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This paper addresses the question of sequential collective decision making under qualitative 
uncertainty. It resumes the criteria introduced in previous works [4–6] by Ben Amor et al. and 
extends them to a more general context where every decision maker is free to have an optimistic or 
a pessimistic attitude w.r.t. uncertainty. These criteria are then considered for the optimization of 
possibilistic decision trees and an algorithmic study is performed for each of them. When the global 
utility does satisfy the monotonicity property, a classical possibilistic Dynamic Programming can be 
applied. Otherwise, two cases are possible: either the criterion is max oriented (the more is the 
satisfaction of any agent, the greater is the global satisfaction), and a dedicated algorithm can be 
proposed, that relies on as many calls to Dynamic Programming as the number of decision makers; 
or the criterion is min oriented (all the agents must like the common decision) and the optimal 
strategy can be provided by a Branch and Bound Algorithm. The paper concludes by an experimental 
study that shows the feasibility of the approaches, and details to what extent simple Dynamic 
programming algorithms can be used as approximation procedures for the non monotonic criteria.

1. Introduction

The handling of a collective decision problem under uncertainty resorts on (i) the identification of a theory of decision 
making under uncertainty (DMU) that captures the decision makers’ behavior with respect to uncertainty and (ii) the 
specification of a collective utility function (CUF) as it may be used when the problem is not pervaded with uncertainty. But 
also, one needs to precise when the utility of the agents is to be evaluated: before (ex-ante) or after (ex-post) the realization 
of the uncertain events. In the first case, the global utility function is a function of the DMU utilities of the different agents; 
in the second case it is an aggregation, w.r.t. the likelihood of the final states, of the collective utilities.

Following Fleming [23], Harsanyi [27] has shown that, when the uncertainty about consequences of decisions can be 
quantified in a probabilistic way: the collective utility should be a weighted sum of the individual expected utilities. Many 
contributions have been inspired by this seminal work: Some authors (such as Diamond [11]) criticized this approach 
because not applicable when the collective utility is more egalitarian than utilitarian. Others have developed Harsanyi’s ap-

✩ This paper is an extended version of preliminary results presented in [7]; it includes the full proofs of the propositions, and new models and algorithms 
that allow the modeling of collective sequential problems where the agents have different attitudes w.r.t. uncertainty.
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proach, in particular Myerson [37] who proved that only the choice of an utilitarian social welfare function can reconciliate 
the ex-ante and ex-post approaches. However in the probabilistic case, all other welfare functions suffer from the “timing 
effect” [37], i.e., lead to a discrepancy between the ex-ante and the ex-post approach.

Harsanyi’s and Meyrson’s results rely on the assumption that the knowledge of the agents about the consequences of 
their decisions is rich enough to be modeled by probabilistic lotteries. When the information about uncertainty cannot be 
quantified in a probabilistic way, the topic of possibilistic decision theory is often a natural one to consider [12–14,18,21,25]. 
Qualitative decision theory is relevant, among other fields, for applications to planning under uncertainty, where a suitable 
strategy (i.e., a set of conditional or unconditional decisions) is to be found, starting from a qualitative description of the 
initial world, of the available alternatives, of their (perhaps uncertain) effects and of the goal to reach (see [8,41,43]). But 
up to this point, the evaluation of the strategies was considered only in a simple, mono-agent context, while it is often the 
case that several agents are involved in the decision.

The present paper raises the question of sequential collective decision making under possibilistic uncertainty. It follows 
recent works [4–6] which propose a theoretical framework for multi-agent (non sequential) decision making under possi-
bilistic uncertainty. It extends these results to consider decision problems where agents may have different attitude w.r.t. 
uncertainty (some may be optimistic when the others are pessimistic) and provides new decision rules for this specific case. 
Then, we tackle the problem of (possibilistic) sequential decision making and we provide an algorithmic study for strategy 
optimization in collective possibilistic decision trees.

The remainder of this paper is organized as follows: The next Section recalls the basic notions on which our work 
relies (decision under possibilistic uncertainty, collective utility functions, etc.). In Section 3, we resume the decision criteria 
introduced in [4] and define new ones for agents with different attitudes. Section 4 is devoted to strategy optimization 
in collective possibilistic decision trees, using the decision rules previously defined. The picture is finally completed by an 
experimental study, presented in Section 5.

2. Background and basic notions

2.1. Collective utility functions

Let us consider a set A = {1, . . . , p} of agents that have to make a decision. Each agent i ∈A being supposed to express 
his / her preferences on a set of alternatives (say, a set X ), by a ranking function or a utility function ui that associates 
to each element of X a value in a subset of R+ (typically in the unit interval [0, 1]). In the absence of uncertainty, each 
decision leads to a unique consequence and an utility vector Eu = 〈u1, . . . , up〉 is associated to each one of them. Besides, 
when agents are not equally important, we define a vector Ew = 〈w1, . . . , w p〉 where each i is equipped with a weight 
w i ∈ [0, 1] reflecting its importance. Thus, solving the problem comes down to compute a global utility degree that reflects 
the collective preference by aggregating the different ui ’s.

In a qualitative framework, such aggregation shall be either conjunctive (i.e., based on a weighted min) or disjunctive 
(i.e., based on a weighted max) - see [15] for more details about weighted min and weighted max aggregations. Formally, 
these aggregations are defined as follows:

Disjunctive aggregation : Aggmax(x) = max
i∈A

min(w i,ui(x)). (1)

Conjunctive aggregation : Aggmin(x) = min
i∈A

max(1− w i,ui(x)). (2)

2.2. Multi-agent decision making under risk

In a framework of decision making under risk, when the information about the consequences of decisions is probabilistic, 
a popular criterion to compare alternatives is the expected utility model axiomatized by Von Neumann and Morgenstern 
[35]: an elementary decision is modeled by a probability distribution over the set X of possible outcomes. It is called a 
simple probabilistic lottery and it is denoted by L = 〈λ1/x1, . . . , λn/xn〉, where λ j = p(x j) is the probability that the decision 
leads to outcome x j . Also, it is supposed that the preferences of a single decision maker are captured by a utility function u j

assigning a numerical value to each x j . Solving such problems amounts to evaluate risky alternatives and choosing among 
them. In other words, we compute the expected utility of each lottery and we select the one with the highest value (the 
greater, the better).

When several agents are involved, the aggregation of individual preferences under risk raises a particular problem de-
pending on when the utility of the agents is to be evaluated, before or after the consideration of uncertainty. This yields 
two different approaches, namely the ex-ante and the ex-post aggregation:

• The ex-ante approach consists in computing the utility of each agent, before performing the aggregation using the
agents’ weights.

• The ex-post approach consists in first determining the aggregated utility (conjunctive or disjunctive) relative to each
possible outcome of X ; then consider the uncertainty and the likelihood of states.



For the same decision problem and using the same criterion, the two approaches do not always coincide: Aggregating the 
agents attitudes before or after the consideration of uncertainty may lead to different conclusions. This phenomenon has 
been identified by Myerson [37] as “timing effect”.

2.3. Single agent decision making under possibilistic uncertainty

The expected utility model owes its popularity essentially to its strong axiomatic justifications [35,44]. However, it in-
volves only the use of a quantitative representation of uncertainty and it has been proved that this formalism cannot 
represent all decision makers’ behaviors [1,22]. Besides, when the decision maker is unable to express his / her uncertainty 
and preferences numerically and can only give an order among different alternatives, the probabilistic framework remains 
inappropriate and non probabilistic models (such as imprecise probabilities [46], evidence theory [45], rough set theory [39]
and possibility theory [16,19,47,48]) become relevant alternatives. In particular, one may consider qualitative possibilistic 
decision rules that have emerged with the growth of possibility theory.

Possibility theory is a framework to handle uncertainty issued from Fuzzy Sets theory. It has been introduced by Zadeh 
[47,48] and further developed by Dubois and Prade [16,17]. The basic building block in this framework is the notion of 
possibility distribution. It represents the knowledge of a decision maker about the state of the world. A possibility distri-
bution is denoted by π and it maps each state s in the universe of discourse S to a bounded linearly ordered scale V , 
typically the unit interval [0, 1]. This scale can be interpreted in a quantitative or a qualitative way, the latter is the context 
of our work. Independently of the used scale, given s ∈ S , π(s) = 1 means that the realization of s is totally possible and 
π(s) = 0 means that s is impossible. π is said to be normalized if there exist at least one s ∈ S that is totally possible. 
Extreme cases of knowledge in possibility theory are complete knowledge and total ignorance. In the first case, we assign 1 
to a totally possible state s0 and 0 otherwise (i.e., ∃ s0, π(s0) = 1 and ∀s 6= s0, π(s) = 0). In the second one, we assign 1 to 
all situations (i.e., π(s) = 1, ∀s ∈ S).

