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Abstract
A new field where the utilization of mechanochemistry can create new opportunities 
is materials chemistry, and, more interestingly, the synthesis of novel nanomateri-
als. Ball-milling procedures and ultrasonic techniques can be regarded as the most 
important mechanochemical synthetic tools, since they can act as attractive alterna-
tives to the conventional methods. It is also feasible for the utilization of mechano-
chemical forces to act synergistically with the conventional synthesis (as a pre-treat-
ment step, or simultaneously during the synthesis) in order to improve the synthetic 
process and/or the material’s desired features. The usage of ultrasound irradiation or 
ball-milling treatment is found to play a crucial role in controlling and enhancing the 
structural, morphological, optical, and surface chemistry features that are important 
for heterogeneous photocatalytic practices. The focus of this article is to collect all 
the available examples in which the utilization of sonochemistry or ball milling had 
unique effects as a synthesis tool towards zero- or one-dimensional nanostructures 
of a semiconductor which is assumed as a benchmark in photocatalysis, titanium 
dioxide.
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1 Introduction

1.1  Nanotechnology and Photocatalysis

Generally, the impact of nanotechnology has been astonishingly positive in the last 
decades toward a wide range of environmental, energy, catalysis, as well as syn-
thetic applications and technologies, with a continuous incremental trend of pub-
lished peer-reviewed articles. Nanostructured and nanoengineered materials garner 
continuously enhanced research attention and focus due to their unique and novel 
properties, especially in comparison to bulk materials/counterparts. Application of 
nanoscaled materials covers a broad range of fields, from electronics and catalytic 
reactions, to medical and environmental remediation, while novel nanomaterials for 
new applications are highly desired. The properties of nanomaterials depend on the 
morphological (shape and size), structural (surface area and porosity), optical (band-
gap and light-harvesting capability), and surface chemistry features (nature and 
availability of the reactive sites). Another important aspect is to obtain well-defined 
phase composition of high homogeneity. All the above features are directly linked 
and dependent on the method/protocol of preparation [1]. By tuning specific syn-
thetic parameters, such as temperature, aging, and washing protocol, it is feasible to 
control the vital features for a targeted use. For instance, the chemical composition 
and the porosity are crucial features regarding catalytic synthesis and environmental 
applications. On the other hand, the optical and morphological features are more 
important for fabricating crystals for photonic devices.

Another important target in laboratory as well as in industrial research is to find 
novel ways to conduct reactions following “green” approaches. And toward this 
direction, photocatalysis is a favorable tool, since it is feasible to utilize a natu-
ral source of energy, solar light. The harvesting of light from a photocatalyst can 
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promote specific reactions even without the use of additive chemicals or another 
source of energy. The most important part in heterogeneous photocatalysis is the 
development and usage of materials that can function as sufficient photocatalysts, 
and nanotechnology has been shown capable of providing solutions. Synthesis of 
nanomaterials and tuning specific features of them like nano-morphological and 
optical features is an ultimately important and efficient strategy to achieve the above. 
Even though the synthesis of nanoscaled photocatalysts has been a hot topic dur-
ing the last decades with many published articles and end-use applications, the use 
of mechanochemical-based synthetic approaches is not so broadly explored. By 
gathering the existing knowledge on the effects derived from the mechanochemi-
cal forces like ultrasound (US) irradiation and ball milling, it will be realistic to go 
a step further. The focus of this work is to collect all the reports in which the two 
above-mentioned techniques were applied during the synthesis of two benchmark 
semiconductor photocatalysts, titanium dioxide or titanate, in order to obtain various 
polymorphs with different structural, morphological, and optical features.

1.2  Mechanochemical Synthesis

The exploration and discovery of new synthetic approaches as well as the incorpora-
tion of advantageous techniques for the development of new or improved proper-
ties of already known nanomaterials as photocatalysts is an ongoing and interesting 
field of research, with fascinating potential [1, 2]. In recent years, mechanochem-
ical processes were found to hold great promise, since they are effective and can 
lead to nanomaterials of novel properties. Another important aspect is that various 
reported active nanocatalysts can be synthesized in a shorter time compared to tra-
ditional wet-chemistry synthesis. In many cases, the design of mechanochemical-
based methods can have a positive effect on the “green” character and environmental 
footprint: consumption of less energy, less or even no use of hazardous solvents, 
need of recycling, purification, etc. According to the International Union of Pure 
and Applied Chemistry (IUPAC), the definition of a mechanochemical process is: 
“a chemical reaction that is induced by the direct absorption of mechanical energy” 
[3]. The utilization of mechanochemical forces holds great promise and begets novel 
approaches in nanocrystalline synthesis (mechanosynthesis), and, more specifi-
cally, on how to control the desired features, crucial for different applications [3–7]. 
Herein, two mechanochemical sources will be introduced: (1) US irradiation (sono-
chemistry) and (2) ball milling. The rapid growth of the research interest around 
the utilization of mechanochemistry methods is due to their unique effects. By the 
correct selection of these effects, it is feasible to obtain novel nanomaterials, and to 
control desired physical, chemical, and optical properties [5, 8]. Simultaneously, it 
is possible to eliminate the environmental footprint of the synthesis, avoiding, for 
instance, the usage of high energy, hazardous and non-recyclable chemicals, or by 
decreasing the duration and the number of steps of the synthesis [9].
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1.3  Sonochemistry

1.3.1  A Brief History

Sound waves not detectable by the human ear with frequencies ranging from 20 kHz 
to 200 MHz are referred to as ultrasound (US) waves [10]. The effects of sonication 
are linked to the cavitation phenomena, and they can be chemical, physical, mechan-
ical, or optical. The first reference to the cavitation phenomena by Thornycroft and 
Barnaby dates from 1895 [11]. By the time Neppiras introduced the term “sono-
chemistry” in 1980 [12] and Makino et al. showed the formation of radical species 
during the sonolysis of water in 1982 [13, 14], the research attraction of sonochem-
istry had increased dramatically. In general, sonochemistry is linked with the under-
standing and interpretation of the processes and the effects initiated by US irradia-
tion due to the cavitation phenomena. The main derived results are the enhancement 
of the reaction rate, radical species formation, as well as mass and heat transfer [1, 
2, 4, 15–17].

1.3.2  Cavitation Phenomena—Mechanistic Aspects on “How Does Everything 
Work?”

The formation of cavitation bubbles is due to pressure changes upon the travel of US 
waves in a liquid. The initially formed microbubbles, consisting of vaporized solvent 
or/and dissolved gases, grow continuously in size by absorbing energy during the 
irradiation [18]. After growing to a certain size, they violently collapse, creating a 
localized “hot spot.” The local pressure and temperature can be above 1000 bars and 
5000  K, respectively [18–20]. The hot-spot concept and the consequential effects 
can be described by distinguishing three zones [21, 22]. Zone 1 is inside the bub-
ble (primary sonochemistry), zone 2 is at the gas–liquid interface (secondary sono-
chemistry), and zone 3 is the bulk liquid phase surrounding zone 2. At the interior 
of the cavity, cleavage of bonds and formation of radicals occurs due to the harsh 
energetical environment and to the fact that the gaseous concentration is extended 
[22–24]. These radical species can also be transported to zone 2, where reaction of 
free radicals and pyrolysis can take place, or even to the bulk liquid zone 3. In an 
aqueous environment, the sonolysis of water can lead to the formation of hydroxyl 
 (HO·) or hydroperoxyl (HO2

·) radicals, and hydrogen peroxide  (H2O2). These species 
can initiate secondary reactions that can play a key role in material synthesis or for 
catalytic reactions [15].

Even if the “hot-spot” theory is the most accepted to explain these phenomenas, 
several studies lead to the proposition of plasma [25, 26], electrical [27], and super-
critical water [28] theories, demonstrating that all the mechanisms involving US are 
not completely known. In addition to the chemical effect of US, various other mech-
anisms exist, such as physical, mechanical, or light emission (sonoluminescence). 
The latter one is also valuable in order to determine the active regions and intensity 
of the US waves using a hydroxyl radical trapping agent, luminol (through chemilu-
minescence [29–31]. The physical/mechanical effects can be the formation of micro-
jets, turbulence, microstreaming, shockwaves, and agitations [23]. These effects can 
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positively promote the reaction rates by affecting the mass (mixing) and heat trans-
fer phenomena or resulting in some structural alterations of the solids, such as ero-
sion, exfoliation, fragmentation, or deformation [6, 8, 22, 32, 33].

The utilization of US irradiation is a complex aspect, since the formation of cavi-
tation in liquids can be affected by numerous parameters [2, 22, 23]. Some of them 
are described in most of the articles, but some were not reported. The frequency 
and the power of the irradiated US waves can be considered the most fundamental 
parameters [16]. Increase of the US frequency leads to shortening of the expansion 
and compression pressure cycle, and, as a result, to a negative impact on the effec-
tiveness. The formed bubbles/cavitation at higher frequencies have a smaller size 
and less violent implosion effects, although they have a better size distribution and 
rate formation. At lower frequency, the cavitation phenomena is more violent and 
intense with a consequent of higher localized pressure and temperature, as well as 
higher concentration of free radical formation. However, there are many cases where 
the high frequencies have desired impact on reaction rates and material synthesis.

Other important parameters that should be taken into consideration for the effec-
tive US utilization in synthesis of catalysts and catalytic reactions are the solvent, 
the presence/concentration of dissolved gases, temperature, and pressure [34]. The 
physicochemical parameters of the solvent, for example, the solubility of air or oxy-
gen, viscosity, surface tension, or vapor pressure, play key roles in the cavitation 
threshold. The increment of the latter parameter has a negative impact on the cycle 
formation, while, on the contrary, increment of the rest has a positive effect. Ini-
tiation of cavitation is facilitated by the presence of dissolved gases. However, the 
extent of the assistance upon cavitation is related to the physical properties of the 
gas. Contrary to the chemical processes, the increase of the temperature (until a spe-
cific range) has a negative impact on the sonochemical reaction due to increase of 
the vapor pressure and to the decrement of the gaseous solubility. However, there are 
many circumstances revealing that the temperature increase has positive and desired 
effects. An increase of the reactor pressure could cause a decrease of the solvent’s 
vapor pressure.

