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Abstract

We consider the problem of reasoning from logical bases equipped with a partial order 
expressing relative certainty, with a view to construct a partially ordered deduc-tive closure via 
syntactic inference. At the syntactic level we use a language expressing pairs of related formulas 
and axioms describing the properties of the order. Reasoning about uncertainty using possibility 
theory relies on the idea that if an agent believes each among two propositions to some extent, 
then this agent should believe their con-junction to the same extent. This principle is known as 
adjunction. Adjunction is often accepted in epistemic logic but fails with probabilistic reasoning. 
In the latter, another principle prevails, namely the sure thing principle, that claims that the cer-
tainty ordering between propositions should be invariant to the addition or deletion of possible 
worlds common to both sets of models of these propositions. Pursuing our work on relative 
certainty logic based on possibility theory, we propose a qualitative likelihood logic that respects 
the sure thing principle, albeit using a likelihood relation that preserves adjunction.

Keywords : partially ordered bases, possibility theory, adjunction rule, comparative probability     

1 Introduction

The representation of partial belief often uses a numerical setting, prominently the one of

probability theory, but also weaker non-additive settings such as belief functions or impre-

cise probabilities (see [18] for a survey). However, this kind of approach requires the use of



elicitation procedures so as to force agents to provide degrees of belief through a given pro-
tocol (for instance, using the betting metaphor, assigning prices to gambles or risky events, 
or using analogy with the frequentist setting of drawing balls from a known urn). Inevitably, 
the resulting numbers will not have infinite precision, which leads either to consider pre-
cise figures as suitable idealization, or to take into account the imprecision of assessments, 
which may lead to more complex computations.

Reasoning with uncertain knowledge often consists of attaching belief weights to propo-
sitions of interest and computing belief weights of other propositions of interest, using some 
appropriate inference methods. This approach was early considered by De Finetti [10] (see 
[29] for a translation), and then taken over by many other scholars (Adams and Levine[1], 
Coletti and Scozzafava [9], Nilsson [34], etc.).

In this paper, we deliberately give up assigning belief weights to propositions. We as-
sume that uncertain knowledge is based on stating that some propositions are more believed 
than others. This is the least we can expect from agents expressing their beliefs. In the 
case of probability theory, it comes down to studying properties of the relation “more prob-
able than” first introduced by De Finetti [10], and later by Ramsey, and Savage, among 
others (see Fishburn[21] for an early survey). Comparative probabilities are total orders on 
propositions, that obey a special case of the so-called sure thing principle of Savage [35], 
stating that the fact that a proposition is more probable than another one is not affected by 
the probabilities of their common models. We call this property preadditivity, to highlight 
the known fact that on finite settings this property is not sufficient to ensure the existence 
of a probability measure representing the ordering between propositions [26]. There is not 
a long tradition on logics for comparative probability that do not refer to a numerical un-
derpinning. This point is discussed in detail by Walley and Fine [37] who provide an early 
overview on modal, conditional and comparative probability logics.

Another kind of uncertainty relation, originally introduced by Lewis [32], are compar-
ative possibility relations, independently introduced by Dubois [11] along with their dual 
called necessity relations. While Lewis introduced these concepts in connection with the 
logical representation of counterfactuals, Dubois viewed possibility relations as the ordinal 
counterpart of Zadeh’s possibility measures [39]. These relations are weak orders that do 
not obey the sure thing principle, but they are instrumental in non-monotonic reasoning and 
belief revision [17, 2] (where necessity relations are called epistemic entrenchments). This 
setting also captures the notion of accepted beliefs [15]: the agent reasons with such beliefs 
as if they were true ones, so that the condition that the conjunction of accepted beliefs is an 
accepted belief is adopted, like in epistemic logic. For the sake of clarity, we call qualitative 
plausibility and certainty relations the generalisation of possibility and necessity relations 
to the partially ordered setting. The key property for such relations is called qualitativeness 
[22], which encodes the idea that a possible world is always more likely than the disjunction 
of less likely worlds.



Logics for reasoning with totally ordered comparative possibility statements have been 
first studied by Lewis [31]. Possibilistic logic [19] is an alternative setting where a total 
order on a subset of propositions is encoded by means of weighted formulas, where weights 
attached to formulas are taken from a totally ordered symbolic scale. In this paper we focus 
on partial orders, as we consider that agents may only have a lacunary knowledge of the 
relative beliefs of propositions. Approaches to reasoning from logical bases equipped with 
a partial order expressing relative certainty have been proposed by Halpern [25] using a 
modal logic framework inspired by Lewis works, which means a very rich language. A 
simpler framework, called relative certainty logic and focusing on strict partial orders, yet 
adopting similar axioms as Halpern, is presented in [36], where the purpose is to construct 
a partially ordered deductive closure. The idea is to interpret a partially ordered base as 
a partial necessity ordering. At the syntactic level the language expresses pairs of related 
formulas; axioms and inference rules describe the properties of the partial certainty order. 
The semantics consists in assuming that the partial order on formulas stems from a partial 
order between the corresponding sets of models (and not between models as in possibilistic 
logic).

Moving from the totally ordered to the partially ordered setting is non-trivial. The dif-
ficult points are twofold: (i) equivalent definitions in the totally ordered case are no longer 
equivalent in the partially ordered one, and (ii) a partial possibility order on subsets of a 
set cannot be represented by a partial order between elements of this set. This point is 
especially explained in [36].

In this paper, we pursue the work initiated in [36] with a view to study how the pread-
ditivity of comparative probability can be used to refine the relative certainty logic. In the 
totally ordered case, qualitativeness is almost incompatible with preadditivity [15]. In the 
partially ordered setting, we get a qualitative likelihood logic that is adjunctive, but respects 
the sure thing principle, that we compare with the qualitative certainty logic of [36]. More-
over we show that the latter logic can be used to facilitate inference in the former.

The paper is structured as follows: in the next section we provide an overview of con-
fidence relations between sets of states, including comparative possibility and probability. 
Then we provide characteristic properties of qualitative plausibility, certainty and (preaddi-
tive) likelihood relations, in the partially ordered setting. We show that there is a bijection 
between qualitative plausibility and qualitative likelihood relations. Based on these new 
results we propose in section 3 a general setting for reasoning about uncertainty using con-
fidence relations, which extends the methodology introduced in [36] for qualitative certainty 
logic. Then, in sections 4 and 5 we respectively focus on the qualitative likelihood logic and 
on its connection with relative certainty logic.



2 Qualitative confidence relations comparing subsets

In a non-numerical setting, it is natural to represent confidence in propositions by means of

a partial preorder ² on subsets A, B, C, . . . of a set of states of affairs S. This idea goes

back to De Finetti’s [10] comparative probabilities, and is presented in more details in Fine’s

book [20]. Other proposals are comparative possibilities of Lewis [32] later independently

proposed, along with their dual necessity relations by one of the authors [11] in contrast with

comparative probabilities. These are examples of complete preorders (reflexive, complete

and transitive relations) on the power set ℘(S). Various examples of confidence relations
have been discussed by Halpern [23, 22] in connection with non-monotonic reasoning. They

are called acceptance relations in [15]. In some cases, confidence orderings stem from a total

or partial plausibility ordering on S. This is the case for comparative possibility relations

and their refinements [14, 12], and also for relations built from a partial order on elements,

studied by Halpern [25]. In this section we review such relations and their properties.

Given a reflexive relation ² on ℘(S) we can derive three companion relations:

• The strict part of ²: A ≻ B iff A ² B, but not B ² A

• The indifference relation A ∼ B iff A ² B and B ² A

• The incomparability relation: A ± B iff neither A ² B nor B ² A

Moreover, we can also define the dual ²d of a relation ² on ℘(S) as:

A ²d B iff B ² A

There are minimal requirements a confidence relation should satisfy in order to justify

this name.

1. Compatibility with Inclusion (CI) If B ⊆ A then A ² B

Indeed if B implies A there is no point for B to be more likely than A.1

2. Orderliness (O) If A ≻ B, A ⊆ A′, and B′ ⊆ B, then A′ ≻ B′

This property, already mentioned by Walley and Fine [37], and also used by Friedman

and Halpern [22], is a variant of, but not equivalent to, the former. It also reflects compati-

bility with logical deduction.

3. Quasi-Transitivity (QT) If A ≻ B, and B ≻ C, then A ≻ C

1Friedman and Halpern [23] call “Plausibility measure” a partial relation that satisfies (CI); however this

name may be judged misleading, since plausibility is a notion dual to belief, as often used in evidence theory.



Should this property be false for an agent, one may question her rationality. These are the

three minimal properties we can expect from a partial confidence relation.

Definition 1. A relation on ℘(S) is called a confidence relation if it satisfies (CI, O, QT).

Its strict part is called a strict confidence relation.

This terminology was proposed in [12]. It is clear that a confidence relation is reflexive

and consistent in the sense that S ² A ² ∅ for all subsetsA of S. Note that we can do away

with the two monotonicity conditions (CI) and (O) if we modify the latter by requiring it for

² instead of ≻. Moreover, a strict confidence relation is a strict partial order satisfying (O).
Finally, it can be easily verified that the dual of a confidence relation is again a confidence

relation.

2.1 Complete and transitive confidence relations

It is quite often the case that partial belief is represented numerically via a set-function

f : ℘(S) → [0, 1], for instance a probability measure. A set-function f is said to represent

a confidence relation ² provided that for all subsets A, B of S, A ² B if and only if

f(A) ≥ f(B), f(∅) = 0, f(S) = 1.

