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An elementary pedagogical derivation of a lot of metrics, seen in the very large context of metrics theories, is supplied, starting from very basic algebra (especially without Christoffel symbols and tensors) and a few formulas issued from Special relativity.

Introduction

More especially some of these metrics are usually studied in the framework of General relativity. However, in a rigorous context, we know that the resolution of the Einstein equations of General relativity needs a rather evolved background in tensorial calculus (generallly seen at the graduate level). On the contrary, the aim is here to develop in undergraduate students the sense of the heuristics, starting from their knowledge acquired at their proper level, allowing them to very rapidly reach the same results but without cumbersome calculations. In a more extended context this type of method, even though not optimal, is very often sufficient to speed up the process of finding a solution.

The static black hole (Schwarzchild metric)

We begin with the metric of the external region (assumed to be empty) surrounding a static body, with spherical symmetry and of masse M . The ds 2 is given by the well-known expression (Schwarzchild metric) [START_REF] Misner | Gravitation[END_REF] 

ds 2 = 1 - r S r c 2 dt 2 - dr 2 1 -r S r -r 2 (dθ 2 + sin 2 θ dϕ 2 ) ( 1 
)
where the spherical coordinates has been used (r, θ, ϕ) and the time coordinate is denoted by t. These coordinates are linked to the observer located at the infinity. The Schwarzchild metric is thus just the point of view of this special observer who studies the gravitational configuration surrounding the mass M . We have put as usually r S = 2GM c 2 . It is one of the very few exact solutions of the General relativity, a highly nonlinear theory of physics. A heuristic method makes it possible to find it very quickly 1 . An observer who evolves in free fall does not feel the gravity. For him the metric is minkowskian. Certainly this is strictly true only when the gravitational field is uniform, which is far from the situation encountered here, except if we consider an infinitesimal region. We attach to this observer a meter-stick represented by the infinitesimal space (radial) coordinate dρ and a clock represented by the infinitesimal time interval dτ (leaving aside the angular variables θ and ϕ). We have

ds 2 = c 2 dτ 2 -dρ 2 (2) 
The elements (dτ , dρ) and (dt, dr) are linked by the relations defining the proper time and proper length, let

dt = dτ 1 -v 2 c 2 dr = dρ 1 - v 2 c 2 (3) 
These expressions are directly issued from Special relativity. In Newtonian mechanics, the free falling velocity of any particle toward a point attractor, of mass M , and located at the origin of coordinates r = 0,

is v = -2GM
r (assuming that the particle in question starts from infinity with zero initial velocity). An intuitive idea is to abrutly take this value for v in the equations (3) 2 . Substituting (3) in (2), one immediately finds the relation (1) (assuming that the transverse lengths to the movement, orthoradial and azimuthal, are not altered). Even if such a procedure could appear unsound, the aim is to obtain a trial metric in a very simple way. This metric must then be checked using a Mathematica-type calculator, which can easily be manipulated even by undergraduate students.

The rotating black hole (Kerr metric)

The static metric that we just described cannot be an accurate representation of the outer region at the ultimate stage of a massive star at the end of evolution. Indeed, a star is always rotating. When it collapses, its kinetic moment is conserved and its rotation therefore correlatively increases. A more realistic model must therefore introduce, in addition to the unique parameter of a static spherical object, that is its mass M , a second parameter representing the angular momentum (it is usually denoted by J). The metric is no longer Schwarzchild's. A pure case concerns the exact metric attached to a rotating (not charged) black hole. As we know this object is defined by only the two parameters M anf J. It has long been sought (if such an exact metric existed were unknwon). It was not until 1963 (about fifty years after the discovery of the Schwarzchild metric) that an exact solution was provided by Roy Kerr [START_REF] Kerr | [END_REF]. A reasoning on symmetry makes it possible to greatly simplify the search. First, we can assume that the rotation is around a fixed axis, for example the Oz axis. Since the metric revolves around this axis, its coefficients must be independent of the azimuth angle ϕ. If the motion is stationary, these coefficients must not depend on time either. The g ij are such that g ij ≡ g ij (r, θ). There are four coefficients which define the Schwarzchild metric g tt and g rr , g θθ , g ϕϕ . How many are needed to define, in all generality, the outer metric of a body assumed to rotate in a stationary manner ? A track is suggested to us by the following heuristic reasoning 1 . It is assumed that near the rotating object the coordinate network (r, θ, ϕ) participates at the rotation (Fig. 1). The effect is called frame -dragging. Obviously the effect in question will be more and more important as r decreases.

Figure 1 -The Lense-Thirring approximation First, we place a local frame-dragged observer O l located at radial distance r in the outer region of the rotating object whose center is in r = 0. This object is not necessarily a black hole at this stage. We can think to the outer region of a star or even of a planet like the Earth. In this case r r S . For this observer, the azimuthal velocity measured for a moving particle is rsinθ dϕ dt -rsinθω 2 . It is therefore advisable to make in the ds 2 the direct substitution

rsinθdϕ -→ rsinθdϕ -rsinθωdt (4) 
At this level we must give the expression of ω 3 .