Possibility theory is characterized by the use of two dual measures, namely the possibility measure 5 and necessity 
measure N defined by:

• Possibility measure: 5(E) = max
s∈E

π(s). It denotes the possibility degree evaluating at which level an event E ⊆ S is 

consistent with the knowledge represented by π .

• Necessity measure: N(E) = 1 − 5(¬E) = min
s∈E

(1 − π(s)). It denotes the necessity degree evaluating at which level an 

event E ⊆ S is certainly implied by the knowledge.

Following Dubois and Prade’s possibilistic approach of decision making under qualitative uncertainty [18], a decision can 
be seen as a possibility distribution over a finite set of outcomes X called a (simple) possibilistic lottery. Such a lottery is 
denoted by L = 〈λ1/x1, . . . , λn/xn〉 where λ j = πL(x j) is the possibility that decision L leads to outcome x j ; this possibility 
degree can also be denoted by L[x j]. In this framework, a decision problem is thus fully specified by a set of possibilistic 
lotteries on X and a utility function u : X 7→ [0, 1] expressing the decision maker preferences. Under the assumption that 
the utility scale and the possibility scale are commensurate and purely ordinal, Dubois and Prade propose to evaluate each 
lottery by a qualitative, optimistic or pessimistic utility [18]:

Optimistic utility : U+(L) = max
x j∈X

min(L[x j],u(x j)). (3)

Pessimistic utility : U−(L) = min
x j∈X

max(1− L[x j],u(x j)). (4)

U+(L) is a mild version of the maximax criterion: L is good as soon as it is totally plausible that it gives a good consequence. 
On the contrary, the pessimistic utility, U−(L) estimates the utility of an act by its worst possible consequence: its value is 
high whenever L gives good consequences in every “rather plausible” state. These two utilities can be seen as the ordinal 
counterpart of the expected utility criterion and have been axiomatized in the style of Von Neumann and Morgenstern [18]
and Savage [20] frameworks.

3. A possibilistic approach to collective decision making

3.1. Collective qualitative decision rules

Let us now consider collective decision making under qualitative uncertainty: In this framework, the decision maker’s 
attitude with respect to uncertainty can be either optimistic (U+) or pessimistic (U−) and the aggregation of the agents’ 
preferences can be either conjunctive, egalitarian (Aggmin) or disjunctive, non egalitarian (Aggmax).

Consider the decision problem defined by A a set of agents, Eu = 〈u1, . . . , up〉 a vector of utility functions, Ew =

〈w1, . . . , w p〉 a weighting vector and L = 〈L[x1]/Eu(x1), . . . , L[xn]/Eu(xn)〉 a possibilistic lottery on a set of consequences 
X . Ben Amor et al. [4–6] have proposed and axiomatized four ex-ante and four ex-post decision criteria to solve such
problems.



Fig. 1. Possibilistic (constant) lottery of Example 1.

U−min
ante (L) = min

i∈A
max ((1− w i), min

x j∈X
max ( ui(x j), (1− L[x j]))). (5)

U−max
ante (L) =max

i∈A
min (w i, min

x j∈X
max ( ui(x j), (1− L[x j]))). (6)

U+min
ante (L) = min

i∈A
max ((1− w i), max

x j∈X
min ( ui(x j), L[x j])). (7)

U+max
ante (L) =max

i∈A
min (w i, max

x j∈X
min ( ui(x j), L[x j])). (8)

U−min
post (L) =min

x j∈X
max ((1− L[x j]), min

i∈A
max ( ui(x j), (1− w i))). (9)

U−max
post (L) =min

x j∈X
max ((1− L[x j]), max

i∈A
min ( ui(x j), w i)). (10)

U+min
post (L) =max

x j∈X
min (L[x j], min

i∈A
max ( ui(x j), (1− w i))). (11)

U+max
post (L) =max

x j∈X
min (L[x j], max

i∈A
min ( ui(x j), w i)). (12)

For the notations: the subscript indicates the used approach (ex-ante or ex-post) and the superscript denotes the decision 
makers’ attitude w.r.t. uncertainty (pessimistic “-” or optimistic “+”) and the agents’ preferences aggregation (conjunctive 
“min” or disjunctive “max”).

The U−min
ante utility for instance, considers that the decision makers are pessimistic and computes the pessimistic utility 

of each one of them. Then, the U−
i ’s are aggregated on a cautious basis: the higher the satisfaction of the least satisfied of 

the important agents, the better is the lottery. Using the same notations, U−max
post considers that a consequence xi is good as

soon as one of the important agents is satisfied: a max-based aggregation of the utilities is performed, yielding a unique 
utility function Agg() on the basis of which the pessimistic utility is computed.

In Ref. [6], authors have proposed a qualitative counterpart of Harsanyi’s theorem [27], and have shown that the fully 
min oriented and fully max oriented ex-ante utilities are equivalent to their ex-post counterparts, i.e., U−min

ante = U−min
post and 

U+max
ante = U+max

post . But U−max
ante (resp. U+min

ante ) may differ from U−max
post (resp. from U+min

post ). These criteria suffer from timing 
effect.

Example 1. Consider two equally important agents 1 and 2 (w1 = w2 = 1), and a lottery L = 〈1/xa, 1/xb〉 defining a state of 
total ignorance about consequences xa and xb (π(xa) = π(xb) = 1) (see Fig. 1). The first consequence is good for 1 and bad 
for 2, and the second one is bad for 1 and good for 2: u1(xa) = u2(xb) = 1 and u2(xa) = u1(xb) = 0.

It is easy to check that U+min
ante (L) = 0 6= U+min

post (L) = 1 where:

U+min
post (L) =max ( min (1,min ( max (1− 1,1), max (1 − 1,0))) ,

min (1,min (max (1− 1,0),max (1 − 1,1)))) = 0.

U+min
ante (L) =min ( max (1 − 1,max ( min (1,1), min (1,0))) ,

max (1− 1,max (min (1,0),min (1,1)))) = 1.

3.2. Possibilistic decision rules for agents with different attitude w.r.t. to uncertainty

The decision rules presented in the previous section assume that all the agents are either purely optimistic or purely 
pessimistic. However, the attitude of each decision maker has a major impact on the chosen alternative or decision. For the 
same decision problem only varying the attitude of a decision maker may radically change the results. Besides, in real-world 
problems, it is seldom that all the decision makers have same attitude: the group of decision makers may gather pessimistic 
as well as optimistic persons. So, the decision have to be made by considering the individual differences in tolerance and 
intolerance for uncertainty. In the following, we get rid of the assumption of the same attitude for the collectivity and we 
propose more general decision rules that are appropriate to handle situations where each agent is free to express his / her 
attitude w.r.t. uncertainty.

Nevertheless, dealing with such problems imposes the use of ex-ante aggregation and forces us to give up the ex-post
utilities. The ex-post approach that aggregates the preference utilities of the agents into a global, mono-agent one (this 



agent representing the collectivity), imposes the use of one and only one attitude. Hence, it is not possible to respect each 
agent’s attitude towards uncertainty with a such method. The ex-ante approach, on the contrary, allows the handling of the 
different attitudes of heterogeneous agents. This leads us to extend the ex-ante decision rules as follows:

Definition 1. Given a possibilistic lottery L on X , a set of agents A (where each i is either optimistic or pessimistic), a 
vector of utility functions Eu and a weighting vector Ew , let:

Umax
ante(L) =max

i∈A
min (w i, ⊗

x j∈X
⊕ (ui(x j),3[x j])). (13)

Umin
ante(L) =min

i∈A
max (1 − w i, ⊗

x j∈X
⊕ (ui(x j),3[x j])), (14)

where ⊗ = min (resp. max), ⊕ = max (resp. min) and 3[x j] = 1 - L[x j] (resp. L[x j]) if the agent i is pessimistic (resp. 
optimistic).

Example 2. Consider two agents 1 and 2 having the same importance (w1 = w2 = 1) such that 1 is optimistic and 2 is 
pessimistic, and consider the lottery L defined in Example 1: L = 〈1/〈1, 0〉, 1/〈0, 1〉〉. We get the following results:

Umax
ante (L) =max (min(w1,U

+
1 (L)),min(w2,U

−
2 (L))).

=max ( min (1,max ( min (1,1), min (1,0))) ,

min (1,min (max (1− 1,0),max (1 − 1,1)))) = 1.

Umin
ante(L) =min (max (1− w1,U

+
1 (L)),max (1− w2,U

−
2 (L))).