Of course, if this is so, the confidence relation ² should be transitive and complete

(hence reflexive):

• Transitivity: If A ² B, and B ² C, then A ² C

• Completeness: A ² B or B ² A

It is easy to see that complete and transitive confidence relations are represented by

capacities, which are monotonic set-functions, such that if A ⊆ B then f(A) ≤ f(B),
which expresses (CI) (for instance, [18]). In fact, for transitive and complete relations, (CI)

implies (O). Important examples of complete and transitive confidence relations are

• Comparative probabilities [10, 20]: They are complete and transitive confidence re-

lations that obey the preadditivity property:

Preadditivity (P) If A ∩ (B ∪ C) = ∅ then (B ² C iff A ∪ B ² A ∪ C)

• Comparative possibilities [32, 11]: They are complete and transitive confidence rela-

tions that satisfy a property that is a variant of the former:

Stability for Union (SU) If A ² B then A ∪ C ² B ∪ C



Comparative possibility relations, denoted by ²Π, can be represented by and only by
possibility measures [11]. They are set-functions Π : ℘(S) → [0, 1] such that Π(A ∪ B) =
max(Π(A),Π(B)) [39, 16]. This is because the (SU) axiom for complete and transitive

confidence relations is equivalent to: IfA ²Π B thenA ∼Π A∪B. Comparative possibility

relations on finite sets are completely characterised by the restriction≥π of²Π to singletons
on S. Namely [11]:

A ²Π B ⇐⇒ ∀s2 ∈ B, ∃s1 ∈ A : s1 ≥π s2 (1)

⇐⇒ ∃s1 ∈ A, ∀s2 ∈ B : s1 ≥π s2 (2)

This property, which shows the simplicity of this approach, reflects the fact that a possibility

measure Π derives from a possibility distribution π : S → [0, 1], in the sense that Π(A) =
maxs∈A π(s). In the scope of uncertainty modeling, π(s) can be viewed as a degree of
plausibility of s, and the condition maxs∈S π(s) = 1 must be satisfied. The possibility
degree Π(A) can be interpreted as a degree of unsurprizingness of A, i.e., the degree to

which there is no reason not to believe A (which does not imply a reason for believing it).

The conjugate functions N(A) = 1 − Π(A), called necessity measures [16], express
the idea that A is certain to some extent, that is, A is true in all situations that are plausible

enough. The corresponding necessity relations ²N have a characteristic axiom called

Stability for intersection (SI): If A ²N B then A ∩ C ²N B ∩ C

It is easy to check [11] that necessity relations can be defined from possibility relations by

duality: A ²N B if and only if B ²Π A, so that

A ²N B ⇐⇒ ∀s2 ∈ A, ∃s1 ∈ B : s1 ≥π s2 (3)

⇐⇒ ∃s1 ∈ B, ∀s2 ∈ A : s1 ≥π s2 (4)

Comparative possibility relations satisfy properties that indicate their qualitative nature:

Qualitativeness (Q) If A ∪ B ≻Π C and A ∪ C ≻Π B, then A ≻Π B ∪ C

Negligibility (N) If A ≻Π B and A ≻Π C, then A ≻Π B ∪ C

the second one being a consequence of the first. Negligibility expresses the non-compen-

satory nature of possibility measures, according to which the union of unlikely singletons

cannot override a very plausible one.

Necessity relations obey counterparts of (Q) and (N):

Dual qualitativeness (Qd): If A ≻N B ∩ C and B ≻N A ∩ C then A ∩ B ≻N C 
Adjunction (A): If A ≻N C and B ≻N C then A ∩ B ≻N C



These properties make it clear that the family of sets {A : A ≻N C} is a filter (closed
under inclusion and intersection) or in terms of propositions, deductively closed. This clo-

sure property for confidence measures is also characteristic of necessity relations for com-

plete and transitive confidence relations [15].

Preadditive complete and transitive confidence relations ²P , called comparative prob-

abilities, behave very differently. Given a probability measure on S, the relation A ² B if

and only if P (A) ≥ P (B) for some probability measure on a finite set is indeed preadditive,
complete and transitive. However the converse is false, namely it has been known since the

1950’s [26] that there are comparative probability relations that are not representable by a

probability measure; see also [33]. Nevertheless comparative probability relations are self

dual, in the sense of the following property:

n

Self-duality (D) A ²P B iff B ²P A

However the fact that comparative probability relations are more general than confi-
dence relations induced by probabilities highlights the fact that, contrary to comparative 
possibility and necessity relations, they cannot be defined by a complete preorder on S: the 
restriction of ²P on singletons is not enough to reconstruct it. In fact comparative prob-
abilities can be represented by special kinds of belief functions inducing a self-dual order 
[38].

Interestingly, there are comparative probability relations that satisfy the qualitativeness 
properties. It is proved in [3] that they correspond to so-called big-stepped probabilities
on S: there is a probability distribution p such that p(s1) > p(s2) > · · · > p(sn−1) > 
p(sn), with ∀i = 1, . . . , n − 1, p(si) > 

∑
j=i+1 p(sj ), and then A ²P B if and only if 

P (A) ≥ P (B). The probabilities of singletons form a super-increasing sequence. More-
over if we consider the possibility ordering s1 >π s2 >π · · · >π sn−1 >π sn, then, for 
non-elementary events A, B we have that A ≻Π B implies A ≻P B. In other words, the 
comparative probability relation induced by a big-stepped probability refines the possibility 
relation (see also [12]).

In this paper, we generalize possibility relations and necessity relations to partial orders 
on S, and consider their preadditive refinements.

2.2 Partial qualitative confidence relations

In this section we consider partial confidence relations satisfying property (Q). The four 
properties (CI), (O), (QT) and (Q) are not independent [25, 5].

Proposition 1. If a relation on ℘(S) satisfies (Q) and (O), this relation and its dual are 
transitive.



Proof of Proposition 1:

We use a relation denoted by ✄ that can stand for ² or its strict part. Suppose A ✄ B and B ✄ C. 
Then, from (O), A ∪ C ✄ B and A ∪ B ✄ C, and from (Q): A ✄ B ∪ C, then by (O), A ✄ C. A 
similar proof holds for the dual relation. ✷

Partial confidence relations satisfying property (Q) generalize comparative possibilities. 
However, in the following we consider asymmetric relations of this kind, to which (CI) does 
not apply:

Definition 2. A qualitative plausibility relation is an asymmetric relation ≻pl on ℘(S) that 
satisfies (Q) and (O).

Due to Proposition 1, a qualitative plausibility relation is indeed a strict partial order on 
℘(S) since it is transitive. Moreover,

Proposition 2. A qualitative plausibility relation satisfies (N), and (SU) in contrapositive 
form: If A ∪ C ≻pl B ∪ C then A ≻pl B.

Proof of Proposition 2:

(N) is an obvious consequence of (Q) and (O). For (SU), suppose A ∪ C ≻pl B ∪ C. By (O), we 
infer that A ∪ (B ∪ C) ≻pl C. Applying (Q) yields A ≻pl B ∪ C, which by (O), results in A ≻pl B 
[7]. ✷

Another useful property related to (SU) is:

Proposition 3. A qualitative plausibility relation is such that: If A ≻pl B and C ≻pl D 
then A ∪ C ≻pl B ∪ D.

Proof of Proposition 3:

Due to (O), A ≻pl B and C ≻pl D imply A ∪ C ∪ D ≻pl B and A ∪ C ∪ B ≻pl D, and then by 
(Q), A ∪ C ≻pl B ∪ D follows. ✷

Now we introduce another partial order on a set of events, called a qualitative certainty 
relation:

Definition 3. A qualitative certainty relation, denoted by ≻cr, is an asymmetric relation on 
℘(S) that satisfies Qd and O.

It is clear that ≻cr is a qualitative certainty relation if and only if its dual relation is a 
qualitative plausibility relation. In particular, from the above results, it easily follows that 
a qualitative certainty relation is transitive, satisfies adjunction, and (SI) under the form: If 
A∩C ≻cr B∩C then A ≻cr B. Moreover, if A ≻cr B and C ≻cr D then A∩C ≻cr B∩D.



Contrary to the terminology used in [23], the use of plausibility vs. certainty to name

confidence relations satisfying (Q) vs. its dual property (Qd) makes the point that such

relations are dual to each other, and reflect the dual pairs (possibility, necessity), (plausi-

bility, belief) in other uncertainty theories, where the second concept in each pair is more

committing than the first one.

Qualitative plausibility and certainty relations are instrumental for defining a semantics

for non-monotonic reasoning (as explained in [22, 15]). Namely consider the following

properties for a partial order on ℘(S), inspired from [27]:

• Conditional Closure by Implication (CCI) If A ⊆ B and A ∩ C ≻ A ∩ C then

B ∩ C ≻ B ∩ C

• Conditional Closure by Conjunction (CCC) If C ∩A ≻ C ∩A and C ∩B ≻ C ∩B

then C ∩ (A ∩ B) ≻ C ∩ (A ∩ B)

• Left Disjunction (OR) If A ∩ C ≻ A ∩ C and B ∩ C ≻ B ∩ C then (A ∪ B)∩ C ≻
(A ∪ B) ∩ C

• Cut (CUT) If A ∩ B ≻ A ∩ B and A ∩ B ∩ C ≻ A ∩ B ∩ C then A ∩ C ≻ A ∩ C

• Cautious Monotony (CM) IfA∩B ≻ A∩B andA∩C ≻ A∩C thenA∩B ∩C ≻
A ∩ B ∩ C

These properties are intuitive when A ≻ A is interpreted as “A is an accepted belief”, and

A ∩ C ≻ A ∩ C as “A is an accepted belief in the context C”, hence the name “acceptance

relations” for qualitative plausibility relations in [15]. In that work, it has been proved that:

Proposition 4.

• (O) implies (CCI).

• If a relation between subsets of S satisfies (Q) and (O), then it satisfies (CCI), (CCC),

(OR), (CUT), (CM).

• For any relation that satisfies (O), (CCC) is equivalent to (Q).

See also [6] for the two first results.
It is clear that qualitative plausibility relations satisfy all these properties and are ideally 

fit for non-monotonic reasoning with conditional assertions of the form A |∼ B, which stand 
for A ∩ B ≻pl A ∩ B [27]. Note that properties (CCI), (CCC), (OR), (CUT), (CM) only 
involve the comparison of disjoint subsets. It is proved in [15], and follows from Proposition 
4 that if the restriction of a confidence relation to disjoint subsets satisfies (CCI), (CCC),
(OR), (CUT), (CM) then it is the restriction of a qualitative plausibility relation.



