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Maximum likelihood is a standard approach to computing a probability distribution that best fits a given 
dataset. However, when datasets are incomplete or contain imprecise data, a major issue is to properly 
define the likelihood function to be maximized. This paper highlights the fact that there are several 
possible likelihood functions to be considered, depending on the purpose to be addressed, namely whether 
the behavior of the imperfect measurement process causing incompleteness should be included or not in 
the model, and what are the assumptions we can make or the knowledge we have about this 
measurement process. Various possible approaches, that differ by the choice of the likelihood function and/
or the attitude of the analyst in front of imprecise information are comparatively discussed on examples, 
and some light is shed on the nature of the corresponding solutions.

1. Introduction

The key role of likelihood functions in statistical inference was first highlighted by Fisher [16] with the maximum likeli-
hood principle. In his seminal book, Edwards ([15], p. 9) defines a likelihood function as being proportional to the probability 
of obtaining results given a hypothesis, according to a probability model:

Let P (R|H) be the probability of obtaining results R given the hypothesis H , according to the probability model . . . The 
likelihood of the hypothesis H given data R , and a specific model, is proportional to P (R|H), the constant of proportion-
ality being arbitrary.

Edwards mentions that “this probability is defined for any member of the set of possible results given any one hypothesis 
. . . As such its mathematical properties are well-known. A fundamental axiom is that if R1 and R2 are two of the possible 
results, mutually exclusive, then P (R1orR2|H) = P (R1|H) + P (R2|H)”.

✩ This paper is part of the Virtual special issue on Soft Methods in Probability and Statistics, edited by Barbara Vantaggi, Maria Brigida Ferraro, Paolo
Giordani.

✩ A preliminary version of this paper [7] was presented at the 8th Conference on Soft Methods in Probability and Statistics (SMPS) in Roma, September, 
12–14, 2016.
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In other words, a fundamental axiom is that the probability of obtaining at least one among two results is the sum 
of the probabilities of obtaining each of these results. In particular, a result in the sense of Edwards is not any kind of 
event, it is an elementary event. Only elementary events can be observed. For instance, when tossing a die, and seeing the 
outcome, you cannot observe the event “odd”, you can only see 1, 3 or 5. So, a likelihood function is proportional to the 
conditional probability of an elementary event (the observed sample), where the condition part (the hypothesis) is a value 
of some model parameter. For instance, the conditional probability of the sure event cannot be viewed as the likelihood of 
the hypothesis given the sure event.

If this point of view is accepted, what becomes of the likelihood function under incomplete or imprecise observations? 
To properly answer this question, one must understand what is a result in this context. Namely, if we are interested in a 
certain random phenomenon modeled by a random variable, observations we get in this case may not directly inform us 
about this random variable. Due to the interference with an imperfect measurement process, observations will be set-valued 
[4,5]. So, in order to properly exploit such incomplete information (called coarse data in the literature [21]), we must first 
decide what to model:

1. the random phenomenon through its measurement process;
2. or the random phenomenon despite its measurement process.

In the first case, imprecise observations are considered as results, and we can construct the likelihood function of a random 
set, whose realizations are sets. These sets contain precise but ill-known realizations of the random variable of interest, 
to which we have no direct access. We say that this unreachable random variable is latent. Actually, most authors are 
interested in the other point of view. They consider that outcomes are the precise, although ill-observed, realizations of the 
random phenomenon, and wish to reconstruct a distribution for the latent variable. However in this case there are as many 
potential likelihood functions as precise datasets in agreement with the imprecise observations. Authors have proposed 
several ways of addressing this issue. The most traditional approach is based on the EM algorithm [11,29,13], which is an 
iterative procedure for efficient maximization of the likelihood of observed data. It constructs a distribution on the latent 
variable that minimizes divergence from the parametric model in agreement with the available data. It can also serve to 
reconstruct a sample of the latent variable.

In this paper, we propose a formal setting for the modeling of imprecisely observed random experiments, and define the 
three likelihood functions that can be built in this framework. Apart from the likelihood function based on available obser-
vations, there is the likelihood function based on outcomes of the latent random variable that was imprecisely observed, and 
the likelihood function based on the joint probability induced by pairs of outcomes and their measurement. The two latter 
likelihood functions are imprecisely known and we compare several alternatives to the maximization of the likelihood of 
imprecise observations, such as the maximax approach, and the robust approach to incomplete data. It includes more recent 
proposals by Hüllermeier [22], or Guillaume and Dubois [18], or Plass et al. [35]. We also discuss the use of assumptions 
on the measurement process such as the coarsening-at-random [21] and the superset assumptions, that help relating the 
various likelihood functions. Note that in this paper we do not consider the issue of imprecision due to too small a number 
of precise observations (see for instance, Masson and Denœux [32], or Serrurier and Prade [44]). We assume that the cause 
of imprecision lies in the incomplete description of the random experiment outcomes, not in the scarcity of observations.

2. The random phenomenon and its measurement process

Let a random variable X : Ä → X represent the outcome of a certain random experiment. For the sake of simplicity, let 
us assume that its range X = {a1, . . . , am} is finite. Suppose that observations of X are imprecise, namely let Ŵ : Ä → ℘(X )

denote the (observable) multi-valued mapping representing our (imprecise) perception of X . So, if ω occurs then all we 
know is that X(ω) ∈ Ŵ(ω) ⊆ X . In other words, we assume that X is a selection of Ŵ, i.e. X(ω) ∈ Ŵ(ω), ∀ ω ∈ Ä. This 
setting is very close to the one of Dempster [10] who introduces a special case of upper and lower probabilities, based 
on random sets, later interpreted by Shafer [45] as belief and plausibility functions. The issue of set-valued data has been 
discussed in Ref. [5] from the point of view of descriptive statistics. In this paper we start addressing inferential statistics.

Let Im(Ŵ) = {A1, . . . , Ar} ∈ ℘(X ) denote the image of Ŵ (the collection of possible set-valued outcomes). We can 
equivalently suppose that the imperfect measurement process is driven by another random variable Y , with finite range 
Y = {b1, . . . , br}, that provides incomplete reports of observations of X . Namely, Y (ω) = b j means that the measurement 
tool reports Ŵ(ω) = A j . The cardinality of the image of Im(Y ) =Y = {b1, . . . , br} thus coincides with that of Im(Ŵ) and then 
there is a bijection between Im(Ŵ) and Y as follows:

Y (ω) = b j iff Ŵ(ω) = A j, j = 1, . . . , r,

or yet we can assume that b j = A j . Let P (X, Y ) be the joint probability describing X and its measurement.

In some applications, the variable X is made of two components Xo and Xu respectively corresponding to observed and 
unobserved variables with respective domains Xo and Xu , and Ŵ is of the form {Xo} ×Ŵu , i.e., Y = {{X0} ×Ŵu}. The observed 
variable Y can then be identified with the random vector Y = (Xo, Yu), where Yu = Ŵu .

This framework highlights the difference between the outcome X = ak (its probability is P (X = ak)), the fact that event 
A j occurs whenever the outcome X = ak belongs to A j (its probability is P (X ∈ A j)), and observing the result A j via the 



measurement process (its probability is P (Y = A j)). The latter is always an elementary event, even when it corresponds to 
an imprecise observation of X = ak .

In the paper we assume the results of experiments are available in the form of relative frequencies p̂. j =
n. j

n
, where

n. j denotes the number of observations of b j = A j in the sample, and n is the sample size. The probability distribution
(p̂.1, . . . , p̂.r) on Y can also be viewed as a Dempster–Shafer mass assignment m on ℘(X ) [45], letting m(A j) = p̂. j for 
j = 1, . . . r inducing lower probabilities in the sense of [10] in the form of a belief function Bel(A) =

∑

E⊆A m(A). This 
Dempster–Shafer mass assignment defines a convex set {P X : P X (A) ≥ Bel(A), ∀A ⊆X } of probabilities on X , hence of joint 
probabilities on X ×Y with known marginals p̂. j for j = 1, . . . , r on Y .

An alternative way of modeling the generation of coarse data consists in using so-called coarsening variables [20]. It 
supposes the existence of a random variable C valued on a finite space C , and a function F :X × C → ℘(X) \ {∅} such that 
Y = F (X, C).

We overview below two different ways to represent the information about the joint distribution of the random vector 
(X, Y ). Subsection 2.1 will refer to the outcome of the experiment X and the “coarsening” or “imprecisiation” process1 that 
leads us to just get imprecise observations of X , described by Y . Subsection 2.2 will represent the joint distribution of (X, Y )

the other way around, by means of the marginal probability of the observations (Y ) and the conditional probability of X
given Y . The “imprecisiation” or “disambiguation” views respectively correspond to what Little [27] calls selection models 
and pattern mixture models, albeit expressed in the framework of missing data using coarsening variables.

2.1. Generation and imprecisiation processes

Let us consider the following matrix (M|p):





p.1|1. . . . p.r|1. p1.

. . . . . . . . . . . .

p.1|m. . . . p.r|m. pm.





where

• p. j|k. = P (Y = A j |X = ak) denotes the (conditional) probability of observing b j = A j if the true outcome is ak and

• pk. = P (X = ak) denotes the probability that the true outcome is ak .

Such a matrix determines the joint probability distribution P (X, Y ) modeling the underlying generating process plus the 
connection between true outcomes and incomplete observations. More specifically, the vector (p1., . . . , pm.)

T characterizes 
the underlying generating random process while the matrix M = (p. j|k.)k=1,...,m; j=1,...,r is the so-called mixing matrix ([46]) 
that represents the imprecisiation process. In the setting of Dempster’s upper and lower probabilities [10], nothing is as-
sumed about the matrix M and (p1., . . . , pm.)

T is unknown. This is not the case in more recent works whose aim is to 
retrieve information about X from information about Y , using a model of the measurement process, by means of some 
assumption on the mixing matrix M .

2.1.1. Some particular settings and their characteristic matrices

• Partition. Suppose that {A1, . . . , Ar} forms a partition of X . Therefore, we can easily observe that the probabilities
P (Y = A j |X = ak) = 1 if ak ∈ A j , and 0 otherwise, ∀ j, k. Then, we can divide the m elements of X into r categories

of respectively k1, . . . , kr elements each. We can denote X = {a11, . . . , a1k1 , . . . , ar1, . . . , arkr } and particularize the above
matrix as follows:























1 . . . 0 p11.

. . . . . . . . . . . .

1 . . . 0 p1k1.

. . . . . . . . . . . .

. . . . . . . . . . . .

0 . . . 1 pr1.
. . . . . . . . . . . .

0 . . . 1 prkr .























1 The term “coarsening” is commonly used in the literature of statistics with incomplete data. Notwithstanding, the idea of coarsening has been also
linked to the idea of partition and indiscernibility. For instance, in Rough Set Theory [34] it means “change of granularity”. Also, in Shafer’s Theory of
Evidence [45], it is linked to the idea of defining a partition of indiscernible elements. Indeed in some cases, within the literature of coarse statistics the
notion of coarsening variable comes down to choosing a partition, one element of which is the imprecise observation. So the term “coarsening process”
seems to often underlie this partition-based modeling of imprecise observation generation. However in this paper this is modeled by a mere multi-mapping

in the style of Dempster [10]. In the rest of the paper, we will use the term “imprecisiation”, that does not presuppose coarse data to be generated through
partitioning.



where pil. = P (X = ail) denotes the (marginal) probability that X takes the value ail . Y is then a function of X , Y =

f (X). In this case, the joint distribution of (X, Y ) is determined by the marginal distribution of X . This procedure 
determines an equivalence relation over X :

aiRa j ⇔ f (ai) = f (a j),

and therefore, a collection of equivalence classes, 5 = {A1, . . . , Ar}, determining a partition of X . It is clear that in 
this case P (X, Y ) is generated by a coarsening variable reduced to a constant ( f (X) = F (X, c)). This setting is the one 
proposed by Dempster et al. [11] in their famous paper on the EM algorithm, presented as an approach to obtaining a 
maximum likelihood estimate (MLE) under incomplete information.2

• Miss-or-observe setting. In this case, we assume that either the value of X is observed precisely or that it is not
observed at all. Then, r =m + 1 and {A1, . . . , Ar} = {X , {a1}, . . . , {am}}.