ω = ω S ( r S r ) 3 (5) 
where ω S is an arbitrary constant. By putting J = M r 2 S ω S (this quantity is just the angular momentum of a homogeneous thin ring of radius r S and mass M put in rotation around its normal axis), the latter expression can still be written

ω = r S J M r -3 (ω = 2GJ c 2 r 3 ) (6) 
Now substituting the expression (4) in equation ( 1), we obtain for the ds 2 , in the weak field approximation and at the first order in J (we put α = J M c )

ds 2 = 1 - rS r c 2 dt 2 -(1 + rS r )dr 2 -r 2 (dθ 2 + sin 2 θ dϕ 2 ) + 2rSα r sin 2 θdϕcdt (7)
where the non-zero coefficients are g tt , g rr , g θθ , g ϕϕ and the non-diagonal coefficient g ϕt = g tϕ , which are five in all. It is legitimate to think that it is still the minimum number of non-zero coefficients needed to represent the metric of a rotating black hole. This expression was obtained by J. Lense and H. Thirring from 1918 (but in a rigorous way, using the formalism of the General relativity [3]). It is correct at first order in J. The phenomenon of frame-dragging has been proven experimentally by the exploitation of data from the LAGEOS mission [4] and, more specifically, by the Gravity Probe B satellite [5].

-The Kerr metric

If the (inertial) coordinate network is frame-dragged, it seems natural to assume that it is also flattened by a centrifugal effect. The coordinatespheres (r = Const) then become flattened confocal spheroids, each of them being still labeled with r = Const, see Fig. 2. The coordinates r, θ, ϕ from the current point P , plotted on the spheroid drawn in figure 3, are actually those of the point P , projection of P on the inscribed sphere. These deported spherical coordinates are the Boyer-Lindquist coordinates [6].

N o rotation Rotation x = r sinθ cosϕ x = √ r 2 + a 2 sinθ cosϕ y = r sinθ sinϕ -→ y = √ r 2 + a 2 sinθ sinϕ z = r cosθ z = r cosθ Figure 2 The minkowskian ds 2 (ds 2 = c 2 dt 2 -dx 2 -dy 2 -dz 2 ) is written in this case 4 ds 2 = ( r 2 Σ )(1 + a 2 r 2 )(cdt -asin 2 θdϕ) 2 (8) 
- sin 2 θ Σ ((r 2 + a 2 )dϕ -acdt) 2 -( Σ r 2 ) dr 2 1 + a 2 r 2 -Σdθ 2
where we are put Σ = r 2 + a 2 cos 2 θ. Two elementary manipulations are now needed to modify the latter expression to make it compatible with the limiting cases (7) ( r S r 1 and α 2 negligible) and (1) (α = 0). To do this, we first identify α and a (the flattening of the coordinate-spheres is due to rotation), then we add the gravitational content (not present in ( 8)), that is we replace 1 + a 2 r 2 by 1 + a 2 r 2 -r S r . We eventually obtain

ds 2 = ∆ Σ (cdt -asin 2 θdϕ) 2 - sin 2 θ Σ ((r 2 + a 2 )dϕ -acdt) 2 - Σ ∆ dr 2 -Σdθ 2 (9) 
putting ∆ = r 2 (1 -r S r + a 2 r 2 ). The quadratic form (9) is the Kerr metric associated to a rotating black hole (with the restrictions which are imposed : stationarity, axisymmetry and asymptotically flat metric). The intuition has guided us toward the accurate result, but of course we still have to validate this expression by showing that it checks Einstein's equations in vacuum (the ultimate referee !). Kerr's metrics is very often provided without any support, even at an advanced level, creating a dose of perplexity among students. The simple procedure developed above can help to dissipate this unrest.

The rotating disk of Sagnac

The sagnac experiment is well known [7,8]. The Sagnac effect can be derived from Special relativity without explicitly appealing to General relativity [9]. However the nature of the metric attached to a rotating disk has long been a controversial topic [START_REF] Rizzi | Relativity in Rotating Frames[END_REF]. A simple method of deduction was early proposed by Langevin [8]. Let an inertial observer O be located at r = 0 of a polar coordinate network (r, θ). We write the minkowskian ds 2 , expressed in these coordinates

ds 2 = c 2 dt 2 -dr 2 -r 2 dθ 2 (10) 
The observer O wishes to accompany the rotating disk (radius R) in its motion. Then he performs the global transformation of the coordinates (θ ∈ [0, 2π])

