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Abstract

This paper studies the extension of possibilistic logic to the case when weights attached to formulas are symbolic. These 
weights then stand for variables that lie in a totally ordered scale, and only partial knowledge is available on the relative 
strength of these weights in the form of inequality constraints. Reasoning in symbolic possibilistic logic means solving two 
problems. One is to compute symbolic expressions representing the weights of conclusions of a possibilistic knowledge base. 
The other problem is that of comparing the relative strength of derived weights, so as to find out if one formula is more 
certain than another one. Regarding the first problem, a proof of the soundness and the completeness of this logic according 
to the relative certainty semantics in the sense of necessity measures is provided. Based on this result, two syntactic inference 
methods are suggested. The first one shows how to use the notion of minimal inconsistent subsets and known techniques that 
compute them, so as to obtain the symbolic expression representing the necessity degree of a possibilistic formula. A second 
family of methods computes prime implicates and takes inspiration from the concept of assumption-based theory. It enables 
symbolic weights attached to consequences to be simplified in the course of their computation, taking inequality constraints 
into account. Finally, an algorithm is proposed to find if a consequence is more certain than another one. A comparison with 
the original version of symbolic possibilistic logic introduced by Benferhat and Prade in 2005 is provided.

Keywords: Possibilistic logic, partial order, hitting sets, consequence finding algorithms, minimal inconsistent subsets.

1 Introduction

Possibilistic logic [16] is an approach to reasoning under uncertainty using totally ordered proposi-
tional bases. In this logic, each formula is assigned a degree, often encoded by a weight belonging 
to (0, 1], seen as a lower bound on the certainty level of the formula. Such degrees of certainty obey 
graded versions of the principles that found the notions of belief or knowledge in epistemic logic, 
namely the conjunction of two formulas is not believed less than the least believed of the conjuncts. 
This is the basic axiom of degrees of necessity in possibility theory [17]. See [19] for a recent 
survey of possibilistic logic. Deduction in possibilistic logic follows the rule of the weakest link, as 
postulated by Rescher [30]: the strength of an inference chain is that of the least certain formula 
involved in this chain. The weight of a formula in the deductive closure is then the weight of the 
strongest path leading from the base to the formula. Possibilistic logic has developed techniques for 
knowledge representation and reasoning in various areas, such as non-monotonic reasoning, belief 
revision and belief merging (see references in [19]).
More than 10 years ago, a natural extension of possibilistic logic was proposed using partially 

ordered symbolic weights attached to formulas [4, 7], we call here symbolic possibilistic logic 
(SPL). In SPL, weights represent ill-known certainty values on a totally ordered scale. Only partial
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knowledge on the relative strength of weights is supposed to be available. The basic motivation for 
this variant of possibilistic logic is that, in some practical situations, it is difficult to assume that the 
weights attached to formulas are known precisely enough to be rank-ordered.
We give two examples of such a situation. The first one is when we assume that pieces of 

information come from several sources and the weight attached to a formula reflects the reliability of 
the source supplying it [15]. Some sources are known to be more reliable than other ones, but there 
may be a lack of knowledge about the relative reliability of some other sources.

EXAMPLE 1
Assume that different agents exchange information about potential participants in a forthcoming 
meeting.

• Agent A1 says: Albert, Betty and Chris will not come together; if Albert, Betty and David come

then the meeting will not be quiet; however if Albert, Betty and Eva come, the meeting will be

productive.

• Agent A2 says: if the meeting begins late, then it will not be quiet; if David comes, then Chris

comes too.

• Agent A3 says: if Betty comes, then the meeting will begin late; Chris cannot attend the meeting

if it begins late.

Moreover, we assume that Agent A1 and Agent A2 are known to be more reliable than Agent A3,

but it is not clear whether A1 is more reliable than A2 or not. It can be represented by attaching a

symbolic weight to each agent. These weights are then assigned to the assertions given by the agents.

The three weights cannot be rank-ordered.

Another example inspired by [1] concerns a setting where users can access only part of the

available information in a knowledge base, according to the access rights that they have been granted.

Each assertion in the knowledge base is attached a symbolic label representing a confidentiality level

of the assertion. Confidentiality labels are symbolic and are only partially ordered. The higher the

label in the hierarchy, the more publicly available is the corresponding information item. Given a

consequence φ of the knowledge base, the composite weight p attached to it after deduction reflects

its degree of public availability. Suppose that the user is allowed information items with labels of

degree not less than q and that q > p. It means that some confidential information to which the user

has no right to access is necessary to derive φ. So the user will be denied access to φ.

The idea of a symbolic possibilistic logic (SPL) was first introduced by Benferhat et al. [4], later

more thoroughly described in [7]. In the latter paper, only weak inequality constraints between

symbolic weights are assumed. A symbolic possibilistic knowledge base along with knowledge

pertaining to weights is encoded in propositional logic, augmenting the atomic formulas with other

ones pertaining to weights. In [7], the authors give a deduction method for plausible inference in this

logic using the idea of forgetting variables, and strict inequalities between symbolic weights attached

to consequences are obtained by default.

This generalisation of possibilistic logic differs from other approaches that represent sets of

formulas equipped with a partial order in the setting of conditional logics [24]. It also contrasts

with another line of research consisting in viewing a partial order on weights as a family of total

orders, thus viewing a symbolic possibilistic base as a set of usual possibilistic bases [5].

In a previous publication [31], we had introduced a variant of SPL where constraints between

symbolic weights are strict, and we compared this logic with a logic of relative certainty that uses

partially ordered knowledge bases, and where atomic formulas directly express that a propositional

formula is more certain than another. In the present work, which extends a conference paper [8], we



propose a complete account of SPL, where we assume both strict and weak inequality constraints

between weights and we define the weighted completion of a possibilistic knowledge base. Our

approach yields a partial order on the language, while the alternative partially ordered generalisations

of possibilistic logic [5, 6, 7] only compute a set of plausible consequences. We provide a full com-

pleteness proof, outlined in [31], but absent from [7]. This proof is different from the completeness

proof of standard possibilistic logic as, contrary to the latter, we cannot rely on classical inference

from sets of formulas having at least a given certainty degree. It relies on the notion of hitting sets.

Inference methods that compute the symbolic weight attached to a conclusion are suggested,

especially some inspired by the literature on abductive reasoning initiated by Reiter [29], some rooted

in assumption-based truth-maintenance systems [11] and the computation of prime implicates. We

also provide a simple-minded algorithm to compare symbolic weight expressions. In this paper,

we do not try to precisely determine the computational complexity of our inference methods nor

do we try to optimize them. Such complexity results can be borrowed from existing ones in the

consequence-finding literature [28], and can be applied to SPL inference.

The paper is organized as follows. In Section 2, we provide the formal background on standard

possibilistic logic. Then, in Section 3 we give the main definitions and concepts of SPL, including

axioms and semantics. In Section 4 we prove the soundness and completeness of SPL using hitting

sets. In the next Section 5 we show how to use existing tools from the literature on abduction, minimal

inconsistent subsets, assumption-based theory, variable-forgetting and more general prime implicate

computation methods in order to compute the symbolic weights attached to conclusions and we give

a method to compare their relative strengths. Finally, Section 6 discusses related works especially

[7]. An alternative semantics for symbolic possibilistic bases is discussed in the Appendix.

2 Background on standard possibilistic logic

We consider a propositional language L, based on a finite set of propositional variables denoted by

first Greek letters α,β, γ , . . . , where composite formulas are denoted by other Greek letters ξ , φ, ψ ,

..., and Ω is the finite set of interpretations of L. The set of models of φ is denoted by [φ], which

is a subset of Ω . We denote by ⊢ the classical syntactic inference and by ² the classical semantic

inference.

Possibilistic logic is an extension of classical logic and it encodes conjunctions of weighted

formulas of the form (φj, pj) where φj is a propositional formula and pj ∈ ]0, 1]. The weight pj

is interpreted as a lower bound on the certainty level of φj, namely N(φj) ≥ pj > 0, where N is a

necessity measure in the sense of possibility theory [18].

Let us recall basic notions of possibility theory [17]. A possibility distribution is a mapping π :

Ω → [0, 1] expressing to what extent a situation, encoded as an interpretation, is plausible. At least

one situation must be fully plausible (π (ω) = 1 for some ω), and π (ω) = 0 means that this situation

is impossible. A possibility measure can be defined on subsets of Ω from a possibility distribution

as5(A) = maxω∈A π(ω) expressing the plausibility of any event A. Note that5(∅) = 0 and5(Ω)

= 1. The necessity measure expressing certainty levels is defined by conjugacy: N(A) = 1 − 5(A)

where A denotes the complement of A. Note that N(∅) = 0 and N(Ω) = 1.

In the following, we attach possibility and necessity degrees to propositional formulas, letting

5(φ) = 5([φ]). In particular:

N(φj) = min
ω/∈[φj]

(1− π(ω)).

The basic axiom of necessity measures can then be written as

N(φ ∧ ψ) = min(N(φ),N(ψ)).