Let P (Ŵ =X |X = ak) = αk, P (Ŵ = {ak}|X = ak) = 1 − αk, k = 1, . . . , m. The mixing matrix M is therefore of the form:









out.\obs. X {a1} {ai} {am}

a1 α1 1− α1 . . . 0

ai αi . . . 1− αi

am αm . . . . . . 1− αm









This is the situation of missing data [39]. In this case, there is a coarsening variable C with range {0, 1}, such that 
F (X, C) is a singleton in X if C = 1 and is X otherwise. We can see that P (C = 0|X = ai) = 1 − αi = P (Y = X |X = ai). 
An important particular case is when the probabilities αi ’s are constant, that is, the probability of missing data does not 
depend on the outcome of the latent variable. It is also a particular case of the missing-completely-at random (MCAR) 
assumption known in the literature [28]. If the latent variable X is made of two components Xo and Xu respectively 
corresponding to observed and unobserved variables, the MCAR assumption then reads P (Ŵu = Xu |Xo, Xu) = P (Ŵu =

Xu) = α. Another usual assumption is the missing-at-random one (MAR), that reads P (Ŵu = Xu |Xo, Xu) = P (Ŵu =

Xu |Xo).

• Coarsening at random assumption (CAR). This notion was introduced by Heitjan and Rubin (see [21]). According to
this assumption, the underlying data do not affect the observations, i.e., an observation Y = A j is not influenced by the
specific value taken by the random variable X inside the set A j . Mathematically, this condition is expressed as follows:

P (Y = A j|X = ak) = P (Y = A j|X = ak′), ∀k,k′, with ak,ak′ ∈ A j, ∀ j,

or equivalently,

P (Y = A j|X = ak) = P (Y = A j|X ∈ A j), j = 1, . . . , r.

A generalization of this notion has been recently considered in a machine learning context by J. Plass et al. in References 
[35,36], where X involves observed and unobserved variables, respectively Xo and Xu . Under the assumption CAR, 
which generalizes MCAR, set-valued observations Ŵu are assumed to be independent from the true value of Xu . Let 
us notice that this generalized assumption collapses into the original CAR definition whenever Xo is a constant. The 
authors of [35,36] also introduced a kind of “orthogonal” assumption in this machine learning context called “subgroup 
independence (SI)”. Under this assumption, the set-valued observations Ŵu are assumed not to be influenced by the 
value of Xo . Testability of this assumption is studied by the authors, a problem that falls out of the scope of our 
manuscript.

• Coarsening Completely at Random Assumption (CCAR) ([39]). The natural definition would be that of imprecise obser-
vations Y independent of actual outcomes for X , i.e., P (X, Y ) = P (X)P (Y ). However Jaeger [25] points out that this
definition is problematic because it allows for joint outcomes (x, A) such that x 6∈ A. Enforcing the consistency between

set-valued observations (x(ω) ∈ Ŵ(ω)), the CCAR assumption must refer to a coarsening variable. Jaeger [25] proposes

that P (X, Y ) is CCAR with respect to a coarsening variable C if P (C = c|X = ak) = P (C = c|X = ak′ ) for every pair
ak, ak′ ∈X of elements with positive probability, i.e., included in the set {x ∈ X : P (X = x) > 0}.

• Superset assumption ([23]). Again we consider observed and unobserved variables with respective domains Xo and Xu .

We assume that when X = x is fixed, the conditional P (Y = B|Xu = x) does not depend on B , whenever x ∈ B and is
0 otherwise. For every x ∈ Xu the number of subsets of X that contain it is the same. Therefore P (Y = B|Xu = x) =
1/2#Xu−1 .

This assumption is dual to the missing-at-random assumption in the sense that in the latter, Y = B is fixed and P (Y =

B|Xu = x) does not depend on the choice of x inside B , while in the superset assumption, the set-valued observation
induced by X = x can be any superset of x with equal probability. This assumption is often presented as capturing the
idea of “lack of information” about the measurement process. In fact, the uniform distribution is used to reflect a balance
among outcomes when no information is available. This modeling of ignorance has been questioned in the context of

2 Curiously, the connection between this approach and the more general setting for incomplete information of [10] is not made by Dempster et al. [11].
It may be surprising as Dempster is also famous for his work on the foundations of evidence theory.



non additive representations of belief (e.g., Shafer belief functions [45], or Walley’s imprecise probability theory [50], 
where a complete lack of information is usually represented by means of a vacuous possibility distribution).
The superset assumption can be particularized to the case where Xo is a constant. It is then to the original general 
superset assumption what the original CAR assumption is to the generalized version considered by J. Plass et al. [35,36]
The next example illustrates both assumptions.

Example 1. A coin is tossed. The random variable X : Ä → X , where X = {h, t}, represents the result of the toss. We do 
not directly observe the outcome, that is reported by Peter, who sometimes decides not to tell us the result. The rest of 
the time, the information he provides about the outcome is faithful. Let Y denote the information provided by this person 
about the result. It takes the “values” {h}, {t} and {h, t}.

This example corresponds to the following matrix (M|p):
(

1− α 0 α p

0 1− β β 1 − p

)

The marginal distribution of X (outcome of the experiment) is given as

– p1. = P (X = h) = p,

– p2. = P (X = t) = 1 − p.

The joint probability distribution of (X, Y ) is therefore determined by:




X\Y {h} {t} {h, t}

h (1− α)p 0 αp

t 0 (1− β)(1− p) β(1− p)





The marginal distribution of Y (information provided by Peter) is thus:

– p.1 = P (Y = {h}) = P (Y = {h}, X = h) + P (Y = {h}, X = t) = (1 − α) · p + 0 = (1 − α) · p,
– p.2 = P (Y = {t}) = P (Y = {t}, X = h) + P (Y = {t}, X = t) = 0 + (1 − β) · (1 − p) = (1 − β) · (1 − p),

– p.3 = P (Y = {h, t}) = P (Y = {h, t}, X = h) + P (Y = {h, t}, X = t) = α · p + β · (1 − p).

Under the CAR assumption, we have that α = β , i.e.,

P (Y = {h, t}|X = h) = P (Y = {h, t}|X = t).

Let us now consider the (binary) random variable C that takes the value C = 0 when Y = {h, t} and C = 1 otherwise. Let 
F be defined as F (x, 0) = {h, t} and F (x, 1) = {x}. The CCAR assumption wrt the coarsening variable C is equivalent to the 
above mentioned CAR condition.

The superset assumption is more restrictive and assumes that

– α = P (Y = {h, t}|X = h) = P (Y = {h}|X = h) = 0.5 and

– β = P (Y = {h, t}|X = t) = P (Y = {t}|X = t) = 0.5

and therefore P (Y = {h, t}) = 0.5. In words, no matter what the true outcome is (heads or tails) Peter does not give any 
information about it 50% of the time. The only remaining parameter is p.

This example demonstrates that the superset assumption represents significant knowledge on the observation process. 
This is the price paid if we need to provide a stochastic model of the measurement process, as the uniform distribution 
over all supersets of {x} is the least prejudiced probabilistic assumption we can make. The superset assumption is in fact 
stronger than the CAR assumption: since under the former assumption, P (Y = B|Xu = x) only depends on the number of 
subsets of X that contain x, and this number is the same for all x, it follows that P (Y = B|Xu = x) = P (Y = B|Xu = x′) for 
x, x′ ∈ B , which is CAR.

2.2. Imprecise observations and their disambiguations

We can alternatively characterize the joint probability distribution of (X, Y ) by means of the marginal distribution of Y
(observations) and the conditional probability of each result X = ak , knowing that the observation was Y = b j (or equiva-
lently Ŵ = A j), for every j = 1, . . . , r.

The new matrix (M ′|p′) can be written as follows:




p1.|.1 . . . pm.|.1 p.1

. . . . . . . . . . . .

p1.|.r . . . pm.|.r p.r
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where

• pk.|. j = P (X = ak|Y = A j) denotes the (conditional) probability that the true value of X is ak if we have been reported
that it belongs to A j ;

• p. j = P (Y = b j) = P (Y = A j) denotes the probability that the generation plus the imprecisiation processes lead us to
observe A j .

Such a matrix also determines the joint probability distribution modeling the underlying generating process plus the con-
nection between true outcomes and incomplete observations. More specifically, the vector (p.1, . . . , p.r)

T characterizes the 
observation process while the matrix M ′ = (pk.|. j)k=1,...,m; j=1,...,r represents the conditional probability of X (true outcome) 
given Y (observation).

Some recent studies on “partial identification” (see [30], for instance) can be somehow related with this framework. They 
consider situations where parameters of interest are partially identified (see [31]). For instance, when the parameter is real-
valued, the so-called “identification region” is a subset of the real line. Imbens and Manski [24] propose the construction of 
confidence intervals that cover every element in the region with a specific confidence level whose bounds can be computed 
from sample data.

In this regard, the marginal distribution on X (p1., . . . , pm.) is sometimes partially identified, on the basis of our knowl-

edge of the marginal distribution on Y . In fact, let us notice that, according to the total probability theorem, we can write:

pk. =
∑

j

p. j · pk.|. j, ∀k = 1, . . . ,m.

Furthermore, partial information about the matrix M ′ is sometimes available. As consequence, confidence regions for any 
parameter inducing the marginal distribution (p1., . . . , pm.) on X can be derived from the above information, on the basis 
of observable frequencies, that may allow us to provide confidence estimations for the marginal distribution on Y .

Consider for instance a miss-or-observe problem, where Y takes r =m + 1 values of the form b j = {a j}, j = 1, . . . , m and 
bm+1 = {X }. The equality P (X = ak|Y = {ak}) = 1 holds, for every k = 1, . . . , m. Furthermore, P (X = ak|Y = X ) is known to 
be included in the unit interval. Based on the above information and on observable marginal frequencies, we can compute 
set-valued confidence estimations for every (p1., . . . , pm.) or alternatively, for a parameter determining it.

One example of assumption in this setting is the Uniform Conditional Distribution Assumption. In this case we assume 
that if A j is observed, all the possible outcomes ak ∈ A j are equally probable, due to a symmetry argument such as the 
insufficient reason principle. The conditional distribution is then given by:

pk.|. j =

{

1
#A j

, if ak ∈ A j

0 otherwise.

Knowing the distribution on Y (which can be estimated from the data, the marginal distribution on X can be estimated as 
well since:

pk. =

r
∑

j=1

pk.|. j · p. j =
∑

j:A j∋ak

1

#A j
p. j.

Note that this assumption is similar to the superset assumption, exchanging the roles of subsets and elements of X . In the 
coin-tossing example, it comes down to assuming

P (X = h|Y = {h, t}) = P (X = t|Y = {h, t}) = 0.5

instead of P (Y = {h, t}|X = h)) = P (Y = {h, t})|X = t) = 0.5.

Viewing a probability distribution on Y as a Dempster–Shafer mass assignment m on ℘(X ) as mentioned at the begin-
ning of this section, P X , as defined above, is the pignistic transform [47] of the belief function induced by the following 
mass assignment:

m(A j) = p. j, ∀ j = 1, . . . , r.

or yet its Shapley value. More generally, fixing a mixing matrix M ′ comes down to picking a probability distribution on X
from the convex credal set {P X : P X (A) ≥ Bel(A), ∀A ⊆X }.

3. Maximum likelihood strategies under incomplete information

Each matrix (M|p) or (M ′|p′) is enough to univocally characterize the joint distribution of (X, Y ). For each pair (k, j) ∈
{1, . . . , m} × {1, . . . , r}, let pkj denote the joint probability pkj = P (X = ak, Y = A j). According to the nomenclature used in 
the preceding subsections, the respective marginals on X and Y are denoted as follows:

• p. j =
∑m

k=1 pkj will denote the mass of Y = A j , for each j = 1, . . . , r, and



• pk. = P (X = ak) =
∑r

j=1 pkj will denote the mass of X = ak , for every k.

