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 by Ben Amor et al. and extends them to a more general context where every decision maker is free to have an optimistic or a pessimistic attitude w.r.t. uncertainty. These criteria are then considered for the optimization of possibilistic decision trees and an algorithmic study is performed for each of them. When the global utility does satisfy the monotonicity property, a classical possibilistic Dynamic Programming can be applied. Otherwise, two cases are possible: either the criterion is max oriented (the more is the satisfaction of any agent, the greater is the global satisfaction), and a dedicated algorithm can be proposed, that relies on as many calls to Dynamic Programming as the number of decision makers; or the criterion is min oriented (all the agents must like the common decision) and the optimal strategy can be provided by a Branch and Bound Algorithm. The paper concludes by an experimental study that shows the feasibility of the approaches, and details to what extent simple Dynamic programming algorithms can be used as approximation procedures for the non monotonic criteria.

; it includes the full proofs of the propositions, and new models and algorithms that allow the modeling of collective sequential problems where the agents have different attitudes w.r.t. uncertainty.

Introduction

The handling of a collective decision problem under uncertainty resorts on (i) the identification of a theory of decision making under uncertainty (DMU) that captures the decision makers' behavior with respect to uncertainty and (ii) the specification of a collective utility function (CUF) as it may be used when the problem is not pervaded with uncertainty. But also, one needs to precise when the utility of the agents is to be evaluated: before (ex-ante) or after (ex-post) the realization of the uncertain events. In the first case, the global utility function is a function of the DMU utilities of the different agents; in the second case it is an aggregation, w.r.t. the likelihood of the final states, of the collective utilities.

Following Fleming [START_REF] Fleming | A cardinal concept of welfare[END_REF], Harsanyi [START_REF] Harsanyi | Cardinal welfare, individualistic ethics, and interpersonal comparisons of utility[END_REF] has shown that, when the uncertainty about consequences of decisions can be quantified in a probabilistic way: the collective utility should be a weighted sum of the individual expected utilities. Many contributions have been inspired by this seminal work: Some authors (such as Diamond [START_REF] Diamond | Cardinal welfare, individualistic ethics, and interpersonal comparison of utility: comment[END_REF]) criticized this approach because not applicable when the collective utility is more egalitarian than utilitarian. Others have developed Harsanyi's ap-proach, in particular Myerson [START_REF] Myerson | Utilitarianism, egalitarianism, and the timing effect in social choice problems[END_REF] who proved that only the choice of an utilitarian social welfare function can reconciliate the ex-ante and ex-post approaches. However in the probabilistic case, all other welfare functions suffer from the "timing effect" [START_REF] Myerson | Utilitarianism, egalitarianism, and the timing effect in social choice problems[END_REF], i.e., lead to a discrepancy between the ex-ante and the ex-post approach.

Harsanyi's and Meyrson's results rely on the assumption that the knowledge of the agents about the consequences of their decisions is rich enough to be modeled by probabilistic lotteries. When the information about uncertainty cannot be quantified in a probabilistic way, the topic of possibilistic decision theory is often a natural one to consider [START_REF] Dubois | Qualitative decision theory with preference relations and comparative uncertainty: an axiomatic approach[END_REF][START_REF] Dubois | Qualitative decision theory: from Savage's axioms to nonmonotonic reasoning[END_REF][START_REF] Dubois | Making decision in a qualitative setting: from decision under uncertainty to case-based decision[END_REF][START_REF] Dubois | Possibility theory as a basis for qualitative decision theory[END_REF][START_REF] Dubois | Decision theoretic foundations of qualitative possibility theory[END_REF][START_REF] Giang | A qualitative linear utility theory for Spohn's theory of epistemic beliefs[END_REF]. Qualitative decision theory is relevant, among other fields, for applications to planning under uncertainty, where a suitable strategy (i.e., a set of conditional or unconditional decisions) is to be found, starting from a qualitative description of the initial world, of the available alternatives, of their (perhaps uncertain) effects and of the goal to reach (see [START_REF] Ben Amor | Possibilistic sequential decision making[END_REF][START_REF] Sabbadin | Empirical comparison of probabilistic and possibilistic Markov decision processes algorithms[END_REF][START_REF] Sabbadin | Towards qualitative approaches to multi-stage decision making[END_REF]). But up to this point, the evaluation of the strategies was considered only in a simple, mono-agent context, while it is often the case that several agents are involved in the decision.

The present paper raises the question of sequential collective decision making under possibilistic uncertainty. It follows recent works [START_REF] Ben Amor | Solving multi-criteria decision problems under possibilistic uncertainty using optimistic and pessimistic utilities[END_REF][START_REF] Ben Amor | Décision collective sous incertitude possibiliste. Principes et axiomatisation[END_REF][START_REF] Ben Amor | Egalitarian collective decision making under qualitative possibilistic uncertainty: principles and characterization[END_REF] which propose a theoretical framework for multi-agent (non sequential) decision making under possibilistic uncertainty. It extends these results to consider decision problems where agents may have different attitude w.r.t. uncertainty (some may be optimistic when the others are pessimistic) and provides new decision rules for this specific case. Then, we tackle the problem of (possibilistic) sequential decision making and we provide an algorithmic study for strategy optimization in collective possibilistic decision trees.

The remainder of this paper is organized as follows: The next Section recalls the basic notions on which our work relies (decision under possibilistic uncertainty, collective utility functions, etc.). In Section 3, we resume the decision criteria introduced in [START_REF] Ben Amor | Solving multi-criteria decision problems under possibilistic uncertainty using optimistic and pessimistic utilities[END_REF] and define new ones for agents with different attitudes. Section 4 is devoted to strategy optimization in collective possibilistic decision trees, using the decision rules previously defined. The picture is finally completed by an experimental study, presented in Section 5.

Background and basic notions

Collective utility functions

Let us consider a set A = {1, . . . , p} of agents that have to make a decision. Each agent i ∈ A being supposed to express his / her preferences on a set of alternatives (say, a set X ), by a ranking function or a utility function u i that associates to each element of X a value in a subset of R + (typically in the unit interval [0, 1]). In the absence of uncertainty, each decision leads to a unique consequence and an utility vector u = u 1 , . . . , u p is associated to each one of them. Besides, when agents are not equally important, we define a vector w = w 1 , . . . , w p where each i is equipped with a weight w i ∈ [0, 1] reflecting its importance. Thus, solving the problem comes down to compute a global utility degree that reflects the collective preference by aggregating the different u i 's.

In a qualitative framework, such aggregation shall be either conjunctive (i.e., based on a weighted min) or disjunctive (i.e., based on a weighted max) -see [START_REF] Dubois | Weighted minimum and maximum operations in fuzzy set theory[END_REF] for more details about weighted min and weighted max aggregations. Formally, these aggregations are defined as follows:

Disjunctive aggregation : Agg max (x) = max i∈ A min(w i , u i (x)).

(1)

Conjunctive aggregation : Agg min (x) = min i∈ A max(1w i , u i (x)).

(2)

Multi-agent decision making under risk

In a framework of decision making under risk, when the information about the consequences of decisions is probabilistic, a popular criterion to compare alternatives is the expected utility model axiomatized by Von Neumann and Morgenstern [35]: an elementary decision is modeled by a probability distribution over the set X of possible outcomes. It is called a simple probabilistic lottery and it is denoted by L = λ 1 /x 1 , . . . , λ n /x n , where λ j = p(x j ) is the probability that the decision leads to outcome x j . Also, it is supposed that the preferences of a single decision maker are captured by a utility function u j assigning a numerical value to each x j . Solving such problems amounts to evaluate risky alternatives and choosing among them. In other words, we compute the expected utility of each lottery and we select the one with the highest value (the greater, the better).

When several agents are involved, the aggregation of individual preferences under risk raises a particular problem depending on when the utility of the agents is to be evaluated, before or after the consideration of uncertainty. This yields two different approaches, namely the ex-ante and the ex-post aggregation:

• The ex-ante approach consists in computing the utility of each agent, before performing the aggregation using the agents' weights.

• The ex-post approach consists in first determining the aggregated utility (conjunctive or disjunctive) relative to each possible outcome of X ; then consider the uncertainty and the likelihood of states.

For the same decision problem and using the same criterion, the two approaches do not always coincide: Aggregating the agents attitudes before or after the consideration of uncertainty may lead to different conclusions. This phenomenon has been identified by Myerson [37] as "timing effect".