Note that the most elementary form of possibilistic logic considers neither negations nor disjunctions 
of weighted formulae (see [20] for generalized possibilistic logic, where these connectives make 
sense).

2.1 Semantics of possibilistic logic bases using possibility distributions

A possibilistic logic base (Poslog base) is a finite set of weighted formulas 6 = {(φj, pj) : j = 
1, · · · , m}. The (fuzzy) set of models of a PL base is defined by a possibility distribution π6 on Ω 
defined as follows.

First, each weighted formula (φj, pj) can be associated with a possibility distribution π j on Ω 
defined by [16]:

πj(ω) =

{

1 if ω ∈ [φj],

1− pj if ω /∈ [φj],
(1)

and then π6 is obtained by the fuzzy set conjunction of the π j’s:

π6(ω) = min
j

πj(ω). (2)

The rationale is based on a minimal commitment principle called the principle of minimal specificity.

It presupposes that any situation ω remains possible unless explicitly ruled out [17]. A possibility

distribution π is less specific (less informative) than π ′ in the wide sense if π ≥ π ′ (π leaves at

least as many possible interpretations as π ′). The principle of minimal specificity tends to maximize

possibility degrees.

We can define the semantics of possibilistic logic in terms of the satisfaction of a Poslog base 6

by a possibility distribution π on Ω as π ² 6 if and only if N(φj) ≥ pj, j = 1, · · · , m where N(φj)

is the degree of necessity of φj w.r.t. π . Then, we can show that π ² 6 if and only if π ≤ π6 [16].

It indicates that the possibilistic logic semantics is based on the selection of the least informative

possibility distribution that satisfies 6.

Let N6 be the necessity measure induced by π6 . It can be checked that N6(φj) = minω/∈[φj](1−

π6(ω)) ≥ pj. Note that the initial order of the possibilistic base can be modified according to the

logical dependencies between formulas. It may occur thatN6(φj)> pj. It is the case e.g. if ∃i,φi ² φj

and pi > pj.This feature contrasts with conditional logics of relative possibility or certainty, like in

[26, 24, 31] where syntactic expressions of the form φ > ψ in a knowledge base express constraints

such as N(φ) > N(ψ) that will be enforced in the deductive closure, and may lead to a contradiction

(if for instance φ ² ψ is valid).

DEFINITION 1

The deductive (semantic) closure of 6 is defined as follows:

Cπ (6) = {(φ,N6(φ)) : φ ∈ L, N6(φ) > 0}.

The semantics of possibilistic logic allows to replace a weighted conjunction (∧iφi, p) by the

set of formulas (φi, p) without altering the underlying possibility distribution, since N(φ ∧ ψ) =

min(N(φ),N(ψ)). Therefore from the minimum specificity principle, we can associate the same

weight to each sub-formula in a conjunction. As a consequence, we can turn any possibilistic base

into a semantically equivalent weighted base of clauses.



Since the weights are only lower bounds, they never add inconsistency to the base, contrary to

logics of relative certainty pointed out above. The only reason for inconsistency comes from the

classical inconsistency of 6∗ = {φ1, · · · , φm}, we call the skeleton of 6. If 6∗ is inconsistent, one

may have that bothN6(φ)> 0 and N6(¬φ) > 0,∀φ ∈ L. In this case, Cons(6) = maxω π6(ω) < 1

represents the degree of consistency of the possibilistic base 6.

PROPOSITION 1 ([16])

minφ∈6∗ N6(φ) = 1− Cons(6).

Then, we can define the set of non-trivial consequences of 6 as:

Cnt
π (6) = {(φ,N6(φ)) : φ ∈ L, N6(φ) > 1− Cons(6)}

which coincides with Cπ (6) if Cons(6)= 1. In the latter case, it holds that min(N6(φ),N6(¬φ)) =

0,∀φ ∈ L, so that the skeleton of Cπ (6) is consistent.

In the general case, φ ∈ Cnt
π (6) is called a plausible consequence of 6. The meaning of plausible

consequences is explained by the following property: φ is a plausible consequence of 6 if and only

if φ is satisfied in all preferred models according to π6 [3]. If we define the strict cut at level p of 6

as 6>
p = {(φj, pj) : pj > p}, it is easy to see that Cnt

π (6) = Cπ (6>
1−Cons(6)

).

Note that N6(φ) can be expressed directly, without explicitly referring to the possibility

distribution π6 on models. Let 6(ω) denote the formulas in 6∗ satisfied by the interpretation ω.

Since

1− π6(ω) = max
j:φj /∈6(ω)

pj,

which corresponds to the so-called ‘best-out’ ordering [2], it follows that

N6(φ) = min
ω 6²φ

max
j:φj /∈6(ω)

pj. (3)

2.2 Syntactic inference in possibilistic logic

A sound and complete syntactic inference ⊢π for possibilistic logic can be defined with the following

axioms and inference rules [16]:

Axioms

• (φ → (ψ → φ), 1)

• ((φ → (ψ → χ)) → ((φ → ψ) → (φ → χ)), 1)

• (((¬φ) → (¬ψ)) → (ψ → φ), 1)

Inference rules:

• Weakening: if pi > pj then (φ, pi) ⊢π (φ, pj)

• Modus Ponens: {(φ → ψ , p), (φ, p)} ⊢π (ψ , p)

The axioms are those of propositional logic with weight 1. The Modus Ponens rule embodies the

adjunction law of accepted beliefs at any level, assuming they form a deductively closed set [13]. It

is related to axiom K of modal epistemic logic [22]. The soundness and completeness of possibilistic

logic for the above proof system can be translated by the following equality [16]:

N6(φ) = max{p : 6 ⊢π (φ, p)}.



Note that we can also express inference in possibilistic logic by classical inference on cuts [16]:

N6(φ) = max{p : (6≥
p )

∗
⊢ φ} (4)

where 6≥
p = {(φj, pj) : pj ≥ p} is the weak cut at level p of 6, and (6≥

p )
∗
its skeleton.

We can compute the degree of inconsistency Inc(6) of a possibilistic base 6 syntactically as

follows:

Inc(6) = max{p : 6 ⊢π (⊥, p)}.

It can be proved that [16, 3]:

• Inc(6) = 1− Cons(6) = 1−maxω∈Ä π6(ω)

• N6(φ) = Inc(6 ∪ (¬φ, 1))

So, in standard possibilistic logic, there are four ways of defining the deductive closure of a totally

ordered base: the semantic approach based on a ranking of interpretations, the syntactic approach

based on Modus Ponens and Weakening, the classical approach based on cuts and reasoning by

refutation. They are equivalent and yield the same deductive closure. However, we will see in the

next sections that this is no longer true if weights are symbols that are partially ordered.

3 Symbolic Possibilistic Logic

In SPL, only partial knowledge is available on the relative strength of weights attached to formulas.

This approach was proposed in [4, 7]. We revisit this proposal by allowing the use of strict inequality

constraints, unlike the original proposal where only weak inequalities were assumed. We also

complement the original proposal, giving the proof that, independently of the constraints existing

between symbolic weights, SPL is sound and complete.

3.1 Syntax of SPL

A symbolic possibilistic base is again a set of weighted formulas. But here, the weights are symbols,

and we consider that we have only partial knowledge of the total order between these weights.

Weights can actually be symbolic expressions involving elementary variables taking values on a

totally ordered scale (such as ]0, 1]), along with a set of constraints over these weights, describing

what is known of their relative strength. The name ‘symbolic possibilistic logic’ indicates that

symbolic computations are performed on the weights.

The set P of symbolic expressions pj acting as weights is recursively obtained using a finite set

of variables (called elementary weights) H = {a1, . . . , ak , . . .} taking value on ]0, 1] and max /min

expressions built on H :

• H ⊂ P , 0, 1 ∈ P;

• if pi, pj ∈ P then max(pi, pj), min(pi, pj) ∈ P .

We also suppose that 1 ≥ ai > 0, ∀i.

Let 6 = {(φi, pi), i = 1, · · · , n} be a symbolic possibilistic base (SPL base for short) where pi is

from now on a max /min expression built on H .



3.2 Constraints between weights

The knowledge about symbolic weights is encoded by a finite set C = C> ∪ C≥ of dominance

constraints between elementary weights: C> contains strict constraints ai > aj, where > is

asymmetric and transitive, and C≥ contains weak constraints ai ≥ aj, where ≥ is transitive and

reflexive. Moreover, we assume that ai > aj ≥ ak implies ai > ak and ai ≥ aj > ak implies ai > ak.

This is in agreement with the assumption that the variables ai take values on a totally ordered scale.

Note that in [7], only weak constraints are used (C> = ∅), while in [31, 8], there are only strict

dominance constraints (C≥ = ∅).