Now, let us assume that the above joint distribution is characterized by means of a (vector of) parameter(s) θ ∈ 2 (in the 
sense that entries in M and M ′ can be written as functions of θ ). We naturally assume that the number of components of 
θ is less than or equal to the dimension of both matrices, i.e., it is less than or equal to min{m × (r + 1), r(m + 1)}. In other 
words, the approach uses a parametric model such that a value of θ determines a joint distribution on X × Y . When the 
joint probability measure is the parametric distribution associated to the (vector of) value(s) θ of the parameter, we will 
respectively use the nomenclature

• pθ
kj

= P (X = ak, Y = A j; θ),

• pθ
k.

=
∑r

j=1 pθ
kj

= P (X = ak; θ) and

• pθ
. j =

∑m
k=1 pθ

kj
= P (Y = A j; θ).

Let us consider a sequence Z = ((X1, Y1), . . . , (XN , YN)) of N iid random variables that are “copies” of Z = (X, Y ). We 
will use the nomenclature z = ((x1, y1), . . . , (xN , yN)) ∈ (X ×Y)N to represent a specific sample of the vector (X, Y ). Thus, 
y = (y1, . . . , yN) will denote the observed sample (an observation of the vector Y = (Y1, . . . , YN )), and x = (x1, . . . , xN )

will denote an arbitrary artificial sample from X for the unobservable (latent) variable X , that we shall vary in X N . Let 
(G1, . . . , GN ) be the sequence of subsets of X that corresponds to the observed sample y (namely if Y j = y j it corresponds 
to X j ∈ G j).

We can describe any sample z in frequentist terms assuming exchangeability:

• nkj =
∑N

i=1 1{(ak,b j)}(xi, yi) is the number of repetitions of (ak, b j) in sample z;
•

∑m
k=1 nkj = n. j be the number of observations of b j = A j in y;

•
∑r

j=1 nkj = nk. be the number of appearances of a j in x.

Clearly, 
∑m

k=1 nk. =
∑r

j=1 n. j = N . Let the reader notice that, once a specific sample y = (y1, . . . , yN) ∈ YN has been ob-
served, the number of nkj repetitions of each pair (ak, b j) ∈ X × Y in the sample, can be expressed as a function of 
x = (x1, . . . , xN ). Moreover, in the following, X y denotes the collection of feasible marginal samples (x1, . . . , xN ) of X , in 
accordance with the observation y:

X
y = {x ∈ X

N : xi ∈ G i, i = 1, . . . ,N}

and likewise Zy denote the collection of feasible (joint) samples (z1, . . . , zN) of Z , in accordance with the observation y:

Z
y = {z ∈ (X ×Y)N : zi = (xi, yi) and xi ∈ G i, i = 1, . . . ,N}.

3.1. Which likelihood function?

We may consider three different likelihood functions (and their respective logarithms), depending on whether we refer 
to the observed sample y = (y1, . . . , yN), the sample of (ill-observed) outcomes x = (x1, . . . , xN ), or the complete sample 
z, and a fourth expression that interprets imprecise observations as events. We will use the following nomenclature to 
distinguish them from each other:

Visible likelihood function p(y; θ) =
∏N

i=1 p(yi; θ) denotes the probability of observing y ∈ YN , assuming that the value of 
the parameter is θ . It can be alternatively expressed as p(y; θ) =

∏r
j=1(p

θ
. j)

n. j , where n. j denotes the number of repetitions
of b j = A j in the sample of size N (the number of times that the reporter says that the outcome of the experiment belongs 
to A j .) The logarithm of this likelihood function will be denoted by

Ly(θ) = logp(y; θ) =

N
∑

i=1

log p(yi; θ) =

r
∑

j=1

n. j log pθ
. j.

We call p(y; θ) the visible likelihood function, because we can compute it based on the available data only, that is the observed 
sample y. It is also sometimes called the marginal likelihood of the observed data in the EM literature, not to be confused with 
the marginal likelihood in a Bayesian context (see [3], for instance).

Face likelihood function Note that p(y; θ) differs from the quantity

λ(y; θ) =

r
∏

j=1

P (X ∈ A j; θ)n. j ,



called the “face likelihood” in Ref. [9,26]. The latter quantity does not refer to the observation process, and replaces the 
probability of reporting A j as the result of an observation (i.e. P (Y = A j)) by the probability that the true outcome falls 
inside the set A j , P (X ∈ A j). In particular, the occurrence of event “X ∈ A j” is a consequence of, but does not neces-
sarily coincide with the outcome “Y = A j”. In our context, p(y; θ) represents the probability of occurrence of the result 
“(y1, . . . , yN) = y”, given the hypothesis θ . Therefore given two arbitrary different samples y 6= y′ the respective events 
(y1, . . . , yN) = y and “(y1, . . . , yN) = y′” are mutually exclusive. In contrast, λ(y; θ) denotes the probability of occurrence of 
the event (X1, . . . , XN) ∈ G1 × . . . × GN , where G j = A j if Y j = A j . Events of this form may overlap, in the sense that, given 
two different samples y 6= y′ , the corresponding events (X1, . . . , XN) ∈ G1 × . . . × GN and (X1, . . . , XN) ∈ G ′

1 × . . . × G ′
N are 

not necessarily mutually exclusive. Therefore λ(y; θ) cannot be regarded as a likelihood in the sense of Edwards ([15]).
However, under the CAR assumption and the assumption of distinctness of parameters, maximizing the face likelihood 

is the same as maximizing the visible likelihood. Jaeger ([25], Th. 2.18) points out that under CAR, the following equality 
obtains

P (Y = A|X = x) = P (Y = A|X ∈ A) =
P (Y = A)

P (X ∈ A)
.

This is easy to see noticing that since from CAR, P (Y = A|X = x) = kA does not depend on x ∈ A, the equality

P (X = x|Y = A) · P (Y = A) = P (Y = A|X = x) · P (X = x)

implies

∑

x∈A

P (X = x|Y = A) · P (Y = A) = kA ·
∑

x∈A

P (X = x).

Hence P (X ∈ A|Y = A) · P (Y = A) = kA · P (X ∈ A), but P (X ∈ A|Y = A) = 1. So, P (Y = A) only depends on the probability of 
event A on X . We can deduce from this fact that, under the assumption of separability with respect to M (also referred to 
as distinctness of the parameters) the arguments of the maxima of the visible and the face likelihoods do coincide. Further 
comments about this equivalence will be provided in Subsection 4.5.

Latent likelihood function p(x, θ) =
∏N

i=1 p(xi; θ) =
∏m

i=1(p
θ
k.
)nk. , where nk. denotes the number of occurrences of ak in the

sample x = (x1, . . . , xN ). This sample is never observed directly, by assumption. However it must be in agreement with the 
observed sample y. Each virtual sample of X in X y yields a possible likelihood function p(x, θ) in agreement with the actual 
observations y. The logarithm of this likelihood function will be denoted by

Lx(θ) = logp(x; θ) =

N
∑

i=1

log p(xi; θ) =

m
∑

k=1

nk. log pθ
k.,

where nk. =
∑r

j=1 nkj and nkj is such that 
∑m

k=1 nkj = n. j , the number of times Y = A j has been observed. Note that the 
definition of nk. is in agreement with x ∈X y . We call p(x; θ) the latent likelihood function, because x is not actually observed, 
nor are the nk. ’s, since only the n. j ’s are.

Total likelihood function p(z, θ) =
∏N

i=1 p(zi; θ) =
∏m

k=1

∏r
j=1(p

θ
kj

)nkj is the likelihood function induced by the whole artifi-
cial sample z, we call the total likelihood. Again, it must be in agreement with the observed sample y = (y1, . . . , yN ), which 
is fixed by assumption. Each virtual sample of Z in Zy yields a possible likelihood function p(z, θ) in agreement with the 
actual observations y. We will denote its logarithm by

Lz(θ) = logp(z; θ) =

N
∑

i=1

log p(zi; θ) =

m
∑

k=1

r
∑

j=1

nkj log pθ
kj .

Maximizing p(z, θ) allows us to introduce assumptions on the measurement process, either in terms of imprecisiation or 
disambiguation. Namely, the conditional probabilities p. j|k. may be known because, for instance, the superset assumption is 
made. Alternatively, probabilities p.k|. j could be known, which, along with a particular distribution on Y (to be estimated 
from observations y), is enough to derive a concrete distribution on Z and therefore on X . More generally, there may 
be some dependence between the process driving the latent variable X and the measurement process driving the actual 
observations y. In this case, maximizing Lz(θ) enables this kind of additional information to be accounted for.

Remark 3.1. In the above expressions, we use the convention 00 = 1. In other words, the expression 
∏m

k=1

∏r
j=1 p

nkj
kj

replaces 
the formally correct expression

∏

(k, j)∈{1,...,m}×{1,...,r} : nkj 6=0

p
nkj
kj

.



Example 2. Consider again Example 1, i.e. the coin tossing experiment, assuming for 10 tosses that Peter reports 4 times 
Heads, 2 times Tails and 4 times nothing. Let us write the four likelihood functions.

• Visible likelihood: p(y, θ) = P ({{h}})4 · P ({{t}})2 · P ({{h, t}})4 =
[

[(1− α)p]4[(1− α)(1− p)]2α4
]

using the parameters 
introduced earlier. Note that P ({{h}}) + P ({{t}}) + P ({{h, t}}) = 1 as it is a probability distribution on 2{h,t} .

• Face likelihood: p(y, θ) = P ({h})4 · P ({t})2 = p4(1 − p)2 since P ({h, t}) = 1. Optimizing it comes down to forgetting the
missing information.

• Hidden likelihood: p(x, θ) = p4+n13 · (1 − p)6−n13 , where n13 is the unknown number of times Peter does not report
when the result is Head.

• Total likelihood: p(z, θ) =
[

[(1− α)p]4[(1− α)(1− p)]2(αp)n13 (α(1− p))4−n13
]

. The four outcomes obtained by describ-
ing both the toss result and the report are evaluated.

3.2. Maximum likelihood strategies

In this paper we will compare different existing strategies of likelihood maximization, based on a sequence of observa-
tions y = (y1, . . . , yN) ∈ YN :

• Maximizing Ly(θ). The argument of the maximum of Ly considered as a mapping defined on 2 is called maximum

likelihood estimator (MLE) i.e.:

θ̂ = argmax
θ∈2

Ly(θ) = argmax
θ∈2

r
∏

j=1

(pθ
. j)

n. j .

Note that this maximization process does not need any reference to the non-observed variable X . From optimizing Ly(θ), 
what is obtained is a probability distribution on Y , which, as already suggested can also be viewed as a Dempster–

Shafer mass assignment mθ on ℘(X ), letting mθ (A j) = pθ
. j for j = 1, . . . r. But a concrete choice of θ ∈ 2 also leads 

us to select a specific joint distribution on X × Y (pθ
i j)i=1,...,m; j=1,...r. When the argument of the maximum of the 

log-likelihood function Ly is not unique, the MLE determines a collection of joint distributions on X × Y . Under some 
circumstances, this collection of joint distributions coincides with the credal set associated to a mass function, and such 
a mass function determines a unique distribution on Y . We will provide a brief discussion about such a situation in 
Example 3. The EM algorithm [29] is an iterative technique that uses a latent variable X in order to reach a local maxi-

mum of Ly when its optimization is tricky. In this case, we also obtain a precise imputation x ∈ X y . The latent variable 
is sometimes fictitious, as in the case of learning a mixture of normal distributions [11].

• Maximizing Lx(θ). This is the genuine goal if one is interested to find the MLE of X despite the imprecise data. However,

since the precise sample x is not available, there is a subset LX
y
(θ) = {Lx(θ) : x ∈ X y} of possible likelihood functions

[18]. So we must find not only an optimal value of θ , but also an optimal sample x, according to some strategy. There
are two obvious strategies that come to mind:

1. Maximax strategy: find a pair (x∗∗, θ∗∗) ∈X N × 2 satisfying

(x∗∗, θ∗∗) = arg max
x∈X y,θ∈2

Lx(θ) = arg max
x∈X y,θ∈2

m
∏

k=1

(pθ
k.)

nk. .

It comes down to maximizing an upper log-likelihood function L
x
(θ) = max{Lx(θ) : x ∈ X y}, which can be viewed 

as an optimistic strategy; it tends to favor distributions with small entropy, under certain conditions, as we shall 
see later. The maximax technique has been proposed by E. Hüllermeier ([22]) using more general loss functions. His 
paper makes the point that the choice of an optimal pair (x∗∗, θ∗∗) leads to a simultaneous selection of a best model 
together with a disambiguation of the imprecise observations.