One way to construct a qualitative plausibility relation is to proceed as suggested by

Halpern [25]. Let (S,✄) be a partially ordered set, where✄ is an asymmetric and transitive

relation. Various possible definitions for extending the comparative possibility to qualitative

plausibility relations have been reviewed in [6] and arguments have been given for selecting

one of them. Here, like in our previous paper [36] we consider the extensions (1) and (2) of

the strict part of ≥π to build a partial order between subsets. It turns out they are no longer

equivalent, and the one possessing the greatest number of properties is:

Definition 4 (Weak optimistic strict dominance). Let ✄ be an asymmetric and transitive

relation on S. Then A ≻✄

wos B iff A Ó= ∅ and ∀b ∈ B, ∃a ∈ A, a ✄ b.

It is clear that if✄ is the strict part of a complete preorder on S encoded by a possibility

distribution π, A ≻>π
wos B if and only if Π(A) > Π(B). In the partially ordered setting, the

following properties have been established [25, 6, 36]:

Proposition 5. The weak optimistic strict dominance ≻✄

wos is a strict partial order that

satisfies Qualitativeness (Q) and Orderliness (O).

Unfortunately, contrary to the totally ordered case, not all qualitative plausibility rela-

tions can be generated from a partial order on S. This is because knowing only the restric-

tion to the singletons of S of a qualitative plausibility relation ≻pl on ℘(S) is insufficient
to reconstruct ≻pl. Namely, let a partial order on S be defined by s1 ✄pos s2 if and only

if {s1} ≻pl {s2}, where ≻pl satisfies (Q) and (O). Consider the relation ≻
✄pos
wos induced by

✄pos via Definition 4. Then A ≻
✄pos
wos B implies A ≻pl B, but generally the converse does

not hold [6].

Example 1 (due to Halpern). Let S = {a, b, c}, A = {a}, B = {b}, C = {c}. Suppose 
relation ≻ is the smallest asymmetric partial order relation including constraints B ∪ C ≻ 
A, A ≻ ∅, B ≻ ∅, C ≻ ∅, and that is closed for (O) and (T). It obviously satisfies (Q). It is 
a qualitative plausibility relation. Define the partial order on S as s1 ✄pos s2 if and only if 
{s1} ≻ {s2}. Then elements a, b, c are not comparable. So we do not have {b, c} ≻w

✄

os
pos {a} 

and we cannot retrieve B ∪ C ≻ A.

Remark A result due to Halpern [25] says that qualitative plausibility relations on ℘(S) 
can be generated from a partial order on a set larger than S, which stands as a refinement 
of it. Namely, for any qualitative plausibility relation ≻pl on S, there is a set Ω, a surjective 
map f : Ω → S, and a partial order ✄ on Ω such that, if A, B are subsets of S, A ≻pl B if
and only if f−1(A) ≻w

✄

os f
−1(B). This is in fact the semantics adopted by Lehmann and 

colleagues [27] for non-monotonic relations from conditional assertions.



Another way to generate qualitative plausibility relations is to start from a family L of

linear orders >σ on S defined by permutations σ of elements (sσ(1) >σ sσ(2) >σ · · · >σ

sσ(n)) and let the relation ≻L on ℘(S) be defined as follows:

A ≻L B ⇐⇒ ∀ >σ∈ L, A ≻σ
Π B

where≻σ
Π is the strict part of the comparative possibility relation induced by>σ on S [3]. It

is easy to check that the relation ≻L is a qualitative plausibility relation, i.e., it satisfies the

properties (Q) and (O). An interesting question addressed below is whether any qualitative

plausibility relation can be generated in this way. To this end, we introduce two more

properties of relations between sets:

Non-Dogmaticism (NoD) ∀A Ó= ∅, A ≻ ∅

Semi-Cancellativity (SC) A ≻ B if and only if A \ B ≻ B

We can establish the following proposition:

Proposition 6. A qualitative plausibility relation is semi-cancellative.

Proof of Proposition 6:

It is clear that by (O), A \ B ≻pl B implies A ≻pl B. The less obvious part is the converse: suppose

A ≻pl B. It can be written as

• (A \ B) ∪ (A ∩ B) ≻pl B

• and also as (A \ B) ∪ B ≻pl B which implies (A \ B) ∪ B ≻pl A ∩ B.

Now applying (Q) yields A \ B ≻pl B ∪ (A ∩ B) = B. ✷

It is proved in [15] that for any non-dogmatic, semi-cancellative qualitative plausibility 
relation ≻pl, there exists a family L of linear orders on S, such that ≻pl coincides with the 
relation ≻L on disjoint subsets.

Using this result, we get the representation theorem for qualitative plausibility relations 
as follows:

Corollary 1. A non-dogmatic relation ≻ between sets is a qualitative plausibility relation 
if and only if there is a family L of linear orders >σ on S, such that A ≻ B if and only if 
A ≻L B.

Proof of Corollary 1:

Let ≻pl be a non-dogmatic qualitative plausibility relation. From [15], there exists a family L of 
linear orders >σ on S, such that ≻pl coincides with the relation ≻L on disjoint subsets. A ≻pl B



if and only if A \ B ≻pl B (by semi-cancellativity). So A ≻pl B if and only if A \ B ≻L B if

and only if ∀ >σ∈ L, A \ B ≻σ
Π B, if and only if ∀ >σ∈ L, A ≻σ

Π B if and only if A ≻L B. For

the converse it has been already said that the relation ≻L built from a family of linear orders is a

qualitative plausibility relation. ✷

This is the answer to the question of whether any qualitative plausibility relation can be

constructed from a family of possibility orderings.

2.3 Preadditive substitutes of confidence relations

The property of preadditivity considers that the common part of two sets should play no role

in their comparison. This is the idea behind Savage sure thing principle [35], which applies

to the comparison of more general functions than characteristic functions of sets. One may

say that preadditivity is precisely an instance of this principle. Preadditivity is a sufficient

condition to make a relation between subsets self-dual:

Proposition 7. For any relation ≻ on ℘(S), (P) implies (D).

Proof of Proposition 7:

Let A ≻ B. A = (A \ B)∪ (A ∩ B) and similarly B = (B \ A)∪ (A ∩ B). Applying (P) produces

(A \ B) ≻ (B \ A). Applying (P) again yields (A \ B) ∪ (A ∪ B) ≻ (B \ A) ∪ (A ∪ B). That is

B ≻ A. ✷

As a direct consequence, we have an equivalent form of (P), which is to (P) what (SI) is to

(SU):

(P) ⇔ If A ∪ (B ∩ C) = S then (B ≻ C iff A ∩ B ≻ A ∩ C)

Moreover, the two following properties are direct consequences of (P):

• B ≻ C iff B \ C ≻ C \ B (a stronger property than semi-cancellativity)

• B ≻ C iff B ∪ C ≻ C ∪ B

A preadditive approach for comparing two sets A and B then consists in eliminating 
the common part and then comparing A \ B and B \ A. This is not a new idea (see [24],
[25]). Given a partial order ≻ on ℘(S) one can define a preadditive ordering ≻+, called 
preadditive substitute of ≻ as follows:

A ≻+ B if and only if A \ B ≻ B \ A



Clearly ≻+ and ≻ coincide on pairs of disjoint subsets, and it is obvious that ≻+ is pread-
ditive, which implies it is self-dual, due to Proposition 7.

Consider a confidence relation ² in the sense of Definition 1 and its preadditive substi-

tute ²+. It is obvious that, as soon as the strict part of this relation is non-dogmatic (which
means that all elements in S are in some sense useful or possible), the latter satisfies a strong

form of compatibility with inclusion:

Strict Compatibility with Inclusion (SCI) If B ⊂ A then A ≻ B

Proposition 8. If a relation ≻ between subsets satisfies Preadditivity, then SCI is equivalent

to its weak form: If A Ó= ∅ then A ≻ ∅ (NoD)

Proof of Proposition 8:

Assume that ≻ satisfies (P) and (NoD). Let B ⊂ A. We have B \ A = ∅ and A \ B Ó= ∅. By

(NoD) we obtain (A \ B) ≻ (B \ A). By (P), we add A ∩ B = B to each side and we obtain

((A \ B) ∪ B) = A ≻ ((B \ A) ∪ B) = B. ✷

The following relaxed versions of properties (Q) and (N) are appropriate for preadditive

relations.

• Qualitativeness for disjoint sets (QD) IfA∪C ≻ B andA∪B ≻ C thenA ≻ B∪C,

provided that A ∩ B = A ∩ C = B ∩ C = ∅

• Negligibility for disjoint sets (ND) If A ≻ B and A ≻ C then A ≻ B ∪C, provided

that A ∩ B = A ∩ C = ∅

It is easy to verify:

Proposition 9. The properties (Q) and (QD) are equivalent when ≻ is applied to disjoint

sets.

Proof of Proposition 9:

Obviously, (Q) implies (QD).

Conversely, let us assume that ≻ satisfies (QD) and consider that A ∪ C ≻ B and A ∪ B ≻ C, with

(A ∪ C) ∩ B = (A ∪ B) ∩ C = ∅. As (A ∪ C) ∩ B = ∅, we have that A ∩ B = C ∩ B = ∅.

Similarly, we have A ∩ C = ∅. So (QD) can be applied, producing A ≻ B ∪ C. ✷

Proposition 10. For any relation ≻ on ℘(S), if ≻ satisfies:

• transitivity (T) and (SCI), then it satisfies (O);

• (QD) and (O), then it satisfies (ND);



• (QD) and (O), then it satisfies (CCI), (CCC), (OR), (CUT), (CM);

• (CCC), then it satisfies (QD).

Proof of Proposition 10:

T, SCI ⇒ O: Assume that A ≻ B, A ⊆ A′, and B′ ⊆ B. We have to prove that A′ ≻ B′.

If A = A′ we have A′ ≻ B. If A ⊂ A′ we obtain A′ ≻ A by (SCI) and then A′ ≻ B by transitivity 
(T).

Now, if B = B′ we obtain A′ ≻ B′. Otherwise B′ ⊂ B, so B ≻ B′ by (SCI) and by transitivity we 
obtain A′ ≻ B′.