=min ( max (1− 1,max ( min (1,1), min (1,0))) ,

max (1− 1,min (max (1 − 1,0),max (1− 1,1)))) = 0.

These criteria can be considered as a generalization of the four ex-ante utilities: Using the min (resp. max) oriented 
aggregation, Umin

ante (resp. Umax
ante) is equal to U−min

ante (resp. U−max
ante ) if all agents are pessimistic and it is equal to U+min

ante (resp.

U+max
ante ) if there are optimistic. Obviously, the egalitarian utility Umin

ante is related to its non egalitarian counterpart by duality. 
Formally, it holds that:

Proposition 1. Let P = 〈L, Ew, Eu〉 be a qualitative collective decision problem and let P τ = 〈L, Ew, Euτ 〉 be its dual problem, i.e., the 
problem such that for each agent we consider his / her dual attitude and for any x j ∈ X , i ∈ A, we define uτ

i (x j) = 1 − ui(x j). Then,
for any L ∈L:

U τ max
ante (L) = 1− Umin

ante(L) and,

U τ min
ante (L) = 1− Umax

ante (L).

Likewise, if agents are equally important, weights can be ruled out and the proposed criteria can be simplified as follows:

Definition 2. Given a possibilistic lottery L on X , a set of equally important agents A where each agent is either optimistic 
or pessimistic and a vector of utility functions Eu let:

Umax
ante(L) =max

i∈A
( ⊗
x j∈X

⊕ (ui(x j),3[x j])). (15)

Umin
ante(L) =min

i∈A
( ⊗
x j∈X

⊕ (ui(x j),3[x j])), (16)

where ⊗ = min (resp. max), ⊕ = max (resp. min) and 3[x j] = 1 - L[x j] (resp. L[x j]) if the agent i is pessimistic (resp. 
optimistic).

4. Collective sequential decision making under qualitative uncertainty

4.1. Definition of collective possibilistic decision trees

Representation formalisms such as decision trees [40], influence diagrams [28] and Markov decision process [3], offer a 
clear description of sequential decision problems and allow the definition of optimal strategies. In recent years, there has 
been a growing interest in more complex problems (namely multi-criteria or multi-objectives decision making) and several 
extensions of classical graphical models [9,26,32,33] have emerged to present such cases. These research proposals rely on 



the probability theory and the well known expected utility criterion to solve the problem. However, this criterion fails to 
represent all the decision makers’ behaviors.

With the growth of the qualitative frameworks, especially possibility theory, many authors have advocated this ordinal 
view of decision making and have gave rise to qualitative decision models i.e., possibilistic decision tree [24], possibilistic 
influence diagrams [24], and possibilistic Markov decision processes [42]. We notice that other non possibilistic qualitative 
paradigms have been developed, we cite among others, works presented in [10,31,34]. But, in this paper we focus only on 
possibilistic formalisms because of the use of pessimistic and optimistic utilities that are the ordinal counter part of the 
expected utility criterion and have received an axiomatic justification by Dubois and Prade [18,20].

In the remaining of this Section, we propose to solve sequential collective decision problems under qualitative uncer-
tainty. For the best of our knowledge, this work is the first attempt to solve such problems and we propose to limit 
ourselves to the use of decision trees; because even in this simple, explicit formalism, the set of potential strategies is com-

binatorial (i.e., its size increases exponentially with the size of the tree) and the determination of an optimal strategy for a 
given problem and using the different proposed decision rules is an algorithmic issue in itself.

Decision trees proposed by Raiffa [40] in 1968 are the most popular graphical models. They encode the structure of 
sequential problems by representing all possible scenarios. The graphical component of a decision tree is a directed labeled 
tree DT = (N , E) where E is the set of edges and N =D ∪ C ∪LN is the set of nodes that contains three kinds of nodes: 
D the set of decision nodes (represented by squares); C the set of chance nodes (represented by circles) and LN the set 
of leaves. In this formalism, the root of the tree is generally a decision node, denoted by D0 . Succ(N) denotes the set of 
children nodes of node N . For any D i ∈ D, Succ(D i) ⊆ C i.e., a chance node (an action) must be chosen at each decision 
node. For any C i ∈ C, Succ(C i) ⊆ LN ∪ D: the set of outcomes of an action is either a leaf node or a decision node (and 
then a new action should be executed).

The numerical component of decision trees consists on assigning utility values to leave nodes and labeling the edges 
outgoing from chance nodes. The quantification of a decision tree depends essentially on the nature of uncertainty pertaining 
the problem and the theory used to represent it. In its classical version, decision trees are probabilistic. However, when the 
available information is ordinal, Garcia et al. [24] propose to label the leaves by utility degrees in the unit scale [0, 1] and 
to represent the uncertainty pertaining to the possible outcomes of each C i by a conditional possibility distribution πi on 
Succ(C i), such that ∀N ∈ Succ(C i), πi(N) = 5(N|path(C i)) where path(C i) denotes all the value assignments of chance and 
decision nodes on the path from the root D0 to C i .

Solving a decision tree amounts at building a complete strategy that selects an action (a chance node) for each decision 
node: a strategy is a mapping δ : D 7→ C ∪ {⊥}. δ(D i) = ⊥ means that no action has been selected for D i (δ is partial). To 
select the optimal strategy, authors in [24] propose to evaluate and compare strategies w.r.t. the pessimistic and optimistic 
utilities axiomatized in [18]. Leaf nodes being labeled with utility degrees, the rightmost chance nodes (i.e., chance nodes 
on the far right-hand side) can be seen as simple possibilistic lotteries. Then, each strategy δ can be viewed as a connected 
sub-tree of the decision tree and is identified with a possibilistic compound lottery Lδ , i.e., with a possibility distribution over 
a set of (simple or compound) lotteries. Any compound lottery is denoted by 〈λ1/L1, . . . , λm/Lm〉 and it can be reduced into 
an equivalent simple lottery1 as follows [18]:

Reduction(〈λ1/L1, ..., λm/Lm〉) = 〈max
k=1,m

(min(λk
1, λk))/x1, . . . , max

k=1,m
(min(λk

n, λk))/xn〉,

where λk is the possibility of getting lottery Lk according to L and λk
j
= πLk (x j) is the conditional possibility of getting x j

from Lk . Hence, the pessimistic and optimistic utility of a strategy δ can be computed on the basis of the reduction of Lδ : 
the utility of a strategy δ is then the one of Reduction(Lδ).

To define collective qualitative decision trees, we resume the same graphical and numerical component of possibilistic 
decision trees [24] except for leave nodes that are evaluated according to several agents instead of a single one.

Each leaf node LN is now labeled by a vector Eu(LN) = 〈u1(LN), . . . , up(LN)〉 rather than by a single utility degree (see 
Fig. 2). A strategy still leads to a compound lottery, and can be reduced, thus leading in turn to a simple (but multi-agent) 
lottery. We can now compare strategies according to any of the collective decision rules O previously presented (U−min

post , 

U+min
post , U−max

post , U+max
post , U−min

ante , U+min
ante , U−max

ante , U+max
ante , Umin

ante and Umax
ante) by comparing their reductions. Formally, given two 

strategies δ1 and δ2 , and a collective decision rule O :

δ1 ºO δ2 iff U O (δ1) ≥ U O (δ2), where ∀δ,U O (δ) = U O (Reduction(Lδ)). (17)

Example 3. Consider the tree of Fig. 2, involving two equally important agents and the strategy δ(D0) = C1 , δ(D1) = C3 , 
δ(D2) = C5 . It holds that:

Lδ = 〈1/LC3 ,0.9/LC5〉 with LC3 = 〈0.5/xa,1/xb〉, LC5 = 〈0.2/xa,1/xb〉.

The reduction of Lδ can be computed:

1 Obviously, the reduction of a simple lottery is the simple lottery itself.



Fig. 2. Collective possibilistic decision tree of Example 3.

Reduction(Lδ) = 〈max(0.5,0.2)/xa,max(1,0.9)/xb〉 = 〈0.5/xa,1/xb〉.

So, if we consider for instance the U+min
ante criterion, we get:

U+min
ante (δ) = min(maxmin(0.5,0.3),min(1,0.6),max(min(0.5,0.8)min(1,0.4))) = 0.5.

The definition proposed by Eq (17) is intuitive but raises an algorithmic challenge: the set of strategies to compare is 
exponential w.r.t. the size of the tree which makes the explicit evaluation of strategies not realistic. The sequel of the paper 
provides an algorithmic study of the problem - applying variants of Dynamic Programming when it is possible.