1.4  Ball Milling

1.4.1  A Brief History

The earliest recorded mechanochemical process, according to Takacs [35], dates 
to the fourth century BC, in which Theophastus of Eresos noted the synthesis of 
elemental mercury by grinding cinnabar (HgS) with acetic acid in a Cu vessel, the 
first documented separation of an elemental metal [3, 7, 35]. Since a solvent was 
needed even in a minimal amount, this process is regarded nowadays as liquid-
assisted grinding (LAG). From this point and afterward, mechanochemistry-based 
approaches were applied widely in metallurgy and mining, and more details can be 
found elsewhere [35–37]. By the use of a pestle and mortar and without a liquid (dry 
grinding), it was the great experimental physicist, Michael Faraday (discovered the 
laws of electrolysis, electromagnetic induction, and the rotation of polarized light by 
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magnetism) who conducted displacement reactions between a metal and oxides of 
less reactive metals [3, 7, 35]. In his first research published in 1820, which can be 
assumed as the first systematic study of the mechanochemical process, he showed 
the oxidation of Zn by the reduction of AgCl to Ag by simple mortar grinding [35, 
38]. However, there was no specific evidence indicating if the grinding promoted the 
reaction mechanochemically of just thermodynamically by heat generation through 
friction.

The American chemist and pioneer of photographic chemistry, Mathew Carey 
Lea (1823–1897), systematically studied and determined (between 1889 and 1894) 
that the above kind of redox reactions were initiated/activated by mechanochemical 
effects rather than thermochemical effects. A clear and loud example was the forma-
tion of elemental Ag from grinding of silver halides, while it was just melted with-
out decomposition upon thermal treatment [39] (Fig. 1).

The terminology of mechanochemistry was introduced by L. Crismer in 1912 
in a biography of Walthere Spring and his geology-oriented research on the effects 
derived by high pressure on powdered materials in order to explain the formation 
of various natural minerals [35, 41]. Although mechanochemistry started to be 
assumed and accepted as a distinct/separate subdiscipline of chemistry in 1919, a 
physical chemist and philosopher, the Nobel Laureate Friedrich Wilhelm Ostwald 
(Nobel prize in Chemistry, 1909, “in recognition of his work on catalysis and for 
his investigations into the fundamental principles governing chemical equilibria 
and rates of reaction”) introduced it as a separate chemistry sub-discipline along-
side electrochemistry, photochemistry, and thermochemistry [42]. Ostwald made 
this classification due to the fact that different types of energy are required in each 
sub-discipline.

1.4.2  Mechanistic Aspects on “How Ball Milling Works?”

Even nowadays, there is not a complete and comprehensive mechanistic picture 
regarding how ball milling and, in general, mechanochemistry works. This is also 
linked with the diversity of the utilized techniques/equipment (like mortar/pestle, 
mixer and planetary mills, glass vessel or tube disperser milling, etc. [3]) and the 
reaction types (dry or wet), conditions (gaseous atmosphere, temperature, etc.), and 
precursors (minerals, metal oxides, metals, chemicals, etc.). Several processes take 
place during the ball milling like heat and mass transfer.

Fig. 1  Mathew Carey Lea 
(1823–1897) and Friedrich 
Wilhelm Ostwald (1853–1932) 
left and right, respectively. 
Reprinted with permission from 
[40]. Copyright (2013) Royal 
Society of Chemistry
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However, the most crucial driving force is believed to be the generation and 
relaxation of mechanical stress that have a direct effect on the crystalline lattices 
[3]. The theory of “hot spots” formation during ball milling is a widely accepted one 
[7]. Hot spots can be created by the cracking of crystals, resulting in local tempera-
ture (up to 5000 K) and pressure, electric fields up to 108 V/m, crack propagation 
with velocity close to that of sound (105  cm/s), and lifetimes for bond excitation 
around 100 fs [3, 43, 44]. These effects are analogues of those of US irradiation in 
a liquid, even though the formation of a hot spot results from the cavitation phe-
nomena. And it is important that the high amount of added energy is localized 
microscopically, even nanoscopically, without affecting the macroscopic system to 
a great extent. This localized high amount of energy can lead to a diversity of con-
sequences, such as lattice deformation, cleavage of bonds, or formation of radicals. 
And these phenomena cannot be achieved by other synthetic approaches in solution. 
Figure 2 presents the most important fields of mechanochemistry applications based 
on the report by Elena Boldyreva [43]. More mechanistic aspects and fields of appli-
cation of mechanochemistry can also be found elsewhere [3, 7, 35, 44]. Even though 
Boldyreva did not consider US irradiation in her work, the latter can be utilized for 
the same fields and applications when a liquid phase is required. The rapid growth 
of the research interest around the application of mechanochemistry is due recent 
discovery of unique effects. By the correct utilization of these effects, it is feasible 
to obtain the desired nanostructured materials and enhance their crucial features by 
simultaneously eliminating the environmental footprint of the synthesis and avoid-
ing the usage of high energy and hazardous and non-recyclable chemicals.

1.5  TiO2: The Benchmark Semiconductor Photocatalyst

Titanium dioxide  (TiO2) can be regarded as one of the most popular semiconduc-
tor photocatalysts, for a wide range of applications; organic pollutant degradation, 
hydrogen production, solar cells, photocatalysis, etc. It combines high photo-activity 
for various reactions, high stability, low cost, and low toxicity for humans, animals, 
and the environment. Use of titanium dioxide started intensively in 1972, when 
Fujishima and Honda revealed photocatalytic water splitting by titania electrodes 
[45]. Since then, numerous articles have focused on the use of  TiO2 and its com-
posites for green-oriented heterogeneous catalysis, like valorization of biomass and 
upgrading of obtained chemicals [1, 46, 47].

Another important property of titanium dioxide is its superhydrophilicity that is 
crucial for solar fuel production and environmental remediation applications [48]. 
However, one crucial drawback arises due to the fact that  TiO2 has a wide bandgap 

Fig. 2  Applications of mechano-
chemistry
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ranging from 3.1 to 3.7  eV, and UV light irradiation is required in order to trig-
ger the photoreactivity. Considering that solar light consists predominately of vis-
ible and infrared light, with ultraviolet light less than 5% of the total solar light, a 
persistent research effort is focused on narrowing of the bandgap and, as a result, 
increase of light absorption and photoreactivity under sunlight. Even though several 
polymorphs/crystal structures of  TiO2 exist [49], with the most important presented 
in Fig. 3, only a few of them have been studied and found promising for photocat-
alytic applications like biomass valorization [33, 50, 51]. The three most studied 
and stable crystalline phases of titanium oxide are anatase, brookite, and rutile, with 
the former one possessing the highest photocatalytic activity and the latter the high-
est stability [52]. Among the various commercially available forms of  TiO2, one of 
the most active and widely studied is Degussa P25, and, in many cases, it acts as a 
benchmark (industry standard) [53].

There are many reported methods for the synthesis of nanostructured  TiO2 mate-
rials. The sol–gel method is the most often applied method, but, unfortunately, it 
leads to amorphous nanomaterials, and, so, further treatment is needed to induce 
crystallization, like annealing. On the other hand, hydrothermal-based methods can 
promote the crystallinity and shape morphology formation, and can be used for 
larger scaled synthesis compared to the sol–gel method. Crystallinity in relation with 
the particle size is found to determine the photo-reactivity not only in the case of 
Ti-based catalyst [48, 54–57], but also for other materials like ZnO [58–60],  MnO2 
[61], graphitic carbon nitride [5, 62–65], or other metal oxides/hydroxides [66–68]. 
However, the control of the final material’s morphological features is related to a 
wide range of parameters during the synthesis.

Another important aspect in photocatalysis is the rate of the surface reactions. 
The structural (surface area and porosity) as well as the morphological features 

Fig. 3  Crystal structures of rutile (a), anatase (b), bronze (c), brookite (d), columbite (e), hollandite (f), 
baddeleyite (g), and ramsdellite (h) phases. Reprinted with permission from [49]. Copyright (2015) Else-
vier
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(shape and size) play a key role in the catalysis rates, and, as a result, the engineer-
ing of these features is also important [47, 69–80]. Toward the above-mentioned 
direction, different strategies/approaches were followed for the nano-engineering of 
the  TiO2 toward key features/properties for application in catalysis. The most impor-
tant strategies in order to positively trigger the photoreactivity are the following: 
(1) controlling the crystallographic nature; (2) introducing  Ti3+ species and lattice 
disorder; (3) doping with metal or non-metal; (4) decreasing the size of the parti-
cles to nanoscale; (5) engineering the shape to 0D, 1D, 2D, 3D, or amorphous; (6) 
decreasing the size of the particles; (7) chemical modification like hydroxylation/
hydrogenation; (8) porosity enhancement; (9) narrowing the bandgap toward the 
visible range of light; (10) enhancing light absorption; and (11) limitation of  e−/h+ 
recombination.