For inference purposes, we shall be especially interested in conclusions of the form p > q where

p and q are symbolic expressions respectively attached to formulas φ and ψ in SPL. A valuation is a

positive mapping v :H → (0, 1] that instantiates all elementary weights. Its domain is easily extended

to all max/min expressions built on H . Let V denote the set of valuations. We denote by v |H C, the

fact that the valuation v obeys constraints in C. In this paper, p > q means that this inequality

holds for all valuations v |H C, i.e. in all instantiations of p, q in agreement with the constraints.

The inference C ² p > q then formally means:

DEFINITION 2

C ² p > q iff ∀v ∈ V , v |H C implies v(p) > v(q).

Informally, any valuation of symbols appearing in p, q (on ]0, 1]) which satisfies the constraints

in C also satisfies p > q.

Apart from the properties of > and ≥, we also must take for granted as axioms the following

property that may be useful for inferring strict dominance statements: max(p, q) ≥ min(p, r), in

particular, max(p, q) ≥ p and p ≥ min(p, r), for any symbolic expressions p, q, r.

REMARK 1

We could assume that C contains dominance constraints between max/min expressions. It is clear

that by distributivity any symbolic expression can be put in the formminr
i=1max

n
k=1 aik or in the form

maxs
j=1min

m
l=1 ajl , where the aik ’s and ajl ’s are simple variables on [0, 1]. For instance, the symbolic

expression min(max(a, min(b, c)), d) can be put in the form max(min(a, d), min(b, c, d)) or in the

form min(max(a, b), max(a, c), d). So any constraint of the form p > q can take the canonical form

∀i = 1, . . . r, j = 1, . . . s, max
k=1,··· ,n

aik > min
ℓ=1,··· ,m

ajℓ where aik , ajℓ ∈ H

i.e. ∀i = 1, . . . r, j = 1, . . . s, ∃k ∈ {1, · · · , n}, ∃ℓ ∈ {1, · · · ,m}, aik > ajℓ .

A similar property, replacing > by ≥ holds for weak constraints p ≥ q. This remark points

out that the handling of dominance constraints between max/min expressions comes down to

considering disjunctions of sets of constraints between elementary weights, which means an increase

of complexity for making inferences in SPL. In this paper, we thus restrict to assuming dominance

constraints between elementary weights.

3.3 Syntactic inference in SPL

To define inference at the syntactic level, we must slightly reformulate the inference rules of

possibilistic logic in order to account for the symbolic nature of the weights.

• Fusion: {(φ, p), (φ, p′)}⊢π (φ, max(p, p′))

• Weakening: (φ, p) ⊢π (φ, p′) if p ≥ p′

• Modus Ponens: {(φ → ψ , p), (φ, p)}⊢π (ψ , p)



This proof system is denoted by SSPL. Note that the Weighted Modus Ponens rule follows from 
the above rules:
Weighted Modus Ponens: {(φ → ψ , p), (φ, p′)}⊢π (ψ , min(p, p′)).

EXAMPLE 1 (continued)

Considering again the meeting example, let α, β, γ , δ, ǫ denote the statement that respectively

Albert, Betty, Chris, David and Eva come to the meeting. Let κ stand for a quiet meeting, λ stand for

a late meeting, ρ for a productive meeting. Let a1, a2, a3 be the reliabilities of reporting agents A1,

A2 and A3, respectively. The SPL knowledge base looks as follows:

A1 : (¬(α ∧ β ∧ γ ), a1), (¬(α ∧ β ∧ δ) ∨¬κ , a1), (¬(α ∧ β ∧ ǫ) ∨ ρ, a1)

A2 : (¬λ ∨¬κ , a2), (¬δ ∨ γ , a2)

A3 : (¬β ∨ λ, a3), (¬λ ∨¬γ , a3)

C : a1 > a3, a2 > a3.

Suppose Albert, Betty and Eva come for sure (with weight 1). Then the reader can check that (ρ, a1)

can be inferred, as well as (¬κ , min(a2, a3)). The former statement is more certain than the latter.

If B is a subset of the skeleton 6∗ of 6, that classically implies φ, it is clear that 6 ⊢π

(φ, minφj∈B pj). Therefore using syntactic inference, we can compute the expression representing

the strength of deduction of φ from 6:

N⊢
6(φ) = max

B⊆6∗,B⊢φ
min
φj∈B

pj. (5)

Note that in the above expression, it is sufficient to maximize on subsets B that are minimal for

inclusion among those that imply φ.

The proof system SSPL can be used to define the degree of inconsistency of an SPL base denoted

by Inc(6).

Inc(6) = N⊢
6(⊥) = max{p : 6 ⊢π (⊥, p)}

We can check that, like in standard possibilistic logic:

PROPOSITION 2

N⊢
6(φ) = N⊢

6∪{(¬φ,1)}(⊥).

PROOF. It follows from the fact that B ⊆ 6∗ implies φ if and only if B ∪ {¬φ} is inconsistent.

To determine if one formula is more certain than another, we must compare the relative strength

of these formulas via their composite weights in the weighted closure:

DEFINITION 3

(6, C) syntactically implies that φ is more certain than ψ (denoted by (6, C) ⊢πφ > ψ) iff C ²

N⊢
6(φ) > N⊢

6(ψ).

EXAMPLE 2

Suppose the language L has atomic variables α, β. Let 6 = {(α, a), (¬α ∨ β, b), (¬α, c), (¬β, d)}

and C = {a > b, b > c, b > d}. Then, N⊢
6(β) = max(min(a, b), min(a, c)) = max(b, c) = b and

N⊢
6(α) = a. So, (6, C) ⊢πα > β.

As in standard possibilistic logic, we define plausible inference in SPL.



DEFINITION 4

φ is a plausible consequence of (6, C), denoted by (6, C) ⊢PL φ iff (6, C) ⊢π φ > ⊥, i.e.

C ² N⊢
6(φ) > Inc(6)

(

= N⊢
6(⊥)

)

.

EXAMPLE 3

Suppose the language L has atomic variables α, β and let 6 = {(α, a), (¬α ∨ β, b), (¬β, c)}. We

have 6 ⊢π (β, min(a, b)). It can be checked that N⊢
6(β) = min(a, b), N⊢

6(¬β) = c, and N⊢
6(⊥) =

min(a, b, c). Let C = {a > c, b > c}. Since C |H min(a, b) > c, we obtain N⊢
6(β) > N⊢

6(⊥), and β

is a plausible consequence of (6, C).

Note that in SPL, comparing the strength degrees of formulas as per Definitions 3 and 4 requires

that the set of strict constraints C> is not empty. Otherwise, no strict inequality can be inferred

between formula weights.

3.4 Semantics of symbolic possibilistic bases

In SPL, a formula (φi, pi) is still interpreted as a constraint N(φi) ≥ pi on a possibility distribution.

The semantics of an SPL base can be defined as in standard possibilistic logic by means of a

possibility distribution associated with a possibilistic base, as per Equations (1) and (2). This

possibility distribution will attach a symbolic expression to each interpretation. However, the

presence of terms of the form 1 −. prevents π6(ω) from lying in P . So, in the case of SPL, it

is more convenient to express an impossibility distribution ι6 = 1 − π6 since ι6(ω) ∈ P , namely:

∀ω ∈ Ω:

ι6(ω) = 1− π6(ω) =

{

maxj:φj 6∈6(ω) pj

0 if 6(ω) = 6∗.

As in standard possibilistic logic, we can turn any SPL base into a semantically equivalent weighted

base of clauses, and restrict to such bases.

Let6 be an SPL base, and ω, ω′∈ Ω be two interpretations. As in the numerical setting, we define

a partial ordering on Ω , induced by 6, i.e. the counterpart of the possibilistic ordering:
ω >6 ω′ iff C ² ι6(ω) < ι6(ω′).

The weighted completion of the SPL base 6 is defined as follows:

DEFINITION 5

Let 6 be an SPL base of the form {(φi, pi), i = 1, . . . , n}. Its weighted completion 6̂ is given by

6̂ = {(φ,N6(φ)) : φ ∈ 6∗} where 6∗ = {φ1, · · · , φn} and N6(φ) is the min/max expression:

N6(φ) = min
ω 6²φ

ι6(ω) = min
ω 6²φ

max
j:φj 6∈6(ω)

pj. (6)

Note that in contrast with standard possibilistic logic, the above expression N6(φ) cannot be

simplified down to a single weight. However, we can restrict to subsets 6(ω) which are maximal for

inclusion. Moreover we can see that the following equivalence relating N6 and ι6 holds:

PROPOSITION 3

C |H N6(φ) > N6(ψ) is equivalent to

∀v |H C, ∃ω′ |H ¬ψ ,∀ω |H ¬φ, v(ι6(ω′)) < v(ι6(ω)).



PROOF. C |H N6(φ) > N6(ψ) ⇐⇒ ∀v |H C, v(N6(φ)) > v(N6(ψ))

⇐⇒ ∀v |H C, v(minω 6²φ ι6(ω)) > v(minω′ 6²ψ ι6(ω′))

⇐⇒ ∀v |H C, minω 6²φ v(ι6(ω))) > minω′ 6²ψ v(ι6(ω′)))

⇐⇒ ∀v |H C, ∃ω′ |H ¬ψ , ∀ω |H ¬φ, v(ι6(ω′)) < v(ι6(ω)).