O, QD ⇒ ND: Assume that A ∩ B = A ∩ C = ∅, A ≻ B and A ≻ C. We have to prove that 
A ≻ (B ∪ C). From A ≻ B and (O): (A ∪ C) ≻ (B \ C) (1). From A ≻ C and (O), we obtain 
A ∪ (B \ C) ≻ C (2).
Due to the assumptions, we have A ∩ (B \ C) = A ∩ C = ∅ and obviously C ∩ (B \ C) = ∅. 
Applying (QD) from (1) and (2) yields A ≻ (C ∪ (B \ C)) that is A ≻ (B ∪ C).
O, QD ⇒ CCI, CCC, OR, CUT, CM: As A ∩ C and A ∩ C (resp. B ∩ C and B ∩ C) are disjoint 
sets, the proof of Proposition 4 can be used.
(CCC) ⇒ (QD) This is Theorem 1 in [15]. ✷

As (P) implies Self-duality, it follows that the property (QD) possesses a dual property 
(QDd) equivalent to the former for preadditive relations:

QDd: If A ∪ B = A ∪ C = B ∪ C = S, then if C ≻ A ∩ B and B ≻ A ∩ C, then
B ∩ C ≻ A

So, for preadditive substitutes, we can use the dual property (QDd), in place of (QD).
An important question is whether a strict confidence relation ≻ is refined or not by its 

preadditive substitute. We can prove this property for confidence relations that obey the 
following weak form of both preadditivity and stability for disjunction (first proposed in 
[11] for weak – transitive and complete – orders):

Stability for Disjoint Union (SDU) If A ∩ (B ∪ C) = ∅ then A ∪ B ≻ A ∪ C implies 
B ≻ C

Proposition 11. If an asymmetric relation ≻ satisfies (SDU), then its preadditive substitute 
≻+ is a self-dual refinement of ≻ and of its dual.

Proof of Proposition 11:

The result is obvious from ≻ to ≻+ since by (SDU), if A ≻ B then A \ B ≻ B \ A which is 
A ≻+ B. For the dual relation ≻d, A ≻d B means B ≻ A which also reads (A \ B) ∪ (A ∩ B) ≻ 
(B \ A) ∪ (A ∩ B), which by (SDU) implies A ≻+ B. ✷



2.4 From qualitative plausibility to qualitative likelihood and back

Consider now qualitative plausibility relations ≻pl and their preadditive substitutes ≻+pl. It

is obvious that ≻+pl satisfies (O), (QD) and (P). Moreover, due to Propositions 7 and 10,

the preadditive relation≻+pl also satisfies the properties of Self-duality (D), Negligibility for

disjoint sets (ND), and also Conditional Closure by Implication (CCI), Conditional Closure

by Conjunction (CCC), Left Disjunction (OR), (CUT), (CM). The use of ≻pl or ≻+pl for

non-monotonic inference is immaterial as it only involves disjoint subsets.

We can prove that the preadditive substitute of a qualitative plausibility relation is tran-

sitive.

Proposition 12. If A ≻+pl B and B ≻+pl C, then A ≻+pl C.

Proof of Proposition 12:

We can write the two assumptions as (we omit the intersection symbol for simplicity): AB̄C ∪
AB̄C̄ ≻pl ĀBC∪ĀBC̄ andABC̄∪ĀBC̄ ≻pl AB̄C∪ĀB̄C. Wemust prove thatABC̄∪AB̄C̄ ≻pl

ĀBC ∪ ĀB̄C. Taking the union on both sides it yields, using Proposition 3:

AB̄C ∪ AB̄C̄ ∪ ABC̄ ∪ ĀBC̄ ≻pl ĀBC ∪ ĀBC̄ ∪ AB̄C ∪ ĀB̄C

Due to property (SU) contraposed (Prop. 2) we can cancel AB̄C and ĀBC̄ which yields ABC̄ ∪

AB̄C̄ ≻pl ĀBC ∪ ĀB̄C. ✷

Remark: Due to the representation result in Corollary 1, there is an alternative proof that

goes as follows: there exists a family L of linear orders >π on S that generates ≻pl in

the sense that A ≻pl B if and only if A ≻Π B, ∀ >π ∈ L. Then suppose A ≻+pl B, which

meansA\B ≻pl B \A, which meansA\B ≻Π B \A, ∀ >π ∈ L. Likewise withB ≻+pl C.

Using transitivity of ≻+Π (claimed in [14]), we conclude that A \ C ≻Π C \ A, ∀ >π ∈ L,
which is A ≻+pl B. However the use of linear orders on S presupposes a non-dogmatic

qualitative plausibility relation.

Since a qualitative plausibility relation ≻pl satisfies a strong form of axiom (SDU)

(without the condition A ∩ (B ∪ C) = ∅), we get the following result, which is a direct

consequence of Proposition 11:

Corollary 2. The preadditive relation ≻+pl is a self-dual refinement of ≻pl and of its dual:

• If A ≻pl B then A ≻+pl B.

• If B ≻pl A then A ≻+pl B.

This fact has already been known for a long time for comparative possibility and ne-
cessity relations [14]. But it is not valid for any kind of confidence relation. For instance



it is easy to find capacities for which f(A) > f(B) but f(A ∪ C) < f(B ∪ C), for dis-
joint A, B, C. So using the order ≻f induced by f , one would have B ∪ C ≻f A ∪ C but

A ∪ C ≻+f B ∪ C.

These results can be applied to special cases of qualitative plausibility relations ≻pl:

• Comparative possibility relations ≻Π

• Weak optimistic strict dominance relations ≻✄

wos (renamed as ≻wos for short in the

following)

In particular, we can consider the preadditive substitute of a comparative possibility re-

lation. It is a special case of the discrimax relation for comparing vectors of values in a

totally ordered scale [13]. It is defined equivalently as follows in terms of a possibility dis-

tribution: A ≻+Π B if and only if maxs∈A\B π(s) > maxs∈B\A π(s) [14]. It is a transitive
refinement of the comparative possibility relation (as pointed out, in [13, 14], but not proved

for transitivity).

The preadditive substitute of a weak optimistic strict dominance relation is as follows:

Definition 5 (Weak preadditive strict dominance). A ≻+wos B if and only if A Ó= B and

A \ B ≻wos B \ A.

This relation has been thoroughly studied in [6]2. It coincides with ≻wos on disjoint

sets. The above results can also be applied to the weak preadditive strict dominance.

Proposition 13. The weak preadditive strict dominance ≻+wos is a strict partial order that

satisfies Preadditivity (P), Strict Compatibility with Inclusion (SCI) and Qualitativeness for

disjoint sets (QD).

Proof of Proposition 13:

(T), (P) and (QD) hold due to the above results about ≻+pl. Transitivity has already been proved in

[8] (see also [7], Proposition 30, p. 35). (SCI) follows from the fact that C ≻+wos ∅ when C Ó= ∅. ✷

As a consequence of Corollary 2, the weak optimistic dominance is also refined by its

preadditive substitute.

Corollary 3. ≻+wos refines ≻wos and its dual variant:

• If A ≻wos B then A ≻+wos B.

• If B ≻wos A then A ≻+wos B.

2A loose preadditive dominance has also been studied in [7].



These results lead us to define a qualitative likelihood relation as follows:

Definition 6. A qualitative likelihood relation is an asymmetric relation ≻+ on ℘(S) that

satisfies (O), (P) and (QD).

Due to the above results, the preadditive substitute of a qualitative plausibility relation

is a qualitative likelihood relation. More importantly, we can get a representation theorem

for qualitative likelihood relations as follows:

Proposition 14. Any qualitative likelihood relation is the preadditive substitute of a quali-

tative plausibility relation.

Proof of Proposition 14:

Let ≻ be a qualitative likelihood relation. Let us define ✄ as A✄B whenever A \ B ≻ B. We have

to prove that ✄ satisfies (Q) and (O) and that the preadditive substitute of ✄ is ≻.

• First we show that ✄ satisfies (Q). That is: if A ∪ C ✄ B and B ∪ C ✄ A, then C ✄ A ∪ B.

Due to the definition of ✄, we must prove that if (A ∪ C) \ B ≻ B and (B ∪ C) \ A ≻ A,

then C \ (A ∪ B) ≻ A ∪ B. Let C ′ denote C \ (A ∪ B) and AB denote A ∩ B.

The hypothesis can be written as (A \ B) ∪ C ′ ≻ (B \ A) ∪ AB (1) and (B \ A) ∪ C ′ ≻
(A \ B) ∪ AB (2). The conclusion can be written as C ′ ≻ AB ∪ A∆B.

Applying (O) to (1) and (2) produces (A \ B)∪ C ′ ≻ (B \ A) and (B \ A)∪ C ′ ≻ (A \ B).
Now using (QD) we obtain C ′ ≻ (A \ B) ∪ (B \ A) or equivalently C ′ ≻ A∆B (3).

Applying (O) to (3) produces AB ∪ C ′ ≻ A∆B. Using (O) once again from (1) yields

(A∆B) ∪ C ′ ≻ AB. From (QD) we obtain C ′ ≻ (A∆B) ∪ AB which is exactly the

expected conclusion.

• ✄ satisfies (O). Assume thatA✄B,A ⊆ A′ andB′ ⊆ B. Due to the definition of✄, we have

A \ B ≻ B. Obviously, A \ B ⊆ A′ \ B′. As ≻ satisfies (O), we conclude that A′ \ B′ ≻ B′

which is exactly A′
✄ B′.

• It remains to prove that the preadditive substitute of ✄, say ✄+, is ≻. By definition, A ✄
+ B

iff A \ B ✄ B \ A iff A \ B ≻ B \ A since A \ B and B \ A are disjoint. As ≻ satisfies (P),

A \ B ≻ B \ A is equivalent to A ≻ B. So we have proved that A ✄
+ B iff A ≻ B.

✷

As a corollary of Propositions 12 and 14, we conclude that any qualitative likelihood re-

lation is transitive, which was not obvious from its definition. In fact what this result shows

is that the application ρ : ≻pl Ô→≻+pl that assigns to each qualitative plausibility relation its

preadditive refinement is a bijection between the set of qualitative plausibility relations ≻pl

and the set of qualitative likelihood relations ≻+, namely:

• A ≻+ B such that ≻+= ρ(≻pl) is defined as A \ B ≻pl B \ A.

• A ≻pl B such that ≻pl= µ(≻+) is defined as A \ B ≻+ B.



Then, relation ρ(≻pl) is a qualitative likelihood relation, and relation µ(≻+) is a qualitative 
plausibility relation. Moreover: µ(ρ(≻pl)) = ≻pl and ρ(µ(≻+)) =≻+.