2. Maximin strategy: find a pair (x∗∗, θ∗∗) ∈X N × 2 satisfying:

(x∗∗, θ∗∗) = argmax
θ∈2

min
x∈X y

Lx(θ) = argmax
θ∈2

min
x∈X y

m
∏

k=1

(pθ
k.)

nk. ,

where nk. =
∑N

i=1 1{ak}(xi) denotes the number of repetitions of ak in the sample x. It comes down to maximizing a 
lower log-likelihood function Lx(θ) = min{Lx(θ) : x ∈X y}, which can be viewed as a robust strategy, that copes with 
the imprecision of the likelihood function; it tends to favor distributions with large dispersions, as we shall see later. 
The maximin technique has been proposed in Ref. [18].

Note that one might object to these approaches. First, considering L
x
(θ) or Lx(θ) requires the comparison of values of 

Lx(θ) for several samples x, which maximal likelihood advocates will strongly question. Following them, one cannot 
compare likelihood functions coming from distinct data sets [15]. However one may reply to it that in the case of our 
imprecise information setting, two samples x, x′ ∈ X y not only have the same size, but represent the same data set. 



This data set is unique but ill-known, and the considered samples are in agreement with the same body of observations 
y. It is then sure that the true likelihood function lies in the interval [Lx(θ), L

x
(θ)]. Maximizing one of its bounds is a 

usual strategy in the face of intervals. We may also use any other strategy that compares intervals, for example the safe 
but very demanding (if not impossible to reach) partial interval ordering requirement Lx(θ⋆) > L

x
(θ), ∀θ 6= θ⋆ .

Hüllermeier [22] justifies the maximax approach by saying that if L
x1

(θ1) > L
x2

(θ2) then the sample x1 is arguably more

plausible than the sample x2 , simply because the first instantiation allows for a much better fit to the model based on 
θ1 than the second one based on θ2 . This philosophy leads to disambiguating the imprecise data through the choice 
of the best model. However, this line of reasoning makes sense if we are sure that the random process generating X
follows a model in the prescribed class parameterized by θ . Then it is natural to consider that the most plausible values 
compatible with the imprecise observations are those which enable a best fit with the class of parameterized model, 
so that one may select at the same time the best model and the best sample that justifies it. In that case, the resulting 
disambiguation is a form of data reconciliation [14]. In contrast, if the set of parameterized models is chosen for its 
computational simplicity and is known to be an approximation of the real phenomenon, the disambiguation rationale 
of the maximax approach is then not so strong.

• Maximizing Lz(θ). As said earlier this is the natural way to go, if some information regarding the dependence between

the latent variable X and its measurement process is available, for instance the superset or the CAR assumption is made.

We can again adopt maximax or maximin strategies, since the full sample z is not available, and only the observations
y are. There is also an iterative strategy that exploits the links between X and Y , such as the EM algorithm, which

maximizes Ly(θ) via the production of a fake sample z.
1. The maximax strategy aims at finding the pair (z∗, θ∗) ∈ZN × Ä that maximizes the function Lz(θ):

(z∗, θ∗) = arg max
z∈Zy,θ∈2

Lz(θ) = arg max
z∈Zy,θ∈2

m
∏

k=1

r
∏

j=1

(pθ
kj)

nkj .

It comes down to maximizing an upper log-likelihood function L
Zy

(θ) = max{Lz(θ) : z ∈ Zy}. The complete sample 
z∗ also yields an optimal sample x∗ ∈X y since Lz(θ) can be viewed as a function fy :X N ×2 →R that only depends 
on x. This maximization procedure has been considered in [23] under the superset assumption.

2. It is clear we can similarly envisage the corresponding maximin strategy and find the pair (x∗, θ∗) ∈X N ×Ä induced

by the pair (z∗, θ∗) that maximizes the lower log-likelihood function LZ
y
(θ) = min{Lz(θ) : z ∈Zy}.

(z∗, θ∗) = argmax
θ∈2

min
z∈Zy

Lz(θ) = argmax
θ∈2

min
z∈Zy

m
∏

k=1

r
∏

j=1

(pθ
kj)

nkj .

3. Guess an initial value of θ , which enables to construct a fictitious sample z; then, an MLE of θ for this sample can
be found, and this process is iterated till convergence. This kind of strategy is adopted by the EM algorithm and tries
to find a probability model pθ as close as possible to the empirical distribution of a fake sample z ∈ Zy , in the sense
of Kullback–Leibler divergence [29] (see also [6]).

In this paper, we focus on the maximax and maximin strategies for maximizing Lx and Lz .

3.3. Connections between MLE strategies

Under some particular conditions about the matrices M and M ′ , some of the above maximization procedures may coin-
cide. Below, some results are provided. There are two kinds of results: some that relate the total likelihood function p(z; θ)

and the latent one p(x; θ) under suitable assumptions, and those that relate the total likelihood function p(z; θ) and the 
visible one p(y; θ). This is done by introducing assumptions about the incomplete data or the conditional distributions 
describing the measurement process. It comes down to some information about the matrices M and M ′ .

A first issue concerns the parameter θ , which so far is used in the three likelihood functions as driving the joint dis-
tribution on Z = X × Y , hence the respective marginals on X and Y . In some situations, X and Y are driven by distinct 
parameters θ1, θ2 .

The following result concerns the disambiguation point of view and involves matrix M ′ .

Definition 1. We say that the parameter θ ∈ 2 is separable with respect to the matrix (M ′|p′) if it can be “separated” into 
two (maybe multidimensional) components θ1 ∈ 21 , θ2 ∈ 22 such that 2 = 21×22 , where pθ

k.|. j and pθ
. j can be respectively 

written as functions of θ1 and θ2 .

Proposition 1. ∪z∈Zy argmaxθ∈2 Lz(θ) ⊆ argmaxθ∈2 Ly(θ) provided that θ is separable wrt (M ′|p′).3

3 Remember that argmaxθ∈2 Lz(θ) is the set of θ ’s that maximize Lz(θ). It may be a singleton, but not an element of 2.



Proof. Let y ∈ YN denote the observed sample. Let us select an arbitrary complete sample z ∈ Zy . p(z; θ) =
∏r

j=1

∏m
k=1(p

θ
kj

)nkj =
∏r

j=1

∏m
k=1(p

θ
k.|. j · p

θ
. j)

nkj =
∏r

j=1(p
θ
. j)

∑m
k=1 nkj ·

∏r
j=1

∏m
k=1(p

θ
k.|. j)

nkj =
∏r

j=1(p
θ
. j)

n. j ·
∏r

j=1

∏m
k=1(p

θ
k.|. j)

nkj .

Thus, if θ is separable wrt (M ′|p′) we can write:

p(z; θ) =

r
∏

j=1

(p
θ1
. j )

n. j

r
∏

j=1

m
∏

k=1

(p
θ2
k.|. j)

nkj .

Thus, if θ∗ is an optimal parameter such that Lz(θ∗) = maxθ∈2 Lz(θ), then its projection on 21 , θ∗
1 ∈ 21 must necessarily 

satisfy the equality Ly(θ∗
1 ) = maxθ1∈21 L

y(θ1). ✷

Now let us check the consequence of the uniform conditional distribution assumption.

Proposition 2. Let y = (y1, . . . , yN) ∈ YN denote the observed sample. Let us suppose that 
∏r

j=1

∏

k:nkj 6=0 p
nkj
k.|. j is a value c that 

does not depend on the particular choice of z ∈ Zy , nor on θ . Then for every z ∈ Zy we have p(z; θ) = cp(y; θ) and therefore 
argmax(x,θ)∈X y×2 p(z; θ) = argmaxθ∈2 argminz∈Zy p(z; θ) = argmaxθ∈2 p(y; θ).

Proof. Using the previous proof, we already have that

p(z; θ) =

r
∏

j=1

p
n. j

. j

∏

k:nkj 6=0

(pk.|. j)
nkj = cp(y; θ). ✷

Proposition 3. Let y = (y1, . . . , yN) ∈ YN denote the observed sample. Let us consider the uniform conditional distribution assump-

tion. Then 
∏r

j=1

∏

k:nkj 6=0 p
nkj
. j|k. is a value c that does not depend on the particular choice of z ∈Zy , nor on θ .

Proof. Under the uniform conditional distribution assumption we have:

pk.|. j =

{

1
#A j

if ak ∈ A j

0 otherwise.

Therefore,

r
∏

j=1

∏

k:nkj 6=0

p
nkj
k.|. j =

r
∏

j=1

1

#A j

∑

k:nkj 6=0 nkj

=

r
∏

j=1

(

1

#A j

)n. j

. ✷

Corollary 4. If the uniform conditional distribution assumption holds then, for all z ∈Zy , p(z; θ) = cp(y; θ), where c depends neither 
on the particular z ∈Zy nor on θ and therefore

arg max
(x,θ)∈X y×2

p(z; θ) = argmax
θ∈2

arg min
z∈Zy

p(z; θ) = argmax
θ∈2

p(y; θ).

The next results concern the imprecisiation process and involve matrix M:

Definition 2. We say that the parameter θ ∈ 2 is separable with respect to the matrix (M|p) if it can be “separated” into 
two (maybe multidimensional) components θ3 ∈ 23 , θ4 ∈ 24 such that 2 = 23 × 24 and pθ

. j|k.
and pθ

k.
can be respectively 

written as functions of θ3 and θ4 .

This type of separability corresponds to the notion of “distinct parameters” in the sense of Heitjan and Rubin ([21]) in 
the context of coarse data, and Little and Rubin ([28]) in the context of missing data.

Proposition 5. If θ is separable wrt (M|p) then, given a specific sample x ∈ X N and the corresponding z ∈ (X × Y)N induced by x
and y, argmaxθ∈2 Lz(θ) ⊆ argmaxθ∈2 Lx(θ).

Proof. The proof of this result is similar to the one given in Proposition 1. ✷

Remark 3.2. Proposition 5 assumes a fixed sample x ∈ X N . Let us notice that the separability wrt M does not imply that 

the respective solutions of both maximax problems, θ∗∗ = argmaxθ∈2 L
X y

(θ) and θ∗ = argmaxθ∈2 L
Z y

(θ), coincide. They
can be attained for different samples in X y .



Proposition 6. Let y = (y1, . . . , yN) ∈YN denote the observed sample. Let us suppose that 
∏m

k=1

∏

j:nkj 6=0 p
nkj
. j|k. is a value c that does 

not depend on the particular choice of z ∈Zy , nor on θ . Then, for all x ∈X y and the corresponding z ∈Zy we have p(z; θ) = cp(x; θ)

and therefore argmax(x,θ)∈X y×2 p(x; θ) = argmax(x,θ)∈X y×2 p(z; θ).

Proof.

p(z; θ) =

m
∏

k=1

∏

j:nkj 6=0

p
nkj
kj

=

m
∏

k=1

∏

j:nkj 6=0

(p. j|k. · pk.)
nkj =

m
∏

k=1

∏

j:nkj 6=0

p
nkj
. j|k. · p

nkj
k.

=

m
∏

k=1

p

∑r
j=1 nkj

k.
·

m
∏

k=1

∏

j:nkj 6=0

(p. j|k.)
nkj

=

m
∏

k=1

p
nk.
k.

· c = p(x; θ) · c. ✷

Proposition 7. Let y = (y1, . . . , yN) ∈ YN denote the observed sample. Let us suppose that {A1, . . . , Ar} forms a partition of X or

that the superset assumption is satisfied. Then 
∏m

k=1

∏

j:nkj 6=0 p
nkj
. j|k. is a constant c.

