ⋆s (n,dz, z) ;

40 call Link (Mo,Ms,n, (kx,dx, x), (n − 1,dw , w), β) ;

41 call Link (Mo,Ms,n, (kx,dx, x), (n,dz, z),γ ) ;

42 end

43 end

Procedure 2: Link.

Lemma 16. For all (ky, dy, y), (kw , dw , w), (kz, dz, z) ∈ W s , such that (ky, dy, y) ∈ (kw , dw , w) ⋆s (kz, dz, z), we have y ∈ w ⋆o z, 
|dy − dw | ≤ 1, |dy − dz| ≤ 1 and |dw − dz| ≤ 1.

Proof. We prove that at line 39 of Link, |dy −dw | ≤ 1 and |dw −dz| ≤ 1, the other cases and properties being either similar 
or straightforward.

Suppose first that dw = dy + 1. Then obviously |dy − dw | ≤ 1. If dz = dy + 1, then |dw − dz| ≤ 1 is trivial too. If dz =

dx + size(β) + 1, by minimality, dz ≤ dy + 1 and size(β) < size(γ ). By Lemma 15, dy ≤ dz . Therefore, dw − 1 ≤ dz ≤ dw . If 
dz = dx + size(γ ), by minimality, dz ≤ dy + 1 and size(γ ) ≤ size(β). By Lemma 15, dy < dz . Therefore, dw − 1 < dz ≤ dw .

Suppose now that dw = dx + size(γ ) + 1. By minimality, dy > dx + size(γ ) and size(β) > size(γ ). By Lemma 15, dy ≤

dx + size(γ ) + 1. Therefore, dy = dw . If dz = dy + 1 or dz = dx + size(γ ), then obviously dw − 1 ≤ dz ≤ dw + 1. If dz =

dx + size(β) + 1, by minimality size(β) < size(γ ), which is impossible.

Suppose finally that dw = dx + size(β). By minimality, dy ≥ dx + size(β) and size(γ ) ≥ size(β). By Lemma 15, dy ≤

dx + size(β) +1. Therefore, dw ≤ dy ≤ dw +1. If dz = dx + size(β) +1, then obviously dz = dw +1. If dz = dx + size(γ ) +1, by 
minimality, size(γ ) ≤ size(β). Hence size(γ ) = size(β) and dz = dw . If dz = dy + 1, by minimality, dy < dx + size(β), which 
is impossible. ⊣

Lemma 17. For all (kx, dx, x), (ky, dy, y) ∈ W s and all α, if (kx, dx, x)RMs
(α)(ky, dy, y), then dy ≤ dx + size(α).

Lemma 18. If Mo is separated, then Ms is separated too.



Proof. Suppose (kw , dw , w) has been added to (kw1 , dw1 , w1) ⋆s (kw2 , dw2 , w2) while (kw , dw , w) ∈ (k′
w1

, d′
w1

, w1
′) ⋆s

(k′
w2

, d′
w2

, w2
′). Then (kw , dw , w) cannot have been added to (kw1 , dw1 , w1) ⋆s (kw2 , dw2 , w2) in Selection because

at lines 26 and 31, (kw , dw , w) is fresh and at line 21 the condition ensures that (kw , dw , w) /∈ (k′
w1

, d′
w1

, w1
′) ⋆s

(k′
w2

, d′
w2

, w2
′). Finally, to prove that (kw , dw , w) cannot have been added to (kw1 , dw1 , w1) ⋆s (kw2 , dw2 , w2) in Link,

it suffices to verify that whenever Link is called there is no (ky1 , dy1 , y1), (ky2 , dy2 , y2) ∈ W s such that (ky, dy, y) ∈
(ky1 , dy1 , y1) ⋆s (ky2 , dy2 , y2), which is straightforward. ⊣

We can now prove the following lemma.

Lemma 19. If Mo is separated, then (0, 0, w0) ∈ VMs
(φ0).

Proof. The following properties are proved for all n ∈ N , by induction on n:

1. for all d : φ ∈ Cl(φ0) and all (kw , dw , w) ∈ W s , if |φ| = n, d ≥ dw and w ∈ VMo
(φ) then (kw , dw , w) ∈ VMs

(φ)

2. if Link has been called with last arguments (kx, dx, x), (ky, dy, y) and α with |α| = n, then (kx, dx, x)RMs
(α)(ky, dy, y)

3. for all α and all (kx, dx, x), (ky, dy, y) ∈ W s , if |α| = n and (kx, dx, x)RMs
(α)(ky, dy, y) then xRMo

(α)y

We give details of only the following cases, the other ones being either similar or straightforward.

Hypothesis 1 when φ = 〈α〉ψ . There exists y ∈ Wo such that wRMo
(α)y and y ∈ VMo

(ψ). Moreover, d + size(α) : ψ ∈

Cl(φ0). If (kw , dw , w) /∈ VMs
(〈α〉ψ), conditions at line 12 are satisfied. Therefore, a state (ky, dw + size(α), y) is added to 

W s and Link is called with last arguments (kw , dw , w), (ky, dw + size(α), y) and α. Since |α| < |φ|, by induction hypothesis 
2, (kw , dw , w)RMs

(α)(ky, dw + size(α), y). And since dw + size(α) ≤ d + size(α) and |ψ | < |φ|, by induction hypothesis 1, 
(ky, dw + size(α), y) ∈ VMs

(ψ).

Hypothesis 1 when φ = [α]ψ . Suppose (kw , dw , w)RMs
(α)(ky, dy, y). Since |α| < |φ|, by induction hypothesis 3, 

wRMo
(α)y. Therefore y ∈ VMo

(ψ). By Lemma 17, dy ≤ dw +size(α). Since d +size(α) : ψ ∈ Cl(φ0), by induction hypothesis 
1, (ky, dy, y) ∈ VMs

(ψ).