This is clearly less demanding than another definition such as ∃ω′ |H ¬ψ , ∀ω |H ¬φ, C |H ι6(ω′) < 
ι6(ω), which is an extension of the best-out ordering. Indeed in the above proposition, the choice of 
ω′ |H ¬ψ depends on v, but the inequality v(ι6(ω′)) < v(ι6(ω)) must hold for a single ω′ and all v 
in the latter. See the appendix for a comparison between best-out and usual possibilistic semantics 
of SPL.
In the following, we adopt the semantics of SPL with constraints by comparing the symbolic 

necessity expressions (6) in the completion, based on constraints on weights. Namely, we define the 
semantic inference of dominance statements in SPL by defining a partial order on the language L as 
follows:

(6,C) |H φ > ψ if and only if C |H N6(φ) > N6(ψ). (7)

Then, we can say that φ is semantically more certain than ψ .1 One reason is that, in the symbolic

framework, this inference is more productive than the one based on enforcing ordering ι6(ω
′) <

ι6(ω) for all valuations, for each pair of countermodels of φ and ψ . Another reason is that the

syntactic inference leads to also attaching symbolic degrees of strength N⊢
6(φ) to formulas, again

leading to a partial order on the language. We shall prove that these two partial orderings are

the same.

4 The completeness of SPL

In this section, we prove that, irrespective of the set of constraints between symbolic weights, the

inference system SSPL is sound and complete for the semantics of SPL defined from the possibilistic

ordering >6 . This is done by proving that the two expressions of the necessity degrees of formulas

in the syntactic and the semantic closures of a possibilistic base in SPL are equal.

In standard possibilistic logic, the proof of completeness [16] relies on cuts, due to Equation 4.

This method no longer works with symbolic weights, due to the fact that the result we try to prove

does not use the existing ordering constraints on symbolic weights. Actually we provide a direct

proof that the two expressions of N6(φ) and N⊢
6(φ) coincide independently of constraints in C:

PROPOSITION 4 (Soundness and Completeness)

N6(φ) = N⊢
6(φ), ∀φ ∈ L.

No completeness proof appears in [7], where the focus is on plausible inference according to a

principle different from the one proposed here (see Section 6 for a discussion). An outline of our

proof was published in [31], and a first draft of the full proof in [8]. We give it here in details for the

sake of completeness.

In this proof, we need the notion of hitting-set (also known as hypergraph transversal [23]), useful

in the formalization of abductive reasoning [29] and other topics in databases or formal concept

analysis [10].

1 We can define (6, C) |H φ ≥ ψ similarly.



DEFINITION 6 (Hitting-set)

Let B be a collection of sets. A hitting-set of B is a set H ⊆ ∪Bi∈BBi such that H ∩ Bi 6= ∅ for each

Bi ∈ B. A hitting-set H of B is minimal (for set-inclusion) if and only if no strict subset of H is a

hitting-set of B.

We have to prove that minω 6|Hφ maxj:φj 6∈6(ω) pj = maxB⊆6∗,B⊢φ minφj∈B pj. We separately address

cases according to whether 6∗ is consistent or not.

4.1 Consistent case

Suppose that 6∗ is consistent. We can simplify the two symbolic expressions:

• For N⊢
6(φ), it is sufficient to consider the minimal (for set-inclusion) subsets of 6∗, say Bi, i =

1, . . ., n, that imply φ:

N⊢
6(φ) =

n
max
i=1

min
φj∈Bi

pj.

This is due to the fact that the values of symbolic weights belong to a totally ordered set, and

therefore, if A ⊂ B, then minφj∈B pj ≤ minφj∈A pj. This property would be false if C were

considered as a mere partial order on H , without such a semantics (e.g., min and max would not

be defined).

• For N6(φ), it is sufficient to consider the interpretations ω such that ω 2 φ and6(ω) is maximal

(for set-inclusion):

N6(φ) = min
ω 6|Hφ,6(ω) maximal

max
j:φj 6∈6(ω)

pj.

The expression N6(φ) can be simplified since the subsets of the form 6(ω) that are maximal

(for set-inclusion) such that ω 2 φ are exactly the maximal (for set-inclusion) subsets of 6∗

consistent with ¬φ. Such a subset will be denoted by M¬φ ∈ M¬φ . So, we can write: N6(φ) =

minM¬φ∈M¬φ
maxφj 6∈M¬φ

pj.

We need four lemmas.

LEMMA 1

If 6∗ is a minimal (for set-inclusion) base that implies φ, then N6(φ) = N⊢
6(φ).

PROOF. N⊢
6(φ) = minφj∈6∗ pj. So, ∀ω, maxj:φj 6∈6(ω) pj ≥ N⊢

6(φ) so N6(φ) ≥ N⊢
6(φ). Conversely,

for all φk ∈ 6∗, 6∗\{φk} 0 φ. So there is a model ωk of 6∗\{φk} which is not a model of φ. So

6(ωk) = 6∗\{φk}. Therefore we have:

N6(φ) = min
ω 6|Hφ

max
j:φj 6∈6(ω)

pj ≤ min
ωk

max
j:φj 6∈6(ωk)

pj = min
φk∈6∗

pk = N⊢
6(φ).

As an immediate consequence, we have:

COROLLARY 1

N6(φ) ≥ N⊢
6(φ).

PROOF. N⊢
6(φ) = maxn

i=1 N⊢
Bi

(φ) where Bi, i = 1, . . . , n are the minimal subsets that imply φ. So,

following Lemma 1, N⊢
6(φ) = maxn

i=1 NBi(φ). For each Bi, it is clear that ι6 ≤ ιBi , so that from

Equation (6), N6(φ) ≥ NBi(φ). So N6(φ) ≥ N⊢
6(φ).



 Using distributivity, we can rewrite the syntactic necessity degree N⊢

6(φ) in terms of the minimal

hitting-sets of the collection of sets B = {B1, . . . ,Bn}.

LEMMA 2

N⊢
6(φ) = minH∈S maxφj∈H pj, where S denotes the set of all the minimal hitting-sets H of B =

{B1, . . . ,Bn}.

PROOF. N⊢
6(φ) = maxn

i=1minφj∈Bi pj. Using distributivity of min vs max, we can rewrite

maxn
i=1minφj∈Bi pj as min

r
k=1maxφl∈Ek

pl, where the Ek are obtained by picking one formula in each

Bi, in every possible way. So the sets Ek are all the hitting-sets of B = {B1, . . . ,Bn}. It is easy to

see that it is sufficient to consider the sets Ek which are minimal (for set-inclusion) when computing

minr
k=1maxφl∈Ek

pl. These minimal hitting-sets are exactly the elements H of S .

Let 6(ω) denote the set of formulas in 6∗ falsified by ω.

LEMMA 3

∀ω 6|H φ,6(ω) contains a hitting-set of {B1, . . . Bn} (i.e. ∀i,Bi ∩ 6(ω) 6= ∅).

PROOF. Let ω 2 φ such that ∃Bi,Bi ∩ 6(ω) = ∅. So Bi ⊆ 6(ω). However, as ω 2 φ we have 6(ω)

0 φ and then Bi 0 φ. This contradicts the fact that Bi ⊢ φ.

Note that the above result holds in particular when 6(ω) is minimal. The subsets 6(ω) such that

ω 2 φ that are minimal (for set-inclusion) are the complements of the maximal subsets M¬φ of 6∗

consistent with ¬φ.

So, we have:

LEMMA 4

The complement of each minimal hitting-set H of {B1, . . . Bn} is a maximal subset of 6∗ consistent

with ¬φ (called M¬φ above).

PROOF. Let H = {φ1, . . . ,φn} be a minimal hitting-set of {B1, . . . ,Bn} with φi ∈ Bi. The set H is

consistent, and it is consistent with ¬φ. Otherwise, H ⊢ φ and so ∃Bi ⊆ H such that Bi ⊢ φ. This

is impossible because by definition of H , H ∩ Bi 6= ∅. So H is consistent with ¬φ. In addition H

is maximal consistent with ¬φ. Indeed, if we add φi ∈ H to H , H \{φi} is no longer a hitting-set.

Therefore ∃Bj such that (H \ {φi}) ∩ Bj = ∅. Then Bj ⊆ H ∪ {φi} and so H ∪ {φi} ⊢ φ which proves

that H ∪ {φi} is not consistent with ¬φ. So ∃M¬φ = H .

As an immediate consequence, we have:

COROLLARY 2

N6(φ) ≤ N⊢
6(φ)

PROOF. Using Lemma 2:

N⊢
6(φ) = min

H∈S
max
φj∈H

pj = min
M¬φ=H ,H∈S

max
φj 6∈M¬φ

pj (Lemma 4)

≥ min
M¬φ∈M¬φ

max
φj 6∈M¬φ

pj = N6(φ).