1.6  Our Approach to Organize this Article

The focus of the work herein is based on novel mechanochemical-assisted synthesis/
modifications, such as US irradiation and ball milling, in which their utilization has 
led to beneficial effects in the enhancement of photocatalytic capability. Since the 
application of mechanochemistry has only lately been assumed and recognized as 
a useful process-intensification tool, in most works where US or ball milling were 
applied, the reports have predominately a materials point of view approach with-
out studying a potential photocatalytic reaction. Additionally, the one-dimensional-
inspired spatially ordered nanotubular-shaped titanate has gathered intense attention 
upon its discovery in 1995 [81]. Although the utilization of mechanochemistry in 
order to improve the synthesis and control specific features has been explored, the 
photocatalytic capabilities of these titanate nanotubes (TiNTBs) was studied in only 
a few of these reports. We believe that TiNTBs can display important photocatalyst 
behavior, and we actively work towards this direction. Based on the above and the 
available articles, we organized this article into two main parts/sections. In the first 
part, we collected the reports in which sonication was used in order to obtain nano-
engineered materials with enhanced specific features for photocatalytic application, 
like light absorptivity, decreased bandgap, defects like surface oxygen vacancies, 
hydroxylation, porosity, etc. The second part is focused on the ball milling-based 
synthesis/modification approach. Each part is separated in two subsections. The first 
subsection is focused on zero-dimensional (0-D) photocatalysts, with an emphasis 
on how to promote the most vital of photochemistry features. In the second subsec-
tion, we collect all the research on the synthesis of one-dimensional (1-D) nano-
structured titanate, like nanotubes (NTBs) and nanorods.
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2  PART A—Sonication‑Assisted Approaches

2.1  0‑D Particles

2.1.1  Increasing the Porosity

The supramolecular assembly sol–gel method using surfactant molecules as a tem-
plate/structure-directing agent for the synthesis of mesoporous titania was reported 
firstly in 1995 by Antonelli and Ying [82]. The main drawback of the obtained hex-
agonally packed mesostructured  TiO2 was the presence of residual phosphorous 
from the alkyl phosphate surfactant. From then, different long-chain organic mole-
cules were studied as phosphorus-free surfactants. In 2000, Wang et al. [83] reported 
a novel synthesis of mesoporous nanostructured titanate of a high porosity, by simul-
taneous ultrasonication during the synthesis (1.13 cm in diameter Ti horn, 20 kHz, 
100 W/cm2). An ethanolic solution of the organic amine and titanium isopropoxide 
was added slowly to a doubly distilled water, followed by aging for 6 h. The addi-
tion and the aging occurred under high-intensity ultrasonication, with the maximum 
temperature reaching 80 °C. The removal of the surfactant from the obtained pow-
der by centrifugation was achieved by dilute ethanolic  HNO3 solution and washing 
with ethanol. The dried powder was also calcinated in a vacuum at 350 °C (8 h) or 
450 °C (4 h). Three different long-chain organic amines (decylamine, dodecylamine, 
and octadecylamine) were studied as the structure-directing agents.

The result was spherical or globular particles between 50 and 200  nm as an 
aggregation of very small nanoparticles, as can be seen from the high-resolution 
transmission electron microscopy(HRTEM) image (Fig.  4). The X-ray diffraction 
(XRD) analysis showed an amorphous nature even after calcination at 350 °C, but 
the rise of the calcination temperature to 450 °C led to an anatase crystallinity. The 
surface areas after extraction, and calcination at 350 °C and 450 °C, were 853, 467, 
and 79 m2/g, respectively. These values are high for metal oxides and higher than 
analogous titanate hexagonal mesoporous framework structures synthesized by 
hydrothermal and then thermal treatment with dodecylamine as a structure-directing 
agent (710 m2/g) [83, 84]. The most interesting outcome was the that the obtained 
nanoparticles had a structure of disordered wormhole framework, rather than a long-
ranged hexagonal structure. This kind of channel motif and the high surface area 
are ultimately important for catalytic application, due to the improved diffusion and 
the availability of the active reaction sites. Compared to various other reports for 
the synthesis of mesoporous  TiO2 nanoparticles, the benefits of this sonochemical 
method is the simplicity and rapid rate of synthesis, that leads also to nanoparticles 
of a high porosity. The authors linked the role of US irradiation to the accelerated 
condensation/polymerization of titanium hydroxide at the interface of the gas phase 
of the hotspots and the bulk solution.
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2.1.2  Controlling the Crystallinity

In 2000, Huang et  al. studied the role of US irradiation in the selective synthesis 
of anatase or rutile phases from different precursors and conditions [52]. The syn-
thetic protocol was based on the addition of different precursors (TPT: tetraisopro-
pyltitanate, TTC: titanium tetrachloride, or a mixture of TPT and TTC) in water 
under sonication by a directly immersed horn (20 kHz, 100 W/cm2). The suspension 
was ultrasonic-aged for 3 h, with the temperature reaching 80 °C. The precipitates 
were obtained by centrifugation and subsequently washed with deionized water and 
ethanol, following by overnight vacuum drying. Compared to the sol–gel-derived 
materials that were amorphous prior to calcination, the samples obtained via US 
irradiation showed a high degree of crystallinity. Rutile-phased nanoparticles (crys-
tallographic size based on the application of Scherrer’s formula at the XRD: 8.2 nm) 
were obtained when TTC was used, and anatase phase (3.5 nm) in the case of TPT. 
The materials synthesized via US were also found to have relatively high surface 
areas, 103 m2/g for the rutile phase and 201 m2/g for the anatase phase. The TPT-
derived sample (anatase) had a broad size distribution of mesopores (average of 
5 nm), linked by the authors to the aggregation of nanoparticles. The rutile phase 
TTC-derived sample had a non-mesoporous nature.

When a mixture of TPT and TTC were used in a molar ratio of 63.4:36.6, a 
mixed anatase/rutile phase was determined. Analysis of the powder X-ray diffrac-
tion (PXRD) data revealed a crystallographic ratio of anatase to rutile phases of 
47.6:52.4, suggesting that in the case of the mixture, part of the rutile phase formed 
at the expense of TPT. It should be pointed out that without US irradiation, the 
material obtained with the same mixture of precursors as above mixture was amor-
phous. The authors also studied the role of temperature. When the synthesis was 
conducted at 30  °C instead of 80  °C and TPT as precursor, the result was mixed 
brookite and anatase phases. On the contrary, when TTC was hydrolyzed under son-
ication at 10 °C, rutile phase was obtained. The role of pH was also studied, but not 

Fig. 4  HRTEM images of the 
as sono-chemically prepared 
mesoporous titanium oxide 
with wormhole-like framework 
structures. Reprinted with 
permission from [83]. Copyright 
(2000) Wiley
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in detail. When TPT was hydrolyzed under sonication at pH 0.7, the obtained sam-
ple of limited mass had a mix of rutile and anatase phases. Increasing the pH of the 
supernatant of the above synthesis to 8.6 and further sonication for 3 h led to a pure 
anatase phase. Based on all the above, it is obvious that even though US irradiation 
and temperature play a key role by promoting the crystallization, the pH can deter-
mine the finally crystallographic phase. Another outcome derived by the authors 
was that the hydrolysis of TPT in water is slower compared to TTC, resulting in a 
more homogeneous and partly condensed gel. The formation of a hotspot due to US 
waves inside the gel phase promotes the polycondensation of the Ti–OH species and 
the formation of a large number of seed nuclei, leading to smaller nanoparticles.

In 2001, Yu et al. [85] studied the effect of US irradiation (cleaner bath, 47 kHz, 
120  Welec.) as well as the role of the ethanol-to-water ratio during the hydrolysis 
upon precipitation of titanium tetraisopropoxide in pure water or mixed EtOH–H2O 
solution at different ratios, followed by in-air calcination at 500 °C for 1 h. The ratio 
of ethanol to water was found to play a key role in the crystallinity of the final pow-
der, and, as a result, in the photocatalytic reactivity. While in pure aqueous solution, 
the obtained material had a mix of anatase and brookite phases (in a ratio of around 
80:20); the addition of methanol led to the elimination of the brookite phase. The 
materials obtained without using methanol were found to possess a higher photoac-
tivity against the oxidation of acetone in air compared to P25. On the contrary, the 
material with a solely anatase phase showed the lowest oxidative performance. The 
authors linked this to the fact that the presence of two crystallographic phases has a 
positive impact on the photocatalytic activity, by decreasing the combination of the 
photogenerated  e−/h+ pairs. In 2010, Ghows et  al. synthesized nanosized  TiO2 by 
hydrolysis of titanium tetra-isopropoxide in a solution of ethanol/water under low-
intensity and high-frequency (500 kHz) sonication [86], although they did not study 
their photocatalytic properties. The crystalline phase and particle size were depend-
ent on the ethanol-to-water ratio, US irradiation time, and temperature.

2.1.3  Altering the Surface Chemical Features and Bandgap

In 2011, Chen et al. [87] reported that the distortion and doping of the outer sur-
face of  TiO2 nanoparticles by high-pressure and high-temperature hydrogenation 
led to an enhancement of the visible light absorption. Interestingly, and for the 
first time, the obtained  TiO2 powder did not have the characteristic white color, 
but a deep dark one. The reported synthesis of this material was conducted in two 
phases. In the first phase, titanium dioxide nanocrystals of an ~8-nm diameter 
were synthesized by a sol–gel method, using an organic template and acid (plu-
ronic F127). The white powder obtained after calcination (500  °C, 6  h) under-
went hydrogenation under a high-pressure (20 bars)  H2 atmosphere at ~ 200  °C 
for 5 days, resulting in a black powder, stable even after 1 year.

The HRTEM analysis revealed no shape alteration upon hydrogenation; how-
ever, an outer disordered layer around 1 nm in thickness appeared. The X-ray dif-
fractogram of both white and black samples revealed the characteristic peaks of 
the anatase structure. The Raman spectrum of the white sample showed the six 
typical Raman-active modes of the anatase structure. The Raman spectrum of the 
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black sample revealed a broadening of the six typical Raman-active modes which 
were appeared in the white powder, and some additional new bands not linked to 
any of the three classic polymorphs of  TiO2. The X-ray photoelectron spectros-
copy (XPS) analysis revealed an almost identical and impurity-free bonding envi-
ronment for Ti. On the contrary, the hydrogenation also resulted in a new O 1s 
peak (at 530.9 eV) which was attributed by the authors to the formation of Ti–OH 
moieties. Since the dangling bonds tends to attract hydrogen, the authors expected 
that the H doping occurred predominately in the outer disordered layer where 
more dangling bonds exist compared to the inner crystalline core. The bandgap of 
the non-hydrogenated materials was determined by diffuse reflectance as 3.3 eV 
(slightly higher than bulk anatase). The black  TiO2 showed a dramatically nar-
rower bandgap , while the onset of the optical absorption started from ~ 1200 nm 
(1.0 eV). The authors linked this to the “band tail states” phenomena, where the 
valence and conduction bands narrow. The density of states (DOS) of the black 
sample compared to the white one can be seen in Fig. 5. The photocatalytic activ-
ity against methylene blue dye was found to be faster by ~ 7.5 folds under solar 
irradiation, and the photo-activity was found to be stable even after eight cycles. 
More interestingly, the black titania sample was found capable of photocatalytic 
hydrogen production from water under sunlight, with a rate two folds higher than 
the best semiconductor catalysts at that time. The non-hydrogenated sample was 
not found photoreactive for water splitting, even after loading with Pt. The H 
production was repeatable for more than 20 cycles. The authors showed that the 
hydrogenated  TiO2 did not act as an H reservoir, since 40 mg of  H2 were formed 
after 100 h of irradiation, with the sample having around 0.05 mg of hydrogen.