3 Relative confidence and certainty logics

In [36], a logic for reasoning about partially ordered bases has been proposed, with inference 
rules inspired from the properties of a qualitative certainty relation.

In the following, we define a logical language capable of expressing relative confidence 
between logical propositions, and a semantics based on confidence relations between sets 
of intepretations. An example of such a logic is the one in [36]. After recalling this logic, 
we consider a logic for qualitative likelihood, for which the preadditivity axiom holds. The 
results in the previous section indicate that the relative certainty logic and qualitative likeli-
hood logic are closely related due to the bijection between the two notions. Especially they 
will coincide for pairs of formulas whose disjunction is a tautology.

3.1 A logical framework for confidence relations

We consider a propositional language L where formulas are denoted by φ, ψ etc., and Ω is 
the set of its interpretations. [φ] denotes the set of models of φ, a subset of Ω. We denote 
by � the classical semantic inference. We also denote by ⊢X the syntactic inference in the 
proof system X .

Let K ⊆ L be a finite set of formulas equipped with a relation >. The idea is that this 
relation should represent a fragment of a strict partial ordering. We call (K, >) a partially 
ordered belief base (po-base, for short) where φ > ψ is supposed to express that φ is more 
prone to being true than ψ, for an agent. The standard language L is encapsulated inside 
a language equipped with a binary connective > (interpreted as a partial order relation). 
Formally, an atom Φ ∈ L> is of the form φ > ψ where φ and ψ are formulas of L. A 
formula of L> is either an atom Φ of L>, or a conjunction of formulas, that is, Ψ ∧ Φ ∈ L> 
if Ψ, Φ ∈ L>. We also have the formulas ⊥ and ⊤ in L>. In contrast with Halpern [25], we 
exclude negations and disjunctions of atomic formulas just like in basic possibilistic logic, 
where we do not use negations nor disjunctions of weighted formulas.

A relative confidence base B is a finite subset of L>. We associate to a po-base (K, >) 
the set of formulas of the form φ > ψ and forming a base B(K,>) ⊂ L>. In the following, 
we shall often write (K, >) instead of B(K,>) for simplicity.

We consider a semantics defined by a strict confidence relation between sets of interpre-
tations. The idea is to interpret the formula φ > ψ on 2Ω by [φ] ≻ [ψ] for a strict confidence 
relation ≻ (Definition 1). A relative confidence model M is a structure (2Ω, ≻) where ≻ is 
a strict confidence relation on 2Ω (that is a strict partial order on 2Ω satisfying the properties 
O and T).



We define the satisfiability of a formula φ > ψ ∈ L> inM asM � φ > ψ iff [φ] ≻ [ψ].
The satisfiability of the set of formulas B(K,>) is defined by M � B(K,>) iff M � φi >

ψi, ∀φi > ψi ∈ B(K,>). Note that there is not always a relative confidence model of a

po-base (K, >). For instance, if φ > ψ ∈ B(K,>) such that φ |= ψ, it is impossible to find

a confidence relation ≻ such that [φ] ≻ [ψ] since ≻ should satisfy property O. This comes

down to saying that no model of this formula in L> exists for the semantics of relative

confidence.

We say that (K, >) is inconsistent with respect to the relative confidence semantics, in

short rc-inconsistent, iff there is no relative confidence model for B(K,>).

A logic for relative confidence, denoted by CO, can be defined as follows: It directly

interprets the atoms φ > ψ in L> by means of the strict confidence relation ≻ having prop-

erties (O) and (T) for comparing the sets of models [φ] and [ψ]. The idea behind the proof
system is to use the characteristic properties of the confidence relation≻, expressed in terms
of inference rules that define the syntactic entailment ⊢CO. We need one axiom and three

inference rules:

Axiom

axNT : ⊤ > ⊥

Inference rules

RIO : If φ � φ′ and ψ′
� ψ then φ > ψ ⊢ φ′ > ψ′ (O)

RIT : {φ > ψ, ψ > χ} ⊢ φ > χ (T)

RIAS : {φ > ψ, ψ > φ} ⊢ ⊥ (AS)

The axiom says that the order relation is not trivial 3. Rules RIO and RIT correspond

to the properties of Orderliness and Transitivity. RuleRIAS expresses the asymmetry of the

relation >. The proof system of the logic of relative confidence is composed of the axiom

axNT and the three inference rules RIO − RIAS .

Remark 1. The order relation > does not contradict classical inference. Indeed, if we have

ψ � φ and ψ > φ ∈ B(K,>), we prove that φ > φ by RIO and the contradiction by RIAS .

The associated semantic consequence �CO can then be defined in the usual way:

(K, >) �CO φ > ψ iff ∀M, if M � B(K,>) then M � φ > ψ. (5)

The proof system of the logic of relative confidence is sound and complete for the relative

confidence semantics:

3This axiom could be replaced by φ ∨ ¬φ > ψ ∧ ¬ψ, in the presence of the inference rule RIT .



Proposition 15. Let (K, >) be a partially ordered base and φ, ψ ∈ L.

• Soundness:

If (K, >) ⊢CO φ > ψ then (K, >) �CO φ > ψ

• Completeness:

If (K, >) is rc-consistent and (K, >) �CO φ > ψ then (K, >) ⊢CO φ > ψ

If (K, >) is rc-inconsistent then (K, >) ⊢CO ⊥

Proof of Proposition 15:

Let B(K,>) = {(φi > ψi), i = 1 · · · n}.

• Soundness:

Let ≻ be a strict partial order on 2Ω satisfying O. We must show that if ∀i = 1 · · · n, [φi] ≻
[ψi] then [φ] ≻ [ψ]. We assume that φ > ψ was obtained from (φi > ψi) by inference rules
RIO, RIT , RIAS and the axiom. So we just have to show that each of the rules is sound and

that the axiom axNT is valid.

axNT : It holds because S ≻ ∅ for a confidence relation.

RIO: It holds because ≻ satisfies (O)

RIT : It holds because ≻ is transitive.

RIAS : The presence of both φ > ψ and ψ > φ leads to a semantic contradiction because the

relation ≻ being asymmetric, we can not have both [ψ] ≻ [φ] and [φ] ≻ [ψ].

• Completeness:

We assume that (K, >) is rc-consistent. We suppose that for each strict partial order ≻ on 2Ω

satisfying O, if ∀i = 1 · · · n, φi ≻ ψi then [φ] ≻ [ψ]. We must show that (K, >) ⊢CO φ > ψ.

If φ > ψ appears in B(K,>), it is proven.

Otherwise, consider the strict partial order ≻ defined on 2Ω as the smallest order containing
pairs [φi] ≻ [ψi] and closed for the properties O, T.
This relation exists because (K, >) is rc-consistent. According to the hypothesis, we have
[φ] ≻ [ψ]. And, by definition of ≻, the pair ([φ], [ψ]) is obtained by successive applications
of the properties O, T. This amounts to getting φ > ψ by successive applications of inference

rules RIO, RIT .

It remains to prove that if (K, >) is rc-inconsistent, then (K, >) ⊢CO ⊥.
Note that, as L> contains only atomic comparison constraints and their conjunctions, the

only form of syntactic inconsistency is the presence of both φ > ψ and ψ > φ derived from

(K, >). This is the only way to get (K, >) ⊢CO ⊥. In this case, we know that B(K,>) does

not have a model of relative confidence. So if (K, >) ⊢CO ⊥ does not hold, then the relation

> obtained on L> by the syntactic closure is asymmetric and transitive, and so is the relation

≻ on 2Ω defined by [φ] ≻ [ψ] if and only if (K, >) ⊢CO φ > ψ. In addition, ≻ will be the

smallest relation containing the pairs ([φi], [ψi]) with φi > ψi in (K, >), and closed for the
properties O, T. It is a model of B(K,>), which is rc-consistent.



✷

Example 2. K1= {φ ∧ ψ, φ ∧ ¬ψ, ¬φ} with φ ∧ ψ > φ ∧ ¬ψ > ¬φ.

Then we let B(K1,>) = {φ ∧ ψ > φ ∧ ¬ψ, φ ∧ ¬ψ > ¬φ}. With the proof system of CO, by

RIT , we deduce φ ∧ ψ > ¬φ and by RIO, ψ > ¬φ.

Next is a case where inconsistency can be detected.

Example 3. K2={φ, φ ∧ ψ} with B(K2,>) = {φ ∧ ψ > φ}. With the proof system of CO,

we obtain a contradiction by RIO (we have (K2, >) ⊢CO φ ∧ ψ > φ ∧ ψ) and RIAS .

3.2 Axioms and inference rules for relative certainty logic

The logic for relative certainty described in [36], here denoted by C, directly interprets the
atoms φ > ψ in L> by means of a qualitative certainty relation ≻cr having properties (O)

and (Qd) for comparing the sets of models [φ] and [ψ]. A relative certainty model is a

structure (2Ω, ≻cr) where ≻cr is a qualitative certainty relation on 2
Ω.

The idea behind the proof system is again to use the characteristic properties of the

relation ≻cr, expressed in terms of inference rules. We need again one axiom and three

inference rules in the language L>: the same axiom as for the relative confidence logic

above, and we can add the following inference rule to the inference rules RIO and RIAS of

the confidence relation logic:

RIQd : {χ > φ ∧ ψ, ψ > φ ∧ χ} ⊢ ψ ∧ χ > φ (Qd)

This rule corresponds to the properties of dual Qualitativeness. So the relative certainty

logic proof system is made of axiom axNT , and rules RIO, RIAS and RIQd .