This result along with Corollary 1 proves soundness and completeness when the SPL base is

consistent.

In fact, there is an exact correspondence between the set of the maximal subsets of 6∗ consistent

with ¬φ and the set of the minimal hitting-sets of the set {B1, . . . ,Bn} of minimal consistent subsets

that imply φ, namelyM¬φ = {H ,H ∈ S}.

COROLLARY 3

For each maximal subset of 6∗ consistent with ¬φ, M¬φ , there exists a minimal hitting-set H of

{B1, . . . Bn} such that M¬φ = H .

PROOF. M¬φ is a minimal subset of the form 6(ω) with ω |H ¬φ. By Lemma 3, 6(ω) contains a

minimal hitting-set H . By Lemma 4, its complement is a maximal subset of 6∗ consistent with ¬φ.

It can therefore only be M¬φ .

4.2 Inconsistent case

Suppose that 6∗ is inconsistent. Now, some of its minimal subsets that imply φ may be inconsistent.

We have the following results:

• Let I1, . . . , Ip be the minimal inconsistent subsets (MIS) of 6∗. The inconsistency degree of 6

is Inc(6) = N⊢
6(⊥) = max

p
k=1minφj∈Ik

pj, and

N⊢
6(φ) = max(Inc(6),

n
max
i=1

min
φj∈Bi

pj),

the Bis being the minimal subsets (consistent or not) which imply φ.

• N⊢
6(φ) ≥ Inc(6).

• The definition of N6(φ) is the same as in the consistent case. However, observe that ∀ω,6(ω)⊂

6∗ (since 6(ω) is consistent).

Now we are able to prove Proposition 4 for this case, noticing that we just have to augment the set

{B1, . . . ,Bn} with the minimal inconsistent subsets of 6
∗ that contain none of the Bi’s:

• Lemma 1 can be used. Now, in the Lemma, we assume that 6∗ is an inconsistent base (hence it

implies φ), all subsets of which are consistent but none of them implies φ.

• Corollary 1 holds, where we use both the Bi
′s and the Ik’s (note that minimality does not exclude

inconsistency).

• The minimal sets implying φ are all the Bi
′s plus some of the Ik’s, and we take their hitting sets.

• For Lemma 3,6(ω) is always consistent. So, we may notice that I i 6⊂ 6(ω) trivially, in the proof.

• The proof of Lemma 4 still holds, since the sets H are consistent, as theM¬φ . So, we have again

the validity of Corollary 2.

So soundness and completeness hold even if the base 6∗ is inconsistent.

REMARK 2

It may happen that some minimal inconsistent subset I i of 6∗ is not minimal implying φ. For

instance, if 6 = {(φ, a), (¬φ, b)}, then the unique minimal subset implying φ is {φ}. In that case,

N⊢
6(φ) = max

B⊆6∗,B⊢φ
min
φj∈B

pj = max(min(a, b), a) = a = N6(φ).

Similarly, N⊢
6(¬φ) = b. So we have N⊢

6(⊥) = min(a, b) ≤ N⊢
6(φ) and N⊢

6(⊥) ≤ N⊢
6(¬φ). We have

{a} ⊂ {a, b} but it cannot be concluded that N⊢
6(⊥) < N⊢

6(¬φ).
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As a consequence of Propositions 2 and 4, reasoning by refutation is valid: N6∪{(¬φ,1)}(⊥) = 
N6(φ).

5 Toward inference methods in SPL

In this section, we will suggest two syntactic inference methodologies that calculate the necessity 
degree N⊢(φ) of a possibilistic formula. The first approach is based on the calculation of minimal
inconsistent subsets. The second one is based on a propositional logical encoding of an SPL

base, where symbolic weights are represented by propositional variables, and the use of prime

implicates, which deals with the simplification of complex weights attached to consequences during

the derivation process. We assume for simplicity that the weights bearing on formulas of the original

SPL base are elementary, with possibility of assigning the same weight to different formulas.

However, as we shall see, this assumption is inessential, and can easily be dropped.

5.1 Syntactic inference based on minimal inconsistent subsets

Given a formula φ, computing the expression in equation (5) requires the determination of all

minimal subsets Bi such that Bi ⊢ φ. Some of the minimal subsets that imply φ may be inconsistent.

In that case, they are minimal inconsistent in 6∗.

LEMMA 5

Let B ⊆ 6∗ be a minimal subset that implies φ. If B is inconsistent, then it is minimal inconsistent

in 6∗.

PROOF. Assume B is inconsistent and that B′ ⊂ B and B′ is minimal inconsistent. Then B′ ⊢ φ

trivially, which contradicts the hypothesis on B.

So, if B ⊆ 6∗ is a minimal subset implying φ, either B is consistent or B is a minimal inconsistent

subset of 6∗. It follows easily that:

PROPOSITION 5

Let B1, · · · , Bk be the minimal consistent subsets of 6∗ implying φ. Let I1,· · · , I l be the

minimal inconsistent subsets in 6∗ which do not contain any Bj, j = 1· · · k, then N⊢
6(φ) =

max(maxk
i=1minφj∈Bi pj, max

l
i=1minφj∈Ii pj).

Besides, we know that B ⊆ 6∗ is minimal implying φ if and only if B is minimal such that B ∪

{¬φ} is inconsistent. We can prove even more:

PROPOSITION 6

Let 6 be an SPL base.

1. IfK is a minimal inconsistent subset of6∗ ∪ {¬φ} containing¬φ, thenK \{¬φ} is consistent,

minimal implying φ.

2. If B is consistent and minimal implying φ then B ∪ {¬φ} is a minimal inconsistent subset of

6∗ ∪ {¬φ}.

PROOF.

1. Let K ⊆ 6∗ ∪ {¬φ} such that ¬φ ∈ K and K is minimal inconsistent in 6∗ ∪ {¬φ}. Let B =

K \{¬φ}. Clearly, B ⊆ 6∗ is consistent, and B ⊢ φ as B ∪ {¬φ} is inconsistent. Assume that



B is not minimal implying φ; then, there exists B′⊂ B such that B′ ⊢ φ. So, B′ ∪ {¬φ} ⊂ K is

inconsistent, which is in contradiction with the hypothesis that K is minimal inconsistent in

6∗ ∪ {¬φ}.

2. Let B ⊆ 6∗ be minimal implying φ and assume that B is consistent. The set K = B ∪ {¬φ}

is inconsistent in 6∗ ∪ {¬φ} and contains ¬φ. Assume that K is not minimal inconsistent in

6∗ ∪ {¬φ}. There exists K′⊂ K such that K′ is inconsistent, and we can even assume that K′

is minimal inconsistent.

• Either ¬φ ∈ K′, so by the first point we have that K′ \ {¬φ} is minimal implying φ and

K′\{¬φ} ⊂ K \{¬φ} = B, in contradiction with the hypothesis on B.

• Either ¬φ /∈ K′, so K′ ⊂ B. As K′ is inconsistent, B is also inconsistent, in contradiction

with the hypothesis on B.

So K is minimal inconsistent in 6∗ ∪ {¬φ}.

Due to Proposition 5 and Proposition 6, computing N⊢
6(φ) amounts to determining:

• the set of minimal inconsistent subsets K i of 6
∗ ∪ {¬φ} containing ¬φ;

• the minimal inconsistent subsets of6∗ which do not contain any of the Bi = K i \{¬φ}’s obtained

in the previous step.

The above computation comes down to the well-known problem of determining the minimal

inconsistent subsets, forming a set MIS(S), of a given set of formulas S. Let B⊢(φ) = {B ⊆

6∗|B ∪ {¬φ} ∈ MIS(6∗ ∪ {¬φ})} and I(φ) = {B ∈ MIS(6∗)|B does not contain any base from

B⊢(φ)}. Then let B(φ) = B⊢(φ)
⋃

I(φ). The necessity degree of a formula φ can be computed as

follows:

N⊢
6(φ) = max

B∈B(φ)
min
φj∈B

pj. (8)

The most efficient methods for solving the MIS problem exploit the duality that exists between

minimal inconsistent subsets MIS(S), and maximal consistent subsets MCS(S), and the fact that

checking the consistency of a base is less time-consuming than checking its inconsistency [25].

Given a propositional base S, MIS(S) is obtained from MCS(S) using hitting-sets [25, 27]. It is

clear that we can use these efficient methods to compute the symbolic weights of consequences of

SPL bases. However, these composite weights can be simplified due to the knowledge of constraints

between elementary weights in C. The next section tries to operate such simplifications during the

computation of symbolic weight expressions.

5.2 Inference methods based on the derivation of prime implicates

In this section, we present another syntactic method for SPL inference, inspired by an approach to

abductive reasoning, whereby we consider elementary symbolic weights as additional propositional

variables. Namely, the elementary weights involved in the computation of N⊢
6(φ) are viewed as

assumptions that explain the certainty of φ. It suggests using assumption-based reasoning, as in

the framework of Assumption-based Truth Maintenance Systems (ATMS) [11] designed to manage

dependencies in a knowledge base.