In 2012, Osorio-Vargas et al. studied the effect of low-frequency US irradiation 
(20 kHz, 1.2 W/mL) on P25 [88]. Based on electron spin resonance (ESR) meas-
urements, they reported evidence to support the formation of oxygen vacancies for 
the obtained sample after 6  h of irradiation. These vacancies can be responsible 
for enhance visible light absorption, and also for the obtained grey-shaded color, 
although the photoreactivity was not studied. These surface chemistry alterations 
were assigned to the shock waves from the cavitation phenomena and high-velocity 
interparticle collisions.

In 2015, Fan et al. utilized ultrasonication in order to synthesize amorphous and 
porous hydroxylated black  TiO2 [89], avoiding the harsh and expensive synthesis 
by hydrogenation at high pressure (20 bars) and temperature (200 °C). The pivotal 
role of US waves during the synthesis was determined by varying the irradiation 

Fig. 5  A schematic illustration 
of the density of states (DOS) of 
disorder-engineered black  TiO2 
compared to that of the white 
 TiO2 precursor. Adapted with 
permission from [87]. Copyright 
(2011) American Association 
for the Advancement of Science
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duration (0.5–8 h), leading to different shades of blackness. At the first step of syn-
thesis, titanium sulfate [Ti(SO4)2] and ammonia water were inserted in aqueous 
phase inside an ice-water bath in order to control the reaction rate (2 h, under mag-
netic stirring). After centrifugation and US washing (25 kHz, 100 W, 20 min) by 
deionized water, the dispersion was treated with high-power US irradiation (25 kHz, 
1500 W/100 mL) using a probe. The synthesis was conducted at 80 °C under differ-
ent US irradiation durations; 0.5, 1, 2, 4, and 8 h. Afterward, the obtained materials 
were dried at 80 °C. The degree of the black shade was increased by extending the 
US irradiation (Fig. 6). After 8 h of US exposure, the obtained powder had a deep 
black color. It was pointed out that by the application of lower-intensity US irradia-
tion, no powder with a black shade was obtained.

The X-ray diffractograms of all samples were almost identical, revealing no 
reflections as a result of the amorphous nature. Identical Ti 2p3/2 and Ti 2p1/2 
peaks were also found in the XPS spectra, and no shifting, widening, or narrow-
ing was observed, linked to the  Ti4+ of the Ti–O bonds. Since no  Ti3+ moieties 
exist in the matrix, all the obtained samples, regardless the color, were assumed 
as amorphous  TiO2. The XPS analysis also showed the absence of other elements, 
rather than Ti and O, independent of the US irradiation and duration. The TEM 
and HRTEM images (Fig.  7) revealed that the obtained materials had an abso-
lute disorder and amorphous structure, with or without US treatment. The same 
research team reported in a prior work the synthesis of hydroxylated amorphous 
and disordered  TiO2 nanomaterials of different color shades [90]. The only differ-
ence was that instead of US irradiation, the obtained intermediate white powders 
were thermally treated in a muffle for 3  h (heating rate ~ 20  °C/min) at differ-
ent temperatures; 200–800 °C. These nanomaterials, as also in the case of those 
reported by Chen et al. [87], had a specific structure: an anatase nano-core/shell 
surrounded by a disordered and amorphous hydroxylated phase. Contrarily, the 
US treatment led to core-free pure amorphous  TiO2 nanocrystals. In order to 
exclude the possibility of the blackness being associated with N doping, NaOH 
was used as a base instead of ammonia, and the obtained materials showed simi-
lar blackness increment by the extension of US irradiation.

The initially white and all ultrasonictreated samples darker in color showed 
similarly shaped O1s XPS spectra. The peak was deconvoluted to two sym-
metric peaks, one assigned to Ti–O bonds (~ 530  eV) and the other to Ti–OH 
(530.9–532 eV). However,, the Ti–OH/Ti–O ratio of Gauss peaks was increased 
by increasing the US treatment duration. The amorphous white  TiO2 had a 

Fig. 6  The powders obtained after different ultrasound irradiation duration. Reprinted with permission 
from [89]. Copyright (2015) Springer Nature
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Ti–OH/Ti–O ratio of 0.73, while for the black sample, the ratio was more than 
double (1.60). The authors determined the hydroxylation degree and assumed 
a molecular formula of  TiO2-x(OH)2x, where “x” represents the hydroxylation 
extension. The reported molecular formulas were  TiO1.156(OH)0.844 for the white 
powder and  TiO0.768(OH)1.232 for the black sample. Calcination of all colored 
samples at 800 °C until a constant weight led to white powders, as a result of the 
transformation of Ti–OH to Ti–O. Based on all the above-mentioned results, it 
was concluded that the high-power US irradiation duration had a direct correla-
tion to the hydroxylation and amorphism.

The increase of the hydroxylation and amorphism as a result of longer ultrasonic 
irradiation had additional positive impact on the desired, and ultimately key, features 
in catalysis due to improvement of light harvesting; the structural and optical fea-
tures. The absorbance intensity through the whole visible and near-infrared regions 
was improved by the increase of the ultrasonication duration, while the bandgap was 
decreasing. The white and the black samples had a bandgap of 3.37 and 3.11 eV, 
respectively. The density of states (DOS) constructed by the optical absorbance and 
valance band XPS spectra (Fig. 8) showed that the narrowing of the bandgap was 
assigned to electronic structure alterations due to orbital overlapping, and the blue-
shift of the valence band maximum towards the Fermi energy.

The increased porosity is also an important factor for photocatalytic application, 
since it enhances the reaction rates as a result of improved diffusion of the reactants 
and the availability of the active sites. For all studied samples, the obtained type IV 
nitrogen sorption isotherms with type H2 hysteresis loops revealed the existence of 
meso-pores/voids [91], resulted from the interstitial spaces between the nanoparti-
cles, as was reported in various cases [80]. The lowest porosity values were found 
for the non-US-treated white powder; a surface area of 166.43 m2/g and total pore 
volume of 0.109  cm3/g. The US irradiation gave rise to the microporosity due to 
the hydroxylation of  TiO2, as it was reported in other cases [92]. The black sample 

Fig. 7  TEM and HRTEM 
images of non-ultrasound-
treated white  TiO2 (a, c) and 
amorphous hydroxylated black 
 TiO2 obtained after 8 h of ultra-
sonication (b, d). Reprinted with 
permission from [89]. Copyright 
(2015) Springer Nature



 Topics in Current Chemistry           (2020) 378:2 

1 3

    2  Page 16 of 42

US-irradiated for 8  h showed the highest structural parameters, which were dou-
ble compared to the white sample (surface area: 329 m2/g and total pore volume: 
0.251 cm3/g).

The evaluation of the photocatalytic capability of the samples was performed by 
monitoring the decomposition/removal of acid fuchsin (AF) in aqueous solution. 
Since the materials were porous, the removal/reactivity in the dark was evaluated 
in detail prior the evaluation of photocatalytic performance. It was found that the 
black nanomaterial had an almost three times higher removal capability in the dark 
compared than the white one, due to the higher surface area and pore volume. The 
analysis of the interactions (by eliminating the effect of physical adsorption) showed 
that the US-assisted synthesis led to samples that possess an improved solar- and the 
visible-light-driven photocatalytic reactivity. The first-order rate constant obtained 
by the Langmuir–Hinshelwood model for the black sample was 5.8 and 7.2 times 
higher under solar and visible light irradiation, respectively, compared to the non-
US-treated white sample. The decomposition capability was linked to the formation 
of hydroxyl radicals. The fact that the photocatalytic reactivity improvement was 
more pronounced in the case of visible light was linked to the enhanced light uti-
lization/harvesting, photo-response range, and the narrowing of the bandgap. Pho-
toluminescence tests showed that the increase of the ultrasonication duration led to 
a decrement of the photo-generated electrons and holes pairs, with the latter being 
trapped at the disordered phase.

Fig. 8  UV–Vis–IR absorbance spectroscopy (a), valance band XPS spectra (b), and a schematic illustra-
tion of density of states (DOS) of the original samples and amorphous hydroxylated samples ultrasoni-
cated for different durations. The blue and black arrows indicate the bandgaps after and before localized 
band-bending, respectively. Reprinted with permission from [89]. Copyright (2015) Springer Nature
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2.2  1‑D Particles

2.2.1  1‑D Titanium Oxide and Titania

In the literature, various different names/terminologies are used for the characteriza-
tion of the structure and shape of the 1-D synthesized materials, like fibers, whisk-
ers, nanotubules, fibrils, nanocable, rods, nanowires, belts, since the definition and 
nomenclature are not well stablished [93]. The geometrical shapes of the titanium 
oxides that are more widely accepted, reported as a characteristic based on electron 
microscopy images, and herein used, are collected in Fig.  9. In general, the most 
important shapes are the open-end NTB (a), the core–shell NTB, the nanorod (c), 
the square or rectangular nanorod/belt (d, e), and the nanoring (f) [93].

The first report of 1-D  TiO2 NTBs was by Patrick Hoyer in 1995 [81], who used 
a poly(methyl methacrylate) (PMMA) mold/template for the electrochemical depo-
sition/growth of the titania NTBs. After the dissolution of the polymer, the obtain 
material consisted of poorly organized arrays of amorphous TiNTBs. The diame-
ter of these NTBs was in the range of 140–180 nm, with an inner hole diameter of 
30–50 nm and wall diameter of 30–50 nm. A 45° view of the cross section of the 
lower part of the amorphous tubes (after the removal of the upper part of the NTBs) 
is presented in Fig.  10. The electrochemical synthesis is out of the scope of this 
work. A detailed review article for the electrochemical formation of self-organized 
 TiO2 NTBs was published by Roy et al. [94].