Hypothesis 1 when φ = ψ ◦ χ . By the condition at line 18, there exists (kx, dx, x) and (ky, dy, y) such that (kw , dw , w) ∈
(kx, dx, x) ⋆s (ky, dy, y). By Lemma 16, w ∈ x ⋆o y, dx ≤ dw + 1 and dy ≤ dw + 1. Since Mo is separated, x ∈ VMo

(ψ) and 
y ∈ VMo

(χ). Since d +1 : ψ ∈ Cl(φ0) and d +1 : χ ∈ Cl(φ0), by induction hypothesis 1, (kx, dx, x) ∈ VMs
(ψ) and (ky, dy, y) ∈

VMs
(χ).

Hypothesis 2 when α = β; γ and size(β) = 0. First, it has to be verified that whenever Link is called, there exists 
d ∈ N such that d ≥ dx and d : α ∈ Cl(φ0), which is straightforward. Let dα be such that dα ≥ dx and dα : α ∈ Cl(φ0). 
Since size(α) = 0, there is a list φ1, . . . , φm such that β = φ1?; . . . ; φm?. Moreover, for all ℓ ∈ 1. . m, |φℓ| < |α| and 
dα : φℓ ∈ Cl(φ0). Hence, by induction hypothesis 1, (kx, dx, x)RMs

(β)(kx, dx, x). And since 
∣

∣γ
∣

∣ < |α|, by induction hypoth-
esis 2, (kx, dx, x)RMs

(γ )(ky, dy, y).
Hypothesis 3 when α = a. First, it has to be verified that whenever Link is called, xRMo

(α)y, which is straightfor-
ward when Mo is separated. Finally, it suffices to remark that since (kx, dx, x)RMs

(a)(ky, dy, y), line 2 of Link have been 
called. ⊣

We have proved the following proposition:

Proposition 18. Any PDL1
0 formula φ satisfiable in a separated model is satisfiable in a separated finite model with a number of states 

bounded by an exponential in |φ|.

The method from [17] can easily be adapted to prove that the model-checking problem for PDL1
0 can be solved in 

polynomial time in the size of the model. Hence we have the following proposition.

Proposition 19. The satisfiability problem for PDL1
0 in the class of separated frames is decidable in non-deterministic exponential 

time.

8. Conclusion

In modal logic, standard proofs of completeness for a given logic are usually based on the canonical frame construc-
tion consisting of the set of all maximal consistent sets of the logic equipped with standard definitions for the canonical 
accessibility relations. Since the program operation of fork considered in [11, Chapter 1] is not modally definable in the 
ordinary language of PDL, this method cannot work in our case. As a result, we have given an axiomatization of PDL1

0 , our 
variant of iteration-free PDL with fork, using an unorthodox rule of proof and we have proved its completeness using large 
programs. So, we have extended the canonical frame construction introducing new tools and techniques connected with an 
unorthodox rule of proof and large programs.



We anticipate a number of further investigations. First, there is the following general question: is it possible to eliminate 
the rule of proof (FOR) and to replace it with a finite set of additional axiom schemes? Second, more details on decidabil-
ity/complexity issues would be relevant. Third, there is the question of the complete axiomatization of validity with respect 
to other classes of frames like the class of frames considered in [11, Chapter 1], i.e. the class of all separated, deterministic 
and serial frames. Fourth, is the validity problem with respect to the class of all separated, deterministic and serial frames 
decidable? If it is, what is its complexity? Fifth, it remains to see whether our approach can be extended to the full language 
of PDL with fork, this time with iteration.

A novelty in the paper is the proof that fork is modally definable in a language with propositional quantifiers and that 
the rule (FOR) in a sense simulates the quantifier rule for universal quantification in the context of the definition of fork. 
This is a new look on the nature of some context dependent rules of proof like (FOR). In some ways, (FOR) is similar to 
the rule for intersection from [3,4]. See also [1] for ideas about its elimination from the axiomatization of PDL1

0 we have 
given. We expect that our variant of the canonical frame construction can be applied to other logics, for instance PRSPDL, 
the variant of PDL with fork given rise by the binary operation of fork ∇ considered in Benevides et al. [5, Section 2] and 
whose axiomatization is still open.
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Annex

This Annex contains the proofs of some of our results.

Proof of Proposition 1. Left to the reader.

Proof of Proposition 2. By induction on the formation of parametrized actions and admissible forms. Left to the reader.

Proof of Proposition 3. Let M = (W , R, ⋆, V ) be a model.

(A1)–(A15). Left to the reader.
(A16). It suffices to demonstrate by induction on the formation of α that for all x, y ∈ W , if xRM(α(φ?))y, either 

xRM(α((φ ∧ χ)?))y, or xRM(α((φ ∧ ¬χ)?))y. Left to the reader.
(A17). It suffices to demonstrate by induction on the formation of α that for all x, y ∈ W , xRM( f (α))y iff xRM(α)y. 

Left to the reader.

Proof of Proposition 4. Left to the reader.

Proof of Proposition 5. (MP). Left to the reader.
(N). Left to the reader.

Proof of Proposition 7. Let F = (W , R, ⋆) be a frame.

(1). Suppose F |= ∀x ∃y y ∈ x ⋆ x. Suppose F 6|= 〈⊤?1⊤?〉⊤. Hence, there exists a model M = (W , R, ⋆, V ) on F
and there exists x ∈ W such that x /∈ VM(〈⊤?1⊤?〉⊤). Thus, for all y ∈ W , not xRM(⊤?1⊤?)y. Since for all z ∈ W , 
xRM(⊤?1⊤?)z iff z ∈ x ⋆ x, for all y ∈ W , y /∈ x ⋆ x. Therefore, F 6|= ∀x ∃y y ∈ x ⋆ x: a contradiction.