4.2. Optimization in collective possibilistic trees

4.2.1. Dynamic Programming as a tool for ex-post utilities
Dynamic Programming [2] is an efficient procedure of strategy optimization. It proceeds by backward induction where the 

problem is handled from the end (in our case, from the leafs); the last decision nodes are considered first, and recursively 
until reaching the root. More specifically, the algorithm can be described as follows: when a chance node C i is reached, an 
optimal sub-strategy is built for each of its children. These sub-strategies are combined w.r.t. their uncertainty degrees. Then, 
the resulting compound strategy is reduced to an equivalent simple lottery representing the current optimal sub-strategy. 
When a decision node D i is reached, we select a decision D∗ among all the possible alternatives N ∈ Succ(D) leading to an 
optimal sub-strategy w.r.t. ºO . The choice is performed by comparing the simple lotteries equivalent to each sub-strategy.

This algorithm is sound and complete as soon as ºO is complete, transitive and satisfies the principle of weak mono-

tonicity,2 that ensures that each sub strategy of an optimal strategy is optimal in its sub-tree. Formally, a decision rule O is 
weakly monotonic iff whatever L, L′ and L′′ , whatever (α, β) such that max (α, β) = 1:

L ºO L′ ⇒ 〈α/L, β/L′′〉 ºO 〈α/L′, β/L′′〉.

Each of the ex-post criteria satisfies transitivity, completeness and weak monotonicity, because collapsing to either clas-
sical pessimistic (U−) or optimistic (U+) utility, which satisfies these properties [8,24].

The adaptation of Dynamic Programming to the ex-post decision rules is detailed in Algorithm 1. This algorithm computes 
the collective utility relative to each possible consequence by aggregating the utility values of each leaf, and then builds an 
optimal strategy from the last decision nodes to the root of the tree using the principle defined in [24,43] for classical 
(mono-agent) possibilistic decision trees.

4.2.2. Dynamic Programming for ex-ante utilities
When the decision rule follows the ex-ante approach, the application of Dynamic Programming is a little more tricky. The 

ex-ante Dynamic Programming we propose (see Algorithm 2) keeps at each node a vector of p pessimistic (resp. optimistic) 
utilities, one for each agent. The computation of the ex-ante utility can then be performed each time a decision is to 
be made. Recall that U−min

ante = U−min
post and U+max

ante = U+max
post . Hence, for these two criteria the optimization could also be 

performed using the ex-post algorithm.

2 It is a common knowledge in sequential decision making that monotonicity is a necessary and a sufficient condition for the optimality of Dynamic

Programming. This property guarantees also the completeness of a polytime algorithm [30,36,38].



Algorithm 1: DynProgPost: Ex-post Dynamic Programming.

Data: T : a decision tree, N: a node of T
Result: u∗: the value of the optimal strategy δ∗ - δ∗ is stored as a global variable

1 begin

2 u∗ = 0; // Initialization

3 if N ∈ LN then // Leaf: CDM aggregation
4 for i ∈ {1, . . . , p} do uN ← (uN ⊕ (ui ⊗ ωi));

5 // ⊗ = min, ωi = w i, ⊕ = max for disjunctive aggregation
6 // ⊗ = max, ωi = 1− w i, ⊕ = min for conjunctive aggregation;

7 if N ∈ C then // Chance Node: computes the qualitative utility
8 foreach Y ∈ Succ(N) do uN ← (uN ⊕ (λY ) ⊗ DynProgPost(T , Y ));

9 // ⊗ = min, λY = π(Y ), ⊕ = max for optimistic utility

10 // ⊗ = max, λY = 1− π(Y ), ⊕ = min for pessimistic utility

11 if N ∈ D then // Decision node: determines the best decision
12 foreach Y ∈ Succ(N) do

13 uY ← DynProgPost(T , Y );

14 if uY ≥ u∗ then δ(N) ← Y and u∗ ← uY ;

15 return u∗;

Algorithm 2: DynProgAnte: Ex-ante Dynamic Programming.

Data: T : a decision tree, N: a node of T
Result: u∗: the value of the optimal strategy δ∗ - δ∗ is stored as a global variable

1 begin

2 u∗ = 0; // Initialization

3 if N ∈ LN then // Leaf

4 for i ∈ {1, . . . , p} do EuN [i] ← ui ;

5 if N ∈ C then // Chance Node: computes the utility vectors
6 for i ∈ {1, . . . , p} do EuN [i] ← ǫ;

7 foreach Y ∈ Succ(N) do

8 EuY ← DynProgAnte(T , Y );

9 for i ∈ {1, . . . , p} do EuN [i] ← ( EuN [i] ⊕ (λY ⊗ EuY [i]));

10 // Optimistic utility ⊗ = min, λY = π(Y ), ⊕ = max, ǫ ← 0

11 // Pessimistic utility ⊗ = max, λY = 1− π(Y ), ⊕ = min, ǫ ← 1

12 if N ∈ D then // Decision node
13 foreach Y ∈ Succ(N) do

14 vY ← ǫ; EuY ← DynProgAnte(T , Y );

15 for i ∈ {1, . . . , p} do vY ← vY ⊕ ( EuY [i] ⊗ ωi);

16 if vY > u∗ then δ(N) ← Y , EuN ← EuY and u∗ ← vY ;

17 // Disjunctive CDM: let ⊗ = min, ωi = w i, ⊕ = max, ǫ ← 0

18 // Conjunctive CDM: let ⊗ = max, ωi = 1− w i, ⊕ = min, ǫ ← 1

19 return u∗;

As shown by Counter Example 1, the U−max
ante and U+min

ante decision rules do not satisfy the monotonicity principle [4].
Hence, Algorithm 2 may provide a good strategy but without any guarantee of optimality. It can nevertheless be considered 
as an approximation algorithm when used for optimizing any of these problematic criteria

Counter-Example 1. Consider the set of consequences X = {x1, x2, x3} and consider two equally important agents 1 and 2
(w1 = w2 = 1) with: u1(x1) = 1, u1(x2) = 0.8, u1(x3) = 0.5; u2(x1) = 0.6, u2(x2) = 0.8, u2(x3) = 0.8.

Consider the lotteries L1 = 〈1/x1, 0/x2, 0/x3〉, L2 = 〈0/x1, 1/x2, 0/x3〉 and L3 = 〈0/x1, 0/x2, 1/x3〉:
L1 gives consequence x1 for sure, L2 gives consequence x2 for sure and L3 gives consequence x3 for sure. It holds that:

U−max
ante (L1) = max

i=1,2
U−

i (L1) = max (1,0.6) = 1.

U−max
ante (L2) = max

i=1,2
U−

i
(L2) = max (0.8,0.8) = 0.8.

Hence L1 ≻ L2 with respect to the U−max
ante rule.

Consider now the compound lotteries L = 〈1/L1, 1/L3〉 and L′ = 〈1/L2, 1/L3〉. If the weak monotonicity principle were 
satisfied, we would get: U−max

ante (L) > U−max
ante (L′).

Consider the reduction of compound lotteries L and L′ respectively such as:



Fig. 3. Lotteries of Counter-Example 2.

Reduction(〈1/L1, 1/L3〉) = 〈1/x1, 0/x2, 1/x3〉 and

Reduction(〈1/L2, 1/L3〉) = 〈0/x1, 1/x2, 1/x3〉. It holds that:
U−max

ante (L) = U−max
ante (Reduction(〈1/L1, 1/L3〉)) = 0.6.

U−max
ante (L′) = U−max

ante (Reduction(〈1/L2, 1/L3〉)) = 0.8.

U−max
ante (L) < U−max

ante (L′) while U−max
ante (L1) > U−max

ante (L2). So, U
−max
ante is not monotonic.

Using the fact that U+min
ante = 1 − U τ−max

ante [4], this counter-example is modified to show that U+min
ante does not satisfy the 

monotonicity principle either.
Consider two equally important agents, 1 and 2 with w1 = w2 = 1 and utilities

uτ
1 (x1) = 0, uτ

1 (x2) = 0.2, uτ
1 (x3) = 0.5; uτ

2 (x1) = 0.4, uτ
2 (x2) = 0.2, uτ

2 (x3) = 0.2.

Consider now the same lotteries L1 , L2 and L3 presented above. It holds that:

U+min
ante (L1) = min

i=1,2
U+

i
(L1) = 0 < U+min

ante (L2) = min
i=1,2

U+
i

(L2) = 0.2, while

U+min
ante (Reduction(〈1/L1,1/L3〉)) = 0.4 > U+min

ante (Reduction(〈1/L2,1/L3〉)) = 0.2,

which contradicts the weak monotonicity.