The fascinating TiNTBs were bulkily and template-free firstly obtained in a pow-
der form via the innovative work of Kasuga et al. in 1998 [95]. TiNTBs with a small 
diameter (Fig. 11i) were synthesized from the conversion of  TiO2 (mixed rutile and 
anatase) by a soft chemical method; hydrothermal treatment (110  °C, 20  h) in a 
strongly basic environment (10 M NaOH). They showed by TEM how the treatment 
with diluted HCl can lead to nanotubular structures and of high specific surface area, 
up to 257 m2/g. Peng’s group analyzed in a series of articles in between 2001 and 
2003 [96–99] the crystallographic structure of the hydrothermally obtained TiNTBs, 
and assigned it to trititanate  H2Ti3O7. They also presented the catalytic role of 
NaOH and how the NTBs are formed by the rolling of the intermediately formed 

Fig. 9  Schematic illustrations of the most widely synthesized and reported titanium oxide nanoscaled 
morphologies: open-end nanotube (a), core–shell nanotube (b), nanorod (c), square or rectangular 
nanorod/belt (d, e), and nanoring (f)
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nanosheets (Fig.  11ii). In 2004, Suzuki and Yoshikawa expanded the analysis by 
proposing that the presence of water molecules is crucial [100], expressing the for-
mula as  H2Ti3O7.nH2O, and showed that these moieties of the crystallographic water 
play a role in the interlayer spacing of titanate layers of the NTB’s wall.

In general, this synthetic process involves two main steps, the first being a con-
ventional solid-state reaction between  TiO2 and sodium ions in basic solution, form-
ing layered structures peeled from the initial particles. The second step involves the 
ion exchange during the acid treatment, HCl in almost all reported cases. Two fac-
tors are important regarding the formation of the alkali metal stabilized nanotubes: 
(1) how the nanosheets are formed from the spherical (in most cases) nanoparti-
cles, and (2) how the nanosheets are converted to NTBs. Regarding the first aspect, 
Nakahira et al. showed by TEM observation (Fig. 12i) in 2010 that the formation by 
surface exfoliation of the nanosheets and their rolling/wrapping to NTBs take place 
on the surface, using as raw material an anatase-type titanium dioxide, and they pro-
posed the entire process by various characterizations [102]. Bavykin et al. presented 
three different possible mechanisms of the conversion of the nanosheets to open-end 
multi-wall NTB, resulting in differently structured tubular shapes (Fig. 12ii) [103].

After the first reports of the TiNTBs, an intense research effort was focused on 
tuning different parameters during synthesis in order to control the structural and 
morphological features, the homogeneity and purity of the formed TiNTBs, as well 
as to decrease the synthesis temperature and duration [100, 102–110]. However, 
some arguments were derived. More details regarding titania NTBs obtained by 
hydrothermal-based synthesis can be found in the review article reported in 2011 by 
Wong et al. [111]. In many of the reports regarding the synthesis of the 1-D nano-
tubular structures, US irradiation was applied at different stages of the process, but 
without analyzing the possible role. It is feasible to believe that US led to specific 
effects that were not explored. Sonication can also help the characterization and sep-
aration of the TiNTBs. Interestingly, Bavykin et al. showed that US irradiation can 
be beneficial in order to distinguish the nature of the high observed pore volume by 
separating the agglomerates into individual NTBs [103].

Fig. 10  SEM pictures of the cross section of the as-prepared film of titania (with the upper part of the 
tubes removed). (Adapted from Fig. 3 of [81]). Reprinted with permission from [81]. Copyright (1996) 
American Chemical Society
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The focus of the following part is on how the sonication can play a vital role for 
the manipulation of the TiNTBs’ important factors like size, shape, porosity, peeling 
of the nanosheets, and more, as well as how the process can be achieved faster with 
a more environmental and energy-friendly manner. The photocatalytic activities and 
the involved mechanisms, if reported, are also introduced and discussed.

2.2.2  1D Titania by Ultrasound Irradiation

In 2001, Zhu et al. [112] demonstrated that the utilization of low-frequency US can 
promote the formation of 1-D titanate nanoparticles. The one-pot synthesis of the 

Fig. 11  i TEM image and SAED pattern of titanate nanotubes hydrothermally synthesized the for first 
time by Kasuga et al.; ii: a HRTEM image showing a nanotube with an open end and three or four lay-
ers at the walls (scale bar 6 nm); b HRTEM image of the cross section of a three-layered wall nanotube 
(scale bar: 3 nm); c enlarged HRTEM image (scale bar: 1 nm); d a structure model of a single unit cell of 
 H2Ti3O7 ([010] projection); e schematic illustration of the nanotube’s structure; f 3-D drawing of a titan-
ate nanotube. Adapted with permission from  [97, 101], respectively. Copyright (1999) and (2002) Wiley

Fig. 12  i A schematic collective scheme for the exfoliation and wrapping/scrolling of the formed titanate 
nano-sheets leading to the nanotubular particles, supported by TEM observations; ii a schematic repre-
sentation showing the possible mechanisms for the formation of the nanotubes. Adapted with permission 
from [102, 103]. Copyright (2010) American Chemical Society and (2004) RSC, respectively
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whiskers and nanorods was based on the sonication of synthesized titania nanopar-
ticles in strongly basic solution (NaOH, 10 M), following by washing with dilute 
 HNO3 (0.1 M) and deionized water and vacuum drying. Compared to other methods 
used for the synthesis of 1-D structured titania (template synthesis, supra-molecular 
assembles, hydrothermal synthesis, and inductive synthesis), this synthetic approach 
taking place in a one-pot synthesis is faster, while avoiding the use and removal step 
of the templates and the need of calcination for crystallization as the last step.

The used synthesized  TiO2 nanoparticles as precursors were prepared by hydroly-
sis of titanium butoxide, followed by calcination at 650 °C for 1 h. The average size 
of them was around 20 nm, while the crystallographic composition was 17% anatase 
and 83% rutile. For the synthesis of the whiskers, synthesized titanium oxide nano-
particles were dispersed in the basic aqueous solution inside a Teflon vessel. The 
mixture was ultrasonicated for 80 min (direct immersion of Ti-horn, 560  Welec., fre-
quency not specified but probably in the low-frequency range, 20–80 kHz). The tem-
perature during the synthesis was 80 °C.

Then the mixture after sonication was washed with diluted  HNO3 for 2  h and 
with deionized water for 6 h. The obtained particles had a slender sheet structure of 
a 60-nm diameter and a length around 1 μm. The interesting outcome arises from 
the elemental stoichiometry analysis, which was found to be H3Ti3O7.5. The bands 
at ~ 3400 and ~ 1630  cm−1 at the IR spectrum were linked to the stretching vibra-
tions of the O–H bond and to bending vibration of H–O–H, revealing the presence 
of water. Since the XRD pattern matched with that of  H2Ti3O7 [113], and taking 
into consideration the thermogravimetric results, the product was assigned from the 
authors as  H2Ti3O7.0.5H2O. Further washing of the product with water for 8 h led to 
nano-whisker arrays of a 5-nm diameter. The X-ray diffractogram revealed that the 
crystallographic phase changed to  TiO2 (B) [114] (Fig. 13).

For the preparation of the NTBs, the mixture was treated with half the US power 
(280  Welec.) for 60 min, and afterward, the Teflon vessel was maintained in an oil 
bath at 110  °C for 4 h. The washing was with  HNO3 (0.1 M, 2 h) and deionized 
water (14 h). The obtained NTBs had a 5-nm diameter and 200–300-nm length. The 
XRD analysis revealed that the crystallographic phase was an intermediate between 
 H2Ti3O7·0.5H2O and  TiO2 (B). No Na was detected at the elemental analysis, while 
the ratio of Ti to O was 1:2.

The proposed mechanism of the whisker formation was based initially on the 
US-assisted reaction of the base that leads to the cleavage of some Ti–O–Ti bonds. 
The formed layered titanate lattices have octahedral form with alkali metal ions 
to occupy the interlayered regions. During the washing with acid and water, ion 
exchange and dehydration occur, resulting to  H2Ti3O7·0.5H2O. Extended dehydra-
tion by water washing promotes the transformation to titanate bronze. The role of 
US is vital since it promotes the reaction between the raw nanoparticles and the 
base, as well as controls the oriented growth. The synthesis is faster by the applica-
tion of US compared to the reported hydrothermal methods of nanorod formation. 
It is worth mentioning that without ultrasonication, no whiskers were obtained. A 
lower US irradiation power and the hydrothermal treatment promotes the formation 
of bigger titanate sheets and the exfoliation of nanosheets. The latter roll into NTBs 
during the washing due to the removal of the ions and, as a result, to alterations 



1 3

Topics in Current Chemistry           (2020) 378:2  Page 21 of 42     2 

of the electrostatic forces/equilibria. Even though the above US-assisted hydrother-
mal approach successfully led to the preparation of NTBs significantly faster and 
easily compared to the hydrothermal synthesis, there is a drawback. The synthesis 
of the precursor starting with titanium butoxide hydrolysis is time-consuming and 
complex.