Suppose F |= 〈⊤?1⊤?〉⊤. Suppose F 6|= ∀x ∃y y ∈ x ⋆ x. Hence, there exists x ∈ W such that for all y ∈ W , y /∈ x ⋆ x. 
Let M = (W , R, ⋆, V ) be a model on F (it suffices to take, for V , any valuation on F ). Since for all y ∈ W , y /∈ x ⋆ x

and for all z ∈ W , z ∈ x ⋆ x iff xRM(⊤?1⊤?)z, for all y ∈ W , not xRM(⊤?1⊤?)y. Thus, x /∈ VM(〈⊤?1⊤?〉⊤). Therefore, 
F 6|= 〈⊤?1⊤?〉⊤: a contradiction.

(2). Suppose F |= ∀x ∀y ∀z (y ∈ x ⋆ x ∧ z ∈ x ⋆ x → y = z). Suppose F 6|= 〈⊤?1⊤?〉p → [⊤?1⊤?]p. Hence, there 
exists a model M = (W , R, ⋆, V ) on F and there exists x ∈ W such that x /∈ VM(〈⊤?1⊤?〉p → [⊤?1⊤?]p). Thus, 
x ∈ VM(〈⊤?1⊤?〉p) and x /∈ VM([⊤?1⊤?]p). Therefore, there exists y ∈ W such that xRM(⊤?1⊤?)y and y ∈ V (p) and 



there exists z ∈ W such that xRM(⊤?1⊤?)z and z /∈ V (p). Since for all t ∈ W , xRM(⊤?1⊤?)t iff t ∈ x ⋆ x, and y ∈ x ⋆ x

and z ∈ x ⋆ x. Since y ∈ V (p) and z /∈ V (p), y 6= z. Since y ∈ x ⋆ x and z ∈ x ⋆ x, F 6|= ∀x ∀y ∀z (y ∈ x ⋆ x ∧ z ∈ x ⋆ x → y = z): 
a contradiction.

Suppose F |= 〈⊤?1⊤?〉p → [⊤?1⊤?]p. Suppose F 6|= ∀x ∀y ∀z (y ∈ x ⋆ x ∧ z ∈ x ⋆ x → y = z). Hence, there exists 
x, y, z ∈ W such that y ∈ x ⋆ x, z ∈ x ⋆ x and y 6= z. Thus, there exists a model M = (W , R, ⋆, V ) on F such that y ∈ V (p)

and z /∈ V (p) (it suffices to take, for V , any valuation on F such that V (p) = {y}). Since y ∈ x ⋆ x, z ∈ x ⋆ x and for all 
t ∈ W , xRM(⊤?1⊤?)t iff t ∈ x ⋆ x, xRM(⊤?1⊤?)y and xRM(⊤?1⊤?)z. Since y ∈ V (p) and z /∈ V (p), x ∈ VM(〈⊤?1⊤?〉p)

and x /∈ VM([⊤?1⊤?]p). Therefore, x /∈ VM(〈⊤?1⊤?〉p → [⊤?1⊤?]p). Consequently, F 6|= 〈⊤?1⊤?〉p → [⊤?1⊤?]p: a 
contradiction.

(3). Suppose F |= ∀x ∀y (y ∈ x ⋆ x → x ∈ x ⋆ y). Suppose F 6|= p → [⊤?1⊤?](p ⊲ p). Hence, there exists a model 
M = (W , R, ⋆, V ) on F and there exists x ∈ W such that x /∈ VM(p → [⊤?1⊤?](p ⊲ p)). Thus, x ∈ V (p) and x /∈
VM([⊤?1⊤?](p ⊲ p)). Therefore, there exists y ∈ W such that xRM(⊤?1⊤?)y and y /∈ VM(p ⊲ p). Since for all z ∈ W , 
xRM(⊤?1⊤?)z iff z ∈ x ⋆ x, y ∈ x ⋆ x. Since x ∈ V (p) and y /∈ VM(p ⊲ p), x /∈ x ⋆ y. Since y ∈ x ⋆ x, F 6|= ∀x ∀y (y ∈ x ⋆ x →
x ∈ x ⋆ y): a contradiction.

Suppose F |= p → [⊤?1⊤?](p ⊲ p). Suppose F 6|= ∀x ∀y (y ∈ x ⋆ x → x ∈ x ⋆ y). Hence, there exists x, y ∈ W such that 
y ∈ x ⋆ x and x /∈ x ⋆ y. Thus, there exists a model M = (W , R, ⋆, V ) on F such that x ∈ V (p) and y /∈ VM(p ⊲ p) (it suffices 
to take, for V , any valuation on F such that V (p) = {x}). Since y ∈ x ⋆ x and for all z ∈ W , xRM(⊤?1⊤?)z iff z ∈ x ⋆ x, 
xRM(⊤?1⊤?)y. Since y /∈ VM(p ⊲ p), x /∈ VM([⊤?1⊤?](p ⊲ p)). Since x ∈ V (p), x /∈ VM(p → [⊤?1⊤?](p ⊲ p)). Therefore, 
F 6|= p → [⊤?1⊤?](p ⊲ p): a contradiction.

(4). Similar to (3).
(5). Suppose F |= ∀x ∀y ∀z (z ∈ x ⋆ y ↔ z ∈ y ⋆ x). Suppose F 6|= p ◦ q ↔ q ◦ p. Hence, there exists a model M =

(W , R, ⋆, V ) on F and there exists x ∈ W such that x /∈ VM(p ◦ q ↔ q ◦ p). Thus, either x /∈ VM(p ◦ q → q ◦ p), or x /∈
VM(q ◦ p → p ◦ q). Without loss of generality, suppose x /∈ VM(p ◦ q → q ◦ p). Therefore, x ∈ VM(p ◦ q) and x /∈ VM(q ◦ p). 
Consequently, there exists y, z ∈ W such that x ∈ y ⋆ z, y ∈ V (p) and z ∈ V (q). Since F |= ∀x ∀y ∀z (z ∈ x ⋆ y ↔ z ∈ y ⋆ x), 
x ∈ z ⋆ y. Since z ∈ V (q) and y ∈ V (p), x ∈ VM(q ◦ p): a contradiction.