Single agent decision making under possibilistic uncertainty

The expected utility model owes its popularity essentially to its strong axiomatic justifications [START_REF] Morgenstern | Theory of Games and Economic Behavior[END_REF][START_REF] Savage | The Foundations of Statistics[END_REF]. However, it involves only the use of a quantitative representation of uncertainty and it has been proved that this formalism cannot represent all decision makers' behaviors [START_REF] Allais | Le Comportement de l'Homme Rationnel devant le Risque: Critique des Postulats et Axiomes de l'Ecole Americaine[END_REF][START_REF] Ellsberg | Risk, ambiguity, and the Savage axioms[END_REF]. Besides, when the decision maker is unable to express his / her uncertainty and preferences numerically and can only give an order among different alternatives, the probabilistic framework remains inappropriate and non probabilistic models (such as imprecise probabilities [START_REF] Walley | Statistical Reasoning with Imprecise Probabilities[END_REF], evidence theory [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF], rough set theory [START_REF] Pawlak | Rough sets[END_REF] and possibility theory [START_REF] Dubois | Possibility Theory: An Approach to Computerized Processing of Uncertainty (traduction revue et augmentée de Théorie des Possibilités)[END_REF][START_REF] Dubois | An introductory survey of possibility theory and its recent developments[END_REF][START_REF] Zadeh | Fuzzy sets as a basis for theory of possibility[END_REF][START_REF] Zadeh | A theory of approximate reasoning[END_REF]) become relevant alternatives. In particular, one may consider qualitative possibilistic decision rules that have emerged with the growth of possibility theory.

Possibility theory is a framework to handle uncertainty issued from Fuzzy Sets theory. It has been introduced by Zadeh [START_REF] Zadeh | Fuzzy sets as a basis for theory of possibility[END_REF][START_REF] Zadeh | A theory of approximate reasoning[END_REF] and further developed by Dubois and Prade [START_REF] Dubois | Possibility Theory: An Approach to Computerized Processing of Uncertainty (traduction revue et augmentée de Théorie des Possibilités)[END_REF][START_REF] Dubois | The treatment of uncertainty in knowledge-based systems using fuzzy sets and possibility theory[END_REF]. The basic building block in this framework is the notion of possibility distribution. It represents the knowledge of a decision maker about the state of the world. A possibility distribution is denoted by π and it maps each state s in the universe of discourse S to a bounded linearly ordered scale V , typically the unit interval [0, 1]. This scale can be interpreted in a quantitative or a qualitative way, the latter is the context of our work. Independently of the used scale, given s ∈ S, π(s) = 1 means that the realization of s is totally possible and π(s) = 0 means that s is impossible. π is said to be normalized if there exist at least one s ∈ S that is totally possible.

Extreme cases of knowledge in possibility theory are complete knowledge and total ignorance. In the first case, we assign 1 to a totally possible state s 0 and 0 otherwise (i.e., ∃ s 0 , π(s 0 ) = 1 and ∀s = s 0 , π(s) = 0). In the second one, we assign 1 to all situations (i.e., π(s) = 1, ∀s ∈ S).

Possibility theory is characterized by the use of two dual measures, namely the possibility measure and necessity measure N defined by:

• Possibility measure: (E) = max s∈E π(s). It denotes the possibility degree evaluating at which level an event E ⊆ S is consistent with the knowledge represented by π .

• Necessity measure:

N(E) = 1 -(¬E) = min s∈E (1 -π(s)).
It denotes the necessity degree evaluating at which level an event E ⊆ S is certainly implied by the knowledge. Following Dubois and Prade's possibilistic approach of decision making under qualitative uncertainty [START_REF] Dubois | Possibility theory as a basis for qualitative decision theory[END_REF], a decision can be seen as a possibility distribution over a finite set of outcomes X called a (simple) possibilistic lottery. Such a lottery is denoted by L = λ 1 /x 1 , . . . , λ n /x n where λ j = π L (x j ) is the possibility that decision L leads to outcome x j ; this possibility degree can also be denoted by L[x j ]. In this framework, a decision problem is thus fully specified by a set of possibilistic lotteries on X and a utility function u : X → [0, 1] expressing the decision maker preferences. Under the assumption that the utility scale and the possibility scale are commensurate and purely ordinal, Dubois and Prade propose to evaluate each lottery by a qualitative, optimistic or pessimistic utility [START_REF] Dubois | Possibility theory as a basis for qualitative decision theory[END_REF]:

Optimistic utility : U + (L) = max x j ∈X min(L[x j ], u(x j )). (3) Pessimistic utility : U -(L) = min x j ∈X max(1 -L[x j ], u(x j )). (4) 
U + (L) is a mild version of the maximax criterion: L is good as soon as it is totally plausible that it gives a good consequence. On the contrary, the pessimistic utility, U -(L) estimates the utility of an act by its worst possible consequence: its value is high whenever L gives good consequences in every "rather plausible" state. These two utilities can be seen as the ordinal counterpart of the expected utility criterion and have been axiomatized in the style of Von Neumann and Morgenstern [START_REF] Dubois | Possibility theory as a basis for qualitative decision theory[END_REF] and Savage [START_REF] Dubois | Qualitative decision theory with Sugeno integrals[END_REF] frameworks.

A possibilistic approach to collective decision making

Collective qualitative decision rules

Let us now consider collective decision making under qualitative uncertainty: In this framework, the decision maker's attitude with respect to uncertainty can be either optimistic (U + ) or pessimistic (U -) and the aggregation of the agents' preferences can be either conjunctive, egalitarian ( Ag g min ) or disjunctive, non egalitarian ( Ag g max ). 

U -min ante (L) = min i∈A max ((1 -w i ), min x j ∈X max ( u i (x j ), (1 -L[x j ]))).
(5)

U -max ante (L) =max i∈A min (w i , min x j ∈X max ( u i (x j ), (1 -L[x j ]))). (6) U + min ante (L) = min i∈A max ((1 -w i ), max x j ∈X min ( u i (x j ), L[x j ])). ( 7 
)
U + max ante (L) =max i∈A min (w i , max x j ∈X min ( u i (x j ), L[x j ])). (8) 
U -min post (L) = min x j ∈X max ((1 -L[x j ]), min i∈A max ( u i (x j ), ( 1 
-w i ))). (9) 
U -max post (L) = min x j ∈X max ((1 -L[x j ]), max i∈A min ( u i (x j ), w i )). ( 10 
)
U + min post (L) =max x j ∈X min (L[x j ], min i∈A max ( u i (x j ), ( 1 
-w i ))). ( 11 
)
U + max post (L) =max x j ∈X min (L[x j ], max i∈A min ( u i (x j ), w i )). ( 12 
)
For the notations: the subscript indicates the used approach (ex-ante or ex-post) and the superscript denotes the decision makers' attitude w.r.t. uncertainty (pessimistic "-" or optimistic "+") and the agents' preferences aggregation (conjunctive "min" or disjunctive "max"). The U -min ante utility for instance, considers that the decision makers are pessimistic and computes the pessimistic utility of each one of them. Then, the U - i 's are aggregated on a cautious basis: the higher the satisfaction of the least satisfied of the important agents, the better is the lottery. Using the same notations, U -max post considers that a consequence x i is good as soon as one of the important agents is satisfied: a max-based aggregation of the utilities is performed, yielding a unique utility function Ag g() on the basis of which the pessimistic utility is computed.

In Ref. [START_REF] Ben Amor | Egalitarian collective decision making under qualitative possibilistic uncertainty: principles and characterization[END_REF], authors have proposed a qualitative counterpart of Harsanyi's theorem [START_REF] Harsanyi | Cardinal welfare, individualistic ethics, and interpersonal comparisons of utility[END_REF], and have shown that the fully min oriented and fully max oriented ex-ante utilities are equivalent to their ex-post counterparts, i.e., U -min ante = U -min post and

U + max ante = U + max post . But U -max ante (resp. U + min
ante ) may differ from U -max post (resp. from U + min post ). These criteria suffer from timing effect.

Example 1. Consider two equally important agents 1 and 2 (w 1 = w 2 = 1), and a lottery L = 1/x a , 1/x b defining a state of total ignorance about consequences x a and x b (π (x a ) = π(x b ) = 1) (see Fig. 1). The first consequence is good for 1 and bad for 2, and the second one is bad for 1 and good for 2:

u 1 (x a ) = u 2 (x b ) = 1 and u 2 (x a ) = u 1 (x b ) = 0.
It is easy to check that U + min ante (L) = 0 = U + min post (L) = 1 where:

U + min post (L) = max ( min (1, min ( max (1 -1, 1), max (1 -1, 0))) , min (1, min (max (1 -1, 0), max (1 -1, 1)))) = 0. U + min ante (L) = min ( max (1 -1, max ( min (1, 1), min (1, 0))) , max (1 -1, max (min (1, 0), min (1, 1)))) = 1.

Possibilistic decision rules for agents with different attitude w.r.t. to uncertainty

The decision rules presented in the previous section assume that all the agents are either purely optimistic or purely pessimistic. However, the attitude of each decision maker has a major impact on the chosen alternative or decision. For the same decision problem only varying the attitude of a decision maker may radically change the results. Besides, in real-world problems, it is seldom that all the decision makers have same attitude: the group of decision makers may gather pessimistic as well as optimistic persons. So, the decision have to be made by considering the individual differences in tolerance and intolerance for uncertainty. In the following, we get rid of the assumption of the same attitude for the collectivity and we propose more general decision rules that are appropriate to handle situations where each agent is free to express his / her attitude w.r.t. uncertainty.