An assumption-based theory is a pair (K,A), where K is a consistent base of propositional

formulas, and A is a set of propositional variables called assumptions. An interesting form of

reasoning in assumption-based theories is inference from assumptions to their consequences. In

the general useful case, all assumptions cannot be true simultaneously in the context of K. So it



is necessary to determine incompatible subsets of assumptions. In the ATMS framework, minimal 
incompatible subsets of assumptions are called nogoods.

DEFINITION 7
Let (K, A) be an assumption-based theory.
• Any subset E of A is called an environment

• An environment E is K-incoherent if and only if E ∪ K is inconsistent

• A nogood is a minimal (for set-inclusion) K-incoherent environment

In the following, we show how to encode an SPL base in order to use assumption-based reasoning

for computing the necessity degree of a formula. More precisely, we show how the inconsistency

degree of an SPL base can be computed from the nogoods of an appropriate assumption-based

theory. That will enable us to compute the necessity degree of a formula, owing to the following

result (Section 3.3, Proposition 2):

N⊢
6(φ) = N⊢

6∪{(¬φ,1)}(⊥) = Inc(6 ∪ {(¬φ, 1)}).

An SPL base 6 can be expressed as a standard propositional base, by turning each elementary

weight ai into a propositional variable (for simplicity still denoted by ai) interpreted as an

assumption, and replacing each SPL formula (φi, ai) by the propositional formula ¬ai ∨ φi.

DEFINITION 8

Let 6 be an SPL base. The associated assumption-based theory (K6 ,A6) is defined by:

• K6 = {¬ai ∨ φi|(φi, ai) ∈ 6}

• A6 = {ai|(φi, ai) ∈ 6}

This idea goes back to [14] where it was noticed that the set of models of a clause of the form

¬ψ ∨ φ is the same as the set of models of the possibilistic logic formula (φ, ψ) where, in the

latter expression, ψ is viewed as a Boolean symbolic necessity weight whose value depends on the

considered interpretation. Let χψ be the characteristic function of the set of models ofψ (χψ (ω)= 1

if ω |H ψ , and 0 otherwise). Then it holds

π(φ,ψ)(ω) = χ¬ψ∨φ(ω) =

{

1 if ω |H φ

1− χψ (ω) otherwise.

As shown in the previous subsection, in order to compute Inc(6), we have to consider the minimal

inconsistent subsets I1, . . . , Ip of 6∗, so that

Inc(6) = N⊢
6(⊥) =

p
max
k=1

min
φj∈Ik

aj.

Moreover, we only need the weights associated with the formulas belonging to these subsets. With

the encoding of Definition 8, it is easy to see that each minimal inconsistent subset Ik of 6∗ exactly

corresponds to a nogood Nk with respect to the assumption-based theory (K6 , A6).

So, it follows that:

PROPOSITION 7

Given an SPL base 6 and the associated assumption-based theory (K6 , A6), let {N1, · · · ,Np} be

the set of nogoods of (K6 , A6). We have: Inc(6) = N⊢
6(⊥) = max

p
k=1mina∈Nk

a.



As we are rather interested in N⊢
6∪{(¬φ,1)}(⊥), we have to determine the minimal inconsistent

subsets of (6∪{(¬φ, 1)})∗. Note that adding (¬φ, 1) to the base 6 can be encoded by adding the

formula ¬φ to the propositional base K6 . Indeed, no assumption is needed to explain the certainty

of ¬φ, as ¬φ is assumed to be certainly true. So the assumption-based theory associated with 6 ∪

{(¬φ, 1)} is (K6 ∪ {¬φ}, A6).

As a consequence, we have:

PROPOSITION 8

Consider an SPL base6, and its associated assumption-based theory (K6 ,A6) as well as a formula

φ. Let {N1, · · · ,Nk} be the nogoods of (K6 ∪{¬φ},A6). It holds that: N⊢
6(φ) = max

p
k=1mina∈Nk

a.

EXAMPLE 4

Suppose the language L has atomic variables α, β. Let 6 = {(¬α ∨ β, a), (α, b), (¬β, c),

(β, d)(¬α, e)}. 6 is encoded by:

• K6 = {¬a ∨ ¬α ∨ β,¬b ∨ α,¬c ∨ ¬β,¬d ∨ β,¬e ∨ ¬α}

• A6 = {a, b, c, d, e}

The set of nogoods of (K6∪{¬β},A6) is{{d},{a, b},{b,e}}. SoN⊢
6(β)=max(d, min(a, b), min(b, e)).

Nogoods can be computed using consequence finding algorithms (see [28] for an extensive survey

of the state of the art in the XXth century). In particular, nogoods can be characterized in terms of

special prime implicates, as explained below:

DEFINITION 9

Let Ŵ be a set of literals of the propositional language, and K a set of formulas.

• A clause κ is a Ŵ-implicate of K iff K ² κ holds and all the literals of κ belong to Ŵ.

• A clause κ is a Ŵ-prime implicate of K iff

1. κ is a Ŵ-implicate of K, and

2. for every Ŵ-implicate κ ′ of K, if κ ′ ² κ holds, then κ ² κ ′ holds.

The set of Ŵ-prime implicates of K is denoted by PIŴ(K).

PROPOSITION 9 ([28])

Let (K,A) be an assumption-based theory. Let ¬A denote the set of negative literals associated with

the variables of A. The set of nogoods of (K, A) is {Lit(δ)|¬δ ∈ PI¬A(K)}, where Lit(δ) denotes

the set of literals of δ.

Note that in the above proposition, all elements of PI¬A(K) are clauses built on ¬A, ¬δ is a

clause, so δ is a conjunction of variables of A.

As a consequence, the set of nogoods used in Proposition 8 for obtaining N⊢
6(φ) can be computed

as {Lit(δ)|¬δ ∈ PI¬A6
(K6 ∪ {¬φ})}.

Many algorithms have been designed for computing prime implicates and Ŵ-prime implicates of

a base K (see [28] for a survey). The computation of the Ŵ-prime implicates of K from the prime

implicates of K can be achieved in an efficient way:

• One of the available methods is based on the technique of ‘variable forgetting’. In words,

the Ŵ-prime implicates of K are obtained as the prime implicates of a new base, denoted by



Forget(K,Lit(K) \Ŵ), in which all the literals outside of Ŵ are eliminated from K. It remains to

compute Forget(K,Lit(K) \ Ŵ), which can be computationally expensive. Forgetting a literal ℓ

from K comes down to computing Kℓ←⊤ ∨ (¬ℓ ∧ K) where Kℓ←⊤ is what remains of K after

making ℓ true. The variable-forgetting method is used by Benferhat and Prade [7] to compute

N⊢
6(φ).

• Resolution-based approaches to the direct generation of Ŵ-prime implicates also exist, inspired

by resolution-based approaches to the computation of prime implicates.

• Other algorithms take advantage of the structure of the base K, especially when K is given in

Disjunctive Normal Form (DNF). For instance, forgetting a literal from a formula in DNF comes

down to removing each contradictory term in it, then removing the literal from each remaining

term.

Note that computing nogoods is exactly the same problem as calculating the MIS of 6∗ ∪ {¬φ}.

However, one of the benefits of the ATMS method is the fact that everything is computed in terms

of weights (encoded by assumptions). The next step is to simplify the expression of N⊢
6(φ) prior to

comparing the degrees of two formulas, using the constraints on weights. Using ATMS methods,

simplifications can be carried out in the course of calculations. This is the topic of the next section.

5.3 Simplifying complex symbolic weights

Due to Proposition 8, N⊢
6(φ) = max

p
k=1mina∈Nk

a where {N1, · · · ,Np} are the nogoods of (K6 ∪

{¬φ}, A6). So, N⊢
6(φ) can be simplified:

• first by replacing each set of weightsNi by the reduced set of weightsW = minC(Ni) consisting

of the least elementary weights in Ni according to the partial order defined by the constraints

in C,

• then by deleting the dominated sets W i in the following sense: W i is dominated by W j iff C ²

∀a ∈ Wj, ∃b ∈ Wi, a ≥ b.

Note that when performing the above simplifications, all constraints in C may be interpreted as

weak constraints. Actually, the fact that a constraint is strict is not exploited when simplifying a

max/min expression. Strict constraints will be instrumental later for deriving strict comparisons

between two complex weights N⊢
6(φ) and N⊢

6(ψ). It is natural to simplify their expressions prior

to comparing them.

In the assumption-based reasoning method, one can think of exploiting constraints on weights at

the moment we are producing them and simplify the sets of weights. Namely, these simplifications

can be made in the course of the calculations, with an appropriate logical encoding of the constraints,

interpreted as weak ones. The idea, already exploited in [7], is to complete the assumption-based

theory with formulas encoding the constraints, so that the nogoods obtained from the new base are

exactly the reduced sets of weights W i that are non-dominated.