Suppose F |= p ◦ q ↔ q ◦ p. Suppose F 6|= ∀x ∀y ∀z (z ∈ x ⋆ y ↔ z ∈ y ⋆ x). Hence, there exists x, y, z ∈ W such that either 
z ∈ x ⋆ y and z /∈ y ⋆ x, or z ∈ y ⋆ x and z /∈ x ⋆ y. Without loss of generality, suppose z ∈ x ⋆ y and z /∈ y ⋆ x. Thus, there exists a 
model M = (W , R, ⋆, V ) on F such that z ∈ VM(p ◦ q) (it suffices to take, for V , any valuation on F such that V (p) = {x}

and V (q) = {y}). Since F |= p ◦ q ↔ q ◦ p, z ∈ VM(q ◦ p). Therefore z ∈ y ⋆ x: a contradiction.
(6). Suppose F |= ∀x ∃y ∃z x ∈ y ⋆ z. Suppose F 6|= ⊤ ◦ ⊤. Hence, there exists a model M = (W , R, ⋆, V ) on F and there 

exists x ∈ W such that x /∈ VM(⊤ ◦ ⊤). Thus, for all y, z ∈ W , x /∈ y ⋆ z. Therefore, F 6|= ∀x ∃y ∃z x ∈ y ⋆ z: a contradiction.
Suppose F |= ⊤ ◦ ⊤. Suppose F 6|= ∀x ∃y ∃z x ∈ y ⋆ z. Hence, there exists x ∈ W such that for all y, z ∈ W , x /∈ y ⋆ z. 

Let M = (W , R, ⋆, V ) be a model on F (it suffices to take, for V , any valuation on F ). Since for all y, z ∈ W , x /∈ y ⋆ z, 
x /∈ VM(⊤ ◦ ⊤). Therefore, F 6|= ⊤ ◦ ⊤: a contradiction.

(7) and (8). Similar to (6).
(9). Suppose F |= ∀x ∀y ∀z ∀t (t ∈ (x ⋆ y) ⋆ z ↔ t ∈ x ⋆ (y ⋆ z)). Suppose F 6|= (p ◦ q) ◦ r ↔ p ◦ (q ◦ r). Hence, there

exists a model M = (W , R, ⋆, V ) on F and there exists x ∈ W such that x /∈ VM((p ◦ q) ◦ r ↔ p ◦ (q ◦ r)). Thus, either 
x /∈ VM((p ◦q) ◦ r → p ◦ (q ◦ r)), or x /∈ VM(p ◦ (q ◦ r) → (p ◦q) ◦ r). Without loss of generality, suppose x /∈ VM((p ◦q) ◦ r →

p ◦ (q ◦ r)). Therefore, x ∈ VM((p ◦ q) ◦ r) and x /∈ VM(p ◦ (q ◦ r)). Consequently, there exists y, z ∈ W such that x ∈ y ⋆ z, 
y ∈ VM(p ◦ q) and z ∈ V (r). Hence, there exists t, u ∈ W such that y ∈ t ⋆ u, t ∈ V (p) and u ∈ V (q). Since x ∈ y ⋆ z, 
x ∈ (t ⋆ u) ⋆ z. Since F |= ∀x ∀y ∀z ∀t (t ∈ (x ⋆ y) ⋆ z ↔ t ∈ x ⋆ (y ⋆ z)), x ∈ t ⋆ (u ⋆ z). Thus, there exists v ∈ W such that 
v ∈ u ⋆ z and x ∈ t ⋆ v . Since u ∈ V (q) and z ∈ V (r), v ∈ VM(q ◦ r). Since x ∈ t ⋆ v and t ∈ V (p), x ∈ VM(p ◦ (q ◦ r)): a 
contradiction.

Suppose F |= (p ◦ q) ◦ r ↔ p ◦ (q ◦ r). Suppose F 6|= ∀x ∀y ∀z ∀t (t ∈ (x ⋆ y) ⋆ z ↔ t ∈ x ⋆ (y ⋆ z)). Hence, there exists 
x, y, z, t ∈ W such that either t ∈ (x ⋆ y) ⋆ z and t /∈ x ⋆ (y ⋆ z), or t ∈ x ⋆ (y ⋆ z) and t /∈ (x ⋆ y) ⋆ z. Without loss of generality, 
suppose t ∈ (x ⋆ y) ⋆ z and t /∈ x ⋆ (y ⋆ z). Thus, there exists a model M = (W , R, ⋆, V ) on F such that t ∈ VM((p ◦ q) ◦ r) (it 
suffices to take, for V , any valuation on F such that V (p) = {x}, V (q) = {y} and V (r) = {z}). Since F |= (p ◦q) ◦r ↔ p ◦(q ◦r), 
t ∈ VM(p ◦ (q ◦ r)). Therefore t ∈ x ⋆ (y ⋆ z): a contradiction.

(10). Suppose F |= ∀x ∀y ∀z x /∈ y ⋆ z. Suppose F 6|= ⊥◦̄⊥. Hence, there exists a model M = (W , R, ⋆, V ) on F and there 
exists x ∈ W such that x /∈ VM(⊥◦̄⊥). Thus, there exists y, z ∈ W such that x ∈ y ⋆ z. Therefore, F 6|= ∀x ∀y ∀z x /∈ y ⋆ z: a 
contradiction.

Suppose F |= ⊥◦̄⊥. Suppose F 6|= ∀x ∀y ∀z x /∈ y ⋆ z. Hence, there exists x, y, z ∈ W such that x ∈ y ⋆ z. Let M =
(W , R, ⋆, V ) be a model on F (it suffices to take, for V , any valuation on F ). Since x ∈ y ⋆ z, x /∈ VM(⊥◦̄⊥). Therefore, 
F 6|= ⊥◦̄⊥: a contradiction.