Proof. On one hand, we can easily check that, if {A1, . . . , Ar} forms a partition of X then 
∏m

k=1

∏

j:nkj 6=0 p
nkj
. j|k. = 1. Now, 

let us check that the above condition holds under the superset assumption. Under the superset assumption we have 

already shown that p. j|k. = 2m−1 if ak ∈ A j , and 0 otherwise. Therefore, 
∏m

k=1

∏

j:nkj 6=0 p
nkj
. j|k. =

∏m
k=1

(

1
2m−1

)

∑

j:nkj 6=0 nkj
=

∏m
k=1

(

1
2m−1

)nk.
=

(

1
2m−1

)N
. ✷

Corollary 8. If any of the following conditions is satisfied:

• {A1, . . . , Ar} forms a partition of X
• The superset assumption holds

then p(z; θ) = cp(x; θ) and therefore argmax(x,θ)∈X N×2 p(x; θ) = argmax(x,θ)∈X N×2 Lz(θ). Furthermore c = 1 in the first case.

Most approaches in statistical inference insist on the necessity to have a statistical model of the observation process. In 
that case the natural likelihood function to maximize is p(z, θ). In contrast, if we maximize the latent likelihood function 
p(x, θ) directly with respect to both x and θ , we in some way give up the idea of providing a statistical model for the 
observation (imprecisiation) process. The superset assumption can be used to justify the use of p(x, θ) by providing such a 
statistical model, since in that case maximizing p(z, θ) is the same as maximizing p(x, θ) (this is the message apparently 
carried by the authors of [23], for instance). When no information about the measurement process is available, it is to us an 
open question whether one should maximize p(x, θ) or p(z, θ) with respect to both x and θ . Indeed, the two corresponding 
MLE may differ as indicated on examples in the following.

4. Comparing the maximum likelihood strategies on examples

Based on some of the results provided in Subsection 3.3, we can compare the various choices of likelihood functions 
(maximization of Ly(θ), Lx(θ), Lz(θ)) in an imprecise environment, on the basis of the acceptability of results obtained by 
their maximization on a number of prototypical examples. These examples, shed light on the nature of the maximin and the 
maximax strategies, as opposed to maximizing the visible likelihood function. We consider several settings where imprecise 
data occur in various ways: the possible observations may form a partition of space X , the data is either precise or missing, 
and the general case where imprecise data may overlap.

4.1. Observations forming a partition: separable case

The first example illustrates the situation where imprecise data form a partition of X and the parameter θ is separable.

Example 3. Consider the random experiment that consists on rolling a dice. We do not know whether the dice is fair or 
not. Suppose that the person that rolls it just tells us whether the outcome is even or odd. Let X be the random variable 
denoting the actual outcome of the dice roll (ai = i for i = 1, . . . , 6) and let Y be a binary variable taking the values b1
(odd) and b2 (even). So, the collection {A1 = {1, 3, 5}, A2 = {2, 4, 6}} determines a partition of the whole set of possible 
outcomes X = {1, . . . , 6}. Let the 6-dimensional vector (p1., . . . , p6.) represent the actual (unknown) probability distribution
of X , where pi. = P (X = ai), i = 1, . . . , 6 and p6. = 1 −

∑5
i=1 pi. .

Let p.2 = π = p2. + p4. + p6. denote the probability of getting an even number. The six-dimensional vector (p1., . . . , p6.)

can be alternatively expressed as



((1 − π)α1,πβ1, (1 − π)α2,πβ2, (1 − π)(1 − α1 − α2),π(1 − β1 − β2))

where α = (α1, α2) and β = (β1, β2) respectively denote αi =
p(2i−1).

1−π and βi = p2i .
π . Therefore, we can identify (p1., . . . , p6.)

with the parameter θ = (θ1, θ2) = (π , (α, β)) and see that it is separable with respect to the matrix (M ′|p′) given as
(

α1 0 α2 0 1− α1 − α2 0 1− π
0 β1 0 β2 0 1− β1 − β2 π

)

since (α, β) determines the conditional distribution of X given Y while π determines the marginal distribution of Y .

Maximizing Ly(θ) Based on a sample of n.1 occurrences of b1 and n.2 occurrences of b2 in a sample of N = n.1 + n.2 trials, 
any parameter θ̂ of the form (θ̂1, θ2) =

(

n.2
N

, (α, β)
)

, for an arbitrary pair (α, β) = ((α1, α2), (β1, β2)), is an MLE from y. Such 
an MLE determines a single marginal distribution on Y , (p̂.1, p̂.2) = (

n.1
N

, n.2
N

). Due to the separability, such an MLE does not 
constrain any of the conditional distributions X |Y = b1 or X |Y = b2 . Furthermore, neither does the parameter θ2 = (α, β)

constrain them. Therefore, the collection of marginal distributions on X associated to the collection of MLE from y is the 
credal set associated to the mass function m

θ̂1
({1, 3, 5}) = n.1

N
, m

θ̂1
({2, 4, 6}) = n.2

N
.

Maximax strategy Assume a fixed probability vector (p1., . . . , p6.) and let i∗ be the index of the greatest of p1., p3., p5. , j∗

be the index of the greatest of p2., p4., p6. . The maximum of

p(z; θ) = p(x; θ) = p
n11
1. · p

n22
2. · p

n31
3. · p

n42
4. · p

n51
5. · p

n62
6. ,

where n1 = n11 + n13 + n15 , n2 = n22 + n24 + n26 is reached for any selection x∗ ∈ X N where n.1 identical outcomes corre-
sponding to odd number i∗ and the remaining ones, n.2 = N −n.1 , identical outcomes corresponding to even number j∗ are 
obtained. Now, maximizing wrt (p1., . . . , p6.) leads to let pi∗·

= p j∗·
= 1. This means any choice θ∗ = (

n.2
N

, α∗, β∗) ∈ 2, with 
α∗ ∈ {(1, 0), (0, 1), (0, 0)} and β∗ ∈ {(1, 0), (0, 1), (0, 0)} is optimal. In words, the maximum of Lx(θ) = Lz(θ) is attained for 
all situations where only two facets of the dice, one of them corresponding to an even number and the other one repre-
senting an odd one, are possible. The parameter θ∗ determines the probability distribution of X where the probabilities of 
those two numbers are respectively π and 1 − π . The sample x∗ is the only sample compatible with y where there are n.2

repetitions of the even number and n.1 repetitions of the odd one. Taking into account the separability of θ wrt M ′ and 
according to Proposition 1, the collection of optimal selections of the parameter:

{(n.2

N
,α∗, β∗

)

, with α∗ ∈ {(1,0), (0,1), (0,0)} and β∗ ∈ {(1,0), (0,1), (0,0)}
}

is included in the set of maximum likelihood estimators for Ly ,
{(n.2

N
, (α1,α2), (β1, β2)

)

: α1,α2, β1, β2 ∈ [0,1]
}

.

Maximin strategy Assume a fixed (p1., . . . , p6.) and let i∗ be the index of the least of p1., p3., p5. j∗ be the index of
the least of p2., p4., p6. . Since, Lx(p1., . . . , p6.) =

∑6
i=1 ni log pi. , we easily observe that Lx(θ) reaches its minimum when 

ni∗. = n1. + n3. + n5. = n.1 and n j∗ = n2. + n4. + n6. = n.2 and therefore, Lx(p1., . . . , p6.) = n.1 log pi∗·
+ n.2 log p j∗· . Now let 

us maximize Lx(θ) with respect to (p1., . . . , p6.). For a fixed value of π = p2. + p4. + p6.; this maximum is reached at 
pi∗ = p1. = p3. = p5. =

1−π
3

and p j∗ = p2. = p4. = p6. =
π
3

and therefore

max
(p1.,...,p6.)

Lx(p1., . . . , p6.) = max
π∈[0,1]

n.1 log
(π

3

)

+ n.2 log

(

1− π

3

)

.

The argument of the maximum is therefore the vector (p1∗
·
, . . . , p6∗

·
) where pi∗·

= n.1
3N

i = 1, 3, 5 and pi∗·
= n.2

3N
i = 2, 4, 6. In 

words, the maximin approach assigns the same probability to all odd outcomes, and also to the even outcomes. Note that it 
does not suggest a best imputation of (n1., . . . , n6.), as all corresponding samples x in agreement with the n.1 observations 
of odds and n.2 observations of evens are equiprobable.

The above example shows that the maximax strategy supplies, as most plausible imputations, one odd and one even 
number only (any pair can be chosen). More generally, the same reasoning applies to the general case where {A1, . . . Ar}

forms a partition and Py ⊆ P2 , where P2 denotes the set of parameterized joint distributions (dependent on θ ) and Py

the set of joint distributions whose marginals on Y agree with the empirical distribution induced by y. Namely:

Proposition 9. If the imprecise observations {A1, . . . Ar} form a partition of X and Py ⊆ P2 then the maximax strategy applied to 
Lx(θ) with respect to x and θ is reached for any sample of X consisting of n. j copies of the same element ak ∈ A j for each A j (i.e., 
nk.
N

=
nkj
N

=
n. j

N
), the corresponding parameterized distribution on X is the one that coincides with the empirical one induced by this 

sample, i.e., p̂k. =
n. j

N
for ak ∈ A j , and p̂k′. = 0 for ak′ 6= ak , ak′ ∈ A j .



Proof. The proof is the same as in the case when r = 2 given in the above example. ✷

In other words the maximax solution presupposes that each occurrence of Y = A j underlies the same outcome X =

ak ∈ A j (for instance, we may assume the midpoint of A j is the most likely, if A j is an interval). If the number of ob-
servations Y = A j is large, it becomes a very strong assumption, whereby constant imprecise observations hide constant 
outcomes. One may argue on the contrary, that the coarse sensor is insensitive to the variability of the outcomes, which 
explains its apparent constant measurements. An interesting consequence follows:

Corollary 10. If the imprecise observations {A1, . . . Ar} form a partition of X and Py ⊆ P2 , then the maximax strategy applied 
to Lx(θ) yields a distribution on X minimizing the entropy among distributions whose marginals on Y coincide with the empirical 
distribution induced by the observed sample y.

We have a companion result for the maximin strategy.

Proposition 11. If the imprecise observations {A1, . . . Ar} form a partition of X and Py ⊆ P2 , then the maximin strategy applied 
to Lx(θ) with respect to x and θ is reached for a parameterized distribution whose restriction to each A j is uniform and such that 
pθ
k.

=
n. j

N#A j
if ak ∈ A j . All samples x ∈X y are equally probable.

Proof. The proof is the same as in the case when r = 2 given in the above example. ✷

An interesting consequence, opposite to the maximax case, follows:

Corollary 12. If the imprecise observations {A1, . . . Ar} form a partition of X and Py ⊆ P2 , then the maximin strategy applied to 
Lx(θ) yields a distribution on X maximizing the entropy among distributions whose marginals on Y coincide with the empirical 
distribution induced by the observed sample y.

In the terminology of belief functions, the estimated probability distribution on X is the maximum entropy distribu-
tion among the probabilities dominating the belief function, that here coincides with the pignistic transform of the belief 
function.

The maximin strategy in the partition case seems to presuppose incomplete information hides pure randomness corre-
sponding to maximal entropy. The idea can be that the sensor reporting an element of the partition is too coarse to perceive 
the variability of X inside the n. j actual outcomes in A j . In other words, an interval-valued observation reflects a set of pre-
cise observations inside each interval. The maximin strategy tries to propose a model that covers all these situations. On 
the contrary, the maximax strategy explains the n. j observations A j as resulting from the occurrence of the same outcome 
ak n. j times. Clearly, these two strategies are in some sense extreme.

The above results will be generalized in Propositions 13 and 14 to the case where the imprecise observations {A1, . . . Ar}

do not necessarily form a partition of X .

4.2. Observations forming a partition: non-separable case

The next (well-known) example is a case where the MLE for Ly is not the one obtained from Lx via any of the above 
strategies, and the parameter θ is not separable. Namely, the visible likelihood Ly determines the actual one Lx to a large 
extent.

Example 4. Let us consider the following example by Dempster et al. in Reference [11] under the light of our analysis. It is 
based on a former example by Rao. There is a sample of 197 animals distributed into four categories, so that the observed 
data consist of:

n.1 = 125,n.2 = 18,n.3 = 20,n.4 = 34.