The inference rule RIT can be derived in this system (see also Proposition 1), as well

as the following inference rules, some of which are established in [36]:

RIA : {ψ > φ, χ > φ} ⊢ ψ ∧ χ > φ (A)

RIORd : {φ → χ > φ → ¬χ, ψ → χ > ψ → ¬χ} ⊢ (φ ∨ ψ) → χ > (φ ∨ ψ) → ¬χ

(ORd)

RICCCd : {χ → φ > χ → ¬φ, χ → ψ > χ → ¬ψ} ⊢ χ → (φ ∧ ψ) > χ → ¬(φ ∧ ψ)
(CCCd)

RICUT d : {φ → ψ > φ → ¬ψ, (φ ∧ ψ) → χ > (φ ∧ ψ) → ¬χ} ⊢ φ → χ > φ → ¬χ

(CUTd)



RICMd : {φ → ψ > φ → ¬ψ, φ → χ > φ → ¬χ} ⊢ (φ ∧ ψ) → χ > (φ ∧ ψ) → ¬χ

(CMd)

RINec : φ > ⊥ ⊢ φ > ¬φ

RISCd : φ > ψ ⊢ φ > ¬φ ∨ ψ (semi-cancellativity).

The first derived rule expresses adjunction and ensures that formulae that are more cer-

tain than another one will form a deductively closed set. The next four rules are key in-

ference properties in non-monotonic logic of the KLM type [27]. Rule RINec results from

applying RIQd to φ > φ ∧ ¬φ, and reminds of the property min(N(A), N(A)) = 0 of
necessity measures N in possibility theory. The last rule can be proved by implementing

the proof of Proposition 6 in C.

Example 4. Let K3 = {φ, ¬φ, ψ, ¬ψ} with B(K3,>) = {φ > ¬φ, ψ > ¬ψ}. Using

RICCCd by considering φ > ¬φ as ⊤ → φ > ⊤ → ¬φ and ψ > ¬ψ as ⊤ → ψ > ⊤ →
¬ψ, we have φ ∧ ψ > ¬φ ∨ ¬ψ. Then by RIO we obtain ψ > ¬φ. And similarly we obtain

φ > ¬ψ.

The proof system of the relative certainty logic C has been proved sound and complete
[36] for the semantics of relative certainty. Namely, define (K, >) �C φ > ψ to mean:

for each qualitative certainty relation ≻cr, if [φi] ≻cr [ψi], ∀i s.t. φi > ψi ∈ B(K,>), then

[φ] ≻cr [ψ]. Moreover (K, >) is said to be rcr-consistent if it has a relative certainty model
(2Ω, ≻cr). Then we have proved in [36]:

Proposition 16. Let (K, >) be a partially ordered base and φ, ψ ∈ L.

• Soundness:

If (K, >) ⊢C φ > ψ then (K, >) �C φ > ψ.

• Completeness:

If (K, >) is rcr-consistent and (K, >) �C φ > ψ then (K, >) ⊢C φ > ψ.

If (K, >) is rcr-inconsistent then (K, >) ⊢C ⊥.

4 Qualitative likelihood logic

In this section, we will present the preadditive version of the relative certainty logic. As done 
for relative certainty, we propose an inference system for qualitative likelihood relations, 
which is preadditive, with a semantics defined by a relation between sets of interpretations. 
As before, we interpret a partially ordered base as a fragment of a qualitative likelihood 
ordering. We propose a logic system for reasoning with comparative statements interpreted 
by such a relation. We keep the syntax as defined in the previous section.



4.1 Semantics of qualitative likelihood

Let us interpret the formula φ > ψ on 2Ω by [φ] ≻+ [ψ] for a qualitative likelihood re-
lation ≻+ in the sense of Definition 6. We assume it is non-dogmatic. A qualitative like-

lihood model M+ is a structure (2Ω, ≻+) where ≻+ is a non-dogmatic qualitative likeli-
hood relation on 2Ω. We define the satisfiability of a formula φ > ψ ∈ L> in M+ as

M+
� φ > ψ iff [φ] ≻+ [ψ]. The satisfiability of the set of formulas B(K,>) is defined

by M+
� B(K,>) iff M+

� (φi > ψi), ∀φi > ψi ∈ B(K,>). The associated semantic

consequence �+ can then be defined in the usual way:

Definition 7. (K, >) �+ φ > ψ iff ∀M+, if M+
� B(K,>) then M+

� φ > ψ.

In other words, (K, >) �+ φ > ψ iff for every strict partial order ≻+ on 2Ω verifying
O, P, QD, NoD, if ∀i = 1 · · · n, [φi] ≻+ [ψi] then [φ] ≻+ [ψ].

We say that (K, >) is inconsistent with respect to the qualitative likelihood semantics,
in short ql-inconsistent, iff there is no qualitative likelihood model for B(K,>).

4.2 Proof system

The logic for qualitative likelihood directly interprets the atoms φ > ψ in L> by means

of a qualitative likelihood relation ≻+ for comparing the sets of models [φ] and [ψ]. The
idea behind the proof system is again to use the characteristic properties of the relation ≻+,
expressed in terms of formulas, as inference rules. Indeed, we need one axiom and four in-

ference rules in the language L>, owing to Proposition 8, that indicates that SCI is a derived

property in this setting.

Axiom

axNoD: If φ 2 ⊥ then φ > ⊥ (NoD)

Inference rules: RIO, RIAS and

RIQDd : If � φ ∨ ψ,� φ ∨ χ and � ψ ∨ χ, then {χ > φ ∧ ψ, ψ > φ ∧ χ} ⊢ ψ ∧ χ > φ

(QDd)

RIP1 : If ¬χ � φ ∧ ψ then φ > ψ ⊢ φ ∧ χ > ψ ∧ χ (⇒ P)

RIP2 : If ¬χ � φ ∧ ψ then φ ∧ χ > ψ ∧ χ ⊢ φ > ψ (⇐ P)

We denote by QL this logic and by ⊢+ the associated syntactic inference.
Note that the axiom axNoD encodes property (NoD). Besides, (RIQDd ) could be replaced



by (RIQD) of the form

RIQD: If φ∧ψ � ⊥ and φ∧χ � ⊥ and ψ∧χ � ⊥, then {φ∨ψ > χ, φ∨χ > ψ} ⊢ φ > ψ∨χ

since, in the presence of (P), the properties (QD) and (QDd) are equivalent.

Due to Propositions 8 and 10, it can be proved that other rules can be derived from the

rules of the proof system of QL. Some of these derived rules are theorems of the proof

system of C: RIT , RIORd , RICCCd , RICUT d , RICMd .

Other derived rules are new:

RINDd : If � φ ∨ ψ and � φ ∨ χ, then {ψ > φ, χ > φ} ⊢ ψ ∧ χ > φ (NDd)

RID : {φ > ψ} ⊢ ¬ψ > ¬φ (Self-duality D)

RISCI : If ψ � φ and not φ � ψ then φ > ψ (SCI)

RISD : If φ ∧ ψ = χ ∧ ξ = ⊥, {φ > χ, ψ > ξ} ⊢ φ ∨ ψ > χ ∨ ξ (SD)

RIST P : φ > ψ iff φ ∧ ¬ψ > ψ ∧ ¬φ (direct consequence of P)

The last rule is a consequence of RIP1 and RIP2 (taking ¬χ = φ ∧ ψ), that expresses 
the sure thing principle for events.

Example 5. Let K4 = {¬φ∨¬ψ, ¬φ, φ∧ψ, φ} with ¬φ∨¬ψ > φ∧ψ > ¬φ and φ > ¬φ. 
So B(K4,>) = {¬φ ∨ ¬ψ > φ ∧ ψ, φ ∧ ψ > ¬φ, φ > ¬φ}. Using RID (Self-duality) we 
obtain φ > ¬φ ∨ ¬ψ and so we get the chain φ > ¬φ ∨ ¬ψ > φ ∧ ψ > ¬φ.

Of interest is to prove rule RISD and RIT . The derivation of RISD follows from the 
following lemma.

Lemma 1. If A, B, C, D satisfy A ∩ B = A ∩ C = B ∩ D = C ∩ D = ∅ then, for 
any qualitative likelihood relation ≻+, it holds that whenever A ≻+ B and C ≻+ D then 
A ∪ C ≻+ B ∪ D.

Proof of Lemma 1:

Let ≻+ be a qualitative likelihood relation. Let ≻pl denote the plausibility relation which is refined 
by ≻+, as defined in Proposition 14. We have ≻+ = ρ(≻pl) and ≻pl = µ(≻+).
So, A ≻+ B and C ≻+ D can be written as A \ B ≻pl B \ A and C \ D ≻pl D \ C. Moreover as 
A ∩ B = C ∩ D = ∅, we obtain A ≻pl B and C ≻pl D.

From Proposition 3, it follows that (A ∪ C) ≻pl (B ∪ D). Then from Proposition 2, we obtain 
(A \ D) ∪ (C \ B) ≻pl (B \ C) ∪ (D \ A) (deleting (A ∩ D) ∪ (B ∩ C) on both sides). As ≻pl 

= µ(≻+) and the sets are disjoint, we also have (A \ D) ∪ (C \ B) ≻+ (B \ C) ∪ (D \ A). Then



applying (P) we get A ∪ C ≻+ B ∪ D (adding (A ∩ D) ∪ (B ∩ C) to both sides). ✷

Then the derivation of RIT goes as follows:

• {φ > ψ, ψ > χ} ⊢QL {φ ∧ ¬ψ > ψ ∧ ¬φ, ψ ∧ ¬χ > χ ∧ ¬ψ} (using RIST P )

• {φ∧¬ψ > ψ∧¬φ, ψ∧¬χ > χ∧¬ψ} ⊢QL (φ∧¬ψ)∨(ψ∧¬χ) > (ψ∧¬φ)∨(χ∧¬ψ)
(using RISD)

• (φ ∧ ¬ψ)∨ (ψ ∧ ¬χ) > (ψ ∧ ¬φ)∨ (χ ∧ ¬ψ) ⊢QL φ ∧ ¬χ > ¬φ ∧ χ (using RIST P )

• φ ∧ ¬χ > ¬φ ∧ χ ⊢QL φ > χ (using RIST P ).

The proof system of QL is sound and complete for the semantics of qualitative likeli-

hood.

Proposition 17. Let (K, >) be a partially ordered base and φ, ψ ∈ L.

• Soundness:

If (K, >) ⊢+ φ > ψ then (K, >) �+ φ > ψ

• Completeness:

If (K, >) is ql-consistent and (K, >) �+ φ > ψ then (K, >) ⊢+ φ > ψ

If (K, >) is ql-inconsistent then (K, >) ⊢+ ⊥

Proof of Proposition 17:

The proof follows the same pattern as for the soundness and completeness of the relative confidence

proof system (proof of Proposition 15).