Proof of Proposition 8. Let F = (W , R, ⋆) be a frame.

Suppose F is separated. Suppose F 6|= p ◦ q → (p◦̄⊥) ∧ (⊥◦̄q). Hence, there exists a model M = (W , R, ⋆, V ) on F and 
there exists x ∈ W such that x /∈ VM(p ◦ q → (p◦̄⊥) ∧ (⊥◦̄q)). Thus, x ∈ VM(p ◦ q) and x /∈ VM((p◦̄⊥) ∧ (⊥◦̄q)). Therefore, 
there exists y, z ∈ W such that x ∈ y ⋆ z, y ∈ V (p) and z ∈ V (q). Moreover, either x /∈ VM(p◦̄⊥), or x /∈ VM(⊥◦̄q).

Case x /∈ VM(p◦̄⊥). Hence, there exists t, u ∈ W such that x ∈ t ⋆ u and t /∈ V (p). Since y ∈ V (p), y 6= t . Since F is 
separated, x ∈ y ⋆ z and x ∈ t ⋆ u, y = t: a contradiction.



Case x /∈ VM(⊥◦̄q). Similar to the case x /∈ VM(p◦̄⊥).

Suppose F |= p ◦q → (p◦̄⊥) ∧ (⊥◦̄q). Suppose F is not separated. Hence, there exists x, y, z, t, u ∈ W such that u ∈ x ⋆ y, 
u ∈ z ⋆ t and either x 6= z, or y 6= t .

Case x 6= z. Let M = (W , R, ⋆, V ) be a model on F such that x ∈ V (p), y ∈ V (q) and z /∈ V (p) (it suffices to take, for V ,

any valuation on F such that V (p) = {x} and V (q) = {y}). Since u ∈ x ⋆ y and u ∈ z ⋆ t , u ∈ VM(p ◦ q) and u /∈ VM(p◦̄⊥). 
Hence, u /∈ VM(p ◦ q → (p◦̄⊥) ∧ (⊥◦̄q)). Thus, F 6|= p ◦ q → (p◦̄⊥) ∧ (⊥◦̄q)): a contradiction.

Case y 6= t . Similar to the case x 6= z.

Proof of Proposition 9. Suppose the class of all deterministic frames is modally defined by the formula φ. Let F =

(W , R, ⋆), F ′ = (W ′, R ′, ⋆′) be the frames defined by:

• W = {(x, i) : i ∈ Z} ∪ {(y, j) : j ∈ Z} ∪ {(u, i, j) : i, j ∈ Z};

• R is the empty function;
• (x, i) ⋆ (y, j) = {(u, i, j)}, otherwise ⋆ is the empty function;
• W ′ = {x′, y′, z′, t′};
• R ′ is the empty function;
• x′ ⋆′ y′ = {z′, t′}, otherwise ⋆′ is the empty function.

Obviously, F is deterministic and F ′ is not deterministic. Since the class of all deterministic frames is modally defined 
by the formula φ, F |= φ and F ′ 6|= φ. Hence, there exists a model M′ = (W ′, R ′, ⋆′, V ′) on F ′ such that VM′ (φ) 6= W ′ . 
Let f : v ∈ W 7→ f (v) ∈ W ′ be such that for all i ∈ Z, f (x, i) = x′ , for all j ∈ Z, f (y, j) = y′ , for all i, j ∈ Z, if i < j, 
f (u, i, j) = z′ , else, f (u, i, j) = t′ . Let M = (W , R, ⋆, V ) be the model on F defined by V (p) = f −1(V ′(p)). The reader may 
easily prove by induction on the formation of the formula ψ that for all v ∈ W , v ∈ VM(ψ) iff f (v) ∈ VM′ (ψ). Since 
VM′(φ) 6= W ′ , VM(φ) 6= W . Thus, F 6|= φ: a contradiction.

Proof of Proposition 10. Define the disjoint union M1⊎M2 = (W+, R+, ⋆+, V+) of any two models M1 = (W1, R1, ⋆1, V1)

and M2 = (W2, R2, ⋆2, V2) by

• W+ = {(i, w) : i ∈ {1,2} and w ∈ W i},

• R+(a) = {((i, w), ( j, x)) : i = j and wR i(a)x}, for all a,
• (i, w) ⋆+ ( j, x) = {(k, y) : i = j = k and y ∈ w ⋆i x}, for all (i, w), ( j, x),
• V+(p) = {(i, w) : w ∈ V i(p)}, for all p.

Clearly, disjoint union of models does not preserve seriality, because even if M1 and M2 are serial, for all w1 ∈ W1 and 
all w2 ∈ W2 , (1, w1) ⋆+ (2, w2) is empty. Moreover, it can easily be proved by induction on φ that for all i ∈ {1, 2} and all 
w ∈ W i , (i, w) ∈ VM1⊎M2

(φ) iff w ∈ VMi
(φ).

Suppose now that the class of serial frames is modally defined by the formula φ. If M1 and M2 are serial then 
VM1

(φ) = W1 and VM2
(φ) = W2 , hence VM1⊎M2

(φ) = W+ . But we already proved that M1 ⊎ M2 is not serial: a 
contradiction.

Proof of Proposition 11. Suppose there exists a test-free formula φ such that 〈⊤?1⊤?〉⊤ ↔ φ is valid in the class of all 
separated deterministic frames. Let M = (W , R, ⋆, V ), M′ = (W ′, R ′, ⋆′, V ′) be the models defined by:

• W = {x, y};
• R is the empty function;
• x ⋆ x = {y}, otherwise ⋆ is the empty function;
• V is the empty function;
• W ′ = {x′

1, x
′
2, y

′
1, y

′
2};

• R ′ is the empty function;
• x′

1 ⋆′ x′
2 = {y′

1} and x′
2 ⋆′ x′

1 = {y′
2}, otherwise ⋆′ is the empty function;

• V ′ is the empty function.