Suppose that the first category is in fact a mixture of two sub-categories, but we do not have information about the 
number of individuals observed from each of them. On the other hand, a genetic model for the population specifies the 
following restrictions about the five categories: p11 = 0.5, p12 = p.4 , p.2 = p.3 . If we use the notation: p12 = 0.25π = p.4

and p.2 = 0.25(1 − π) = p.3 , the corresponding matrix (M ′|p′) is given as








0.5
0.5+0.25π

0.25π
0.5+0.25π 0 0 0 0.5+ 0.25π

0 0 1 0 0 0.25(1− π)

0 0 0 1 0 0.25(1− π)

0 0 0 0 1 0.25π











and only depends on a single parameter. Dempster et al. ([11]) maximize Ly(π) = log[(0.5 + 0.25π)125(0.25(1 −
π))18(0.25(1 − π))20(0.25π)34] by making its derivative vanish. The maximum likelihood estimator of π with respect 
to Ly is found to be π̂ = 0.6268214980. They show that using the EM algorithm, this value can be retrieved as the limit of 
a sequence of values obtained by an iterative procedure.

The likelihood associated to a sample x compatible with the observed sample y will be of the form:

Lx(θ) = log
[

0.5n11(0.25π)n12(0.25(1− π))18(0.25(1 − π))20(0.25π)34
]

,

where n11 + n12 = 125. There, the collection {A11, A12, A2, A3, A4} forms a partition of X (the set representing five cat-
egories of animals). Therefore, according to Corollary 8, Lx(π) and Lz(π) do coincide for every π . Thus, the strategies 
based on their respective maximizations lead to the same optimal pairs. Consider the maximax strategy. It yields (x∗, π∗), 
where π∗ = 0.4722222. The corresponding optimal sample x∗ is the (only) sample inducing the empirical distribution 
( 125
197

, 0, 18
197

, 20
197

, 34
197

). Thus, according to this criterion, all the 125 observed outcomes from group one are assumed to 
belong to the first subgroup, again a questionable choice. The maximin strategy leads to the opposite choice, that is 
x∗ = (0, 125

197
, 18
197

, 20
197

, 34
197

) since 0.25π < 0.5. The maximin optimal π∗ is 159/197 = 0.8071. Besides, the parameter π
is not separable wrt (M ′|p′). Consequently, none of the values π∗ = 0.4722222, π∗ = 0.8071 coincides with the maximum 
likelihood estimator of π with respect to Ly , π̂ = 0.6268214980. The latter yields another imputation that is not as extreme 
as the samples obtained with the other strategies.

This example reveals again the extreme nature of the maximin and maximax strategies. The empirical distribution asso-
ciated to the samples x∗ and x∗ are respectively the least and the most entropic in the set Py . The connection with entropy 
maximization and minimization of the corresponding optimal parametric distributions is less clear because the likelihood 
functions are constrained by a single parameter. As p11 > p12, ∀π , the maximin strategy leads to grant the maximal number 
of outcomes to the least probable situation.

4.3. Miss-or-observe case with or without the superset assumption

In the following example, either the outcome is observed or the observation is just missing. So, the collection of im-

precise observations does not form a partition, but it contains the singletons in X and X itself. We compare the CAR and 
superset assumptions with the case when no information on the measurement process is made. For simplicity, we assume 
X has only two elements, so that the “superset assumption” can be made. Moreover the parameter θ is separable.

Example 5 (The CAR and the superset assumptions). Let us take up the situation of Example 1. A coin is tossed. The random 
variable X : Ä → X , where X = {h, t}, represents the result of the toss. We do not directly observe the outcome. The 
outcome is reported by Peter. Let us suppose that the coin is tossed N = 10 times, and that Peter faithfully reports 4 heads, 
2 tails and he does not report anything for the remaining 4 times. Let us consider again the parameter θ = (p, α, β), where 
p = P (X = h), α = P (Y = {h, t}|X = h) and β = P (Y = {h, t}|X = t). This is clearly a case where θ is separable. As seen in 
Example 1, the CAR assumption yields α = β and the superset assumption yields α = β = 0.5. In words, no matter what the 
true outcome is (heads or tails) Peter does not give any information about it 50% of the time. The only remaining parameter 
is p.

The set-valued mapping Ŵ underlying variable Y takes the “values” {h}, {t} and {h, t} with respective probabilities
(1 −α)p, (1 −β)(1 − p) and αp +β(1 − p). Under the CAR assumption, these three probabilities are (1 −α)p, (1 −α)(1 − p)

and α. Furthermore, under the superset assumption, they are 0.5p, 0.5(1 − p) and 0.5, respectively.

Maximizing Ly(θ) Let us maximize the visible log-likelihood under each of these assumptions.

• The CAR assumption. We have to find the argument of the maximum of

Ly(α, p) = log
[

[(1− α)p]4[(1− α)(1− p)]2α4
]

= log[(1 − α)6α4p4(1− p)2].

The maximum is attained for (α̂, p̂) = (0.4, 2/3). According to this criterion (MLE based on the observed sample) those 
tosses where Peter does not report the result are not taken into account. This idea fits the initial assumptions about the 
conditional probability of Y with respect to X . In fact, according to the CAR assumption, P (Y = {h, t}|X = h) = P (Y =

{h, t}|X = t) = P (Y = {h, t}) or, in other words, Y = {h, t} and X = h are independent events. Therefore, we deduce that 
X = h is also independent from the complementary of Y = {h, t}, Y ∈ {{h}, {t}} and therefore:

P (X = h) = P (X = h|Y ∈ {{h}, {t}}) =
P (X = h, Y ∈ {{h}, {t}})

P (Y ∈ {{h}, {t}})
=

P (X = h, Y = {h})

P (Y ∈ {{h}, {t}})

=
P (Y = {h})

P (Y = {h}) + P (Y = {t})
.



The above two equalities mean that, according to the CAR assumption, the ill-informed tosses are assumed to corre-
spond to each of the possible outcomes of the coin (heads or tails) in the same proportion as the observed ones. So, 
P (X = h) coincides, under the CAR assumption, with the expected proportion of times when Peter says “heads” divided 
by the expected proportion of times when he provides us information about the result, whatever it is, heads or tails. 
Thus, it makes sense to estimate the probability of heads P (X = h) by means of the quotient 0.4

0.4+0.2
= 2/3, represent-

ing the quotient of the respective frequencies of the events Y = {h} and Y ∈ {{h}, {t}}. In this case, the statistical model 
obtained on Y (such that p.1 = 2(1 − α)/3 = 0.4 since α = 0.4, p.2 = 0.2, p.3 = 0.4) is in agreement with the empirical 
distribution.

• The superset assumption. Under this assumption, the visible log-likelihood function is:

Ly(p) = log[(0.5p)4 · [0.5(1− p)]2 · 0.54].

As Ly(p) is equal to f (p) = log[p4(1 − p)2] up to an additive constant, it reaches its maximum at p̂ = 2/3 The restric-
tions on the set of statistical models due to the superset assumption imply that the distribution on Y induced by the 
MLE distribution on X (p = 2/3) is not in agreement with the empirical distribution on Y . The former is such that 
p.1 = 2(1 − α)/3 = 1/3 since α = 0.5; likewise p.2 = 1/6, p.3 = 0.5.

Maximax strategy on Lx(θ) Let us compare the above estimation of θ with the maximax strategy-based estimation: Given a 
sample x ∈X y , we can easily observe that

Lx(θ) = n1. log p + (N − n1.) log(1− p) = (4+ n13) log p + (6− n13) log(1− p),

(where n13 denotes the number of tosses where the result is “heads” and Peter did not report.) Thus, according to this 
strategy, we calculate the argument

max
x∈X y,θ∈2

Lx(θ) = max
n13∈{1,2,3,4},p∈[0,1]

(4 + n13) log p + (6− n13) log(1 − p).

For a specific n13 ∈ {0, 1, 2, 3, 4}, the maximum of fn13(p) = (4 + n13) log p + (6 − n13) log(1 − p) is attained at p∗(n13) =
4+n13
10

. Therefore, the above maximum coincides with maxn13=1,2,3,4 f
(

4+n13
10

)

. We can check that it is attained for n∗
13 = 4

and p∗ =
4+n∗

13
10

= 0.8. According to this procedure, the optimal estimate of p is 0.8 and the optimal sample is the one that
assigns the result “heads” to all those tosses where Peter has not reported the result. It is clear that the distribution on 
Y induced by the maximax strategy (p = 0.8 on X ) is not in agreement with the empirical distribution on Y , whatever 
the assumption made. Under CAR, the former is of the form (0.8(1 − α), 0.2(1 − α), α) which cannot match the empirical 
(0.4, 0.2, 0.4) whatever the choice of α. Under the superset assumption α = 0.5 and the induced distribution on Y is 
p.1 = 0.4, p.2 = 0.1, p.3 = 0.5.

Maximax strategy on Lz(θ) Under the CAR assumption, the expression of the log-likelihood Lz for a specific z ∈ Zy is as 
follows:

Lz(α, p) = log
[

[(1 − α)p]4[(1− α)(1− p)]2(αp)n13 [α(1 − p)]4−n13
]

= log
[

(1 − α)6α4 · p4+n13(1 − p)6+n13
]

,

which is maximized at (n13, α, p) = (4, 0.4, 0.8). Again, all non-informed outcomes are understood as heads as for the 
maximax strategy on Lx under CAR. The result is slightly different from the former case, as this time α is set to 0.4, while 
it remains free under the maximization of Lx .

Under the superset assumption, following Corollary 8, Lx(θ) − Lz(θ) is a constant. The maximax procedure aiming to 
maximize Lz(θ) will give the same result as maximizing argmax Lx(θ), with θ = p that does not depend on (α, β) (condi-

tional probabilities are fixed under the superset assumption).

Maximin strategy on Lx(θ) The maximin approach consists of considering all log-likelihood functions Lx
k
(p) = (4 +

n13) log p + (6 − n13) log(1 − p) with 0 ≤ n13 ≤ 4. The approach consists in finding for each value of p the complete data 
that minimizes Lx(p). Since Lxn13(p) is of the form n13 log

p
(1−p)

+ a, it is easy to see that if p < 1/2, the minimum L(p) is

reached for n13 = 4, and if p > 1/2, it is reached for n13 = 0. So, it is 8 log p +2 log(1 − p) if p < 1/2 and 4 log p +6 log(1 − p)

otherwise. So L(p) is increasing when p < 1/2 and decreasing when p > 1/2. It reaches its maximum for p = 1/2. So the 
maximin approach is cautious in the sense of maximizing entropy in the coin-tossing experiment. However, the correspond-
ing imputation (n1., n2.) = (4 +n13, 6 −n13) is totally free, as all sequences of outcomes of N tosses in agreement with y are 
equally probable in this case. Under CAR, none of the possible distributions on Y in agreement with p = 0.5 is in agreement 
with the empirical distribution (since it predicts the same number of heads and tails). It implies that under the superset 
assumption, the distribution on Y induced by the maximin strategy (using p = 0.5 on X and α = 0.5) is not in agreement 
with the empirical distribution on Y . The former is such that p.1 = 0.25, p.2 = 0.25, p.3 = 0.5.



Table 1

Comparison of maximum likelihood strategies.

Method (α, β, p) on X = {h, t} on Y = {{h}, {t}, {h, t}} n13

Ly CAR (0.4,0.4,2/3) (2/3,1/3) (0.4,0.2,0.4) free

Ly superset (0.5,0.5,2/3) (2/3,1/3) (1/3,1/6,0.5) free

Lx max-max CAR (α,α,0.8) (0.8,0.2) (0.8(1− α),0.2(1 − α),α) 4

Lx max-max superset (0.5,0.5,0.8) (0.8,0.2) (0.4,0.1,0.5) 4

Lz max-max CAR (0.4,0.4,0.8) (0.8,0.2) (0.48,0.12,0.5) 4

Lz max-max superset (0.5,0.5,0.8) (0.8,0.2) (0.4,0.1,0.5) 4

Lx max-min CAR (α,α,0.5) (0.5,0.5) (0.5(1− α),0.5(1 − α),α) free

Lx max-min superset (0.5,0.5,0.5) (0.5,0.5) (0.25,0.25,0.5) free

Lz max-min CAR (0.5,0.5,0.5) (0.5,0.5) (0.25,0.25,0.5) free

Ly (α, β, p) (p,1− p) (0.4,0.2,0.4) free

Lz max-max (0.5,0.0,0.8) (0.8,0.2) (0.4,0.2,0.4) 4

Lx max-max (α, β,0.8) (0.8,0.2) (0.8(1− α),0.2(1 − β),0.8α + 0.2β) 4

Lx max-min (α, β,0.5) (0.5,0.5) (0.5(1− α),0.5(1 − β),0.5(α + β) free

Maximin strategy on Lz(θ) As we have pointed out above, under the CAR assumption, the expression of the log-likelihood 
Lz for a specific z ∈Zy is as follows:

Lz(α, p) = log
[

[(1 − α)p]4[(1 − α)(1 − p)]2(αp)n13 [α(1 − p)]4−n13
]

= log
[

(1 − α)6α4 · p4+n13(1 − p)6+n13
]

.