Likewise, the ex-post Dynamic Programming Algorithm (Algorithm 1) shall also be considered as an algorithm of ap-
proximation for U−max

ante and U+min
ante since they are correlated to their ex-post counter-parts as shown in [6]. Indeed, it holds 

that:

Proposition 2.

U+min
ante (L) ≥ U+min

post (L).

U−max
ante (L) ≤ U−max

post (L).

So, even if it is not always the case, it often happens that U−max
post = U−max

ante (resp. U+min
post = U+min

ante ); in these cases the 
solution provided by the ex-post Algorithm is optimal.

Algorithm 2 applies also for the optimization of the ex-ante generalization decision rules, namely the Umax
ante and Umin

ante

utilities for heterogeneous agents. However, obtaining the optimal strategy using Dynamic Programming is guaranteed only 
for monotonic criteria. Counter-Example 2 shows that Umax

ante as well as Umin
ante do not satisfy this property.

Counter-Example 2. Consider two agents 1 and 2 having the same importance (w1 = w2 = 1), 1 being optimistic and 2
being pessimistic, and consider the three lotteries on X = {x1, x2} depicted in Fig. 3. Let L and L′ be two compound lotteries 
defined by: L = 〈0.6/L1, 1/L3〉 and L′ = 〈0.6/L2, 1/L3〉.

We can verify that L1 is globally preferred to L2 where:

Umax
ante (L1) = 0.9 > Umax

ante (L2) = 0.8 whereas Umax
ante (L) = 0.6 < Umax

ante (L
′) = 0.8,

which proves that Umax
ante is not monotonic.

Since Umin
ante = 1 − U τmax

ante (Proposition 1), this counter-example can be modified to show that U+min
ante does not satisfy 

the monotonicity principle either. We consider the agents 1 and 2 with the same importance (w1 = w2 = 1) where 1 is 
pessimistic and 2 is optimistic and we replace utility functions relative to x1 and x2 for lotteries L1 , L2 , L3 , L and L′ as 
follows: uτ

1 (x1) = 0.1, uτ
2 (x1) = 0.4, uτ

1 (x2) = 0.2, uτ
2 (x2) = 0.2, uτ

1 (x3) = 0.5 and uτ
2 (x3) = 0.2. We can check that L2 is

better than L1 since Umin
ante(L1) = 0.1 < Umin

ante(L2) = 0.2 while Umin
ante(L) = 0.4 > Umin

ante(L
′) = 0.2, which proves that Umin

ante does 
not satisfy monotonicity property.

4.2.3. Right optimization of U−max
ante by Multi-Dynamic Programming

The lack of monotonicity of U−max
ante is not dramatic, even when optimality must be guaranteed. Indeed, with U− max

ante we

look for a strategy that has a good pessimistic utility U−
i

for at least one agent i. This means that if it is possible to get 



Algorithm 3: MultiDynProg: right optimization of U−max
ante .

Data: T : a decision tree
Result: u∗: the value of the optimal strategy δ∗- δ∗ is stored as a global value

1 begin

2 u = 0; // Initialization

3 u∗ = 0; // Initialization

4 for i ∈ {1, . . . , p} do

5 δi = ∅; // Initialization

6 δi ← PesDynProg(T , i) // Call to classical poss.Dyn.Prog. [24] - returns an optimal strategy and its value
U−

i
(δi);

7 u ← min (U−
i

(δi), ωi);

8 if u > u∗ then δ∗ ← δi ; u∗ ← u;

9 return u∗;

Fig. 4. Lotteries of Counter-Example 3.

for each i a strategy that optimizes U−
i (and this can be done by the classical Dynamic Programming, since the pessimistic 

utility is monotonic), the one with the highest value for U− max
ante is globally optimal. Formally, U−max

ante can be expressed as 
follows:

U−max
ante (L) = max

i=1,p
min(w i,U

−
i

(L)) (18)

where U−
i

(L) is the pessimistic utility of L according to agent i.

Corollary 1. Let L be the set of possibilistic lotteries that can be built on X , L be any possibilistic lottery and let:
- L∗ ⊂L s.t. L∗ = {L∗

1, . . . , L
∗
p} and ∀L ∈L, U−

i
(L∗

i
) ≥ U−

i
(L);

- L∗ ∈L∗ , s.t. ∀L∗
i
∈L∗: max

i=1,p
min (w i, U

−
i

(L∗)) ≥ max
i=1,p

min (w i, U
−
i

(L∗
i
)).

It holds that U−max
ante (L∗) ≥ U−max

ante (L), ∀L ∈L.

It follows that the optimization problem can be solved by a series of p calls to a classical (mono-agent) pessimistic 
optimization. This is the principle of the Multi-Dynamic Programming approach detailed by Algorithm 3. To reduce the 
execution time, this algorithm could be improved by considering only agents having importance weight w i greater than 
U−max

ante of the actual strategy.

4.2.4. Right optimization of U+min
ante : a Branch and Bound algorithm

As previously said, U+min
ante utility does not satisfy monotonicity. So, ex-ante Dynamic Programming (Algorithm 2) can 

provide a good strategy, but without any guarantee of optimality. Besides, this criterion performs the egalitarian aggregation 
(use the min operator). Then unfortunately, as shown in Counter-Example 3 it is not possible to provide a result similar to 
Corollary 1 to circumvent the lack of monotonicity (as for U−max

ante ).

Counter-Example 3. Consider two optimistic agents 1 and 2 having the same importance degree (w1=w2=1), and consider 
the two lotteries L and L′ on X = {x1, x2} depicted in Fig. 4. L gives consequence x1 for sure and L′ gives consequence x2
for sure. It holds that:

U+min
ante (L) =min ( max ((1 − 1),max ( min (1,0.7), min (0,0.4))) ,

max ((1− 1),max (min (1,0.3),min (0,0.9)))) = 0.3.

U+min
ante (L′) =min ( max ((1 − 1),max ( min (0,0,7), min (1,0.4))) ,

max ((1 − 1),max (min (0,0.3),min (1,0.9)))) = 0.4.

Hence, L′ ≻ L with respect to the U+min
ante rule. Then, L′ is the optimal lottery L∗ .

Now, we look for the strategy that optimizes U+
i

for each agent i. We get:

U+
1 (L) = 0.7 ≻ U+

1 (L′) = 0.4. So, L∗
1 = L.

U+
2 (L) = 0.3 ≻ U+

2 (L′) = 0.9. So, L∗
2 = L′.



Algorithm 4: B&B algorithm for the optimization of U+min
ante .

Data: T : a decision tree, δ: a (partial) strategy, u: an upper Bound of U+min
ante (δ)

Result: u∗: the U+min
ante value of the optimal strategy δ∗ found so far

1 begin

2 if δ(D0) = ⊥ then Dpend ← {D0};
3 else D pend ← {D i ∈ D s.t. ∃D j , δ(D j) 6= ⊥ and D i ∈ Succ(δ(D j))};
4 if Dpend = ∅ then // δ is a complete strategy

5 δ∗ ← δ; u∗ ← u;

6 else

7 Dnext ← arg minD i∈D pend
i ;

8 foreach C i ∈ Succ(Dnext ) do

9 δ(Dnext ) ← C i ;

10 u ← UpperBound(T , δ);
11 if u > u∗ then u∗ ← B&B(u, δ);

12 return u∗;

We can check that max
i∈{1,2}

min (w i, U i(L
∗
i )) = 0.7 ≻ max

i∈{1,2}
min (w i, U i(L

∗)) = 0.4, which proves that a result similar to 

Corollary 1 does not hold for U+min
ante .

To guarantee the optimality, we have to propose an exact algorithm and proceed by an implicit enumeration via a Branch 
and Bound (B&B) algorithm, as done for Rank Dependent Utility [29] and for Possibilistic Choquet integrals [8] (both in the 
mono agent case).

The Branch and Bound procedure described by Algorithm 4 takes as argument a partial strategy δ and an upper bound 
of the U+min

ante value of its best extension. It returns u∗ the U+min
ante value of the best strategy δ∗ found so far. To reduce the

research time, we can initialize δ∗ with any strategy, e.g. the one provided by Dynamic Programming (using Algorithm 2 or 
even Algorithm 1 proposed for the ex-post approach). At each step of the Branch and Bound algorithm, the current partial 
strategy δ is developed by the choice of an action for some unassigned decision node. When several decision nodes are 
candidate, the one with the minimal rank (i.e., the former one according to the temporal order) is developed. The recursive 
procedure backtracks when either the current strategy is complete (then δ∗ and u∗ are updated) or proves to be worse than 
the current δ∗ .