Obviously, M, M′ are separated and deterministic, x ∈ VM(〈⊤?1⊤?〉⊤), x′
1 /∈ VM′ (〈⊤?1⊤?〉⊤) and x′

2 /∈ VM′ (〈⊤?1⊤?〉⊤). 
Since 〈⊤?1⊤?〉⊤ ↔ φ is valid in the class of all separated deterministic frames, x ∈ VM(φ), x′

1 /∈ VM′ (φ) and x′
2 /∈ VM′ (φ). 

Let Z = {(x, x′
1), (x, x

′
2), (y, y

′
1), (y, y

′
2)}. The reader may easily prove by induction on the formation of the test-free formula 

ψ that for all u ∈ W , for all u′ ∈ W ′ , if uZu′ , u ∈ VM(ψ) iff u′ ∈ VM′ (ψ). Since xZx′
1 , xZx

′
2 and x ∈ VM(φ), x′

1 ∈ VM′ (φ)

and x′
2 ∈ VM′ (φ): a contradiction.

Proof of Proposition 12. Suppose there exists a fork-free formula φ such that 〈a1a〉⊤ ↔ φ is valid in the class of all sepa-
rated deterministic frames. Let M = (W , R, ⋆, V ), M′ = (W ′, R ′, ⋆′, V ′) be the models defined by:



• W = {x, y, z, t};
• R(a) = {(x, y), (x, z)}, otherwise R is the empty function;
• y ⋆ z = {t}, otherwise ⋆ is the empty function;
• V is the empty function;
• W ′ = {x′, y′

1, y
′
2, z

′
1, z

′
2, t

′
1, t

′
2};

• R ′(a) = {(x′, y′
1), (x

′, z′2)}, otherwise R ′ is the empty function;
• y′

1 ⋆′ z′1 = {t′1}, y
′
2 ⋆′ z′2 = {t′2}, otherwise ⋆′ is the empty function;

• V ′ is the empty function.

Obviously, M, M′ are separated and deterministic, x ∈ VM(〈a1a〉⊤) and x′ /∈ VM′ (〈a1a〉⊤). Since 〈a1a〉⊤ ↔ φ is valid in 
the class of all separated deterministic frames, x ∈ VM(φ) and x′ /∈ VM′ (φ). Let Z = {(x, x′), (y, y′

1), (y, y
′
2), (z, z

′
1), (z, z

′
2),

(t, t′1), (t, t
′
2)}. The reader may easily prove by induction on the formation of the fork-free formula ψ that for all u ∈ W , for 

all u′ ∈ W ′ , if uZu′ , u ∈ VM(ψ) iff u′ ∈ VM′ (ψ). Since xZx′ and x ∈ VM(φ), x′ ∈ VM′ (φ): a contradiction.

Proof of Proposition 16. By Propositions 3–6.

Proof of Lemma 1. Left to the reader.

Proof of Lemma 2. Left to the reader.

Proof of Lemma 3. (1). Left to the reader.
(2). Leaving to the reader the proof that PDL1

0 ⊆ [α]S and [α]S is closed under the rule of proof (MP), we prove that 
[α]S is closed under the rule of proof (FOR). Suppose {φ̆(〈β〉((ψ ∧ p) ⊳ ⊤) ∨ 〈γ 〉(⊤ ⊲ (ψ ∧ ¬p))) : p is a propositional 
variable} ⊆ [α]S . Hence, {[α; ¬φ̆(〈β〉((ψ ∧ p) ⊳ ⊤) ∨ 〈γ 〉(⊤ ⊲ (ψ ∧ ¬p)))?]⊥ : p is a propositional variable} ⊆ S . Since S is 
closed under the rule of proof (FOR), [α; ¬φ̆(〈β1γ 〉ψ)?]⊥ ∈ S . Thus, φ̆(〈β1γ 〉ψ) ∈ [α]S .

(3). By (1) and (2).
(4) and (5). Left to the reader.

Proof of Lemma 6. Suppose φ ⊗ ψ ∈ S .

(1). Suppose (φ ∧ χ) ⊗ ψ /∈ S . Hence, (φ ∧ ¬χ) ⊗ ψ ∈ S . Obviously, there are finitely many, say k ≥ 0, representations 
of χ in the form of a conclusion of the rule of proof (FOR): τ̆1(〈α11β1〉µ1), . . . , τ̆k(〈αk1βk〉µk). We define by induction 
a sequence (θ0, . . . , θk) of formulas such that for all l ∈ N , if l ≤ k, the following conditions are satisfied: (φ ∧ θl) ⊗ ψ ∈ S; 
θl → ¬χ ∈ PDL1

0 ; for all m ∈ N , if 1 ≤ m ≤ l, there exists a propositional variable p such that θl → ¬τ̆m(〈αm〉((µm ∧ p) ⊳
⊤) ∨ 〈βm〉(⊤ ⊲ (µm ∧ ¬p))) ∈ PDL1

0 . First, let θ0 = ¬χ . Obviously, the following conditions are satisfied: (φ ∧ θ0) ⊗ ψ ∈ S; 
θ0 → ¬χ ∈ PDL1

0 . Second, let l ≥ 1 be such that l ≤ k and the formulas θ0, . . . , θl−1 have already been defined. Hence, 
(φ ∧ θl−1) ⊗ ψ ∈ S; θl−1 → ¬χ ∈ PDL1

0 ; for all m ∈ N , if 1 ≤ m ≤ l − 1, there exists a propositional variable p such that 
θl−1 → ¬τ̆m(〈αm〉((µm ∧ p) ⊳ ⊤) ∨ 〈βm〉(⊤ ⊲ (µm ∧ ¬p))) ∈ PDL1