• Soundness:

Let ≻+ be a strict partial order on 2Ω satisfying O, P, QDd and NoD. We must show that if

∀i = 1 · · · n, [φi] ≻+ [ψi] then [φ] ≻+ [ψ]. We do it for axioms and rules not previously
encountered.

axNoD We must show that ∀M+, if φ 2 ⊥ then M+
� φ > ⊥. Or equivalently, for any

strict relation ≻+ on 2Ω that satisfies the properties O, P, QDd and NoD, if φ 2 ⊥ then

[φ] ≻+ [⊥]. It follows from Proposition 8 since [φ] Ó= ∅ when φ 2 ⊥.

RIP1 We must show that if [φ] ≻+ [ψ] and ¬χ � φ ∧ ψ then [φ ∧ χ] ≻+ [ψ ∧ χ]. This is
true since the relation ≻+ is preadditive.

RIP2 We must show that if [φ ∧ χ] ≻+ [ψ ∧ χ] and ¬χ � φ ∧ ψ then [φ] ≻+ [ψ]. This is
true since the relation ≻+ is preadditive.



• Completeness:

The proof is exactly the same as for the relative confidence logic CO, (Proposition 15) replac-

ing (O) by (O), (P), (QDd) and (NoD). Note that the only possible form of syntactic inconsis-

tency that can be detected in (K, >) is again when (K, >) ⊢+ φ > ψ and (K, >) ⊢+ ψ > φ.

✷

5 Comparison between proof systems of QL and C

Based on results from the previous sections, it is interesting to compare relative certainty

and qualitative likelihood logics C and QL in terms of strength of their proof systems.

5.1 Is one system more productive than the other?

Recall that for any relative certainty relation, there is a qualitative likelihood relation that

refines it. Due to Proposition 2 and Proposition 14, we have: if M is a relative certainty

model and M+ its associated qualitative likelihood model, M � φ > ψ implies M+
�

φ > ψ and so M � B(K,>) implies M+
� B(K,>). However it does not imply that, applied

to a set of constraints in the form of a partially ordered set of formulas, the system QL will

produce more comparative statements than C.
Indeed, the following points must be noticed:

• Inference rules RIO and RIAS belong to both systems.

• Axiom axNoD is stronger that axiom axNT .
4

• The proof system of QL adds two preadditivity rules that are not part of C.

• C uses ruleRIQd , but the qualitativeness ruleRIQDd used inQL is weaker thanRIQd

as it only applies to relative confidence statements when the disjunction of the two

compared formulas forms a tautology.

Note that due to semi-cancellativity, φ > ψ in QL is equivalent to φ > ¬φ ∨ ψ in C, and
the latter statement obeys the condition that the disjunction of the two formulas forms a

tautology, which enables the use of RIQDd . But the form of the obtained statements does

not allow to apply it directly. So it seems that the two logics are not comparable. Moreover,

if a partially ordered base is inconsistent for relative certainty semantics, it may be consistent

for qualitative likelihood semantics. The following example illustrates this point.

4but non-dogmaticism is not compulsory: one can specialize system C adding it in the form ⊤ > φ if

⊤ Ó⊢ φ, or weaken system QL by using axNT in place of axNoD .



Example 6. K4= {¬φ ∨ ¬ψ, ¬φ, φ ∧ ψ, φ} with ¬φ ∨ ¬ψ > φ ∧ ψ > ¬φ and φ > ¬φ,

(the same case as in Example 5).

With system C, we obtain a contradiction: By RIT we obtain ¬φ ∨ ¬ψ > ¬φ. Then by RIA 
we obtain (¬φ ∨ ¬ψ) ∧ (φ ∧ ψ) > ¬φ. Applying RIO produces ⊥ > ¬φ and applying RIO 
again produces ¬φ > ¬φ, which by RIAS yields a contradiction.

With system QL, we obtain φ > ¬φ ∨ ¬ψ > φ ∧ ψ > ¬φ (see Example 5).

Note that the reason why we get a contradiction in C is because we have ¬φ ∨ ¬ψ > 
φ ∧ ψ > ⊥, of the form ¬ϕ > ϕ > ⊥ which is forbidden in C due to the inference 
{ϕ > ⊥, ¬ϕ > ⊥} ⊢C ⊥ valid in C (just use RIA).

However, nothing prevents ¬ϕ > ϕ > ⊥ in QL (e.g., ϕ > ⊥ is axiom axNoD). Note that 
we cannot apply rule RIA to {¬ϕ > ⊥, ϕ > ⊥} in QL.

In this example it can be shown that the resulting total order in the case of the system QL is 
the refinement of a relative certainty ordering that differs from the set of constraints given in 
the original (K4, >). Namely, consider a big-stepped probability that represents the linear 
order φ > ¬φ ∨ ¬ψ > φ ∧ ψ > ¬φ, letting

p1 = P ([φ ∧ ¬ψ]) ∝ 8; p2 = P ([φ ∧ ψ]) ∝ 4; p3 = P ([¬φ ∧ ψ]) ∝ 2; p4 =

P ([¬φ ∧ ¬ψ]) ∝ 1.

Then, the reader can check that P ([φ]) > P ([¬φ ∨ ¬ψ]) > P ([φ ∧ ψ]) > P ([¬φ]). It 
ensures ql-consistency of the linear order. The big-stepped probability assignment viewed 
as a possibility ordering corresponds to the strict constraints (using the max instead of the 
sum)

Π([¬φ ∨ ¬ψ]) > Π([φ ∧ ψ]) > Π([¬φ]) and Π([φ]) > Π([φ ∧ ψ]).

Indeed, Π ([φ]) = Π([¬φ ∨ ¬ψ]). The corresponding plausibility ordering, expressed in 
terms of a partial certainty relation, leads to the new set of constraints obtained by duality 
from the possibility constraints:

C: φ ≫ ¬φ ∨ ¬ψ ≫ φ ∧ ψ and ¬φ ∨ ¬ψ ≫ ¬φ.

This new partially ordered base is no longer C-inconsistent and is refined by means of the 
QL logic. In C, we cannot prove that C implies φ ∧ ψ ≫ ¬φ, while this is obtained in QL 
logic using self-duality rule RID applied to φ ≫ ¬φ ∨ ¬ψ.

However, even rcr-consistent bases do not necessarily produce less inferences using 
system C than using system QL, as shown now.

Example 7. K5={φ, φ ∧ ψ} with the constraint φ > φ ∧ ψ.

With system C, we obtain φ > ψ, using RIQd but we do not have that ψ > φ ∧ ψ.

With system QL, the partially ordered base (K5, >) gives no information. Indeed from 
RISCI and axNoD, φ > φ ∧ ψ and ψ > φ ∧ ψ are theorems of QL. But we cannot infer 
φ > ψ in QL.



5.2 Using system C to compute inference in QL

As seen above, we do not have that (K, >) �C φ > ψ implies (K, >) �+ φ > ψ. Indeed,

while the proof system of QL contains inference rules that are not in the proof system of

C (the preadditivity property which is translated into the inference rules RIP1 and RIP2),

it contains one less powerful inference rule (qualitativeness for disjoint sets, which is trans-

lated into RIQDd) than RIQd for system C. Examples above have shown that if applied to
a bunch of comparative confidence statements, one system is, strictly speaking, not more

powerful than the other. Nevertheless we can try to use C to compute inferences in QL,

provided that we modify the original base in a suitable way.

The idea is to exploit Proposition 14 that says that qualitative likelihood orderings are

in bijection with qualitative plausibility ones. Due to Proposition 9, the properties (Q) and

(QD) are equivalent when considering disjoint sets. By duality, it follows that the properties

(Qd) and (QDd) are equivalent on pairs (A, B) such that A ∩ B = ∅. As a consequence, the
rulesRIQd andRIQDd are equivalent for bases consisting of φ > ψ such that [φ]∩ [ψ] = ∅,
or equivalently such that � φ ∨ ψ (two such formulas are said to be subcontraries). So, the

first step is to transform a partially ordered base understood as a fragment of a qualitative

likelihood ordering, into a partially ordered base with comparative propositions involving

only subcontraries.

More precisely, applying the transformation in Proposition 14, if > is interpreted as a

qualitative likelihood ordering, we consider >pl the qualitative plausibility ordering that is

refined by >, and denote by >cr the certainty ordering dual of >pl. We have > = ρ(>pl)
and >pl = µ(>). So the formula φ > ψ stands for φ ∧ ¬ψ >pl ψ ∧ ¬φ and can be written

as φ ∨ ¬ψ >cr ψ ∨ ¬φ.

Once we obtain such a relative certainty base, the inference rules of C can be applied.
Then, applying the converse transformation in Proposition 14, we obtain formulas belong-

ing to the QL-closure QL(B(K,>)). More precisely, if the formula φ′ >cr ψ′ is produced

using C, as >cr is the certainty ordering dual of >pl and >pl = µ(>), φ′ >cr ψ′ stands for

φ′ ∧ ¬ψ′ > ¬φ′.

The strategy is summarized as follows. Starting from a partially ordered QL-base

(K, >):

1. Turn (K, >) into a new partially ordered C-base µ(K, >) = (K′, ≫), replacing each
φ > ψ by φ ∨ ¬ψ ≫ ψ ∨ ¬φ.

2. Apply the rules of (C) to the base B(K′,≫), thus obtaining the closure C(B(K′,≫)).

3. Turn C(B(K′,≫)) into a new base ρ(C(B(K′,≫))) by replacing each φ′ ≫ ψ′ by φ′ ∧
¬ψ′ > ¬φ′. (Note that this is equivalent to applying ruleRISCd (semi-cancellativity),

a rule of system C).



Obviously, following the above strategy we obtain only a subset of QL(B(K,>)).

Example 8. Let K = {φ, ψ} with φ > ψ.

As > = ρ(>pl) the formula φ > ψ stands for φ ∧ ¬ψ >pl ψ ∧ ¬φ. Conversely, as >pl =

µ(>), we obtain the formula φ ∧ ¬ψ > ψ ∧ ¬φ. So we do not recover the initial formula

φ > ψ. The rule RIST P must be used for that purpose.