More precisely, let N be a nogood of the assumption-based theory (K,A). Knowing that a1 ≥ a2
with {a1, a2} ⊆ N , we have mina∈N a = mina∈N \{a1} a. From Definition 7, it follows easily that,

given {a1, a2} ⊆ N , N \ {a1} is a nogood of (K ∪ {¬a2 ∨ a1},A) iff N is a nogood of (K,A).

Moreover, let Ni be dominated by Nj, meaning C ² ∀a ∈ Nj, ∃b ∈ Ni, a ≥ b. If we replace each

a ≥ b by the formula ¬b ∨ a, it is easy to see that the formula
∨

b∈Ni
¬b is no longer a ¬A−prime

implicate of (K ∪ {a → b : a ≥ b ∈ C},A).

The discussion above leads to the following logical encoding of the constraints, similar to the one

in [7]:



DEFINITION 10

Let (6, C) be an SPL base with constraints. The logical encoding of C is defined by the base KC =

{¬b ∨ a : (a > b) ∈ C or (a ≥ b) ∈ C}.

It follows that:

PROPOSITION 10

Given an SPL base (6, C) with constraints, the assumption-based theory (K6 ,A6) and the baseKC .

The reduced sets of weights that are non-dominated {W1, · · · , W k} are the nogoods of (K6 ∪KC ∪

{¬φ},A6).

In other words, from the nogoods of (K6 ∪KC ∪ {¬φ},A6), we obtain directly a simplified form

of the degree N⊢
6(φ) under the form max

p
k=1mina∈Wk

a, where the W k are reduced non-dominated

sets of weights.

Example 4 (continued) Let 6 = {(¬α ∨ β, a), (α, b), (¬β, c), (β, d)(¬α, e)} and C = {a > d, d > e,

d > c, b > e, c > e}.

• K6 = {¬a ∨ ¬α ∨ β,¬b ∨ α,¬c ∨ ¬β,¬d ∨ β,¬e ∨ ¬α}

• A6 = {a, b, c, d, e}

• KC = {¬d ∨ a,¬e ∨ d,¬c ∨ d,¬e ∨ b,¬e ∨ c}

The set of nogoods of (K6 ∪ {¬β},A6) is {{d}, {a, b}, {b, e}}. Using C we can reduce {b, e} to

{e} and N⊢
6(β) to max(d, min(a, b)). But note that

• The set of nogoods of (K6 ∪ KC ∪ {¬β},A6) is exactly {{d}, {a, b}}.

• The set of nogoods of (K6 ∪ KC ∪ {α},A6) is {{c}}. So N⊢
6(¬α) = c.

5.4 Comparing complex symbolic weights

Once we have obtained their simplified expressions, the last step is to compare the certainty degrees

N⊢
6(φ) and N⊢

6(ψ) of two formulas φ and ψ , which are max/min expressions, using the constraints

in C. We have to check whether C ² N⊢
6(φ) > N⊢

6(ψ) in order to decide if φ is more certain than ψ .

More precisely, we must prove that

p
max
k=1

min
a∈Wk

a >
q

max
j=1

min
b∈Vj

b

where the W k’s (resp. V j’s) are reduced non-dominated sets of weights obtained for φ (resp. ψ). By

construction, elementary weights within W k and V j are not comparable using constraints in C.

It amounts to finding an expression min(ai1, · · · ain) in N⊢
6(φ) which dominates all expressions

min(bj1, · · · , bjm) in N⊢
6(ψ). Then, for each j = 1· · · q, for the pair of sets (W k, V j) we have to check

whether there exists bj ∈ V j such that C |H ak > bj, for all ak ∈ W k. All in all, we have to check

whether

C |H ∃k,∀j, ∃bj ∈ Vj,∀ak ∈ Wk , ak > bj.

This is obtained by Algorithm 2 (for max–max comparison) that calls Algorithm 1 (for the inner

min–min comparisons). It is clear that this step of the computation exploits strict constraints between



elementary weights in C, possibly combined with weak ones via transitivity. As said earlier, if there 
were no strict constraints in C, there would be no way of producing strict ones here.

Example 4 (continued) 6 = {(¬α ∨ β, a), (α, b), (¬β, c), (β, d)(¬α, e)} and C = {a > d, d > e,

d > c, b > e, c > e}. We want to compare N⊢
6(β) and N⊢

6(¬α). We have: N⊢
6(β) = max(d, min(a, b))

and N⊢
6(¬α) = c. Now, as d > c ∈ C, we have max(d, min(a, b)) ≥ d > c, so we can conclude that

C ² N⊢
6(β) > N⊢

6(¬α), i.e. (6, C) ⊢πβ > ¬α.

REMARK 3

In the above considerations, we have assumed that weights attached to formulas inK are elementary.

However, this assumption can be dropped provided that the constraints inC only compare elementary

weights. Indeed, weighted formulas of the form (φ, min(a, b)) or (φ, max(a, b)) can be handled

without any problem when computing the weight of conclusions. In the assumption-based approach,

(φ, max(a, b)) can be replaced by two formulas ¬a ∨ φ and ¬b ∨ φ, and (φ, min(a, b)) by

the formula ¬a ∨¬b ∨ φ without altering the semantic content of the SPL base. Moreover, in

the assumption-based approach, any dominance constraint between max/min expressions can be

replaced by a disjunction of formulas of the form ¬a ∨ b in KC . However when comparing the

weights of conclusion and checking a possible strict dominance, the presence of strict constraints

between max/min expressions in C will be difficult to handle and the two above algorithms are

insufficient to that effect.



6 Related works

The question of encoding a partially ordered knowledge base using a symbolic counterpart of

possibilistic logic has been addressed previously in [7] (a preliminary draft being [4]). These papers

have introduced SPL, and especially proposed to encode symbolic possibilistic pairs in propositional

logic like in subsections 5.2 and 5.3. However there are several differences with the present approach,

that we discuss below.

1. For the computation of symbolic weights attached to consequences, each possibilistic formula

(φ, a) in SPL is encoded in [7] as a formula A ∨ φ where A is a variable supposed to mean

‘≥ a’, i.e. [a, 1] (while we use ¬a ∨ φ ∈ K6). Encoding an SPL possibilistic formula in one

way or another is immaterial, for the purpose of deriving and simplifying symbolic weights.

2. Constraints between weights in [7] are weak, of the form p ≥ q with complex max–min

weights, and lead to a partial preorder on C. In contrast, in our paper we can express both

weak and strict inequality constraints (while C contained only strict inequalities in [8]). Note

that the propositional encoding of C using material implications between reified elementary

weights can only express a weak inequality between them (e.g. [a, 1] ⊆ [b, 1]).

3. In [7], the necessity of drawing plausible conclusions from an SPL base while only using

weak constraints led them to propose a definition of semantic inference on weights, we denote

by C |∼ p > q, very different from the one in our approach. They define C |∼ p > q as

C ² p ≥ q and C 6² q ≥ p. This is somewhat analogous to strict Pareto order between vectors.

However, following this view, we could infer N6(α ∨ β) > N6(α) from 6 = {(α, a), (β, b)}

and C = ∅. Indeed, one has N6(α) = a,N6(α ∨ β) = max(a, b), C ² max(a, b) ≥ a but

not C ² a ≥ max(a, b), hence C |∼ max(a, b) > a. This definition sounds questionable,

unless we assume that distinct variables always take different values as in [4]. It is problematic

because it amounts to interpreting strict inequality as the impossibility of proving a weak one,

which is non-monotonic in essence. In our method, p > q holds provided that it holds for all

valuations of p, q in accordance with the constraints, which is a more standard interpretation of

strict inequality between two symbolic expressions. Under our semantics, the absence of strict

constraints forbids the derivation of strict relative certainty between formulas.

4. Finally in [7], the focus is on deducing plausible conclusions only, i.e. conclusions whose

weight is strictly greater than the level of inconsistency, in other words, formulas φ such that

C |∼ N6(φ)> N6(⊥), while in our paper we try to build a partial order on the language, where

φ > ψ whenever C ² N6(φ) > N6(ψ).

SPL is different from conditional logics due to Lewis [26] or Halpern [24], or yet the logic

of relative certainty in [31]. Such logics syntactically encode the domination constraints between

propositional formulas, using higher order atomic formulas of the formψ > φ that model statements

expressing that ψ is at least as certain as φ. Conjunctions, negations and disjunctions of such atomic

formulas are allowed.

A major difference with conditional logics is that in SPL, the SPL base 6 = {(φ, a), (ψ , b)} with

C = {a > b} does not imply that (6, C) |H φ > ψ . For instance, if φ |H ψ , we shall only conclude

that (6, C) |H ψ ≥ φ, since 6 ⊢π (ψ , max(a, b)). In contrast, assuming that ψ > φ holds in a

conditional logic, while φ |H ψ , will lead to a contradiction as ψ > ψ can then be derived from the

axioms of such conditional logic (e.g. in [31], from the orderliness axiom stating that fromψ > φ we

can derive ψ ∨ χ > φ ∧ ξ , and the irreflexivity of the relation >). On the contrary, SPL restores an

ordering of formulas compatible with classical entailment, while a knowledge base in a conditional

logic is a fragment of the final partial ordering on the language.