Nevertheless, dealing with such problems imposes the use of ex-ante aggregation and forces us to give up the ex-post utilities. The ex-post approach that aggregates the preference utilities of the agents into a global, mono-agent one (this agent representing the collectivity), imposes the use of one and only one attitude. Hence, it is not possible to respect each agent's attitude towards uncertainty with a such method. The ex-ante approach, on the contrary, allows the handling of the different attitudes of heterogeneous agents. This leads us to extend the ex-ante decision rules as follows:

Definition 1. Given a possibilistic lottery L on X , a set of agents A (where each i is either optimistic or pessimistic), a vector of utility functions u and a weighting vector w, let:

U max ante (L) =max i∈A min (w i , ⊗ x j ∈X ⊕ (u i (x j ), [x j ])). (13) U min ante (L) =min i∈A max (1 -w i , ⊗ x j ∈X ⊕ (u i (x j ), [x j ])), (14) 
where ⊗ = min (resp. max), ⊕ = max (resp. min) and

[x j ] = 1 -L[x j ] (resp. L[x j ]) if the agent i is pessimistic (resp. optimistic).
Example 2. Consider two agents 1 and 2 having the same importance (w 1 = w 2 = 1) such that 1 is optimistic and 2 is pessimistic, and consider the lottery L defined in Example 1: L = 1/ 1, 0 , 1/ 0, 1 . We get the following results:

U max ante (L) = max (min(w 1 , U + 1 (L)), min(w 2 , U - 2 (L))). = max ( min (1, max ( min (1, 1), min (1, 0))) , min (1, min (max (1 -1, 0), max (1 -1, 1)))) = 1. U min ante (L) = min (max (1 -w 1 , U + 1 (L)), max (1 -w 2 , U - 2 (L))). = min ( max (1 -1, max ( min (1, 1), min (1, 0))) , max (1 -1, min (max (1 -1, 0), max (1 -1, 1)))) = 0.
These criteria can be considered as a generalization of the four ex-ante utilities: Using the min (resp. max) oriented aggregation, U min ante (resp. U max ante ) is equal to U -min ante (resp. U -max ante ) if all agents are pessimistic and it is equal to U +min ante (resp. U +max ante ) if there are optimistic. Obviously, the egalitarian utility U min ante is related to its non egalitarian counterpart by duality. Formally, it holds that: Proposition 1. Let P = L, w, u be a qualitative collective decision problem and let P τ = L, w, u τ be its dual problem, i.e., the problem such that for each agent we consider his / her dual attitude and for any x j ∈ X , i ∈ A, we define u τ i (x j ) = 1u i (x j ). Then, for any L ∈ L:

U τ max ante (L) = 1 -U min ante (L) and, U τ min ante (L) = 1 -U max ante (L).
Likewise, if agents are equally important, weights can be ruled out and the proposed criteria can be simplified as follows:

Definition 2. Given a possibilistic lottery L on X , a set of equally important agents A where each agent is either optimistic or pessimistic and a vector of utility functions u let:

U max ante (L) =max i∈A ( ⊗ x j ∈X ⊕ (u i (x j ), [x j ])). ( 15 
)
U min ante (L) =min i∈A ( ⊗ x j ∈X ⊕ (u i (x j ), [x j ])), (16) 
where ⊗ = min (resp. max), ⊕ = max (resp. min) and

[x j ] = 1 -L[x j ] (resp. L[x j ]) if the agent i is pessimistic (resp.
optimistic).

Collective sequential decision making under qualitative uncertainty

Definition of collective possibilistic decision trees

Representation formalisms such as decision trees [START_REF] Raiffa | Decision Analysis-Introductory Lectures on Choices Under Uncertainty[END_REF], influence diagrams [START_REF] Howard | Influence diagrams[END_REF] and Markov decision process [START_REF] Bellman | A Markovian decision process[END_REF], offer a clear description of sequential decision problems and allow the definition of optimal strategies. In recent years, there has been a growing interest in more complex problems (namely multi-criteria or multi-objectives decision making) and several extensions of classical graphical models [START_REF] Chatterjee | Markov decision processes with multiple objectives[END_REF][START_REF] Haimes | Multiobjective decision-tree analysis[END_REF][START_REF] Lootsma | Multicriteria decision analysis in a decision tree[END_REF][START_REF] Marinescu | Multi-objective influence diagrams[END_REF] have emerged to present such cases. These research proposals rely on the probability theory and the well known expected utility criterion to solve the problem. However, this criterion fails to represent all the decision makers' behaviors.

With the growth of the qualitative frameworks, especially possibility theory, many authors have advocated this ordinal view of decision making and have gave rise to qualitative decision models i.e., possibilistic decision tree [START_REF] Garcia | Possibilistic influence diagrams[END_REF], possibilistic influence diagrams [START_REF] Garcia | Possibilistic influence diagrams[END_REF], and possibilistic Markov decision processes [START_REF] Sabbadin | Possibilistic Markov decision processes[END_REF]. We notice that other non possibilistic qualitative paradigms have been developed, we cite among others, works presented in [START_REF] Covaliu | Representation and solution of decision problems using sequential decision diagrams[END_REF][START_REF] Kikuti | Sequential decision making with partially ordered preferences[END_REF][START_REF] Marinescu | Order-of-magnitude influence diagrams[END_REF]. But, in this paper we focus only on possibilistic formalisms because of the use of pessimistic and optimistic utilities that are the ordinal counter part of the expected utility criterion and have received an axiomatic justification by Dubois and Prade [START_REF] Dubois | Possibility theory as a basis for qualitative decision theory[END_REF][START_REF] Dubois | Qualitative decision theory with Sugeno integrals[END_REF].

In the remaining of this Section, we propose to solve sequential collective decision problems under qualitative uncertainty. For the best of our knowledge, this work is the first attempt to solve such problems and we propose to limit ourselves to the use of decision trees; because even in this simple, explicit formalism, the set of potential strategies is combinatorial (i.e., its size increases exponentially with the size of the tree) and the determination of an optimal strategy for a given problem and using the different proposed decision rules is an algorithmic issue in itself.

Decision trees proposed by Raiffa [START_REF] Raiffa | Decision Analysis-Introductory Lectures on Choices Under Uncertainty[END_REF] in 1968 are the most popular graphical models. They encode the structure of sequential problems by representing all possible scenarios. The graphical component of a decision tree is a directed labeled tree DT = (N , E) where E is the set of edges and N = D ∪ C ∪ LN is the set of nodes that contains three kinds of nodes: D the set of decision nodes (represented by squares); C the set of chance nodes (represented by circles) and LN the set of leaves. In this formalism, the root of the tree is generally a decision node, denoted by D 0 . Succ(N) denotes the set of children nodes of node N. For any D i ∈ D, Succ(D i ) ⊆ C i.e., a chance node (an action) must be chosen at each decision node. For any C i ∈ C, Succ(C i ) ⊆ LN ∪ D: the set of outcomes of an action is either a leaf node or a decision node (and then a new action should be executed).

The numerical component of decision trees consists on assigning utility values to leave nodes and labeling the edges outgoing from chance nodes. The quantification of a decision tree depends essentially on the nature of uncertainty pertaining the problem and the theory used to represent it. In its classical version, decision trees are probabilistic. However, when the available information is ordinal, Garcia et al. [START_REF] Garcia | Possibilistic influence diagrams[END_REF] propose to label the leaves by utility degrees in the unit scale [0, 1] and to represent the uncertainty pertaining to the possible outcomes of each C i by a conditional possibility distribution π i on

Succ(C i ), such that ∀N ∈ Succ(C i ), π i (N) = (N|path(C i ))
where path(C i ) denotes all the value assignments of chance and decision nodes on the path from the root D 0 to C i .

Solving a decision tree amounts at building a complete strategy that selects an action (a chance node) for each decision node: a strategy is a mapping δ : D → C ∪ {⊥}. δ(D i ) = ⊥ means that no action has been selected for D i (δ is partial). To select the optimal strategy, authors in [START_REF] Garcia | Possibilistic influence diagrams[END_REF] propose to evaluate and compare strategies w.r.t. the pessimistic and optimistic utilities axiomatized in [START_REF] Dubois | Possibility theory as a basis for qualitative decision theory[END_REF]. Leaf nodes being labeled with utility degrees, the rightmost chance nodes (i.e., chance nodes on the far right-hand side) can be seen as simple possibilistic lotteries. Then, each strategy δ can be viewed as a connected sub-tree of the decision tree and is identified with a possibilistic compound lottery L δ , i.e., with a possibility distribution over a set of (simple or compound) lotteries. Any compound lottery is denoted by λ 1 /L 1 , . . . , λ m /L m and it can be reduced into an equivalent simple lottery 1 as follows [START_REF] Dubois | Possibility theory as a basis for qualitative decision theory[END_REF]:

Reduction( λ 1 /L 1 , ..., λ m /L m ) = max k=1,m (min(λ k 1 , λ k ))/x 1 , . . . , max k=1,m (min(λ k n , λ k ))/x n ,
where λ k is the possibility of getting lottery L k according to L and λ k j = π L k (x j ) is the conditional possibility of getting x j from L k . Hence, the pessimistic and optimistic utility of a strategy δ can be computed on the basis of the reduction of L δ : the utility of a strategy δ is then the one of Reduction(L δ ).

To define collective qualitative decision trees, we resume the same graphical and numerical component of possibilistic decision trees [START_REF] Garcia | Possibilistic influence diagrams[END_REF] except for leave nodes that are evaluated according to several agents instead of a single one.