Function UpperBound(T , δ) outlined by Algorithm 5 provides an upper bound of the best completion of δ: In practice, 
it builds for each agent i, a strategy δi that maximizes U+

i
(using [41,43]’s algorithm, which is linear). It then selects, 

among these strategies, the one with the highest U+ min
ante . Notice that UpperBound(T , δ) = U+min

ante (δ) when δ is complete.

Whenever the value returned by UpperBound(T , δ) is lower or equal to u∗ , the value of the best current strategy, the 
algorithm backtracks yielding the choice of another action for the last considered decision node.

4.2.5. Agents with different attitudes: right optimization of Umax
ante and U

min
ante

Let us finally study the heterogeneous utilities Umax
ante and Umin

ante proposed in Section 3.2 to solve collective decision prob-
lems where the set of decision makers gathers pessimistic and optimistic agents. These decision rules are a generalization 
of ex-ante utilities so it is not surprising that they do not satisfy the weak monotonicity (see Counter Example 2).

4.2.6. Optimization for heterogeneous agents - the max-based rule
When optimizing Umax

ante , we are looking for a strategy that maximizes the qualitative utility (U−
i

or U+
i
) for at least one 

agent i: we get for each agent an optimal strategy with regards to U⊗ that is defined according to his / her attitude w.r.t. 
uncertainty i.e., U⊗

i
= U−

i
(resp. U⊗

i
= U+

i
) if the agent is pessimistic (resp. optimistic). Then, we select the strategy that 

maximizes the global utility Umax
ante . Basically, the optimization of these criteria relies on the same idea than the one proposed 

for the optimization of U−max
ante . Formally, we can write:

Umax
ante (L) = max

i=1,p
min(w i,U

⊗
i

(L)); (19)

where U⊗
i

(L) denotes either the pessimistic or the optimistic utility of L for agent i, his / her attitude w.r.t. uncertainty
being captured by ⊗.

Corollary 2. Let L be the set of possibilistic lotteries that can be built on X , L be any possibilistic lottery and let:
- L∗ ⊂L s.t. L∗ = {L∗

1, . . . , L
∗
p} and ∀L ∈L, U⊗

i
(L∗

i
) ≥ U⊗

i
(L);

- L∗ ∈L∗ , s.t. ∀L∗
i
∈L∗: max

i=1,p
min (w i, U

⊗
i

(L∗)) ≥ max
i=1,p

min (w i, U
⊗
i

(L∗
i
)).

It holds that U⊗max
ante (L∗) ≥ U⊗max

ante (L), ∀L ∈L.



Algorithm 5: UpperBound of B&B algorithm for the optimization of U+min
ante .

Data: T : a decision tree, δ: a (partial or complete) strategy, N: a node of T
Result: u(δ): the U+min

ante value of the current strategy δ
1 begin

2 uN = 0; // Initialization

3 u(δ) = 0; // Initialization

4 for i ∈ {1, . . . , p} do

5 if N ∈ LN then // Leaf

6 uN ← ui ;

7 if N ∈ C then // Chance Node: computes the optimistic utility
8 foreach Y ∈ Succ(N) do

9 uY ← DynProgAnte(T , Y ); // Call to Ex-ante Dyn.Prog. (Algorithm 2)

10 uN ← max(uN ,min(πY ,uY ));

11 if N ∈ D then // Decision node
12 if δ(N) 6= ⊥ then // Prefixed action
13 δi(N) ← δ(N) and uN ← uY

14 else

15 foreach Y ∈ Succ(N) do

16 uY ← DynProgAnte(T , Y );

17 if uY > uN then

18 δi(N) ← Y and uN ← uY ;

19 for j ∈ {1, . . . , p} do

20 u = 0; // Initialization

21 U+
j
(δi) ← OptUtil(δi , j); // Computes for each agent j the value of its optimistic utility U+

j
(δi);

22 u ← min (u, max (U+
j (δi), 1 − ωi));

23 if u > u(δ) then u(δ) ← u;

24 return u(δ);

Algorithm 6: ImproHetMultiDynProg: right optimization of Umax
ante .

Data: T : a decision tree; D0: root of T
Result: u∗: the value of the optimal strategy δ∗-δ∗ is stored as a global variable

1 begin

2 u∗ = 0; // Initialization

3 δ = DynProgPost(T , D0, Opt); // Opt is the subset of optimistic agents
- returns an optimal strategy δ∗ for U+max

ante and its optimal value u∗

4 foreach i /∈ Opt do

5 if w i > u∗ then

6 δi = PesDynProg(T , i); // Call to classical poss. Dyn. Prog. [24] - returns an optimal strategy for the
pessimistic utility U−

i
;

7 ui = min (w i , U−
i

(δi));

8 if ui > u∗ then δ∗ ← δi ; u∗ ← ui ;

9 return u∗;

This result allows the use of Multi-Dynamic Programming for the optimization of Umax
ante . A first idea consists on a direct 

adaptation of the MultiDynProg (Algorithm 3) by replacing line 6 and 7 respectively by:
line 6’: δi ← DynProg(T , i); // Call to poss. Dyn. Prog. w.r.t.
the agent attitude (Pes or Opt) [24].

line 7’: u ← min(U⊗
i

(δi), w i); // U⊗
i = U−

i if i is pessimistic and
U⊗

i = U+
i if i is optimistic.

This algorithm (so called HetMultiDynProg) can be improved by considering first the optimistic decision makers and 
then the pessimistic ones instead of p calls to Dynamic Programming for each one of them. This gives rise to the second 
version of Multi-Dynamic Programming (so called ImproHetMultiDynProg) outlined by Algorithm 6. In short, this procedure 
can be described as follows: For optimistic agents the optimization of Umax

ante comes down to the optimization of U+max
ante

using Dynamic Programming (either Algorithm 2 or Algorithm 1, since U+max
ante = U+max

post ). Then, we consider only pessimistic

agents with an importance degree w i higher than the current optimal value (obtained for optimistic agents), we compute 
their pessimistic utilities and select the strategy that maximizes Umax

ante . Obviously, HetMultiDynProg and ImproHetMultiDyn-

Prog provide the same optimal solutions since they are both exact algorithms. However, ImproHetMultiDynProg needs less 
iterations - this reduces the execution time as it will be shown by the experimental study.



4.2.7. Optimization for heterogeneous agents - the min-based rule
Let us consider the latest awkward criterion Umin

ante . Since it is not monotonic, Dynamic Programming comes without 
guarantee of optimality. Thus, to obtain optimal strategy we adapt the Branch and Bound procedure (Algorithm 4) proposed 
for the optimization of U+min

ante by adjusting the computing of UpperBound(T , δ). We retain the same principle but here 
we compute the Umin

ante of the best completion of δ: for each agent, UpperBound(T , δ) builds a strategy δi that maximizes 
U⊗

i
taking into account the agent’s attitude w.r.t. uncertainty (⊗ = min if the agent is pessimistic and ⊗ = max if he is 

optimistic). Then, it selects among these strategies the one with the highest Umin
ante . More specifically, we extend Algorithm 5

to deal with heterogeneous decision makers rather than only optimistic ones. Instead of computing U+
i

the optimistic utility 
for all agents we compute U⊗

i
for each one of them depending on the decision maker attitude (U⊗

i
= U+

i
(resp. U−

i
) if the 

agent is optimistic (resp. pessimistic)). The modifications concern lines 9 and 21 of the UpperBound function (Algorithm 5) 
that are respectively replaced by:
line 9’: uN ← (uN ⊗ (λY ⊕ uY )); // if i is Optimistic: ⊗ = max, λY = π(Y ), ⊕ = min, if i is Pessimistic: ⊗ = min, 
λY = 1 − π(Y ), ⊕ = max.

line 21’: U j(δi) ← Util(δi, j); // Computes for each agent j the value of its optimistic or pessimistic utility
w.r.t. his/her attitude.

5. Experiments

This last Section aims at experimenting the feasibility of the exact algorithms proposed, namely (i) Dynamic Program-

ming for U+max
post and U−min

post , and also for U+max
ante and U−min

ante because the latters coincide with formers, (ii) Multi-Dynamic 

Programming for U−max
ante (pure pessimistic agents) and Umax

ante (heterogeneous agents), and (iii) Branch and Bound for U+min
ante

(pure optimistic agents) and Umin
ante (heterogeneous agents).

Beyond a proof of feasibility of these algorithms, our experiments aim at evaluating to what extent the optimization of 
the problematic (non monotonic) utilities, can be approximated by Dynamic Programming. For homogeneous agents, ex-post
and ex-ante Dynamic Programming algorithms can indeed be used but come without guarantees of optimality - they can 
be considered as approximation algorithms. However, for heterogeneous agents, the post approach is meaningless and only 
ex-ante Dynamic Programming shall be considered for approximation purposes.