Now, taking into account the above course of reasoning about the maximin strategy, our estimation under this strategy is 
(α, p) = (0.4, 0.5) and the corresponding imputation would be completely free. Note that this time, the induced distribution 
on Y is in agreement with the empirical distributions, as it is precisely the unique such one among the possible distributions 
obtained from the maxmin solution on Lx under CAR. Under the superset assumption, following Corollary 8, Lx(θ) − Lz(θ)

is a constant, and therefore this strategy coincides with the maximin approach from last paragraph.
The obtained results in this example are summarized on Table 1. It shows that under the superset assumption, maxi-

mizing Ly(θ) sometimes comes down to doing away with missing information, while maximizing Lx(θ) over x and θ (or 
equivalently Lx(θ)) with the maximax strategy implicitly relies on the sample where the unobserved outcomes correspond 
to the most probable among the visible ones. On the other hand, the maximin approach maximizing Lx(θ) in this exam-

ple, comes down again to maximizing entropy among distributions compatible with the missing information, thus turning 
ignorance into maximal randomness. Clearly the three strategies here yield different results.

Remark. The results of the maximin strategy on Lx(θ) can be extended to the case of N coin tosses, only No of which are 
observed, and k among the latter are heads. Then Lx(θ) = (k +n13) log p + (N − k −n13) log(1 − p), where 0 ≤ n13 ≤ N − No

is the number of unobserved heads. The same analysis as above would lead to estimate p = k+N−No
N

if k > N − k, using the 
maximax strategy, and the corresponding imputation being (n1., n2.) = (k + N − No, No − k). Under the maximin strategy, 
we again get p = 0.5, and no preferred imputation. If k = N − k then the maximax strategy yields maximal likelihood by 
interpreting all No unobserved outcomes as heads or as tails, leading to any of the two estimates p = k

N
or p = k+N−No

N
.

Example 6 (No assumption on the measurement process). Let us consider the same Example 1 without the superset assumption. 
Now, we do not assume anything about the proportion of times where Peter does not inform us about the results of the 
tosses. Such a proportion does exist, but it is not necessarily equal to 0.5 and furthermore it may depend on the true 
result of the coin. In other words, we do not put any assumption about the “imprecisiation process”. Formally speaking, 
the conditional probability α = P (Y = {h, t}|X = h) may differ from β = P (Y = {h, t}|X = t) and each of them can be any 
number in the unit interval.

Maximization of Ly Taking into account the marginal distribution of Y calculated at the beginning of this section, we can 
write:

Ly(θ) = log([(1 − α)p]4 · [(1 − β)(1− p)]2 · [αp + β(1 − p)]4)

where θ = (p, α, β). The maximum is attained for any θ satisfying the constraints:

• (1 − α)p = 0.4 and

• (1 − β)(1 − p) = 0.2,

i.e., the set of tuples for which the respective probabilities of Y = {h}, Y = {t} and Y = {h, t} are 0.4, 0.2 and 0.4. In other
words, in this general setting, the MLE on X constrained by y is not unique, contrary to the case when the superset



assumption is made, as in the previous example where we fixed the conditional probability of Y given X . Here the col-
lection of MLE obtained from y corresponds to the set of all the joint distributions whose marginals on Y coincide with 
the empirical distribution (0.4, 0.2, 0.4). It corresponds all probability distributions compatible with the mass assignment 
m({h}) = 0.4, m({t}) = 0.2, m({h, t}) = 0.4 on {h, t}. Clearly, in this case, the set of statistical models defined by the three 
parameters is compatible with the empirical distributions on observations.

Maximization of Lz On the other hand, the likelihood based on z is:

Lz(p,α, β) = log([(1 − α)p]4(αp)n13 [(1− β)(1− p)]2[β(1 − p)]4−n13)

where 0 ≤ n13 ≤ n.3 = 4. Regrouping terms, we can alternatively express it as:

Lz(p,α, β) = log([p4+n13(1 − p)6−n13 ]) + log(·[αn13(1− α)4]) + log([β4−n13(1 − β)2]).

Thus, given a specific sample z, the optimal parameter θ∗(n13) is obtained as:

p∗(n13) =
4+ n13

10
; α∗(n13) =

n13

n13 + 4
; β∗(n13) =

4− n13

6− n13
,

where n13 denotes the number of times where the result of the coin was “heads” in the true sample z, but Peter 
did not report it. The optimal pair (z∗, θ∗) is attained for the sample z∗ ∈ Zy satisfying the equality n13 = 4 (the 
sample where all those tosses of the coin where Peter provided no information corresponds to “heads”). The optimal 
θ∗ = (p∗, α∗, β∗) is therefore p∗ = 0.8, α∗ = 0.5, β∗ = 0. Let the reader notice that, for every n13 ∈ {0, 1, 2, 3, 4}, vector 
(p∗(n13), α∗(n13), β∗(n13)) is an MLE based on y, i.e., it satisfies the constraints:

• (1 − α∗(n13))p
∗(n13) = 0.4 and

• (1 − β∗(n13))(1 − p∗(n13)) = 0.2.

According to the maximax strategy, the optimal estimation of the probability of heads is 0.8. On the other hand, according 
to this maximization criterion, it is postulated that Peter decides 50% of the times to inform us about the result when it is 
“heads”, but he always decides us to inform us about it when it is “tails”. This is the same distribution on X as under the 
superset assumption, however, with different parameters driving the joint distributions, as here α∗ = 0.5, β∗ = 0, so that 
the empirical and theoretical distributions on Y are the same (see Table 1).

Finding the lower distribution Lz and the maximin estimate of the parameter θ is trickier.

Maximization of Lx Finally, as we already pointed out in Example 5, Lx(θ) = (4 + n13) log p + (6 − n13) log(1 − p) depends 
neither on α nor on β . According to this, we easily deduce that the argument of the maximum of Lx(θ) is the same as in 
the last example. Thus given a sample x inducing the frequency n13 of times where the result was heads and Peter did not 
report it, the optimal value of p is p∗(n13) =

4+n13
10

. The argument of the maximum maxx∈X y,θ∈2 Lx(θ) therefore corresponds 
to n∗

13 = 4 and p∗(n∗
13) = 0.8 and leaves the conditional probabilities α and β move freely in the unit interval. According 

to the maximax strategy on Lx , the probability of “heads” is again estimated to be 0.8. Nevertheless, nothing is postulated 
about the probability that Peter does not inform us about the result, and about the relation between his decision and the 
true result. However, enforcing the identity between the empirical and parametric distributions on Y enforce α = 0.5 and 
β = 0.

The maximin strategy on Lx also yields the same solution (p = 0.5) as when the superset assumption holds, this time 
with freedom on the choice of α and β (as these parameters are not involved in the optimization). Enforcing the identity 
between the empirical and parametric distributions on Y enforces α = 0.2 and β = 0.6.

These three optimal solutions (each of them attending a particular criterion) match the results given in Propositions 1

and 5. We can easily observe that the parameter is separable with respect to both matrices (M|p) and (M ′|p′). According to 
Proposition 1,

{argmax
θ∈2

Lz(θ) : z ∈ Z
y} ⊆ {argmax

θ∈2
Ly(θ)}.

Furthermore, according to Proposition 5, given a specific sample x ∈ X N , the set argmaxθ∈2 Lz(θ) is included in 
argmaxθ∈2 Lx(θ).

4.4. Overlapping observations

Finally consider an example with pure overlap of imprecise observations.

Example 7. Consider the same dice setting as in Example 3, but now take a sample of N tosses of the dice and assume that 
the reporter has told us n1 of the times that the result was less than or equal to 3 and the remaining n2 = N −n1 tosses, he 
told us that it was greater than or equal to 3. After each toss, when the actual result (X) is 3, the reporter needs to make 



a decision. Let us assume that such a decision does not depend on the previous trials of the dice. In other words, let us 
assume that Yn is independent from (X1, Y1), . . . , (Xn−1, Yn−1). Furthermore, let us assume that the conditional probability 
P (Yn = y1|Xn = 3) is a fixed number α ∈ [0, 1] for every trial, n = 1, . . . , N . According to this information, we can easily 
check that ((X1, Y1), . . . , (XN , YN)) is a sequence of N i.i.d. vectors. The joint distribution of (X, Y ) can be written as a 
function of (p1, . . . , p6) and α, since it is determined by the following matrix (M|p):















1 0 p1

1 0 p2

α 1− α p3

0 1 p4

0 1 p5

0 1 p6















corresponding to the joint probability

Y , X 1 2 3 4 5 6

y1 p1 p2 α p3 0 0 0

y2 0 0 (1− α) p3 p4 p5 p6

Suppose that we toss the dice N = 1000 times and the reporter tells us n.1 = 300 times that the result was less than or 
equal to 3. The remaining n.2 = 700 times he tells us that the result was greater than or equal to 3. Let θ denote the vector 
(p1, p2, p3, p4, p5, p6, α). The likelihood function based on the observed sample y can be written as4:

Ly(θ) = (p1 + p2 + αp3)
300 · ((1− α)p3 + p4 + p5 + p6)

700.

Such a function is maximized for any vector θ satisfying the constraints:

p1 + p2 + αp3 = 0.3 and (1− α)p3 + p4 + p5 + p6 = 0.7.

The other likelihood functions take the form

Lx(θ) =
∏

i 6=3

p
ni.
i. · p

n31+n32
3 and Lz(θ) =

∏

i 6=3

p
ni.
i. · p

n31
31 · p

n32
32

with n1. = n11, n2. = n21, n4. = n24, n5. = n25, n6. = n26 . The maximax value of Lx is clearly obtained (with p(x∗; θ∗) = 1) for 
p3 = 1 and n31 = n.1 , n32 = n.2 , while there are many maximax fake samples z consisting in n1 times any i ∈ {1, 2, 3}, and 
n2 times any k ∈ {3, 4, 5, 6}, the corresponding parameters being pi1 = n1

N
and pk2 = n1

N
. It includes the maximax solution 

for Lx since it is obtained when i = k = 3.

This example confirms the trend of the maximax solution to disambiguate the data assuming the same imprecise obser-
vations to underlie the same outcome. Namely, when all observations A j overlap, it is clear that the maximax strategy on 
Lx comes down to a disambiguation that selects an element in the intersection and a maximum probability assignment to 
it. In the example the result of the maximax strategy looks debatable because it comes down to assuming a deterministic 
dice. It would make sense if as part of our knowledge, the underlying process was not die tossing, but a single number 
hidden in a box that the reporter opens each time. From the obtained reports it is then clear that the most likely value is 
3. It again corresponds to the idea of minimizing entropy as shown by the following result.

Let P2 again denote the set of parameterized joint distributions (dependent on θ ) and Py the set of joint distributions
whose marginals on Y agree with the empirical distribution induced by y. Let PX

2 and PX
y denote the respective collections 

of their marginals on X .

Proposition 13. If PX
y ⊆ PX

2 then the argument of the maximax strategy with respect to Lx is the collection of pairs in the form 
(x∗, θ∗) where:

• The empirical distribution induced by x∗ on X attains the minimum entropy (among the set of all the feasible samples X y).

• The marginal of Pθ∗ on X coincides with such an empirical distribution.

Proof. First notice that the set argmax(x,θ)∈X y×2 Lx(θ) coincides with the set argmaxx∈X y argmaxθ∈2 Lx(θ). Now, for a
fixed x ∈ X y inducing the empirical distribution (n1.

N
, . . . , nM.