In 2005, Joo et  al. [115] reported the synthesis of  TiO2 nanorods of a diam-
eter and length of 3.4 and 38  nm, respectively, by a nonhydrolytic ester elimina-
tion reaction between titanium(IV) isopropoxide (TTIP) and oleic acid [OA, 
 CH3(CH2)7CH=CH(CH2)7COOH]. The latter monosaturated fatty acid is among the 
most common fatty acids in nature, produced both from vegetables and animals, and 
in this work, it was utilized as surfactant and shape stabilizer during the synthesis. 
Even though the authors concluded that the obtained crystallographic phase was of 
anatase, they did not report the region of the XRD for angles lower than 20°. In 
the following preparation method, TTIP was added to OA, and the suspension was 
heated gradually until 270 °C within 20 min and was kept at this temperature for 2 h. 
The initial clear solution of a yellow shade turned progressively to white. The yield 
was around 70% wt, and the white powder consisted of nanorods and quasi-spherical 
nanoparticles ~ 3-nm diameter (Fig. 14a, b). Interestingly, the authors were able to 
separate the nanorods by conducting a size-selective precipitation from a hexane/
ethanol solution (Fig. 14c). They also showed that the nanorods’ diameter could be 
controlled by adding different amounts of 1-hexadexylamine. Sonication for 30 min 
(experimental conditions not specified) was applied for the removal of the surfactant 
after the treatment of the powder with superhydride solution (lithium triethylb-
orohydride in THF), but the effect of US was not explored. The finally obtained 
nanorods presented a specific surface area of 198 m2/g and they were highly dis-
persible in water, a fact of a paramount importance for real-life applications. The 
estimated bandgap of the nanorods was 3.33 eV, a value higher than that of 3.2 eV 
of the bulk anatase, due to quantum size effect. Compared to commercial  TiO2 P25, 
the obtained nanorods were found to possess a higher photocatalytic inactivation 

Fig. 13  i: XRD patterns of titania particle precursors (a), titania whiskers (b),  H2Ti8O17 whiskers (c), and 
nanotubes (d); TEM images of titanate (ii) and  TiO2 whiskers (iii), titania nanotubes (iv), and sample 
obtained by thermal treatment (4 h, 110 °C) of the sonicated products followed by washing with water 
for 5 min (v). Adapted with permission from [115]. Copyright (2005) American Chemical Society
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capability against E. coli, a fact that was assigned by the authors to the increased 
bandgap, surface area, and amount of surface hydroxyl groups. The improved and 
faster inactivation performance for the nanorods was linked to the elevated hydroxyl 
radical formation.

 Since the morphological and structural features of TiNTBs (size and poros-
ity) can be controlled, the application of US irradiation towards the increment of 
these features gained more attention. Ma et al. [116] reported in 2006 the synthe-
sis of longer NTBs with a smaller diameter by a combined sonication-hydrother-
mal approach and using as precursor the commercial  TiO2 P25. Their approach was 
based on dispersing the commercial powder in a Teflon vessel filled with NaOH 
aqueous solution (10  M). Using an immersed titanium horn (probably low-fre-
quency, not specified), the suspension was sonicated at 70 °C under different soni-
cation powers (100, 280, and 380  Welec.) and varying also the duration (15, 30, and 
60 min). The vessel was placed in a stainless-steel autoclave for hydrothermal treat-
ment for 4 h at 110 °C. The obtained precipitate was washed with HCl (0.1 M) and 
deionized water until an acidic pH, centrifuged, and dried under vacuum. The role 
of the precursor on the size of the NTBs was determined by using different commer-
cial  TiO2 precursors.

The hydrothermal treatment of the nanospherically shaped P25 particles of an 
average size of ~ 30 nm without ultrasonicated pre-treatment led to minimal particle 
shape alteration. Sonication for 1 h prior the hydrothermal treatment with powers of 
100 and 280  Welec. resulted in sheet and fibrous morphologies, respectively. A typi-
cal tubular morphology was achieved (diameter: 9–14 nm and length: 100–600 nm) 
by sonication at a higher power (380 Welec.), revealing that the sonication, as well 
its power, plays a key role in the desired transformation to TiNTBs. TEM images of 

Fig. 14  TEM and HRTEM images of the as-synthesized  TiO2 nanocrystals prior the size-selective sepa-
ration (a, b) and TEM image of the final  TiO2 nanorods (c). Reprinted with permission from [115]. Cop-
yright (2005) American Chemical Society
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the initial  TiO2 P25 and the TiNTBs produced by combining high-energy sonication 
and hydrothermal treatment can be seen in Fig. 15.

The crystallinity and the chemical composition of the nanorods were investi-
gated by XRD and energy-dispersive spectroscopy (EDS) analysis. It was concluded 
that the chemical composition was H2Ti4O9.H2O (JCPDS 36-0655), while traces of 
rutile fractions were also observed. Considering that the  TiO2 P25 consisted of 70% 
anatase phase and around 30% rutile phase, the transformation of the latter phase is 
preferable, while the former type is more stable under the hydrothermal treatment 
conditions. The EDS elemental analysis showed the absolute absence of Na.

The authors also studied the effect of the higher sonication power (380 W) with-
out the hydrothermal and acid treatment. 15 min of US irradiation did not reveal the 
ability to alter the shape of the spherical particles. Increase of the irradiation time to 
30 min led to swelled nanoparticles with an average diameter of 100 nm, probably as 
a result of the spherical particles merging. By increasing the duration of irradiation 
to 60 min, the observed morphology was found to be nanorods like, with lengths in 
between 100 and 300 nm. By hydrothermal and acidic treatment after the 60 min 
of US irradiation, the length of the nanorod-like particles increased up to 600 nm. 
Additionally, the diameter of the tubes was also smaller, but the shape homogene-
ity was not so perfect. Based on these observations, it can be proposed that the US 
effects can originate the reaction of the  TiO2 nanoparticles with the base, by pro-
moting the cleavage of the Ti–O–Ti lattice bond and the intercalation of  Na+ at the 
lattice. The spherical forms are swollen and transformed to nanorods by increasing 
their length. Calcination at 300 and 450 °C of the sample obtained after the two-
step process was not accompanied with notable shape alterations (Fig. 15c, d). On 
the contrary, calcination at 600 °C led to morphology transformation of the hollow 
tubular structures to rod-like structured nanoparticles (Fig. 15e).

Interesting outcomes regarding the vital role of the precursor’s particle size 
were derived by using two other commercial  TiO2 powders instead of P25. When 
the size of the initial particles was around 10 nm (Hombikat UV100, Fig. 16a), 
the formed NTBs had inner and outer diameters and lengths of 3–6, 7–10, and 
up to 400  nm, respectively (Fig.  16b). When particles of a bigger average size 
of 200 nm (BCC100, Fig. 16c) were used as precursor, instead of tubular-shaped 
particles, sheet-like structures with rolled edges were obtained together with 
untransformed particles that were slightly changed in size and shape (Fig. 16d). 
This was linked to the fact that the formed sheet-like structures cannot transform/
roll to tubes, perhaps due to a hindrance effect by the larger particles.

Tanthapanichakoon and his colleagues showed and analyzed how the ultrasoni-
cation pretreatment can influence controllably the length of the titania NTBs [117, 
118]. Interestingly, they used a commercial precursor (KISHIDA) of a low specific 
surface area (8 m2/g) and relatively large particles (400 nm) compared to the previ-
ous reports. By using a titanium horn (probably low-frequency, not specified in the 
article), the suspension of  TiO2 in a 10 M NaOH aqueous solution was sonicated 
prior the hydrothermal treatment for 8 min with different supplied powers, from 0 
to 38.1 W. After thermal treatment for 3 days at 150 °C, the obtained suspension 
was treated/washed with HCl and  H2O. TEM analysis revealed that no US irradia-
tion led to TiNTBs (herein referred to as short) with multilayered walls (2–6 layers 
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and ~ 0.8-nm interlayer spacing), diameters from 4–6 nm, and lengths between 30 
and 200 nm. Sonication by two different powers, of 7.6 and 38.1 W, led to increase 
of the TiNTBs’ diameter. The majority of the NTBs had a length above 300 nm, 
while the diameter was in the same range with that of the short ones. Based on the 
previous analysis by XRD of the d-spacing between the adjacent layers of the tube 
walls by Suzuki and Yoshikawa, the authors concluded that the US irradiation and 
the resulted increase of the length was not accompanied with an interlayer spacing 
change. Additionally, the strong intensity diffractions of the initial  TiO2 (anatase 
phase) were totally diminish in all synthesized TiNTBs.

The dynamic light scattering (DLS) results showed average sizes of 53, 490, and 
1760 nm for the samples prepared under 0, 7.6, and 38.1 W, respectively. Addition-
ally, the size distribution was very narrow in the case without US irradiation, and the 
distribution was dramatically increased by increment of the applied US power. The 
formation of NTBs in size many folds higher the pristine particles can be linked to 
bigger peeled nanosheets prior the rolling, and/or to the connection of the formed 
tubes. An increasing trend was found between the specific surface area (SBET) and 
the power of US irradiation. The raw powder had an SBET of 8 m2/g, and the short 

Fig. 15  TEM images of  TiO2 P25 precursors (a), titanate nanotubes as received (b), after calcination at 
300 °C (c), at 450 °C (d), and 600 °C (e). Adapted with permission from [116]. Copyright (2006) Else-
vier
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NTBs 179 m2/g. The US wave exposure at the pretreatment stage led to SBET of 258 
and 245 m2/g, for US power of 7.6 and 38.1 W, respectively. The positive effect of 
ultrasonication is via the enhancement of the de-aggregation of the particles, result-
ing in the peeling thorough swelling of large nanosheets that role to NTBs [118]. 
Without US waves, the size of the peeled nanosheets and, as a result, the size of the 
formed NTBs is smaller.

The same research team studied (in 2009) the effect of different preparation 
variables and combinations like particles size of the raw  TiO2 (400 nm and 1 μm), 
temperature during the synthesis (90–180 °C), and sonication power, with valuable 
conclusions on how these variables can adjust the morphological and structural fea-
tures [117]. The hydrothermal treatment at 150 °C without sonication of the com-
mercial  TiO2 particles of size ~ 400 nm led to NTBs of an average length of 79 nm 
and a specific surface of 179 m2/g. The respective values were 143 nm and 118 m2/g 
when the largest (1 μm) raw particles were used. This was linked to the formation 
of bigger but less in number intermediate sheets during the peeling. By studying the 
effect of different temperatures (90, 120, 150, and 180 °C), it was concluded that the 

Fig. 16  TEM images of  TiO2 Hombikat UV100 precursor (a), titanate nanotubes derived by sonication-
hydrothermal treatment of Hombikat UV100 (b),  TiO2 BCC100 precursor (c), and sample obtained from 
BCC100 (d). Adapted with permission from [116]. Copyright (2006) Elsevier
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transformation of titanium dioxide to titanate was complete even at 120 °C. How-
ever, increase of the temperature to 180 °C led to a shift of the characteristic diffrac-
tion at around 10° 2θ to a higher angler (~ 12°), suggesting a narrow interlayer spac-
ing between the layers of walls. Suzuki and Yoshikawa assigned the characteristic 
XRD reflection peak at 2θ = ~ 10° of the hydrothermally synthesized  H2Ti3O7.nH2O 
NTBs to an interlayer distance of 0.92 nm [100]. An interesting parenthetical fact 
can be added at this point. The high-temperature XRD pattern obtained at 100 °C 
was almost identical with the one at room temperature, but at 200 °C, the reflection 
was shifted to 11.2°. This narrowing of the interlayer space to 0.79 nm was linked 
to the removal of the water moieties between the layers of the wall. It is worth men-
tioning that thermogravimetric analysis of the NTBs showed that above 200 °C, the 
weight loss was very limited.