The implementation has been done in Java, on a processor Intel Core i7 2670 QMCPU, 2.2Ghz, 6Gb of RAM. The ex-
periments were performed on complete binary decision trees. We have considered five sets of problems, the number of 
decisions to be made in sequence (denoted seq) varying from 2 to 6, with an alternation of decision and chance nodes: 
at each decision level l (i.e., odd level), the tree contains 2l−1 decision nodes followed by 2l chance nodes.3 In the present 
experiments, the number of agents is set equal to 6 (for heterogeneous agents cases, we set 3 optimistic and 3 pessimistic 
agents). The utility values as well as the weights degrees are uniformly fired in the set {0, 0.1, 0.2, . . . , 0.9, 1}. Conditional 
possibilities are chosen randomly in [0, 1] and normalized. Each of the five samples of problems contains 1000 randomly 
generated trees.

5.1. Feasibility analysis and temporal performances

Table 1 presents, for each criterion, the execution time of each possible algorithm. Obviously, whatever the algorithm the 
CPU time increases with the size of the tree. Dynamic Programming is always below to the threshold of 1 ms, while the 
Branch and Bound algorithms are more expensive (up to 16 ms) but it remains affordable even for big trees (1365 decision 
nodes).

For tricky (non monotonic) decision rules, both the exact algorithm(s) and the approximation algorithm(s) are presented. 
It can be checked that for these rules the approximation Dynamic Programming is always faster than exact algorithms. 
Unsurprisingly, and whatever the rule tested, the ex-ante Dynamic Programming is slightly slower than the ex-post Dy-

namic Programming - both remaining far below the millisecond, in any case. Finally, as to the optimization of Umax
ante , the 

experimental results verify that ImproHetMultiDynProg is quicker than HetMultiDynProg - both being exact algorithms.

Furthermore, to study the effects of varying the number of agents, we consider the optimization of U−max
ante and Umax

ante , for
reasonable trees (341 decision nodes) with p agents from 3 to 10, using the more time-consuming algorithm (Branch and 
Bound). Clearly, as shown in Table 2, the average CPU time with 3 agents, is about 3 milliseconds for U−max

ante and about 4
milliseconds for Umax

ante . The maximal CPU time for decision trees with 10 agents is less than 11 milliseconds in both cases. 
Thus, we can say that the results are good enough to allow the handling of real-size problems.

5.2. Quality of approximation of exact algorithms by Dynamic Programming

As previously said, U−max
ante and U+min

ante , relative to homogeneous agents, and Umax
ante and Umin

ante , for heterogeneous ones, 
are not monotonic. For both cases, right optimization is performed using Multi-Dynamic Programming for max-oriented 

3 Hence, for a sequence length seq = 2 (resp. 3, 4, 5, 6), the number of decision nodes in each tree of the sample is equal to 5 (resp. 21, 85, 341, 1365).



Table 1

Average CPU time, in milliseconds, according to the size of the tree (in number of decision nodes).

Algorithm # of decision nodes

5 21 85 341 1365

U−min
post U−min

ante Post Dyn. Prog. 0.022 0.026 0.038 0.052 0.106

U+max
post U+max

ante Post Dyn. Prog. 0.024 0.030 0.043 0.060 0.117

U−max
post Post Dyn. Prog. 0.025 0.027 0.039 0.053 0.112

U+min
post Post Dyn. Prog. 0.026 0.028 0.041 0.059 0.110

U−max
ante Multi Dyn. Prog. 0.063 0.074 0.102 0.129 0.605

U−max
ante Ante Dyn. Prog. 0.049 0.065 0.93 0.102 0.446

U+min
ante Branch & Bound 0.359 0.794 2.044 6.095 14.198

U+min
ante Ante Dyn. Prog. 0.032 0.063 0.090 0.114 0.534

Umax
ante Het. Multi. Dyn. Prog. 0.068 0.073 0.114 0.136 0.319

Umax
ante Impro. Het. Multi. Dyn. Prog. 0.047 0.058 0.079 0.124 0.187

Umax
ante Ante Dyn. Prog. 0.053 0.065 0.096 0.149 0.217

Umin
ante Het. Branch & Bound 0.420 0.972 2.708 8.483 16.356

Umin
ante Ante Dyn. Prog. 0.051 0.071 0.109 0.131 0.206

Table 2

Average CPU time (in milliseconds) for U−max
ante and Umax

ante using Branch and Bound algo-
rithms (B&B and Het. B&B) for trees with 341 decision nodes.

# of agents

3 4 5 6 7 8 9 10

U−max
ante 3.596 4.394 5.344 6.056 7.137 7.840 8.534 9.204

Umax
ante 4.520 5.444 7.023 7.824 8.785 9.521 10.457 10.987

Table 3

Quality of approximation of exact algorithms Multi Dyn. Prog. (for U−max
ante ) and B&B (for

U+min
ante ) by ax-ante and ax-post Dyn. Prog.

Algorithm # of decision nodes

5 21 85 341 1365

% of success

U−max
ante Ante Dyn. Prog 16.1% 19.8% 23.7% 27.1% 31.9%

U−max
ante Post. Dyn. Prog 17% 24.2% 28.9% 33.7% 39%

U+min
ante Ante Dyn. Prog. 82% 78.6% 71% 65.4% 60.2%

U+min
ante Post Dyn. Prog. 93.2% 91% 89.3% 87.5% 84.7%

Closeness Value

U−max
ante Ante Dyn. Prog. 0.49 0.54 0.62 0.71 0.80

U−max
ante Post Dyn. Prog. 0.47 0.51 0.59 0.69 0.73

U+min
ante Ante Dyn. Prog. 0.96 0.94 0.92 0.91 0.90

U+min
ante Post Dyn. Prog. 0.97 0.96 0.95 0.94 0.93

aggregation utilities and Branch and Bound for min-oriented ones. For these criteria, Dynamic Programming algorithms can 
nevertheless be considered as approximation algorithms. The following experiments estimate the quality of these approxi-
mations. To this extent, we compute for each sample the success rate of the considered approximation algorithm, i.e., the 
number of trees for which the value provided by the approximation algorithm is actually optimal (i.e., equals to the one 
computed by the exact algorithm); then for the trees for which the approximation algorithm fails to reach optimality, we 
report the average closeness value to U Approx

U Exact
where U Approx is the utility of the strategy provided by the approximation 

algorithm and U Exact is the optimal utility - the one of the solution by the exact algorithm: Namely, Branch and Bound 
algorithm for U+min

ante and its adaptation for the generalized criterion Umin
ante and Multi-Dynamic Programming for U−max

ante and 
its generalization for Umax

ante . The results are given in Tables 3 and 4.



Table 4

Quality of approximation of exact algorithms Het. Multi Dyn. Prog. (for Umax
ante ) and Het. B&B

(for Umin
ante ) by ex-ante Dyn. Prog.

Algorithm # of decision nodes

5 21 85 341 1365

% of success

Umax
ante Ante Dyn. Prog 19% 25.9% 28% 34% 39.6%

Umin
ante Ante Dyn. Prog. 85% 81.6% 74% 68.9% 63.4%

Closeness Value

Umax
ante Ante Dyn. Prog 0.44 0.49 0.53 0.58 0.67

Umin
ante Ante Dyn. Prog. 0.95 0.95 0.93 0.92 0.91

Clearly, Ex-Post Dynamic Programming provides a good approximation for U+min
ante - its success rate decreases with the

number of nodes but stay higher than 70%, and above all it has a very high closeness value (above 0.9). Notice that it is 
always better than its ex-ante counterpart, in terms of success rate, of closeness and of CPU time. This is good news since 
it is polynomial while Branch and Bound, the exact algorithm, is exponential in the number of nodes. As for U−max

ante , none
of the approximation algorithms is good. However, this is not so bad news since Multi-Dynamic Programming, the exact 
algorithm is polynomial and has very affordable CPU time.

Finally, regarding the optimization of exact algorithms for Umin
ante and Umax

ante by Dynamic Programming, the results are quite 
similar to U+min

ante and U−max
ante : Dynamic Programming is a good approximation when competing with the Branch and Bound 

algorithm, but does not help a lot when Multi-Dynamic Programming can be applied - because the latter is polynomial, 
even in the case of agents having different attitudes w.r.t. uncertainty.