Each leaf node LN is now labeled by a vector u(LN) = u 1 (LN), . . . , u p (LN) rather than by a single utility degree (see Fig. 2). A strategy still leads to a compound lottery, and can be reduced, thus leading in turn to a simple (but multi-agent) lottery. We can now compare strategies according to any of the collective decision rules O previously presented (U -min post , U +min post , U -max post , U +max post , U -min ante , U +min ante , U -max ante , U +max ante , U min ante and U max ante ) by comparing their reductions. Formally, given two strategies δ 1 and δ 2 , and a collective decision rule O :

δ 1 O δ 2 iff U O (δ 1 ) ≥ U O (δ 2 ), where ∀δ, U O (δ) = U O (Reduction(L δ )). ( 17 
)
Example 3. Consider the tree of Fig. 2, involving two equally important agents and the strategy δ

(D 0 ) = C 1 , δ(D 1 ) = C 3 , δ(D 2 ) = C 5 .
It holds that:

L δ = 1/L C 3 , 0.9/L C 5 with L C 3 = 0.5/x a , 1/x b , L C 5 = 0.2/x a , 1/x b .
The reduction of L δ can be computed: Reduction(L δ ) = max(0.5, 0.2)/x a , max(1, 0.9)/x b = 0.5/x a , 1/x b .

So, if we consider for instance the U +min ante criterion, we get:

U +min ante (δ) = min(max min(0.5, 0.3), min(1, 0.6), max(min(0.5, 0.8) min(1, 0.4))) = 0.5.

The definition proposed by Eq [START_REF] Dubois | The treatment of uncertainty in knowledge-based systems using fuzzy sets and possibility theory[END_REF] is intuitive but raises an algorithmic challenge: the set of strategies to compare is exponential w.r.t. the size of the tree which makes the explicit evaluation of strategies not realistic. The sequel of the paper provides an algorithmic study of the problem -applying variants of Dynamic Programming when it is possible.

Optimization in collective possibilistic trees 4.2.1. Dynamic Programming as a tool for ex-post utilities

Dynamic Programming [START_REF] Bellman | Dynamic Programming[END_REF] is an efficient procedure of strategy optimization. It proceeds by backward induction where the problem is handled from the end (in our case, from the leafs); the last decision nodes are considered first, and recursively until reaching the root. More specifically, the algorithm can be described as follows: when a chance node C i is reached, an optimal sub-strategy is built for each of its children. These sub-strategies are combined w.r.t. their uncertainty degrees. Then, the resulting compound strategy is reduced to an equivalent simple lottery representing the current optimal sub-strategy. When a decision node D i is reached, we select a decision D * among all the possible alternatives N ∈ Succ(D) leading to an optimal sub-strategy w.r.t. O . The choice is performed by comparing the simple lotteries equivalent to each sub-strategy.

This algorithm is sound and complete as soon as O is complete, transitive and satisfies the principle of weak monotonicity, 2 that ensures that each sub strategy of an optimal strategy is optimal in its sub-tree. Formally, a decision rule O is weakly monotonic iff whatever L, L ′ and L ′′ , whatever (α, β) such that max (α, β) = 1:

L O L ′ ⇒ α/L, β/L ′′ O α/L ′ , β/L ′′ .
Each of the ex-post criteria satisfies transitivity, completeness and weak monotonicity, because collapsing to either classical pessimistic (U -) or optimistic (U + ) utility, which satisfies these properties [START_REF] Ben Amor | Possibilistic sequential decision making[END_REF][START_REF] Garcia | Possibilistic influence diagrams[END_REF].

The adaptation of Dynamic Programming to the ex-post decision rules is detailed in Algorithm 1. This algorithm computes the collective utility relative to each possible consequence by aggregating the utility values of each leaf, and then builds an optimal strategy from the last decision nodes to the root of the tree using the principle defined in [START_REF] Garcia | Possibilistic influence diagrams[END_REF][START_REF] Sabbadin | Towards qualitative approaches to multi-stage decision making[END_REF] for classical (mono-agent) possibilistic decision trees.

Dynamic Programming for ex-ante utilities

When the decision rule follows the ex-ante approach, the application of Dynamic Programming is a little more tricky. The ex-ante Dynamic Programming we propose (see Algorithm 2) keeps at each node a vector of p pessimistic (resp. optimistic) utilities, one for each agent. The computation of the ex-ante utility can then be performed each time a decision is to be made. Recall that U -min ante = U -min post and U + max ante = U + max post . Hence, for these two criteria the optimization could also be performed using the ex-post algorithm. 

9 for i ∈ {1, . . . , p} do u N [i] ← ( u N [i] ⊕ (λ Y ⊗ u Y [i]));
15 for i ∈ {1, . . . , p} do v Y ← v Y ⊕ ( u Y [i] ⊗ ω i ); 16 if v Y > u * then δ(N) ← Y , u N ← u Y and u * ← v Y ; 17 // Disjunctive CDM: let ⊗ = min, ω i = w i , ⊕ = max, ǫ ← 0 18 // Conjunctive CDM: let ⊗ = max, ω i = 1 -w i , ⊕ = min, ǫ ← 1 19 return u * ;
As shown by Counter Example 1, the U -max ante and U + min ante decision rules do not satisfy the monotonicity principle [START_REF] Ben Amor | Solving multi-criteria decision problems under possibilistic uncertainty using optimistic and pessimistic utilities[END_REF]. Hence, Algorithm 2 may provide a good strategy but without any guarantee of optimality. It can nevertheless be considered as an approximation algorithm when used for optimizing any of these problematic criteria Counter-Example 1. Consider the set of consequences X = {x 1 , x 2 , x 3 } and consider two equally important agents 1 and 2 (w 1 = w 2 = 1) with:

u 1 (x 1 ) = 1, u 1 (x 2 ) = 0.8, u 1 (x 3 ) = 0.5; u 2 (x 1 ) = 0.6, u 2 (x 2 ) = 0.8, u 2 (x 3 ) = 0.8.
Consider the lotteries

L 1 = 1/x 1 , 0/x 2 , 0/x 3 , L 2 = 0/x 1 , 1/x 2 , 0/x 3 and L 3 = 0/x 1 , 0/x 2 , 1/x 3 :
L 1 gives consequence x 1 for sure, L 2 gives consequence x 2 for sure and L 3 gives consequence x 3 for sure. It holds that:

U -max ante (L 1 ) = max i=1,2 U - i (L 1 ) = max (1, 0.6) = 1. U -max ante (L 2 ) = max i=1,2 U - i (L 2 ) = max (0.8, 0.8) = 0.8.
Hence L 1 ≻ L 2 with respect to the U -max ante rule.

Consider now the compound lotteries L = 1/L 1 , 1/L 3 and L ′ = 1/L 2 , 1/L 3 . If the weak monotonicity principle were satisfied, we would get:

U -max ante (L) > U -max ante (L ′ ).
Consider the reduction of compound lotteries L and L ′ respectively such as: Reduction( 1/L 1 , 1/L 3 ) = 1/x 1 , 0/x 2 , 1/x 3 and Reduction( 1/L 2 , 1/L 3 ) = 0/x 1 , 1/x 2 , 1/x 3 . It holds that:

U -max ante (L) = U -max ante (Reduction( 1/L 1 , 1/L 3 )) = 0.6. U -max ante (L ′ ) = U -max ante (Reduction( 1/L 2 , 1/L 3 )) = 0.8. U -max ante (L) < U -max ante (L ′ ) while U -max ante (L 1 ) > U -max ante (L 2 ). So, U -max
ante is not monotonic. Using the fact that U +min ante = 1 -U τ -max ante [START_REF] Ben Amor | Solving multi-criteria decision problems under possibilistic uncertainty using optimistic and pessimistic utilities[END_REF], this counter-example is modified to show that U +min ante does not satisfy the monotonicity principle either.

Consider two equally important agents, 1 and 2 with w 1 = w 2 = 1 and utilities

u τ 1 (x 1 ) = 0, u τ 1 (x 2 ) = 0.2, u τ 1 (x 3 ) = 0.5; u τ 2 (x 1 ) = 0.4, u τ 2 (x 2 ) = 0.2, u τ 2 (x 3 ) = 0.2.
Consider now the same lotteries L 1 , L 2 and L 3 presented above. It holds that:

U +min ante (L 1 ) = min i=1,2 U + i (L 1 ) = 0 < U +min ante (L 2 ) = min i=1,2 U + i (L 2 ) = 0.2, while U +min ante (Reduction( 1/L 1 , 1/L 3 )) = 0.4 > U +min ante (Reduction( 1/L 2 , 1/L 3 )) = 0.2,
which contradicts the weak monotonicity.

Likewise, the ex-post Dynamic Programming Algorithm (Algorithm 1) shall also be considered as an algorithm of approximation for U -max ante and U + min ante since they are correlated to their ex-post counter-parts as shown in [START_REF] Ben Amor | Egalitarian collective decision making under qualitative possibilistic uncertainty: principles and characterization[END_REF]. Indeed, it holds that:

Proposition 2. U + min ante (L) ≥ U + min post (L). U -max ante (L) ≤ U -max post (L).
So, even if it is not always the case, it often happens that U -max post = U -max ante (resp. U + min post = U + min ante ); in these cases the solution provided by the ex-post Algorithm is optimal.