0 . Third, since (φ ∧ θl−1) ⊗ ψ ∈ S and θl−1 → ¬χ ∈ PDL1
0 , 

([(φ ∧ θl−1)?; ¬χ?]⊥)⊗̄¬ψ /∈ S . Since S is closed under the rule of proof (FOR), there exists a propositional variable p
such that ([(φ ∧ θl−1)?; ¬τ̆l(〈αl〉((µl ∧ p) ⊳ ⊤) ∨ 〈βl〉(⊤ ⊲ (µl ∧ ¬p)))?]⊥)⊗̄¬ψ /∈ S . Let θl = θl−1 ∧ ¬τ̆l(〈αl〉((µl ∧ p) ⊳ ⊤) ∨
〈βl〉(⊤ ⊲ (µl ∧ ¬p))). Obviously, the following conditions are satisfied: (φ ∧ θl) ⊗ ψ ∈ S; θl → ¬χ ∈ PDL1

0 ; for all m ∈ N , if 
1 ≤ m ≤ l, there exists a propositional variable p such that θl → ¬τ̆m(〈αm〉((µm ∧ p) ⊳ ⊤) ∨ 〈βm〉(⊤ ⊲ (µm ∧ ¬p))) ∈ PDL1

0 . 
Finally, the reader may easily verify that the following conditions are satisfied: (φ ∧ θk) ⊗ ψ ∈ S; θk → ¬χ ∈ PDL1

0 ; if χ
is in the form τ̆ (〈α1β〉µ) of a conclusion of the rule of proof (FOR), there exists a propositional variable p such that 
θk → ¬τ̆ (〈α〉((µ ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (µ ∧ ¬p))) ∈ PDL1

0 .

(2). Similar to (1).

Proof of Lemma 7. (1). Suppose φ ◦ψ ∈ S . Since there are countably many formulas, there exists an enumeration χ1, χ2, . . .
of the set of all formulas. Let θ0, θ1, . . . and τ0, τ1, . . . be the sequences of formulas inductively defined as follows such 
that for all n ∈ N , θn ◦ τn ∈ S . First, let θ0 = φ and τ0 = ψ . Obviously, θ0 ◦ τ0 ∈ S . Second, let n ≥ 1 be such that formulas 
θ0, . . . , θn−1 and τ0, . . . , τn−1 have already been defined. Hence, θn−1◦τn−1 ∈ S . Third, by Lemma 6, either (θn−1∧χn) ◦τn−1 ∈

S , or there exists a formula µ such that the following conditions are satisfied: (θn−1 ∧ µ) ◦ τn−1 ∈ S; µ → ¬χn ∈ PDL1
0 ; 

if χn is in the form ν̆(〈α1β〉ω) of a conclusion of the rule of proof (FOR), there exists a propositional variable p such 
that µ → ¬ν̆(〈α〉((ω ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (ω ∧ ¬p))) ∈ PDL1

0 . In the former case, let θn = θn−1 ∧ χn . In the latter case, let 
θn = θn−1 ∧ µ. Obviously, θn ◦ τn−1 ∈ S . By Lemma 6, either θn ◦ (τn−1 ∧ χn) ∈ S , or there exists a formula µ such that the 
following conditions are satisfied: θn ◦ (τn−1 ∧ µ) ∈ S; µ → ¬χn ∈ PDL1

0 ; if χn is in the form ν̆(〈α1β〉ω) of a conclusion of 
the rule of proof (FOR), there exists a propositional variable p such that µ → ¬ν̆(〈α〉((ω ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (ω ∧ ¬p))) ∈
PDL1

0 . In the former case, let τn = τn−1 ∧ χn . In the latter case, let τn = τn−1 ∧ µ. Obviously, θn ◦ τn ∈ S . Finally, the reader 
may easily verify that T =

⋃

{PDL1
0 + θn : n ∈ N} and U =

⋃

{PDL1
0 + τn : n ∈ N} are maximal consistent theories such that 

T ◦ U ⊆ S , φ ∈ T and ψ ∈ U .



(2) and (3). Similar to (1).

Proof of Lemma 8. Suppose Fc is not separated. Hence, there exists X, Y , Z , T , U ∈ Wc such that U ∈ X ⋆ Y , U ∈ Z ⋆ T and 
either X 6= Z , or Y 6= T .

Case X 6= Z . Hence, there exists a formula φ such that φ ∈ X and φ /∈ Z . Since U ∈ X ⋆ Y , φ ◦⊤ ∈ U . Thus, ¬(¬φ ◦⊤) ∈ U . 
Since U ∈ Z ⋆ T , φ ∈ Z : a contradiction.

Case Y 6= T . Similar to the case X 6= Z .

Proof of Lemma 9. Suppose 〈α(φ?)〉⊤ ∈ S . Suppose 〈α((φ ∧ ψ)?)〉⊤ /∈ S . Hence, 〈α((φ ∧ ¬ψ)?)〉⊤ ∈ S . Obviously, there are 
finitely many, say k ≥ 0, representations of ψ in the form of a conclusion of the rule of proof (FOR): τ̆1(〈β11γ1〉θ1), . . . ,
τ̆k(〈βk1γk〉θk). We define by induction a sequence (χ0, . . . , χk) of formulas such that for all l ∈ N , if l ≤ k, the following 
conditions are satisfied: 〈α((φ ∧ χl)?)〉⊤ ∈ S; χl → ¬ψ ∈ PDL1

0 ; for all m ∈ N , if 1 ≤ m ≤ l, there exists a propositional 
variable p such that χl → ¬τ̆m(〈βm〉((θm ∧ p) ⊳⊤) ∨〈γm〉(⊤ ⊲ (θm ∧¬p))) ∈ PDL1

0 . First, let χ0 = ¬ψ . Obviously, the following 
conditions are satisfied: 〈α((φ ∧ χ0)?)〉⊤ ∈ S; χ0 → ¬ψ ∈ PDL1

0 . Second, let l ≥ 1 be such that l ≤ k and the formulas 
χ0, . . . , χl−1 have already been defined. Hence, 〈α((φ ∧ χl−1)?)〉⊤ ∈ S; χl−1 → ¬ψ ∈ PDL1