Going a step further, the team of Tanthapanichakoon [117] chose to study the 
effect of temperature during the synthesis with or without US pre-treatment by using 
raw particles of an ~ 400-nm diameter, due to the fact that this raw  TiO2 gave higher 
SBET compared to the raw one with average particle size of 1 μm. The resulted spe-
cific surface areas and the morphology of the sample are presented in Fig. 17.

As can be observed, the effect of US pretreatment on the structural and mor-
phological features is loud and clear, and, additionally, it had a key effect on the 
product purity and shape homogeneity, as confirmed by microscopy analysis. At 
90  °C, NTBs, nanosheets, and remaining un-transformed crystals were detected 
either without or with US pretreatment (Fig. 18). Moreover, the use of sonication 
did not lead to higher SBET. The effect of US was dramatically more pronounced at 
a synthesis temperature of 120 °C. The length of the NTBs was much higher and 
the SBET almost doubled in value. The purity was also enhanced, since no un-trans-
formed crystals were detected after US pre-treatment. Analogous outcomes were 
derived when the synthesis was performed at 150 °C after US pre-treatment. Further 
increase to 180 °C had a negative impact on the SBET and the desired morphology, 
with the US irradiation not leading to a specific effect. The predominant shape of the 
particles was of nanowires/fibers/rods in both cases, although with a smaller diam-
eter in the case of US irradiation. The shape change was in good agreement with the 
angle shift of the XRD pattern, as was discussed above. It can be suggested that the 
thermal effects when the synthesis temperature is higher than 150 °C overcome the 
effects of the US pre-treatment.

3  PART B

3.1  Ball‑Milling‑Derived Nanomaterials

The utilization of ball milling (BM) in order to obtain  TiO2 nanoparticles includes dif-
ferent possible pathways with regard to the used raw material. The latter can be either 
elemental Ti, either  TiO2, or a different source of titanium like a mineral. The dura-
tion and the power of the BM plays a crucial role, as does the atmosphere in which 
the process takes place. The achievement of high temperature is found to be in some 
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cases a drawback, and for this reason, the ball milling is performed with breaks or 
even with the use of a liquid phase. The latter case is referred to as wet ball milling. 
In most reported cases and especially towards the formation of one dimensional  TiO2 
nanostructures, ball milling was utilized as a mechanochemical pretreatment to obtain 
metastable polymorphs, that can be further tuned in morphology by annealing or wet 
chemistry. In this part, we collected some reports in which the application of ball mill-
ing dramatically affected the final properties of the nanomaterials. Starting with 0-D 
nanomaterials and ending with 1-D materials, we tried to introduce the reported results 
following a chronological order. An emphasis was given when the nanomaterials were 
found to possess an elevated photocatalytic capability.

3.2  0‑D Ball‑Milling‑Derived Nanostructures

In 1994, Begin-Colin et al. studied the polymorphic transformation of  TiO2 from 
an anatase phase to a rutile phase by ball-milling (BM), based on XRD and Fou-
rier transform infrared (FTIR ) spectroscopy techniques [119]. They observed that 
the phase transformation was not direct, since different transient phases appeared, 
with the one of type II being predominant. However, no electron microscopy 
analysis was performed. The importance of this study was the conclusion that the 
anatase-to-rutile transformation is not a direct process. Based on that, the authors 
emphasized that the ball-milling technique is feasible to obtain alloys with vari-
ous non-equilibrium crystallographic phase materials. The intermediate crystal-
lographic phases can further be tuned with various methods, in order to obtain 
desired photocatalytic properties.

An ultimately serious drawback of the ball-milling technique, especially when 
the target is a material of a high purity, is the possibility of atmospheric nitrogen 
incorporation into the structure or metal (predominately iron) from the used ball-
milling apparatus. For instance, it was showed by Lu et  al. [120] that, depend-
ing the atmosphere and the duration of the ball milling, different doping of N 
or Fe could result, even under air. More interesting, titanium oxynitrile instead 
of oxide can be obtained within a closed ball-milling system and extension of 
the mechanochemical process for up to 90 h. In 2007, Pang et al. [121] showed 
the possibility to synthesize a composite of titanium and hydroxyapatite by a wet 
ball-milling method. Hydroxyapatite (HP),  Ca5(PO4)3(OH), is a natural mineral, 

Fig. 17  BET specific surface 
area and morphology/shape of 
titanate products synthesized 
(from raw  TiO2 of an avg. size 
of 400 nm) at reaction tem-
perature of a 90 °C, b 120 °C, 
c 150 °C, and d 180 °C without 
or with US irradiation (power of 
7.6 W). Reprinted with permis-
sion from [117]. Copyright 
(2009) Elsevier
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while modified forms of HP are the main compounds of human bones and teeth. 
The increase of milling duration led to the decrease of the grain size, as well as to 
an improvement on the homogenously distribution of nano-hydroxyapatite. Anal-
ogous composites were synthesized by ball milling the same year by Silva et al. 
starting with Ca(H2PO4)2 and  TiO2 as the raw materials [122].

In 2000, Begin-Colin et al. studied in details the kinetics and mechanisms of 
phase transformations induced by ball milling in air, starting with a commercial 
anatase  TiO2 [123]. They concluded that the anatase is transformed by BM to 
rutile via a  TiO2 II phase. The powder-to-balls ratio of weights (R) influenced the 
transformation rate. Regarding the nature of ball-milling media, the transforma-
tion’s kinetics were found faster in the case of alumina compared to steel.

Yadav et al. showed in 2015 the synthesis of titanium oxide nanoparticles from 
elemental powder of Ti (~ 0.5  mm) by ball milling for 10  h [124]. The size of 
the spherically shaped particles was between 10 and 20 nm, while XRD analy-
sis indicated a pure rutile phase. The estimated bandgap was 4.46 eV. They used 

Fig. 18  HRTEM captures of mixed titanate nanostructures obtained from raw  TiO2 (of an average parti-
cle size 400 nm) at reaction temperature of 90 °C (a) and titanate nanofibers/wires synthesized at 180 °C 
without sonication (b), and with power of 7.6 W (c). Adapted with permission from [117]. Copyright 
(2009) Elsevier
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the obtained material in order to form a solid-state sensor by pelletization and 
application to an Ag–pellet–Ag electrode configuration. This sensor was found to 
possess a sensitivity toward liquefied petroleum gas (LPG). The author linked this 
to the blue-shift of the optical bandgap and to the nanoscaled morphology of the 
obtained ball-milling-derived nanoparticles.

In 2016, Rejender and Giri [125] presented an anomalous strain-evolution, 
crystallographic phase alteration, and bandgap narrowing by strain engineering 
using ball milling and commercially available  TiO2 powder as the precursor (par-
ticle size around 80 nm and bandgap 3.14 eV). Except for the decrement in size 
to 7–18 nm, the finally obtained  TiO2 nanocrystals (NCs) found to obtain a new 
crystallographic phase of  Ti3O5, as well as a narrow bandgap of 2.71 eV.

Another interesting application of the wet ball-milling process was reported the 
same year by Jung et al. [126] for the  TiO2 nano-coating of boron particles. Briefly, 
a tungsten carbide milling jar was filled with titanium(IV) isopropoxide, boron pow-
der (average particles’ size ~ 800 nm), and hexane inside a glove box filled with nitro-
gen. The as-received suspension was further treated and washed with ethanol inside 
an US bath. They found that increase of the milling duration can lead to decrease of 
the final particle size, even up to ~ 150 nm. The particles were coated with an amor-
phous titania-containing layer (estimated 10 nm). The drawback of the extension of 
the ball milling was the incorporation of impurities, predominately tungsten, from 
the jar and balls, as can be seen in energy-dispersive X-ray (EDX) analysis (Fig. 19). 
The ball-milling-derived  TiO2-coated nanoparticles were promising for hydrogen 
and oxygen evolution reactions (HERs, OERs) in photoelectrochemical applications.

Fig. 19  TEM image (a) and EDX maps (b–d) of  TiO2-coated boron particles wet-milled for 8  h. 
Reprinted with permission from [126]. Copyright (2016) MDPI
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Another strategy to apply ball milling during the formation of  TiO2 nanoparticles 
was by mixing and ball milling of different precursors [36]. In 2007, Billik et  al. 
used either  TiCl4 with  (NH4)2CO3 or  TiOSO4·xH2O with  Na2CO3 [127, 128]. After 
ball milling, they received amorphous samples, and they linked this to no crystal-
lization having occurred. After annealing, they obtained well-crystalized materials, 
with higher photoreactivity compared to P25, determined by electron-paramagnetic-
resonance (EPR) studies. They reported also that the presence of Fe impurities 
plays a role in the photoactivity of the final material. In 2008, Salari et al. also used 
 TiOSO4·xH2O as the Ti source but NaCl as diluent [129].

3.3  1‑D Ball‑Milling‑Derived Nanostructures

An important, abundant, and cheap source used for the industrial production of bulk 
 TiO2 is the iron–titanium oxide mineral  (FeTiO3) mineral, known as ilmenite. A 
high amount of ilmenite exists in the Earth’s crust on all five continents, and on 
the Moon. The price of the raw material was around 80–107 USD per metric ton in 
2004, while a peak was achieved in 2012 reaching even 350 USD per ton. In recent 
years, the cost has been around 250 USD/ton. The global demand has grown moder-
ately in recent years, since it was estimated at around 6.4 million tons in 2010 with 
a prediction to reach above 8 million tons in 2025. The industrialized production of 
bulk  TiO2 from minerals is based on chloride or sulfate processes. In recent decades, 
there has been increased research effort to expand the use of this mineral in order to 
prepare nanostructures of  TiO2. The utilization of ball milling in order to promote 
the formation of nanostructured  TiO2 for a “real-life” application by using ball mill-
ing dates from 2008.