Algorithm 2 applies also for the optimization of the ex-ante generalization decision rules, namely the U max ante and U min ante utilities for heterogeneous agents. However, obtaining the optimal strategy using Dynamic Programming is guaranteed only for monotonic criteria. Counter-Example 2 shows that U max ante as well as U min ante do not satisfy this property.

Counter-Example 2. Consider two agents 1 and 2 having the same importance (w 1 = w 2 = 1), 1 being optimistic and 2 being pessimistic, and consider the three lotteries on X = {x 1 , x 2 } depicted in Fig. 3. Let L and L ′ be two compound lotteries defined by: L = 0.6/L 1 , 1/L 3 and L ′ = 0.6/L 2 , 1/L 3 .

We can verify that L 1 is globally preferred to L 2 where:

U max ante (L 1 ) = 0.9 > U max ante (L 2 ) = 0.8 whereas U max ante (L) = 0.6 < U max ante (L ′ ) = 0.8,
which proves that U max ante is not monotonic. Since U min ante = 1 -U τmax ante (Proposition 1), this counter-example can be modified to show that U +min ante does not satisfy the monotonicity principle either. We consider the agents 1 and 2 with the same importance (w 1 = w 2 = 1) where 1 is pessimistic and 2 is optimistic and we replace utility functions relative to x 1 and x 2 for lotteries L 1 , L 2 , L 3 , L and L ′ as follows: u τ

1 (x 1 ) = 0.1, u τ 2 (x 1 ) = 0.4, u τ 1 (x 2 ) = 0.2, u τ 2 (x 2 ) = 0.2, u τ 1 (x 3 ) = 0.5 and u τ 2 (x 3 ) = 0.2.
We can check that L 2 is better than L 1 since U min ante (L 1 ) = 0.1 < U min ante (L 2 ) = 0.2 while U min ante (L) = 0.4 > U min ante (L ′ ) = 0.2, which proves that U min ante does not satisfy monotonicity property.

Right optimization of U -max ante by Multi-Dynamic Programming

The lack of monotonicity of U -max ante is not dramatic, even when optimality must be guaranteed. Indeed, with U -max ante we look for a strategy that has a good pessimistic utility U - i for at least one agent i. This means that if it is possible to get Algorithm 3: MultiDynProg: right optimization of U -max ante .

Data: T : a decision tree

Result: u * : the value of the optimal strategy δ *δ * is stored as a global value δ i ← P esD yn P rog(T , i) // Call to classical poss.Dyn.Prog. [START_REF] Garcia | Possibilistic influence diagrams[END_REF] -returns an optimal strategy and its value for each i a strategy that optimizes U - i (and this can be done by the classical Dynamic Programming, since the pessimistic utility is monotonic), the one with the highest value for U -max ante is globally optimal. Formally, U -max ante can be expressed as follows:

U - i (δ i ); 7 u ← min (U - i (δ i ), ω i ); 8 if u > u * then δ * ← δ i ; u * ← u;
U -max ante (L) = max i=1,p min(w i , U - i (L)) (18) 
where U - i (L) is the pessimistic utility of L according to agent i.

Corollary 1. Let L be the set of possibilistic lotteries that can be built on X , L be any possibilistic lottery and let:

-

L * ⊂ L s.t. L * = {L * 1 , . . . , L * p } and ∀L ∈ L, U - i (L * i ) ≥ U - i (L); -L * ∈ L * , s.t. ∀L * i ∈ L * : max i=1,p min (w i , U - i (L * )) ≥ max i=1,p min (w i , U - i (L * i )).
It holds that U -max ante (L * ) ≥ U -max ante (L), ∀L ∈ L.

It follows that the optimization problem can be solved by a series of p calls to a classical (mono-agent) pessimistic optimization. This is the principle of the Multi-Dynamic Programming approach detailed by Algorithm 3. To reduce the execution time, this algorithm could be improved by considering only agents having importance weight w i greater than U -max ante of the actual strategy.

Right optimization of U + min

ante : a Branch and Bound algorithm As previously said, U + min ante utility does not satisfy monotonicity. So, ex-ante Dynamic Programming (Algorithm 2) can provide a good strategy, but without any guarantee of optimality. Besides, this criterion performs the egalitarian aggregation (use the min operator). Then unfortunately, as shown in Counter-Example 3 it is not possible to provide a result similar to Corollary 1 to circumvent the lack of monotonicity (as for U -max ante ).

Counter-Example 3. Consider two optimistic agents 1 and 2 having the same importance degree (w 1 =w 2 =1), and consider the two lotteries L and L ′ on X = {x 1 , x 2 } depicted in Fig. 4. L gives consequence x 1 for sure and L ′ gives consequence x 2 for sure. It holds that:

U + min ante (L) = min ( max ((1 -1)
, max ( min (1, 0.7), min (0, 0.4))) , max ((1 -1), max (min (1, 0.3), min (0, 0.9)))) = 0.3.

U + min ante (L ′ ) = min ( max ((1 -1)
, max ( min (0, 0, 7), min (1, 0.4))) , max ((1 -1), max (min (0, 0.3), min (1, 0.9)))) = 0.4.

Hence, L ′ ≻ L with respect to the U + min ante rule. Then, L ′ is the optimal lottery L * . Now, we look for the strategy that optimizes U + i for each agent i. We get:

U + 1 (L) = 0.7 ≻ U + 1 (L ′ ) = 0.4. So, L * 1 = L.
Algorithm 4: B&B algorithm for the optimization of U +min ante .

Data: T : a decision tree, δ: a (partial) strategy, u: an upper Bound of U + min ante (δ)

Result: u * : the U + min ante value of the optimal strategy δ * found so far We can check that max

1 begin 2 if δ(D 0 ) = ⊥ then D pend ← {D 0 }; 3 else D pend ← {D i ∈ D s.t. ∃D j , δ(D j ) = ⊥ and D i ∈ Succ(δ(D j ))}; 4 if D pend = ∅ then // δ
i∈{1,2} min (w i , U i (L * i )) = 0.7 ≻ max i∈{1,2}
min (w i , U i (L * )) = 0.4, which proves that a result similar to Corollary 1 does not hold for U + min ante .

To guarantee the optimality, we have to propose an exact algorithm and proceed by an implicit enumeration via a Branch and Bound (B&B) algorithm, as done for Rank Dependent Utility [START_REF] Jeantet | Rank-dependent probability weighting in sequential decision problems under uncertainty[END_REF] and for Possibilistic Choquet integrals [START_REF] Ben Amor | Possibilistic sequential decision making[END_REF] (both in the mono agent case).

The Branch and Bound procedure described by Algorithm 4 takes as argument a partial strategy δ and an upper bound of the U + min ante value of its best extension. It returns u * the U + min ante value of the best strategy δ * found so far. To reduce the research time, we can initialize δ * with any strategy, e.g. the one provided by Dynamic Programming (using Algorithm 2 or even Algorithm 1 proposed for the ex-post approach). At each step of the Branch and Bound algorithm, the current partial strategy δ is developed by the choice of an action for some unassigned decision node. When several decision nodes are candidate, the one with the minimal rank (i.e., the former one according to the temporal order) is developed. The recursive procedure backtracks when either the current strategy is complete (then δ * and u * are updated) or proves to be worse than the current δ * .

Function UpperBound(T , δ) outlined by Algorithm 5 provides an upper bound of the best completion of δ: In practice, it builds for each agent i, a strategy δ i that maximizes U + i (using [START_REF] Sabbadin | Empirical comparison of probabilistic and possibilistic Markov decision processes algorithms[END_REF][START_REF] Sabbadin | Towards qualitative approaches to multi-stage decision making[END_REF]'s algorithm, which is linear). It then selects, among these strategies, the one with the highest U + min ante . Notice that U pper Bound(T , δ) = U + min ante (δ) when δ is complete. Whenever the value returned by UpperBound(T , δ) is lower or equal to u * , the value of the best current strategy, the algorithm backtracks yielding the choice of another action for the last considered decision node.

Agents with different attitudes: right optimization of U max ante and U min ante

Let us finally study the heterogeneous utilities U max ante and U min ante proposed in Section 3.2 to solve collective decision problems where the set of decision makers gathers pessimistic and optimistic agents. These decision rules are a generalization of ex-ante utilities so it is not surprising that they do not satisfy the weak monotonicity (see Counter Example 2).

Optimization for heterogeneous agents -the max-based rule

When optimizing U max ante , we are looking for a strategy that maximizes the qualitative utility (U - i or U + i ) for at least one agent i: we get for each agent an optimal strategy with regards to U ⊗ that is defined according to his / her attitude w.r.t. uncertainty i.e.,

U ⊗ i = U - i (resp. U ⊗ i = U + i )
if the agent is pessimistic (resp. optimistic). Then, we select the strategy that maximizes the global utility U max ante . Basically, the optimization of these criteria relies on the same idea than the one proposed for the optimization of U -max ante . Formally, we can write:

U max ante (L) = max i=1,p min(w i , U ⊗ i (L)); (19) 
where U ⊗ i (L) denotes either the pessimistic or the optimistic utility of L for agent i, his / her attitude w.r.t. uncertainty being captured by ⊗.