6. Conclusion

This paper follows a recent work presented in [4–6] for possibilistic collective decision making. We consider more general 
cases where each decision maker is free to be optimistic or pessimistic and we propose new decision rules for this specific 
situation that can be seen as a generalization of the ex-ante rules. We then consider sequential collective decision problems 
and complete the algorithmic study introduced in [7] by proposing an adaptation of Multi-Dynamic Programming and 
Branch and Bound to optimize criteria relative to heterogeneous agents.

This work is a first step in the handling of multi agent (sequential) decision problems. It opens several future directions 
of research. The first one, which comes along the use of lotteries, is the characterization, in the style of Von Neumann and 
Morgenstern, of the decision rules considered in this paper. This would complete the axiomatization made in [6] in the style 
of Savage. The second one is to extend this work, especially for heterogeneous agents, to Hurwicz-like decision criterion 
that may offer more general results. Besides, it is interesting to focus on decision problems where agents have different 
knowledge or even cases where agents have simultaneously different knowledge and different attitude w.r.t. uncertainty. 
Finally, from a more practical point of view, we shall extend this work to more sophisticated (and more compact) qualitative 
decision models such as possibilistic influence diagrams [24] or possibilistic Markov decision models [41].
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Appendix A. Proofs

Proof of Proposition 1. In the following we prove that Umin
ante(L) = 1 − U τ max

ante (L). We can apply the same reasoning to prove 
that Umax

ante (L) = 1 − U τ min
ante (L).

1− Umin
ante(L) = 1− [min

i∈A
max((1 − w i), ⊗

x j∈X
⊕ (ui(x j),3[x j])))].

= max
i∈A

1− [max((1− w i), ⊗
x j∈X

⊕ (ui(x j),3[x j])))].

= max
i∈A

min1− [((1 − w i), ⊗
x j∈X

⊕ (ui(x j),3[x j])))].

= max
i∈A

min(w i,1 − [ ⊗
x j∈X

⊕ (ui(x j),3[x j]))].

= max
i∈A

min(w i, ⊗
x j∈X

1− [⊕(ui(x j),3[x j])]).



= max
i∈A

min(w i, ⊗
x j∈X

⊕ 1− [(ui(x j),3[x j])]).

= max
i∈A

min(w i, ⊗
x j∈X

⊕ (1− ui(x j), (1 − 3[x j]).

= max
i∈A

min(w i, ⊗
x j∈X

⊕ (uτ
i (x j), (1 − 3[x j]).

= U τ max
ante (L),

where if ⊗ (resp. ⊕) = min then ⊗ (resp. ⊕) = max and if 3[x j] = L[x j] then 3 = 1 − L[x j] and conversely. ✷

Proof of Proposition 2. This proof shows that U+min
ante (L) ≥ U+min

post (L), the one relative to U−max
ante (L) can be obtained in the

same way.

Let u′
i
(x) = max(ui(x), 1 − w i).

U+min
post (L) = max

x∈X
min(L[x],min

i∈A
max(1− w i,ui(x))).

= max
x∈X

min(L[x],min
i∈A

u′
i(x)).

= max
x∈X

min
i∈A

min(L[x],u′
i(x)).

U+min
ante (L) = min

i∈A
max(1 − w i,max

x∈X
min(ui(x), L[x])).

= min
i∈A

max
x∈X

max(1 − w i,min(ui(x), L[x])).

= min
i∈A

max
x∈X

min(max(1− w i,ui(x)), max(1 − w i, L[x])).

= min
i∈A

max
x∈X

min(u′
i(x),max(1− w i, L[x])).

Besides since, ∀x ∈X , ∀i ∈A, max(1 − w i, L[x]) ≥ L[x]; we have:
(i) min

i∈A
max
x∈X

min(u′
i
(x), max(1 − w i, L[x])) ≥ min

i∈A
max
x∈X

min(u′
i
(x), L[x]).

Let f (x, i) = min(u′
i
(x), L[x]), then we have:

∀x ∈X , ∀i ∈A, max
x∈X

f (x, i) ≥ f (x, i).

min
i∈A

max
x∈X

f (x, i) ≥ min
i∈A

f (x, i); ∀x ∈ X .

min
i∈A

max
x∈X

f (x, i) ≥ max
x∈X

min
i∈A

f (x, i).

Then we obtain (ii) min
i∈A

max
x∈X

min(u′
i
(x), L[x]) ≥ max

x∈X
min
i∈A

min(u′
i
(x), L[x]).

From (i) and (ii) we can deduce that U+ min
ante (L) ≥ U+min

post (L). ✷

Proof of Corollary 1. Let L be a possibilistic lottery, L be the set of possibilistic lotteries, L∗ a subset of L s.t. L∗ = 
{L∗

1, . . . , L
∗
p} and L∗ ∈L∗ s.t. ∀L∗

i
∈L∗: max

i=1,p
min (w i, U

−
i

(L∗)) ≥ max
i=1,p

min (w i, U
−
i

(L∗
i
)).

Let Lk ∈ L, L∗
k

∈ L∗ and we suppose that for any Lk ∈ L, for any L∗
k

∈ L∗ : U−
i

(L∗
k
) ≥ U−

i
(Lk). We have to prove that: 

∀L ∈L,U−max
ante (L∗) ≥ U−max

ante (L).

We start by verifying if min(w i, U
−
i

(L∗
k
)) ≥ min(w i, U

−
i

(Lk)):

• If (w i ≤ U−
i

(Lk)) then: min(w i, U
−
i

(L∗
k
)) = min(w i, U

−
i

(Lk)) = w i .

• Else if (w i ≥ U−
i (Lk)) then:

– If (w i ≤ U−
i

(L∗
k
)), then:

(min(w i, U
−
i (L∗

k
)) = (w i)) ≥ (min(w i, U

−
i (Lk)) = (U−

i (Lk))).

– If (w i ≥ U−
i

(L∗
k
)) then:

(min(w i, U
−
i

(L∗
k
)) = (U−

i
(L∗

k
))) ≥ (min(w i, U

−
i

(Lk)) = (U−
i

(Lk))).

Hence, min(w i, U
−
i

(L∗
k
)) ≥ min(w i, U

−
i

(Lk)).

So, max
i∈A

min(w i, U
−
i

(L∗
k
)) ≥ max

i∈A
min(w i, U

−
i

(Lk)).

Since, max
i=1,p

min (w i, U
−
i

(L∗)) ≥ max
i=1,p

min (w i, U
−
i

(L∗
i
)) ∀ L∗

i
∈L∗ then U−max

ante (L∗) ≥ U−max
ante (L), ∀L. ✷



Proof of Corollary 2. Let L be a possibilistic lottery, L be the set of possibilistic lotteries, L∗ a subset of L s.t. L∗ = 
{L∗

1, . . . , L
∗
p} and L∗ ∈L∗ s.t. ∀L∗

i
∈L∗: max

i=1,p
min (w i, U

−
i

(L∗)) ≥ max
i=1,p

min (w i, U
−
i

(L∗
i
)).

Let Lk ∈ L, L∗
k

∈ L∗ and we suppose that for any Lk ∈ L, for any L∗
k

∈ L∗: U⊗
i

(L∗
k
) ≥ U⊗

i
(Lk). We have to prove that: for 

any L ∈L, U⊗max
ante (L∗) ≥ U⊗max

ante (L).

We start by verifying if min(w i, U
⊗
i

(L∗
k
)) ≥ min(w i, U

⊗
i

(Lk)) where U⊗
i

= U−
i

if the agent i is pessimistic and U⊗
i

= U+
i

if he is optimistic.

• If (w i ≤ U⊗
j
(Lk)) : min(w i, U

⊗
i

(L∗
k
)) = min(w i, U

⊗
i

(Lk)) = w i .

• If (w i ≥ U⊗
i

(Lk)):

– If (w i ≤ U⊗
i

(L∗
k
)) : min(w i,U

⊗
i

(L∗
k
)) = w i ≥ min(w i,U

⊗
i

(Lk)) = U⊗
i

(Lk).

– If (w i ≥ U⊗
i

(L∗
k
)) : min(w i,U

⊗
i

(L∗
k
)) = U⊗

i
(L∗

k
) ≥ min(w i,U

⊗
i

(Lk)) = U⊗
i

(Lk).

Hence, min(w i, U
⊗
i

(L∗
k
)) ≥ min(w i, U

⊗
i

(Lk)).

So, max
i∈A

min(w i, U
⊗
i

(L∗
k
)) ≥ max

i∈A
min(w i, U

⊗
i

(Lk)).

Since, max
i=1,p

min (w i, U
⊗
i

(L∗)) ≥ max
i=1,p

min (w i, U
⊗
i

(L∗
i
)) ∀ L∗

i
∈L∗ then U⊗max

ante (L∗) ≥ U⊗max
ante (L), ∀L. ✷
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