N
) we can write Lx(θ) =

∑m
i=1

ni.
N

log pθ
i. . According to Gibbs’ 

4 And not, as pointed out in Section 3.1,

P (A1)
300 · P (A2)

700 = (p1 + p2 + p3)
300 · (p3 + p4 + p5 + p6)

700,

whose maximum is reached for p3 = 1.



inequality, we therefore get Lx(θ) ≤
∑m

i=1
ni.
N

log ni.
N
. Furthermore, according to the hypotheses, the empirical distribution 

(
n1.
N

, . . . , nM.

N
) belongs to PX

2 . Thus, given x ∈ X y inducing such an empirical distribution, argmaxθ∈2 Lx(θ) = θ∗(x), where 

p
θ∗(x)
i. = ni.

N
, ∀ i = 1, . . . , m. Now, we need to maximize the expression Lx(θ∗(x)) =

∑m
i=1

ni.
N

log ni.
N

with respect to the first 
argument, which consists in finding a sample x∗ ∈X y inducing an empirical distribution on X with the minimum possible 
entropy. ✷

A similar result can be obtained, using the same kind of proof, in relation to the maximax strategy associated to Lz:

Proposition 14. If Py ⊆ P2 then the argument of the maximax strategy with respect to Lz is the collection of pairs in the form 
(z∗∗, θ∗∗) where:

• The empirical distribution induced by z∗∗ on X ×Y attains the minimum entropy (among the set of all the feasible samples Zy).

• The distribution Pθ∗∗ on X ×Y coincides with such an empirical distribution.

The problem of computing the minimal entropy distribution in a convex set of probabilities has been addressed in 
Ref. [1], and can be applied to find the maximax solution for the total or latent likelihood function optimization.

The maximin solution is less easy to obtain in this case, but one can show it does maximize entropy on Py . Problems 
of the form maxθ∈2 minx∈X y Lx(θ) are well-known in the framework of game theory [49] and lead to the notion of Nash 
equilibrium. The major issue is to check whether conditions under which this expression is equal to minx∈X y maxθ∈2 Lx(θ)

are satisfied. The inequality maxθ∈2 minx∈X y Lx(θ) ≤ minx∈X y maxθ∈2 Lx(θ) always holds. That the other inequality holds 
was recently proved in [19].

The maxmin strategy on the hidden likelihood function considers the problem maxθ minn∈X y f (n, p), where func-
tion f has the form: f (n, p) =

∑m
k=1 nk. log pk. , and p is the unknown distribution on X , n is the count vector of a 

sample on X with components nk. compatible with y (x ∈ X y for the corresponding sample). It is shown in [19] that 
maxθ minn∈X y f (n, p) = minn∈X y maxθ f (n, p) and the following result is obtained:

Proposition 15. The optimal solution to the maxmin optimization of the hidden likelihood has maximal entropy, namely it is the 
solution to: maxn − 

∑

k=1,...,m
nk.
N

· log
nk.
N
. under conditions that n corresponds to a sample x ∈X y .

So the maxmin optimization of the hidden likelihood comes down to finding the maximum entropy probability in the 
credal set Py a problem already addressed in the past [1,2]. Similar considerations can be devised about the maxmin 
strategy for the total likelihood function. The connection between maximal entropy, game theory, and minimizing worst-case 
expected loss (of which maximum likelihood is a special case) has been studied more generally by Grünwald and Dawid 
[17].

4.5. Maximizing the face likelihood

Finally let us reconsider the face likelihood of λ(y; θ) =
∏r

j=1 P (X ∈ A j; θ)n. j , after Jaeger [26]. As said earlier, in this 
criterion, the set A j is not an outcome for Y , it is a more general event for X . Then the face likelihood is not always 
a likelihood for the space X stricto sensu. If we consider A j as an outcome, we should consider it as a singleton in 
the set of possible results 2X . Note that even if Ai ∩ A j 6= ∅, we do have that {Ai} ∩ {A j} = ∅ (distinct outcomes are 
always mutually exclusive, following Edwards [15]). Nevertheless, the maximization of the face likelihood will come down 
to standard likelihood maximization in three cases.

• The case where the range {A1, . . . , Ar} of Ŵ forms a partition of X . In this case, P (X ∈ A j) = P (Y = A j) = p. j, ∀ j =
1, . . . , r, and therefore the face likelihood 

∏r
j=1 P (X ∈ A j; θ)n. j coincides with the visible likelihood p(y; θ).

• The miss-or-observe situation when the range of Ŵ contains either singletons from X or X itself. Then λ(y; θ) =
(
∏k

i=1 P (Y = {ai}; θ)n.i ) · P (X ∈ X ; θ)n.k+1 ) =
∏k

i=1 P (X = ai; θ)n.i since P (X ∈ X ; θ) = 1. In other words, the face likeli-
hood is the standard likelihood on X based only on precise observations, dropping the missed ones.

• The case where there is CAR and distinctness of the parameters (separability with respect to (M|p)). Heitjan and Rubin
([21]) prove that, under this assumption, the optimal argument of the face likelihood coincides with that of the visible
likelihood function. In fact, taking into account the fact that Y = A j implies X ∈ Ai , i.e., P (Y = Ai |X 6∈ Ai) = 0, the
visible likelihood can be decomposed as follows under those assumptions:

p(y; θ) =

r
∏

j=1

P (Y = {A j}; (θ3, θ4))
n. j

=





r
∏

j=1

P (Y = A j|X ∈ A j; θ3) · P (X ∈ A j; θ4)





n. j



=

r
∏

j=1

P (Y = A j|X ∈ A j; θ3)
n. j ·

r
∏

j=1

P (X ∈ A j; θ4)
n. j

=

r
∏

j=1

P (Y = A j|X ∈ A j; θ3)
n. j · λ(y; θ4).

Therefore,

arg max
θ4∈24

(

arg max
θ3∈23

p(y; θ3, θ4)

)

= arg max
θ4∈24

λ(y; θ4).

In the case where the sets A1, . . . , Ar do overlap the face likelihood and the visible one do not necessarily coincide, as 
shown in the following example.

Example 8. Let us consider again the situation described in Example 7, where on a sample of N tosses of the dice, the 
reporter has told us that n1 of the times the result was less than or equal to 3, and n2 = N − n1 otherwise. The face
likelihood is λ(y; θ) = (p1 + p2 + p3)

n1 · (p3 + p4 + p5 + p6)
n2 with 

∑6
i=1 pi = 1. We can easily observe that, like in the 

case of the maximax strategy on Łx(θ), the face likelihood reaches its maximum (λ(y; θ) = 1) for any vector θ satisfying 
the constraint p3 = 1. But such a prediction of θ is not a reasonable estimate for θ . The visible likelihood function is of the 
form py(θ) = (p1 + p2 + αp3)

n1 · [αp3 + p4 + p5 + p6)]
n2 , and optimizing it yields different results (see Example 7).

More generally, in the extreme situation where the imprecise observations completely overlap (∩r
i=1Ai 6= ∅) then the face

likelihood is maximal for any distribution on X such that P (∩r
i=1Ai) = 1.

5. Conclusion

This paper is a preliminary investigation of the problem of likelihood maximization under incomplete information. The 
contribution of this paper lies in the proposal of new formulations of maximum likelihood problems in the presence of 
incomplete information and the strategies for solving them. The main message is that there is not a single way to define 
a likelihood function, hence not a single solution to the problem of statistical inference in this situation. All depends on 
the problem one is interested to solve and the available information. The maximization of the visible likelihood function 
p(y; θ) has been the topic of a large literature, especially the EM algorithm, for which the underlying variable X has been 
often introduced artificially as a trick to facilitate likelihood maximization via an iterative alternating optimization method 
[29,13,40].

The EM algorithm has been proposed as a general approach to handling incomplete data as well [11], at least in the 
case when the data partitions the range of the random variable X of interest. However, imprecise data does not necessarily 
form a partition, but it generally corresponds to a random set in the sense of the other well-known paper by Dempster 
[11]; moreover the EM algorithm is mainly used to retrieve the unobserved sample of the latent random variable and to 
provide an estimate of the underlying probability distribution over X based on it, thanks to the existing relations between 
the parameters of the measured quantity Y and the latent variable X . Thus, when there is a unique maximum likelihood 
estimate based on the observed sample y, this method selects a single marginal distribution over X . Alternatively, when 
the parameter θ = (θ1, θ2) is separable with respect to (M ′|p′), the MLE from y only depends on θ1 (the component that 
determines the marginal distribution on Y) and therefore the MLE is not unique. When there is a single θ̂1 such that 
argmax Ly(θ) = {θ̂1} × 22 and furthermore the parametrization does not impose any additional restriction on the condi-
tional distributions, then this maximization procedure yields a belief function on X , as we have illustrated in Example 3. 
Nevertheless, this does not happen in general. To give an example, we may consider the case where X is assumed to follow 
a uniform distribution and y is made of precise observations. Let P2 represent the collection of uniform distributions of 
the form U (θ, θ + 1), θ ∈ 2 = R. In that case, the collection of marginal distributions over X based on the maximization 
of Ly is {U (θ̂ , θ̂ + 1) : θ ∈ [min{y1, . . . , yn}, max{y1, . . . , yn} − 1]}, that does not coincide with the credal set of any belief 
measure.

In this paper, we address the case when we are interested in directly maximizing the likelihood function of the precise 
data that would have been obtained, had the observations been complete and precise. We introduce the latent and total 
likelihood functions p(x; θ) and p(z; θ) that are possible candidates for maximization. The latter is instrumental if some 
knowledge of the measurement process is available in the form of conditional probabilities of observations, while the former 
does away with the idea of modeling the measurement process. Such likelihood functions are imprecisely known due to the 
lack of precision of the observed data. Two optimization strategies, maximin and maximax, have been studied to cope with 
such imprecision. Their behavior has been observed via examples and compared to the strategy based on the maximization 
of p(y; θ). The parametric marginal distributions over X determined from those strategies do not necessarily coincide with 
the parametric marginal distribution over X determined from the maximization of p(y; θ).



Further studies would be needed in order to select the most appropriate strategy in each practical problem. In particular 
one may use other strategies different from maximin and maximax to compare the interval-valued latent and total like-
lihood functions, by means of some interval order, or choosing another reference point like the midpoint of the interval. 
A preliminary discussion about the necessity to find a satisfactory interval order was developed in Ref. [41] in the context 
of machine learning. There, empirical risk values were considered instead of likelihood values. The connection between both 
notions, under the corresponding assumptions regarding the underlying distribution of X , is well known in Statistics. Be-
sides, the natural partial ordering between intervals (where [a, b] is said to be less than of equal to [c, d] if and only if b ≤ c) 
is considered in Ref. [42]. A collection of “non-dominated” solutions for the optimization of the latent likelihood is derived 
from this comparison criterion. The comparison between the mid-points of the interval-valued latent likelihoods has been 
also used as a criterion to select the best classifier in [33]. A more exhaustive collection of interval orders is considered in 
[8].

We have pointed out that the face likelihood discussed by Jaeger [26] also differs from the three other ones studied in 
more details here. The maximization of the face likelihood leads to results different from but quite related to the ones of the 
max-average criterion, as explained by E. Hüllermeier in [[22], Section 5]. This criterion has been generalized to uncertain 
data and exploited in the Evidential EM algorithm of Denœux [12]. This extension of EM has been successfully used in some 
applications (see [37,38] and references therein). A variant of the maximization procedure considered in Ref. [12], where the 
proposed generalization of λ(y; θ) to uncertain data would be replaced by the corresponding generalization of p(y; θ) seems 
to be a promising alternative in the context of parametric estimation. A comparison between both procedures in practice is 
worth carrying out.

Finally, it has been shown that the maximax strategy favors estimated distributions concentrated on precise selections 
of the imprecise observations (minimizing entropy), while the maximin strategy favors estimated distributions with large 
entropy. These conjectures must be studied in further research. Moreover, the comparison of solutions for p(x; θ) and 
p(z; θ) needs to be better understood, especially conditions where maximax or maximin solutions for p(x; θ) are distinct 
from solutions for p(z; θ). Finally, these maximum likelihood schemes should be studied in the light of existing imputation 
methods for incomplete data [43,48].
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