Corollary 2. Let L be the set of possibilistic lotteries that can be built on X , L be any possibilistic lottery and let: δ i = P esD yn P rog(T , i); // Call to classical poss. Dyn. Prog. [START_REF] Garcia | Possibilistic influence diagrams[END_REF] -returns an optimal strategy for the pessimistic utility U - i ;

-L * ⊂ L s.t. L * = {L * 1 , . . . , L * p } and ∀L ∈ L, U ⊗ i (L * i ) ≥ U ⊗ i (L); -L * ∈ L * , s.t. ∀L * i ∈ L * : max i=1,p min (w i , U ⊗ i (L * )) ≥ max i=1,p min (w i , U ⊗ i (L * i )). It holds that U ⊗ max ante (L * ) ≥ U ⊗ max ante (L), ∀L ∈ L.
22 u ← min (u, max (U + j (δ i ), 1 -ω i )); 23 if u > u(δ) then u(δ) ← u;
7 u i = min (w i , U - i (δ i )); 8 if u i > u * then δ * ← δ i ; u * ← u i ; 9 return u * ;
This result allows the use of Multi-Dynamic Programming for the optimization of U max ante . A first idea consists on a direct adaptation of the MultiDynProg (Algorithm 3) by replacing line 6 and 7 respectively by: line 6': δ i ← D yn P rog(T , i); // Call to poss. Dyn. Prog. w.r.t. the agent attitude (Pes or Opt) [START_REF] Garcia | Possibilistic influence diagrams[END_REF].

line 7': u ← min(U ⊗ i (δ i ), w i ); // U ⊗ i = U - i if i is pessimistic and
U ⊗ i = U + i if i is optimistic.
This algorithm (so called HetMultiDynProg) can be improved by considering first the optimistic decision makers and then the pessimistic ones instead of p calls to Dynamic Programming for each one of them. This gives rise to the second version of Multi-Dynamic Programming (so called ImproHetMultiDynProg) outlined by Algorithm 6. In short, this procedure can be described as follows: For optimistic agents the optimization of U max ante comes down to the optimization of U +max ante using Dynamic Programming (either Algorithm 2 or Algorithm 1, since U +max ante = U +max post ). Then, we consider only pessimistic agents with an importance degree w i higher than the current optimal value (obtained for optimistic agents), we compute their pessimistic utilities and select the strategy that maximizes U max ante . Obviously, HetMultiDynProg and ImproHetMultiDyn-Prog provide the same optimal solutions since they are both exact algorithms. However, ImproHetMultiDynProg needs less iterations -this reduces the execution time as it will be shown by the experimental study.

Optimization for heterogeneous agents -the min-based rule

Let us consider the latest awkward criterion U min ante . Since it is not monotonic, Dynamic Programming comes without guarantee of optimality. Thus, to obtain optimal strategy we adapt the Branch and Bound procedure (Algorithm 4) proposed for the optimization of U + min ante by adjusting the computing of U pper Bound(T , δ). We retain the same principle but here we compute the U min ante of the best completion of δ: for each agent, U pper Bound(T , δ) builds a strategy δ i that maximizes U ⊗ i taking into account the agent's attitude w.r.t. uncertainty (⊗ = min if the agent is pessimistic and ⊗ = max if he is optimistic). Then, it selects among these strategies the one with the highest U min ante . More specifically, we extend Algorithm 5 to deal with heterogeneous decision makers rather than only optimistic ones. Instead of computing U + i the optimistic utility for all agents we compute U ⊗ i for each one of them depending on the decision maker attitude (U ⊗ i = U + i (resp. U - i ) if the agent is optimistic (resp. pessimistic)). The modifications concern lines 9 and 21 of the UpperBound function (Algorithm 5) that are respectively replaced by: line 9':

u N ← (u N ⊗ (λ Y ⊕ u Y )); // if i is Optimistic: ⊗ = max, λ Y = π (Y ), ⊕ = min, if i is Pessimistic: ⊗ = min, λ Y = 1 -π (Y ), ⊕ = max.
line 21': U j (δ i ) ← U til(δ i , j); // Computes for each agent j the value of its optimistic or pessimistic utility w.r.t. his/her attitude.

Experiments

This last Section aims at experimenting the feasibility of the exact algorithms proposed, namely (i) Dynamic Programming for U + max (pure optimistic agents) and U min ante (heterogeneous agents). Beyond a proof of feasibility of these algorithms, our experiments aim at evaluating to what extent the optimization of the problematic (non monotonic) utilities, can be approximated by Dynamic Programming. For homogeneous agents, ex-post and ex-ante Dynamic Programming algorithms can indeed be used but come without guarantees of optimality -they can be considered as approximation algorithms. However, for heterogeneous agents, the post approach is meaningless and only ex-ante Dynamic Programming shall be considered for approximation purposes.

The implementation has been done in Java, on a processor Intel Core i7 2670 QMCPU, 2.2Ghz, 6Gb of RAM. The experiments were performed on complete binary decision trees. We have considered five sets of problems, the number of decisions to be made in sequence (denoted seq) varying from 2 to 6, with an alternation of decision and chance nodes: at each decision level l (i.e., odd level), the tree contains 2 l-1 decision nodes followed by 2 l chance nodes. 3 In the present experiments, the number of agents is set equal to 6 (for heterogeneous agents cases, we set 3 optimistic and 3 pessimistic agents). The utility values as well as the weights degrees are uniformly fired in the set {0, 0.1, 0.2, . . . , 0.9, 1}. Conditional possibilities are chosen randomly in [0, 1] and normalized. Each of the five samples of problems contains 1000 randomly generated trees.

Feasibility analysis and temporal performances

Table 1 presents, for each criterion, the execution time of each possible algorithm. Obviously, whatever the algorithm the CPU time increases with the size of the tree. Dynamic Programming is always below to the threshold of 1 ms, while the Branch and Bound algorithms are more expensive (up to 16 ms) but it remains affordable even for big trees (1365 decision nodes).

For tricky (non monotonic) decision rules, both the exact algorithm(s) and the approximation algorithm(s) are presented. It can be checked that for these rules the approximation Dynamic Programming is always faster than exact algorithms. Unsurprisingly, and whatever the rule tested, the ex-ante Dynamic Programming is slightly slower than the ex-post Dynamic Programming -both remaining far below the millisecond, in any case. Finally, as to the optimization of U max ante , the experimental results verify that ImproHetMultiDynProg is quicker than HetMultiDynProg -both being exact algorithms.

Furthermore, to study the effects of varying the number of agents, we consider the optimization of U -max ante and U max ante , for reasonable trees (341 decision nodes) with p agents from 3 to 10, using the more time-consuming algorithm (Branch and Bound). Clearly, as shown in Table 2, the average CPU time with 3 agents, is about 3 milliseconds for U -max ante and about 4 milliseconds for U max ante . The maximal CPU time for decision trees with 10 agents is less than 11 milliseconds in both cases. Thus, we can say that the results are good enough to allow the handling of real-size problems.

Quality of approximation of exact algorithms by Dynamic Programming

As previously said, U -max ante and U + min ante , relative to homogeneous agents, and U max ante and U min ante , for heterogeneous ones, are not monotonic. For both cases, right optimization is performed using Multi-Dynamic Programming for max-oriented aggregation utilities and Branch and Bound for min-oriented ones. For these criteria, Dynamic Programming algorithms can nevertheless be considered as approximation algorithms. The following experiments estimate the quality of these approximations. To this extent, we compute for each sample the success rate of the considered approximation algorithm, i.e., the number of trees for which the value provided by the approximation algorithm is actually optimal (i.e., equals to the one computed by the exact algorithm); then for the trees for which the approximation algorithm fails to reach optimality, we report the average closeness value to

U Approx U Exact
where U Approx is the utility of the strategy provided by the approximation algorithm and U Exact is the optimal utility -the one of the solution by the exact algorithm: Namely, Branch and Bound algorithm for U + min ante and its adaptation for the generalized criterion U min ante and Multi-Dynamic Programming for U -max ante and its generalization for U max ante . The results are given in Tables 3 and4. -its success rate decreases with the number of nodes but stay higher than 70%, and above all it has a very high closeness value (above 0.9). Notice that it is always better than its ex-ante counterpart, in terms of success rate, of closeness and of CPU time. This is good news since it is polynomial while Branch and Bound, the exact algorithm, is exponential in the number of nodes. As for U -max ante , none of the approximation algorithms is good. However, this is not so bad news since Multi-Dynamic Programming, the exact algorithm is polynomial and has very affordable CPU time.

Finally, regarding the optimization of exact algorithms for U min ante and U max ante by Dynamic Programming, the results are quite similar to U + min ante and U -max ante : Dynamic Programming is a good approximation when competing with the Branch and Bound algorithm, but does not help a lot when Multi-Dynamic Programming can be applied -because the latter is polynomial, even in the case of agents having different attitudes w.r.t. uncertainty.