Li et al. (2008) [130] reported the formation of meso- and/or micro-porous hydro-
lysate  TiO2 by an initial mechanical activation of ilmenite using BM, following by 
a simultaneous dissolution and hydrolysis in a dilute sulfuric acid aqueous solution. 
The effect of the acid concentration played a key role in the structural parameters, 
with 10% sulfuric acid leading to a surface area of 258 m2/g. In order to obtain the 
rutile-phased final material, calcination was applied. The importance of this work 
was that the ball-milling pretreatment made feasible the dissolution of the mineral in 
a dilute acidic solution. For an efficient decomposition in pigment production with-
out mechanochemical utilization, an  H2SO4 solution of a concentration above 80 
wt% is required [130].

In 2011, Tao et al. prepared flower-like  FeTiO3 by pretreatment of ilmenite with 
high-energy BM followed by mild hydrothermal treatment in basic aqueous solution 
(1 M NaOH) [131]. They stated that the nano-petals comprising the final obtained 
flower-shaped particles had a thickness of 5–20  nm and sizes 100–200  nm. The 
hydrothermal treatment at 120 °C, even with 2 M NaOH, did not lead to noticeable 
changes in morphology. The obtained materials showed attractive capacitance val-
ues. Considering the above observations regarding the formation of NTBs, we can 
derive two possible conclusions/proposals. First, the presence of Fe stabilizes the 
layered structure of the nano-petals to roll to tubes. Second, the utilization of BM 



1 3

Topics in Current Chemistry           (2020) 378:2  Page 31 of 42     2 

promotes the peeling of the mineral’s particle even at a lower concentration of 10 M, 
necessary for the hydrothermal peeling of  TiO2 particles.

The formation of the 1-D nanorods obtained from ilmenite sand and the necessity 
of the metastable polymorphs formation was presented in 2008 and 2010 [132, 133]. 
It was revealed that for the formation of the nanorods, instead of other particle mor-
phologies, the formation of the metastable phases like  Ti2O3 to  Ti3O5 is crucial. The 
ilmenite mineral was ball-milled with the presence of activated carbon at a ratio 4:1 
at room temperature and under vacuum. The role of the latter as mechanical activa-
tion agent was to trigger the initial reduction to  TiO2. The obtained ultra-fine pow-
der was annealed first at different high temperatures (900–1200 °C) in order to form 
the metastable phases. The low and controlled heating rate (5–10 °C) in an argon 
atmosphere with hydrogen flow was a critical step in order to obtain the desired 
metastable phases. It was reported that the presence of nitrogen led to an alterna-
tive redox reaction and iron nitride was formed. At temperature less than 1100 °C, 
the formed phase was rutile, which could remain in the same form after the sec-
ond annealing step. The optimum duration of annealing was 8 h at 1200 °C, since 
prolonged heat treatment led to the formation of FeTi alloys. The second step of 
annealing was conducted at 700 °C in a N2–5%H2 atmosphere. The result was the 
gradual formation of  TiO2 nanorods and iron. As can be seen from the SEM images 

Fig. 20  SEM image after the second annealing step at 700 °C for only 4 h (a), SEM image (b), a cross 
section of nanorods (c), and the XRD spectra (d) after annealing for 8 h at 700 °C. Adapted with permis-
sion from [133]. Copyright (2009) American Chemical Society
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and XRD spectra in Fig. 20, the intermediate phase started to transform to nanorods 
after 4 h. The length of the nanorods was dependent on the time of annealing, and 
after 8 h, the intermediate phase was entirely transformed to rutile nanorods of the 
maximum length. Extension of the thermal treatment led to the sintering of the 1-D 
structure to coarse nanoparticles.

In 2013, Tao et al. [134] demonstrated a new method for the synthesis of  TiO2 
nanorods (single-crystal) from natural ilmenite. The BM pre-treated mineral was 
further wet-chemistry-treated by mixing in a 2 M NaOH aqueous solution for 2 h 
at 120 °C, and flower-like  FeTiO3 nanoparticles were formed, but the authors con-
cluded that this stage is an optional one. After short and mild drying, treatment with 
4 M HCl at 90 °C for 4 h took place. The proposed mechanism was based on dis-
solution to  TiOCl2 and  FeCl2, hydrolysis, and precipitation. During the hydrolysis, 
 TiO2 crystals started to precipitate and grow in a 1-D fashion. The finally obtained 
rutile  TiO2 tetragonal nanorods (Fig. 21) had a length in the range of 50–100 nm, 
width of 5–20 nm, and thickness of 2–5 nm. The nanorods have also a moderately 
high specific area for this kind of nano-structure (up to 97 m2/g). The most inter-
esting outcome was that they showed excellent photocatalytic capability towards 
the photodegradation of oxalic acid, analogous with the one of Sigma–Aldrich’s 
Degussa P25.

In 2014, Zhao et  al. [135] reported the formation of spindle-like rutile  TiO2 
nanorods from the dealloying in acidic conditions of an amorphous  Cu50Ti50 alloy. 
The latter was formed by high-energy ball milling of elemental Cu and Ti in an 

Fig. 21  SEM images of original ilmenite powder (a), ball-milled ilmenite powder (b), flower-like  FeTiO3 
nano-structures after treatment with NaOH (c), and the obtained nanorods after treatment with HCl for 
8  h (d); inset: a higher-magnification capture of the nanorods. Reprinted with permission from [134]. 
Copyright (2013) Wiley
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argon atmosphere. In order to avoid the high temperature as a result of the BM pro-
cess, after milling for 0.5 h, there was an interruption for also 0.5 h. The as-received 
material was immersed in a highly concentrated  HNO3 aqueous solution (13.14 M) 
for dealloying. The obtained nanorods (Fig. 22) revealed a good photocatalytic deg-
radation capability against the dye methyl orange under UV light irradiation, via the 
formation of radicals.

In the work of Zhao et al. [135], the involved steps/mechanism for the formation 
of the  TiO2 nanorods from the raw  Cu50Ti50 alloy were proposed (Fig. 23). Titanium 
metal cannot react with nitric acid due to the presence of an oxide film. With the 
mechanical stress that is applied from the ball milling, the dealloying starts by cor-
rosion from the outer surface and the removal of copper atoms and gradually contin-
ues to the inner part of the alloy.

Fig. 22  SEM images of ball-
milling-derived amorphous 
 Cu50Ti50 after immersing in 
 HNO3 aqueous solution for 
48 h. Reprinted with permission 
from [135]. Copyright (2014) 
Elsevier
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4  Conclusions—Prospectives

Taking into account all the above-mentioned results, it is reasonable to conclude 
that the formation of the hotspots as well the localized temperature increase dur-
ing the mechanochemical treatment can antagonize the harsh conditions created 
inside the autoclave during the hydrothermal treatment, especially when the par-
ticle size of the precursor is equal or less than that of P25. It can be suggested 
that the thermal effects during the synthesis when the temperature is higher than 
150 °C overcome the effects of the US pre-treatment. Especially in the case of a 
basic hydrothermal process, the utilization of sonication (US) as the pre-treat-
ment has a vital role in the formation of 1-D nanostructures. The US effects can 
be further explored and applied for the synthesis of novel nano-engineered mate-
rials by other methods like precipitation, targeting towards the achievement of 
specific physical, chemical, and optical features.

In general, mechanochemistry can be a useful tool toward the manipulation of 
the important and desired features for different applications. Ball milling or US 
waves play a key role in size, shape, bandgap, porosity, light absorption, etc. Con-
sidering the above observations regarding the formation of NTBs, we can derive 

Fig. 23  A schematic illustration of all the involved steps/mechanisms for the dealloying of amorphous 
 Cu50Ti50 powders to rutile  TiO2 nanorods. Reprinted with permission from [135]. Copyright (2014) Else-
vier
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two possible conclusions/proposals. First, the presence of Fe stabilizes the lay-
ered structure of the nano-petals to roll to tubes. Second, the utilization of BM 
promotes the peeling of the mineral’s particle even at a lower concentration of 
10 M, necessary for the hydrothermally peeling of  TiO2 particles.

The herein presented results showed that the mechanochemical-derived forces 
can promote the features of the catalyst, crucial for heterogeneous photocatalytic 
applications. While the main goal of the research effort towards the formation of 
1-D  TiO2 up to nowadays was focused predominately on the explanation of the 
involved steps and mechanisms, in the cases where the materials were tested as 
photocatalyst, they revealed elevated photocatalytic capabilities, equal or better 
compared to the benchmark P25 in most of the cases. The goal of the present 
work is to highlight the developments in the area mechanochemical approaches 
when designing new synthetic strategies of nanostructured materials, as well as to 
call and initiate the attention for the possibilities for future utilization and explo-
ration. We believe that nanoscaled and especially nanotubular-shaped titania can 
be further studied as photocatalyst, and we actively work towards this direction. 
Applying mechanochemistry will also be interesting to conduct for the design and 
synthesis of novel nanostructured electrodes for electrochemical catalytic reac-
tions. Even though it is impossible these two techniques are simultaneously com-
bined, the utilization of both at separate steps of synthesis can beget innovative 
approaches towards the synthesis of highly photo-active zero- and/or one-dimen-
sional titanium-based catalyst, pure or doped with heteroatoms, like nitrogen or 
metals. In-depth study of the photocatalytic properties and applications of the 
 TiO2 NTBs, as, for instance, advanced oxidation processes or biomass valoriza-
tion, can lead to interesting and important outcomes, as occurred in the case of 
their application in electrocatalysis and photo-remediation. Additionally, the use 
of a simple and economic US bath or ball-milling grinder can be utilized as a 
powerful synthetic tool. It is also important to point out that the use of mechano-
chemical processes in lab during the synthesis can lead to effects not yet studied, 
hypothesized, or imagined. Last but not least, we would like to emphasize that it 
will be absolutely beneficial if more details are provided when mechanochem-
istry is applied, such as calorimetric evaluation of the setup, luminol mapping, 
experimental setup details (horn details, photos, or a drawing), and details of the 
synthesis (yield, purity, size separation techniques, etc.).
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