Another important difference is that SPL embeds a minimal commitment assumption (through 
the definition of the symbolic impossibility distribution ι6 on the interpretations), while conditional 
logics do not. For instance, in the conditional logic of [31], whose semantics is in terms of partial 
orderings between sets of interpretations, we conclude neither φ > ψ nor φ > ξ from φ > ψ ∧ ξ , 
where ψ ∧ ξ is consistent, and, say, ψ ∧ ξ |H φ. In SPL, from 6 = {(φ, a), (ψ ∧ ξ , b)} and C = 
{a > b}, we can compute N6(ψ) = N6(ξ ) = b (minimal commitment), and check that C |H N6(φ) > 
N6(ψ) = N6(ξ ). So, in SPL, we conclude that both φ > ψ and φ > ξ hold. In other words, SPL 
derives a conclusion valid only for the minimally specific necessity measure in agreement with the 
constraints.

In contrast, the conditional logic of [31] does not assume minimal commitment. Its conclusions 
are valid for all necessity measures in agreement with the partial certainty order (for this semantics 
of the conditional logic of [31], see [9]). Concluding φ > ψ or φ > ξ from φ > ψ ∧ ξ in the 
conditional logic of [31] would mean to deduce that one of the statements ‘N(φ) > N(ψ), ∀N such 
that N(φ) > N(ψ ∧ ξ )’ or ‘N(φ) > N(ξ ), ∀N such that N(φ) > N(ψ ∧ ξ )’ is valid, which is clearly 
not the case. So the conditional logic does not lend itself to a semantics in terms of an unknown 
underlying necessity ordering constrained by the comparative knowledge base. Indeed, under this 
epistemic view, a constraint such as φ > ψ ∧ ξ means ∃N , N(φ) > N(ψ ∧ ξ ). One should conclude 
from it that ∃N , N(φ) > N(ψ) or ∃N , N(φ) > N(ξ ), since N(ψ ∧ ξ) = min(N(ψ), N(ξ)), i.e. one of 
N(φ) > N(ψ) or N(φ) > N(ξ ) holds for the actual N . In fact, SPL chooses the least specific among 
them, for which N(φ) > N(ψ) and N(φ) > N(ξ ) hold at the same time.
Finally, inferring φ > ψ from an SPL base with constraints (6, C) comes down to inferring 

N6(φ) > N6(ψ) ∈ (0, 1] for all standard possibilistic bases 6v obtained by replacing symbolic 
weights ai by numbers v(ai) ∈ (0, 1] in agreement with C. In contrast, a knowledge base in the 
conditional logic of relative certainty [31] cannot be clearly interpreted as a partially known total 
ordering of formulas.

7 Conclusion

This paper is an extensive presentation of Symbolic Possibilistic Logic (SPL), with partially ordered 
symbolic weights. It is one possible approach to the study of inference from a partially ordered 
propositional base. We provide a proof of the soundness and completeness of this logic, that 
generalizes the completeness proof of standard possibilistic logic, based on maximal consistent 
subsets. Two syntactic inference methodologies are outlined, which allow us to infer new formulas 
with complex symbolic weights (necessity degrees of formulas): one that requires the enumeration 
of minimal inconsistent subsets to calculate necessity degrees; the other one uses results from 
the consequence finding literature (assumption-based approaches). It enables weighted formulas 
and constraints over weights to be encoded in propositional logic, so as to simplify the max/min 
expressions attached to deduced formulas during the inference process. Then such simplified 
max/min expressions need to be compared in view of the existing domination constraints between 
elementary weights.
This paper clearly shows the qualitative nature of possibilistic logic, even if in its original form, 

it handles numbers attached to propositional formulas. It is shown that possibilistic logic can be 
viewed as a variant of assumption-based reasoning. The use of symbolic weights may be instrumental 
when only partial knowledge of the strength or the priority between formulas is available, hence 
making possibilistic logic closer to real cognitive situations. Regarding future research, it is possible 
to use SPL in preference modeling [21], interpreting symbolic weights as priorities. Moreover, it 
is tempting to extend the syntax of SPL so as to allow for negations and disjunctions of symbolic 
weighted formulas, so as to provide a generalized possibilistic logic extension of SPL in the style 
of [20].
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Appendix A. Ordinal semantics of possibilistic bases

In standard possibilistic bases, we recall that 1−π6(ω) = maxj:φj /∈6(ω) pj which corresponds to the

so-called ‘best-out’ ordering [2], defined as follows. Let ⊲6 be the total pre-order on Ω defined by:

ω⊲6ω′ if and only if ∀φj ∈ 6(ω), ∃ψi ∈ 6(ω′) such that pi ≥ pj

PROPOSITION 11 ([2])

π6(ω) ≥ π6(ω
′) if and only if ω⊲6ω′.

The total pre-order ⊲6 allows us to build a totally pre-ordered deductive closure based on a pre-

ordering < as follows:

φ < ψ if and only if ∀ω ∈ [φ], ∃ω′ ∈ [ψ], ω′⊲6ω



expressing the relative certainty of propositions in agreement with necessity measures. In particular,

we have [12]:

φ ≻ ψ if and only if N6(φ) > N6(ψ).

It is important to notice that the pre-order < does not depend on the precise values of the weights pi

of formulas, if the priority order indicated by the pi’s remains unchanged. In this sense possibilistic

logic is not a genuinely numerical uncertainty logic.

As in standard possibilistic logic, we can define an ordinal semantics for symbolic possibilistic

bases in SPL. Let 6 be an SPL base, and ω, ω′ ∈ Ω two interpretations. The possibilistic ordering

reads

ω >6 ω′ iff C ² ι6(ω) < ι6(ω′).

We can again define the best-out ordering [2]:

ω ⊲6 ω′ iff ∀φj ∈ 6(ω), ∃ψi ∈ 6(ω′) such that C ² pi > pj.

The possibilistic ordering >6 and the best-out ordering coincide in standard possibilistic logic.

However, if weights are symbolic, the best-out ordering semantics is at least as demanding, as

suggested in [31].

PROPOSITION 12

ω ⊲6 ω′ implies ω > 6ω′.

PROOF. ω ⊲6 ω′ reads ∀φj ∈ 6(ω), ∃φi ∈ 6(ω′), ∀v |H C, v(pi) > v(pj).

So in this relation, for each φj there exists some φi, such that the inequality v(pi) > v(pj) should

hold for all valuations; so the choice of i depends on j only. The relation ω⊲6 ω′ implies, exchanging

the existential and the universal quantifiers:

∀φj ∈ 6(ω), ∀v ² C, ∃φi ∈ 6(ω′) with v(pi) > v(pj).

That is equivalent to the following formulation:

∀v ² C,∀φj ∈ 6(ω), ∃φi(v) ∈ 6(ω′) : v(pi) > v(pj). (A.1)

Now the choice of φi depends on v and φj. But, fixing v, we have v(pi) ∈]0, 1], and we can consider

φi∗ such that v(pi∗) = max{v(pi) : φi 6∈ 6(ω′)} and conclude that (take i = i∗, ∀j in (A.1)):

∀v |H C, ∃φi(= φi∗) ∈ 6(ω′), ∀φj ∈ 6(ω), v(pi) > v(pj)

which precisely means C |H maxj:φj 6∈6(ω) pj < maxi:φi 6∈6(ω′) pi, i.e. ω >6ω′.

Note that Equation (A.1) is an alternative way of extending the best-out ordering to symbolic

weights, as it requires that the standard best-out property holds for any valuation, which as we

see is equivalent to ordering >6 on interpretations. It is an open problem whether the converse

of Proposition 12 is valid or not.



As a consequence of Proposition 12 we have the following result:

COROLLARY 4

Let 6 be an SPL base with constraints. The property ‘∀ω ∈ [φ], ∃ω′ ∈ [ψ], ω′ ⊲6 ω’ implies C |H 
N6(φ) > N6(ψ).

PROOF. Assume ∀ω ∈ [φ], ∃ω′ ∈ [ψ], ω′ ⊲6 ω. Due to Proposition 12, it follows that: ∀ω ∈ [φ], ∃ω′ 

∈ [ψ], ω′ >6 ω. This is equivalent to: ∀ω ∈ [φ], ∃ω′ ∈ [ψ], ∀v |H C, v(ι6(ω′)) < v(ι6(ω)). This 
implies, exchanging the existential and the universal quantifiers: ∀v |H C, ∀ω ∈ [φ], ∃ω′ ∈ [ψ], 
v(ι6(ω′)) < v(ι6(ω)). That means: ∀v |H C, v(minω6²φ ι6(ω)) > v(minω6²ψ ι6(ω′)), i.e. C |H N6(φ) 
> N6(ψ).