Example 9. Let K = {φ, ¬φ∨ψ, ¬ψ} with B(K,>) = {φ > ¬ψ, ¬φ∨ψ > ¬ψ} interpreting

> as qualitative likelihood.

First, we transform the QL-base into a C-base:

• φ > ¬ψ will be turned into φ ∨ ψ ≫ ¬ψ ∨ ¬φ

• ¬φ ∨ ψ > ¬ψ into ¬φ ∨ ψ ≫ ¬ψ, which remains unchanged

Then we use C. By RIO on φ ∨ ψ ≫ ¬ψ ∨ ¬φ we obtain φ ∨ ψ ≫ ¬ψ. Then by RIA and

RIO again we obtain ψ ≫ ¬ψ. Finally, applying RISCd produces no other formula. As

φ ∨ ψ, ¬ψ are subcontraries, and so are ψ, ¬ψ, we do get φ ∨ ψ > ¬ψ and ψ > ¬ψ.

By QL we directly compute the partial preadditive deductive closure.

• By RIO we obtain φ ∨ ψ > ¬ψ

• By RINDd we obtain ψ > ¬ψ.

To conclude, applying the proof system of QL to a comparative base does not give the

same results as applying system C first and thenQL (see Example 7). However, by changing

aQL-base into a C-base, applying the transformation in Proposition 14 enables us to derive
QL consequences using inference rules of system C. It is yet to be proved whether adding
axiom axNoD and using preadditivity rules (or just the sure thing principle rule RIST P ) to

a QL base, completed by its consequences obtained applying system C to the transformed
original base, will generate the whole QL closure of the latter.

That it can be conjectured relies on the following reasoning. If we consider a qualitative

likelihood relation ≻+ and its associated plausibility relation ≻pl= µ(≻+), these relations
coincide on pairs of disjoint sets. Consider a relation≻ relating onlyA, B such thatA∩B =
∅; it is clear that

• ≻+ can be obtained from ≻ using C ≻+ D if and only if C \ D ≻ D \ C, for C, D

not disjoint.

• ≻pl can be obtained from ≻ using C ≻pl D if and only if C \ D ≻ D.

So if a QL base (K, >) is changed into a C-base using the transformation µ (and taking the 
certainty relation dual of µ(>)), we can extract from the C-closure of the transformed base



all statements φ > ψ where φ, ψ are subcontraries. Call this set of comparative statements

SC(K, >). All statements in SC(K, >) are in the QL-closure of (K, >) and we can argue
that the C-closure of the transformed base contains all QL-consequences of (K, >) involv-
ing subcontraries. So if we apply the sure thing principle rule RIST P to SC(K, >), we can
hope to recover the QL-closure (K, >).

5.3 Case of a flat base

One interesting issue is whether classical propositional logic is a special case of the logics

of relative certainty and of qualitative likelihood. To see it, we can encode a propositional

knowledge base in the syntax of these logics, and show that the standard closure of the

original propositional knowledge base can be recovered respectively from the C-closure,
and the QL-closure, of the set of comparative statements obtained by such encodings.

Consider a flat propositional base of the form K = {φ1, · · · , φn}, where each formula
φi expresses a piece of information given by an agent. We thus suppose that each formula is

certain. In consequence a natural encoding ofK in terms of comparative statements consists

in translating each formula φi into φi > ¬φi. Let BK = {φ1 > ¬φ1, · · · , φn > ¬φn}.
We try to show that introducing the comparative statement φi > ¬φi for each formula

φi of the flat base K, we can recover a classical consequence ψ of K as the consequence

ψ > ¬ψ of BK. We will successively study the deductive closures of BK in the sense of

relative certainty and qualitative likelihood logics.

Example 10. Let K = {φ, ¬φ ∨ ψ} be a classical base. So, BK = {φ > ¬φ, ¬φ ∨ ψ >

φ ∧ ¬ψ}.

By modus ponens on K, ψ can be derived. So, we would like to obtain ψ > ¬ψ from BK.

• We compute the C-closure: by RICCCd on φ > ¬φ and ¬φ ∨ ψ > φ ∧ ¬ψ we obtain

φ ∧ ψ > ¬ψ ∨ ¬φ. Then by RIO we obtain ψ > ¬ψ. The C-closure also contains:

– φ ∧ ψ > ¬ψ, φ ∧ ψ > ¬φ, ψ > ¬ψ, φ > ¬ψ and ψ > ¬φ.

– φ > ¬φ ∨ ¬ψ and ψ > ¬φ ∨ ¬ψ.

• We compute the QL-closure. Each formula is of the form φi > ¬φi, so BK contains

only pairs of disjoint formulas, that are also subcontraries. Inference rule RICCCd

can still be applied and so the same conclusion ψ > ¬ψ can be inferred. Other

comparative formulas can be inferred such as

– By axiom axNoD, we obtain φ ∧ ¬ψ > ⊥ and ψ ∧ ¬φ > ⊥ if φ and ψ are not

equivalent. So we have φ ∧ ¬(φ ∧ ψ) > ¬φ ∧ (φ ∧ ψ).

– By RIST P , we obtain φ > φ ∧ ψ and similarly ψ > φ ∧ ψ.



With both systems, we obtain ψ > ¬ψ. Moreover the QL-closure contains φ > φ∧ψ

and ψ > φ ∧ ψ (when φ and ψ are not equivalent).

What the above example suggests holds more generally:

Proposition 18. If {φ1, . . . φn} ⊢ φ then {φ1 > ¬φ1, . . . φn > ¬φn} ⊢X φ > ¬φ for

X ∈ {C, QL}.

Proof of Proposition 18:

In both systems C and QL, we can apply inference rule RICCCd to {φ1 > ¬φ1, . . . φn > ¬φn} and
get the consequence φ1 ∧ · · · ∧ φn > ¬φ1 ∨ · · · ∨ ¬φn. And indeed, {φ1, . . . φn} ⊢ φ1 ∧ · · · ∧ φn.

Now it is well-known that {φ1, . . . φn} ⊢ φ if and only if φ1 ∧ · · · ∧ φn ⊢ φ. In this case

{φ1 > ¬φ1, . . . φn > ¬φn} ⊢X φ > ¬φ also holds using RIO, valid for X ∈ {C, QL}. ✷

For the converse proposition, the situation is different between C and QL. Note that

Lemma 2. In C, φi > ¬φi is equivalent to φi > ⊥.

Proof of Lemma 2:

Rule RINec expresses that φi > ⊥ implies φi > ¬φi, and for the converse, apply RIO. ✷

So we can prove:

Proposition 19. If {φ1 > ¬φ1, . . . φn > ¬φn} ⊢C φ > ¬φ then {φ1, . . . φn} ⊢ φ.

Proof of Proposition 19:

In C, the knowledge base {φ1 > ¬φ1, . . . φn > ¬φn} is equivalent to {φ1 > ⊥, . . . φn > ⊥}. Only 
rules RIA and RIO can be used to the latter base, which ensures that {φ1 > ⊥, . . . φn > ⊥} ⊢C 

φ > ⊥ only when {φ1, . . . φn} ⊢ φ, so that {φ1 > ¬φ1, . . . φn > ¬φn} ⊢C φ > ¬φ implies 
{φ1, . . . φn} ⊢ φ. ✷

In QL, the base {φ1 > ⊥, . . . φn > ⊥} brings no information as it follows from non-
dogmaticism axiom axNoD, so it is not equivalent to {φ1 > ¬φ1, . . . φn > ¬φn}. More-
over, we cannot apply the QL rule RIQd to the knowledge base {φ1 > ¬φ1, . . . φn > ¬φn}. 
We can only apply inference rules RICCCd and RIO. But then what we get is again the C-
closure. The inference rules we can use on top are RIP1 and RIP2, or better the sure thing 
principle RST P . However they would only deduce statements of the form φ ∨ ψ > φ when-
ever ψ Ó|= φ from axiom axNoD. But note that we cannot apply RST P to statements of the 
form φi > ¬φi. So inference from such statements in QL is again equivalent to inference 
in classical logic.



6 Conclusion

In their early survey on qualitative approaches to probabilistic reasoning, Walley and Fine

[37] pointed out in 1979 that

there is a uniform disregard for the formal analysis of probability concepts that

cannot be reduced in some fashion to numerical probability.

Due to the assumption that probability is intrinsically numerical, most logical approaches 
to reasoning with absolute or comparative probability statements in a symbolic framework 
still reject the adjunction principle according to which the conjunction of two beliefs is still 
a belief (see for instance the logic of risky knowledge [30], or yet Burgess comparative 
probability logic [4]). In this paper we have tried to reconcile two uncertain reasoning 
traditions in a symbolic framework, namely the non-monotonic reasoning approach of the 
Kraus, Lehman and Magidor style [27] as captured in the possibility theory setting, and the 
probabilistic reasoning approach as captured via the sure thing principle. There is a clash of 
intuitions between the two frameworks as the first one respects deductive closure for beliefs, 
while the latter often rejects it, for instance on the basis of the lottery paradox, originally 
introduced by Kyburg [28]. In this example, a conjunction of strong beliefs may turn out 
to be inconsistent. As explained in [15], the lottery paradox is less convincing in situations 
where some possible worlds are much more frequent than other ones, and probabilities tend 
to be big-stepped on a suitable partition, which brings probability orderings much closer to 
possibilistic orderings. However, if the considered probability ordering is total, a certain 
trivialization results from adopting the adjunction principle, as it enforces a linear order of 
possible worlds ([15] again).

In this paper, we restrict to partial orders expressing relative likelihood, giving up the 
reference to numerical probabilities, thus avoiding this trivialization. We show that strict 
partial comparative plausibility and qualitative likelihood relations coincide on pairs of dis-
joint sets and are in bijection with one another, and we provide a logic for relative likelihood 
that is both adjunctive and respects the sure thing principle.

A possible extension of this work would be to consider similar notions dropping the 
asymmetry property, so as to capture equal likelihoods between propositions as distinct 
from incomparability due to incompleteness, as studied in [12]. However it is clear that such 
a logic should then allow for negation and disjunction of comparative statements, in order 
to express relations between strict and weak preference, which would make the language 
more complex. Another line of further research would be to extend QL to comparative 
conditional statements.
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