Conclusion

This paper follows a recent work presented in [START_REF] Ben Amor | Solving multi-criteria decision problems under possibilistic uncertainty using optimistic and pessimistic utilities[END_REF][START_REF] Ben Amor | Décision collective sous incertitude possibiliste. Principes et axiomatisation[END_REF][START_REF] Ben Amor | Egalitarian collective decision making under qualitative possibilistic uncertainty: principles and characterization[END_REF] for possibilistic collective decision making. We consider more general cases where each decision maker is free to be optimistic or pessimistic and we propose new decision rules for this specific situation that can be seen as a generalization of the ex-ante rules. We then consider sequential collective decision problems and complete the algorithmic study introduced in [START_REF] Ben Amor | Algorithms for multi-criteria optimization in possibilistic decision trees[END_REF] by proposing an adaptation of Multi-Dynamic Programming and Branch and Bound to optimize criteria relative to heterogeneous agents.

This work is a first step in the handling of multi agent (sequential) decision problems. It opens several future directions of research. The first one, which comes along the use of lotteries, is the characterization, in the style of Von Neumann and Morgenstern, of the decision rules considered in this paper. This would complete the axiomatization made in [START_REF] Ben Amor | Egalitarian collective decision making under qualitative possibilistic uncertainty: principles and characterization[END_REF] in the style of Savage. The second one is to extend this work, especially for heterogeneous agents, to Hurwicz-like decision criterion that may offer more general results. Besides, it is interesting to focus on decision problems where agents have different knowledge or even cases where agents have simultaneously different knowledge and different attitude w.r.t. uncertainty. Finally, from a more practical point of view, we shall extend this work to more sophisticated (and more compact) qualitative decision models such as possibilistic influence diagrams [START_REF] Garcia | Possibilistic influence diagrams[END_REF] or possibilistic Markov decision models [START_REF] Sabbadin | Empirical comparison of probabilistic and possibilistic Markov decision processes algorithms[END_REF]. = max i∈A min(w i , ⊗
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1 -[⊕(u i (x j ), [x j ])]).

= max i∈A min(w i , ⊗

x j ∈X ⊕ 1 -[(u i (x j ), [x j ])]).
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x j ∈X ⊕ (1u i (x j ), (1 -[x j ]).

= max i∈A min(w i , ⊗

x j ∈X ⊕ (u τ i (x j ), (1 -[x j ]).

= U τ max ante (L),

where if ⊗ (resp. ⊕) = min then ⊗ (resp. ⊕) = max and if [x j ] = L[x j ] then = 1 -L[x j ] and conversely. ✷ Proof of Proposition 2. This proof shows that U + min ante (L) ≥ U + min post (L), the one relative to U -max ante (L) can be obtained in the same way. Let u ′ i (x) = max(u i (x), 1w i ). Besides since, ∀x ∈ X , ∀i ∈ A, max(1 -w i , L[x]) ≥ L[x]; we have: 

• If (w i ≤ U - i (L k )) then: min(w i , U - i (L * k )) = min(w i , U - i (L k )) = w i . • Else if (w i ≥ U - i (L k )) then: -If (w i ≤ U - i (L * k )), then: (min(w i , U - i (L * k )) = (w i )) ≥ (min(w i , U - i (L k )) = (U - i (L k ))). -If (w i ≥ U - i (L * k )) then: (min(w i , U - i (L * k )) = (U - i (L * k ))) ≥ (min(w i , U - i (L k )) = (U - i (L k ))).
• If (w i ≤ U ⊗ j (L k )) : min(w i , U ⊗ i (L * k )) = min(w i , U ⊗ i (L k )) = w i . • If (w i ≥ U ⊗ i (L k )): -If (w i ≤ U ⊗ i (L * k )) : min(w i , U ⊗ i (L * k )) = w i ≥ min(w i , U ⊗ i (L k )) = U ⊗ i (L k ). -If (w i ≥ U ⊗ i (L * k )) : min(w i , U ⊗ i (L * k )) = U ⊗ i (L * k ) ≥ min(w i , U ⊗ i (L k )) = U ⊗ i (L k ).

Fig. 1 .

 1 Fig. 1. Possibilistic (constant) lottery of Example 1.

Fig. 2 .

 2 Fig. 2. Collective possibilistic decision tree of Example 3.

Algorithm 1 :begin 2 u 5 / 6 / 9 / 15 return u * ; Algorithm 2 : 2 u

 125691522 DynProgPost: Ex-post Dynamic Programming.Data: T : a decision tree, N: a node of T Result: u * : the value of the optimal strategy δ *δ * is stored as a global variable1 * = 0; // Initialization 3 if N ∈ LN then // Leaf: CDM aggregation 4 for i ∈ {1, . . . , p} do u N ← (u N ⊕ (u i ⊗ ω i )); / ⊗ = min, ω i = w i , ⊕ = max for disjunctive aggregation / ⊗ = max, ω i = 1w i , ⊕ = min for conjunctive aggregation;7 if N ∈ C then // Chance Node: computes the qualitative utility 8 foreach Y ∈ Succ(N) do u N ← (u N ⊕ (λ Y ) ⊗ D yn P rog P ost(T , Y )); / ⊗ = min, λ Y = π (Y ), ⊕ = max for optimistic utility 10 // ⊗ = max, λ Y = 1 -π (Y ), ⊕ = min for pessimistic utility 11 if N ∈ D then // Decision node: determines the best decision 12 foreach Y ∈ Succ(N) do 13 u Y ← D yn P rog P ost(T , Y ); 14 if u Y ≥ u * then δ(N) ← Y and u * ← u Y ; DynProgAnte: Ex-ante Dynamic Programming. Data: T : a decision tree, N: a node of T Result: u * : the value of the optimal strategy δ *δ * is stored as a global variable 1 begin * = 0; // Initialization 3 if N ∈ LN then // Leaf 4 for i ∈ {1, . . . , p} do u N [i] ← u i ; 5 if N ∈ C then // Chance Node: computes the utility vectors 6 for i ∈ {1, . . . , p} do u N [i] ← ǫ; 7 foreach Y ∈ Succ(N) do 8 u Y ← D yn P rog Ante(T , Y );

10 // 11 /

 1011 Optimistic utility ⊗ = min, λ Y = π (Y ), ⊕ = max, ǫ ← 0 / Pessimistic utility ⊗ = max, λ Y = 1 -π (Y ), ⊕ = min, ǫ ← 1 12 if N ∈ D then // Decision node 13 foreach Y ∈ Succ(N) do 14 v Y ← ǫ; u Y ← D yn P rog Ante(T , Y );

Fig. 3 .

 3 Fig. 3. Lotteries of Counter-Example 2.

p} do 5 δ

 5 i = ∅; // Initialization 6

9 return u * ; Fig. 4 .

 ;4 Fig. 4. Lotteries of Counter-Example 3.

Algorithm 5 :p} do 5 if N ∈ LN then // Leaf 6 u N ← u i ; 7 if 14 else 15 foreach

 55671415 UpperBound of B&B algorithm for the optimization of U +min ante . Data: T : a decision tree, δ: a (partial or complete) strategy, N: a node of T Result: u(δ): the U + min ante value of the current strategy δ N ∈ C then // Chance Node: computes the optimistic utility 8 foreach Y ∈ Succ(N) do 9 u Y ← D yn P rog Ante(T , Y ); // Call to Ex-ante Dyn.Prog. (Algorithm 2) 10 u N ← max(u N , min(π Y , u Y )); 11 if N ∈ D then // Decision node 12 if δ(N) = ⊥ then // Prefixed action 13 δ i (N) ← δ(N) and u N ← u Y Y ∈ Succ(N) do 16 u Y ← D yn P rog Ante(T , Y ); 17 if u Y > u N then 18 δ i (N) ← Y and u N ← u Y ; 19 for j ∈ {1, . . . , p} do 20 u = 0; // Initialization

Algorithm 6 :begin 2 u 3 δ 4 foreach i / ∈ O pt do 5 if

 62345 ImproHetMultiDynProg: right optimization of U max ante .Data: T : a decision tree; D 0 : root of T Result: u * : the value of the optimal strategy δ * -δ * is stored as a global variable 1 * = 0; // Initialization = D yn P rog P ost(T , D 0 , O pt); // O pt is the subset of optimistic agents -returns an optimal strategy δ * for U + max ante and its optimal value u * w i > u * then 6

  post and U -min post , and also for U + max ante and U -min ante because the latters coincide with formers, (ii) Multi-Dynamic Programming for U -max ante (pure pessimistic agents) and U max ante (heterogeneous agents), and (iii) Branch and Bound for U + min ante

1

  -U min ante (L) = 1 -[min i∈A max((1w i ), ⊗ x j ∈X ⊕ (u i (x j ), [x j ])))]. = max i∈A 1 -[max((1w i ), ⊗ x j ∈X ⊕ (u i (x j ), [x j ])))]. = max i∈A min 1 -[((1w i ), ⊗ x j ∈X ⊕ (u i (x j ), [x j ])))]. = max i∈A min(w i , 1 -[ ⊗ x j ∈X ⊕ (u i (x j ), [x j ]))].