0 ; for all m ∈ N , if 1 ≤ m ≤
l − 1, there exists a propositional variable p such that χl−1 → ¬τ̆m(〈βm〉((θm ∧ p) ⊳ ⊤) ∨ 〈γm〉(⊤ ⊲ (θm ∧ ¬p))) ∈ PDL1

0 . 
Third, since 〈α((φ ∧ χl−1)?)〉⊤ ∈ S and χl−1 → ¬ψ ∈ PDL1

0 , [α(¬[(φ ∧ χl−1)?; ¬ψ?]⊥?)]⊥ /∈ S . Since S is closed under the 
rule of proof (FOR), there exists a propositional variable p such that [α(¬[(φ ∧ χl−1)?; ¬τ̆l(〈βl〉((θl ∧ p) ⊳ ⊤) ∨ 〈γl〉(⊤ ⊲
(θl ∧ ¬p)))?]⊥?)]⊥ /∈ S . Let χl = χl−1 ∧ ¬τ̆l(〈βl〉((θl ∧ p) ⊳ ⊤) ∨ 〈γl〉(⊤ ⊲ (θl ∧ ¬p))). Obviously, the following conditions are 
satisfied: 〈α((φ ∧ χl)?)〉⊤ ∈ S; χl → ¬ψ ∈ PDL1

0 ; for all m ∈ N , if 1 ≤ m ≤ l, there exists a propositional variable p such 
that χl → ¬τ̆m(〈βm〉((θm ∧ p) ⊳ ⊤) ∨ 〈γm〉(⊤ ⊲ (θm ∧ ¬p))) ∈ PDL1

0 . Finally, the reader may easily verify that the following 
conditions are satisfied: 〈α((φ ∧ χk)?)〉⊤ ∈ S; χk → ¬ψ ∈ PDL1

0 ; if ψ is in the form τ̆ (〈β1γ 〉θ) of a conclusion of the rule 
of proof (FOR), there exists a propositional variable p such that χk → ¬τ̆ (〈β〉((θ ∧ p) ⊳ ⊤) ∨ 〈γ 〉(⊤ ⊲ (θ ∧ ¬p))) ∈ PDL1

0 .

Proof of Lemma 10. Suppose [α]φ /∈ S . Since S is maximal, 〈α〉¬φ ∈ S . Hence, 〈 f (α)〉¬φ ∈ S . Without loss of generality, 
suppose f (α) contains exactly one test, say ψ?. Thus, 〈 f (α)(ψ?); ¬φ?〉⊤ ∈ S . Since there are countably many formu-

las, there exists an enumeration χ1, χ2, . . . of the set of all formulas. Let θ0, θ1, . . . and τ 0, τ 1, . . . be the sequences of 
formulas inductively defined as follows such that for all n ∈ N , 〈 f (α)(θn?); τn?〉⊤ ∈ S . First, let θ0 = ψ and τ 0 = ¬φ. Ob-
viously, 〈 f (α)(θ0?); τ 0?〉⊤ ∈ S . Second, let n ≥ 1 be such that formulas θ0, . . . , θn−1 and τ 0, . . . , τn−1 have already been 
defined. Hence, 〈 f (α)(θn−1?); τn−1?〉⊤ ∈ S . Third, by Lemma 9, either 〈 f (α)((θn−1 ∧ χn)?); τn−1?〉⊤ ∈ S , or there exists 
a formula µ such that the following conditions are satisfied: 〈 f (α)((θn−1 ∧ µ)?); τn−1?〉⊤ ∈ S; µ → ¬χn ∈ PDL1

0 ; if χn

is in the form ω̆(〈β1γ 〉ν) of a conclusion of the rule of proof (FOR), there exists a propositional variable p such that 
µ → ¬ω̆(〈β〉((ν ∧ p) ⊳ ⊤) ∨ 〈γ 〉(⊤ ⊲ (ν ∧ ¬p))) ∈ PDL1

0 . In the former case, let θn = θn−1 ∧ χn . In the latter case, let 
θn = θn−1 ∧ µ. Obviously, 〈 f (α)(θn?); τn−1?〉⊤ ∈ S . By Lemma 9, either 〈 f (α)(θn?); (τn−1 ∧ χn)?〉⊤ ∈ S , or there exists 
a formula µ such that the following conditions are satisfied: 〈 f (α)(θn?); (τn−1 ∧ µ)?〉⊤) ∈ S; µ → ¬χn ∈ PDL1

0 ; if χn

is in the form ω̆(〈β1γ 〉ν) of a conclusion of the rule of proof (FOR), there exists a propositional variable p such that 
µ → ¬ω̆(〈β〉((ν ∧ p) ⊳ ⊤) ∨ 〈γ 〉(⊤ ⊲ (ν ∧ ¬p))) ∈ PDL1

0 . In the former case, let τn = τn−1 ∧ χn . In the latter case, let 
τn = τn−1 ∧ µ. Obviously, 〈 f (α)(θn?); τn?〉⊤ ∈ S . Finally, the reader may easily verify that T =

⋃

{PDL1
0 + θn : n ∈ N}

and U =
⋃

{PDL1
0 + τn : n ∈ N} are maximal consistent theories such that f (α) ∈ ker( f (α)(T̄ )), for all programs β , if

β ∈ ker( f (α)(T̄ )), [β]S ⊆ U and φ /∈ U .

Proof of Proposition 17. Suppose φ is valid in the class of all separated frames. Suppose φ /∈ PDL1
0 . By Lemma 3, PDL1

0 +¬φ

is a consistent theory containing ¬φ. By Lemma 5, there exists a maximal consistent theory S such that PDL1
0 + ¬φ ⊆ S . 

Since PDL1
0 + ¬φ contains ¬φ, φ /∈ S . By Lemma 11, S /∈ VMc

(φ). By Lemma 8, φ is not valid in the class of all separated 
frames: a contradiction.
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