U

  + min post (L) = max x∈X min(L[x], min i∈A max(1w i , u i (x))). [x], u ′ i (x)).

  U + min ante (L) = min i∈A max(1w i , max x∈X min(u i (x), L[x])). = min i∈A max x∈X max(1w i , min(u i (x), L[x])). = min i∈A max x∈X min(max(1w i , u i (x)), max(1w i , L[x])). = min i∈A max x∈X min(u ′ i (x), max(1w i , L[x])).

i

  (x), max(1w i , L[x])) ≥ min i∈A max x∈X min(u ′ i (x), L[x]). Let f (x, i) = min(u ′ i (x), L[x]), then we have: ∀x ∈ X , ∀i ∈ A, max x∈X f (x, i) ≥ f (x, i).

  , i) ≥ min i∈A f (x, i); ∀x ∈ X . min i∈A max x∈X f (x, i) ≥ max x∈X min i∈A f (x, i).

  is a complete strategy

	6	else
	7	D next ← arg min D i ∈D pend i ;
	8	foreach C i ∈ Succ(D next ) do
	9	δ(D next ) ← C i ;
	10	u ← U pper Bound(T , δ);
	11	if u > u

5 δ * ← δ; u * ← u; * then u * ← B&B(u, δ); 12 return u * ;

Table 1

 1 Average CPU time, in milliseconds, according to the size of the tree (in number of decision nodes).

	Algorithm		# of decision nodes		
				5	21	85	341	1365
	U -min post	U -min ante	Post Dyn. Prog.	0.022	0.026	0.038	0.052	0.106
	U + max post	U + max ante	Post Dyn. Prog.	0.024	0.030	0.043	0.060	0.117
	U -max post		Post Dyn. Prog.	0.025	0.027	0.039	0.053	0.112
	U + min post		Post Dyn. Prog.	0.026	0.028	0.041	0.059	0.110
	U -max ante		Multi Dyn. Prog.	0.063	0.074	0.102	0.129	0.605
	U -max ante		Ante Dyn. Prog.	0.049	0.065	0.93	0.102	0.446
	U + min ante		Branch & Bound	0.359	0.794	2.044	6.095	14.198
	U + min ante		Ante Dyn. Prog.	0.032	0.063	0.090	0.114	0.534
	U max ante		Het. Multi. Dyn. Prog.	0.068	0.073	0.114	0.136	0.319
	U max ante		Impro. Het. Multi. Dyn. Prog.	0.047	0.058	0.079	0.124	0.187
	U max ante		Ante Dyn. Prog.	0.053	0.065	0.096	0.149	0.217
	U min ante		Het. Branch & Bound	0.420	0.972	2.708	8.483	16.356
	U min ante		Ante Dyn. Prog.	0.051	0.071	0.109	0.131	0.206

Table 2

 2 Average CPU time (in milliseconds) for U -max ante and U max ante using Branch and Bound algorithms (B&B and Het. B&B) for trees with 341 decision nodes.

		# of agents						
		3	4	5	6	7	8	9	10
	U -max ante	3.596	4.394	5.344	6.056	7.137	7.840	8.534	9.204
	U max ante	4.520	5.444	7.023	7.824	8.785	9.521	10.457	10.987

Table 3

 3 Quality of approximation of exact algorithms Multi Dyn. Prog. (for U -max ante ) and B&B (for U + min ante ) by ax-ante and ax-post Dyn. Prog.

	Algorithm		# of decision nodes			
			5	21	85	341	1365
	% of success						
	U -max ante	Ante Dyn. Prog	16.1%	19.8%	23.7%	27.1%	31.9%
	U -max ante	Post. Dyn. Prog	17%	24.2%	28.9%	33.7%	39%
	U + min ante	Ante Dyn. Prog.	82%	78.6%	71%	65.4%	60.2%
	U + min ante	Post Dyn. Prog.	93.2%	91%	89.3%	87.5%	84.7%
	Closeness Value					
	U -max ante	Ante Dyn. Prog.	0.49	0.54	0.62	0.71	0.80
	U -max ante	Post Dyn. Prog.	0.47	0.51	0.59	0.69	0.73
	U + min ante	Ante Dyn. Prog.	0.96	0.94	0.92	0.91	0.90
	U + min ante	Post Dyn. Prog.	0.97	0.96	0.95	0.94	0.93

Table 4

 4 Quality of approximation of exact algorithms Het. Multi Dyn. Prog. (for U max ante ) and Het. B&B (for U min ante ) by ex-ante Dyn. Prog.

	Algorithm		# of decision nodes			
			5	21	85	341	1365
	% of success					
	U max ante	Ante Dyn. Prog	19%	25.9%	28%	34%	39.6%
	U min ante	Ante Dyn. Prog.	85%	81.6%	74%	68.9%	63.4%
	Closeness Value					
	U max ante	Ante Dyn. Prog	0.44	0.49	0.53	0.58	0.67
	U min ante	Ante Dyn. Prog.	0.95	0.95	0.93	0.92	0.91
	Clearly, Ex-Post Dynamic Programming provides a good approximation for U + min ante	

  From (i) and (ii) we can deduce that U + min ante (L) ≥ U + min post (L). ✷ Proof of Corollary 1. Let L be a possibilistic lottery, L be the set of possibilistic lotteries, L * a subset of L s.t. L * = {L * 1 , . . . , L * p } and L * ∈ L * s.t. ∀L * Let L k ∈ L, L * k ∈ L * and we suppose that for any L k ∈ L, for any L * We have to prove that: ∀L ∈ L, U -max ante (L * ) ≥ U -max ante (L). We start by verifying if min(w i , U -

	Then we obtain (ii) min	max	min(u ′
	i∈A	x∈X	
			i=1,p	i=1,p

i (x), L[x]) ≥ max x∈X min i∈A min(u ′ i (x), L[x]). i ∈ L * : max min (w i , U - i (L * )) ≥ max min (w i , U - i (L * i )). k ∈ L * : U - i (L * k ) ≥ U - i (L k ). i (L * k )) ≥ min(w i , U - i (L k )):

  Proof of Corollary 2. Let L be a possibilistic lottery, L be the set of possibilistic lotteries, L * a subset of L s.t. L * = {L * 1 , . . . , L * p } and L * ∈ L * s.t. ∀L * Let L k ∈ L, L * k ∈ L * and we suppose that for any L k ∈ L, for any L * k ∈ L * : U ⊗ i (L * k ) ≥ U ⊗ i (L k ). We have to prove that: for any L ∈ L, U ⊗ max ante (L * ) ≥ U ⊗ max ante (L). We start by verifying if min(w i , U ⊗ i (L * k )) ≥ min(w i , U ⊗ i (L k )) where U ⊗

	i=1,p	i=1,p
	So, max	
	Since, max	
	i=1,p	

Hence, min

(w i , U - i (L * k )) ≥ min(w i , U - i (L k )). i∈A min(w i , U - i (L * k )) ≥ max i∈A min(w i , U - i (L k )). min (w i , U - i (L * )) ≥ max i=1,p min (w i , U - i (L * i )) ∀ L * i ∈ L * then U -max ante (L * ) ≥ U -max ante (L), ∀L. ✷ i ∈ L * : max min (w i , U - i (L * )) ≥ max min (w i , U - i (L * i )). i = U - i if the agent i is pessimistic and U ⊗ i = U + i if he is optimistic.

  Hence, min(w i ,U ⊗ i (L * k )) ≥ min(w i , U ⊗ i (L k )). (w i , U ⊗ i (L * )) ≥ max i=1,p min (w i , U ⊗ i (L * i )) ∀ L * i ∈ L * then U ⊗ max ante (L * ) ≥ U ⊗ max ante (L), ∀L. ✷

	So, max i∈A	min(w i , U ⊗ i (L * k )) ≥ max
	Since, max
	i=1,p

i∈A min(w i , U ⊗ i (L k )).

min

It is a common knowledge in sequential decision making that monotonicity is a necessary and a sufficient condition for the optimality of Dynamic Programming. This property guarantees also the completeness of a polytime algorithm[START_REF] Karp | Finite-state processes and dynamic programming[END_REF][START_REF] Morin | Monotonicity and the principle of optimality[END_REF][START_REF] Nemhauser | Introduction to dynamic programming[END_REF].

(L) = 0.3 ≻ U + 2 (L ′ ) = 0.9. So, L * 2 = L ′ .

Hence, for a sequence length seq = 2 (resp. 3,

[START_REF] Ben Amor | Solving multi-criteria decision problems under possibilistic uncertainty using optimistic and pessimistic utilities[END_REF][START_REF] Ben Amor | Décision collective sous incertitude possibiliste. Principes et axiomatisation[END_REF][START_REF] Ben Amor | Egalitarian collective decision making under qualitative possibilistic uncertainty: principles and characterization[END_REF], the number of decision nodes in each tree of the sample is equal to 5 (resp.[START_REF] Dubois | Decision theoretic foundations of qualitative possibility theory[END_REF] 85, 341, 1365).
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Appendix A. Proofs

Proof of Proposition 1. In the following we prove that U min ante (L) = 1 -U τ max ante (L). We can apply the same reasoning to prove that U max ante (L) = 1 -U τ min ante (L).