(t, r, θ) -→ (t, r, θ + ωt) (11) 
imposing the constraint r < R < c ω . This transformation means that the observer O (always inertial !) now uses a coordinate system that accompanies the disk in its rotation. The ds 2 (relativistic invariant) takes the form

ds 2 = c 2 1 - r 2 ω 2 c 2 dt 2 -dr 2 -r 2 dθ 2 -2r 2 ωdθdt (12)
By rearranging of the terms, we can still rewrite the latter expression into the form

ds 2 = c 2 1 - r 2 ω 2 c 2 (dt - r 2 ω c 2 dθ 1 -r 2 ω 2 c 2 ) 2 -dr 2 - r 2 dθ 2 1 -r 2 ω 2 c 2 (13) Introducing a new interval of time dT = 1 - r 2 ω 2 c 2 (dt - r 2 ω c 2 dθ 1 -r 2 ω 2 c 2 ) (14)
We finally obtain

ds 2 = c 2 dT 2 -dr 2 - r 2 dθ 2 1 -r 2 ω 2 c 2 (15)
The purely spatial part, which can now be extracted from it, is

dσ 2 = dr 2 + r 2 dθ 2 1 -r 2 ω 2 c 2 (16) whose the curvature scalar is R = -6 ω 2 c 2 (1 -r 2 ω 2 c 2 ) -2
< 0. The spatial part is hyperbolic. However, the preceding reasoning is true if the rotational velocity ω is such as ω 2 c 2 R 2 . When the rotational velocities are much higher, the centrifugal forces cannot be neglected. Let us select the point of view of an observer, located at r and sliding without friction in a pipe radially directed and linked to the rotating disc. This observer has the impression to evolve in free fall, not toward the center as in the situation of paragraph 1 (free fall toward a point attractor), but on the contrary toward the outer region.

Resuming the heuristic reasoning of paragraph 1, but with v = rω (taken as radial velocity of free fall in the pipe), we directly deduce

ds 2 = c 2 (1 - r 2 ω 2 c 2 )dt 2 - dr 2 1 -r 2 ω 2 c 2 -r 2 dθ 2 (17)
with the restriction Rω < c where R = M aj(r) (in the case of the rotating disc the limiting value c ω for the radius plays the role of a Schwarzchild radius). However this result is just a part of the affair. Like what we did in paragraph 3 about the Kerr metric, we still have to make compatible (12) and (17). Following the heuristics, a very simple and intuitive manner consists to superimpose the two expressions ( 12) and (17) to create an emergent metric with the simultaneous properties of the two original ones (but that they did not possess separately). Eventually, we get

ds 2 = c 2 (1 - r 2 ω 2 c 2 )dt 2 - dr 2 1 -r 2 ω 2 c 2 -r 2 dθ 2 -2r 2 ωdθdt (18)
We can call this form the dematerialized rotating disk metric. The purely spatial part (doing dt = 0) is then

dσ 2 = dr 2 1 -r 2 ω 2 c 2 + r 2 dθ 2 (19) 
whose the curvature scalar is constant and equal to R = 2ω 2 c 2 > 0. The spatial part is in this case elliptic (the geometry of the sphere). The latter geometry also shares some analogies with the well-known conformal Beltrami model, even though the latter one has a constant but negative curvature (the geometry of the pseudosphere or tractricoid where R -→ -R). Let us mention that the metric (18) is no longer minkowskian (contrarily to (12) that is always minkowskian in spite of its appearance !). Another important point to specify is that (18) cannot be deduced from the general relativity because the mass and gravitation are absent. Thus the procedure exposed above is worth for a demateralized disk without mass and gravitation, that is a rather academic (and unphysical) situation. In fact, a very high velocity ω brings a very large kinetic energy or equivalently a very large mass. In this case the situation drastically changes. The inertial frame-dragging must be taken into account. Another point is that the disk can no longer maintain an uniform rotation. This one becomes automatically differential. The metric (18) must be replaced by the Lense-Thiring one with a variable ω (7). Let us notice that the sign of the crossed term in dθdt is then reversed. This reverse of sign is easily explained owing to the fact that in the Sagnac experiment there is no frame-dragging for a dematerialized disc, whereas this effect is naturally existing in a massive disc. The coordinate systems are also different. For the metric (7) the inertial observer is located at infinity, while he is at the origin of coordinate system for the expression (18). In parallel the expression (7) is asymptotically flat at infinity and divergent at the origin, while (18) is flat at the origin and divergent at r = ω c .

conclusion

We have shown that the metric attached to a static black hole (Schwarzchild metric), that of the rotating black hole (Kerr metric) or that of the dematerialized rotating disk (Sagnac experiment) can be derived with very simple physics accompanied by some heuristic arguments. Such a treatment appears available for gently introducing General relativity to students at the undergraduate level.

1.

A heuristic step obliterates justification and rigor to go straight to the goal ! 2. An explanation is needed here. This idea is supported as follows. The corresponding lagrangian for radial infall is

L = c 2 (1 - r S r ) ṫ2 -(1 - r S r ) -1 ṙ2
where we have put ṫ = dt ds and ṙ = dr ds . We write now the Euler-Lagrange equation for r

d ds ( ∂L ∂ ṙ ) - ∂L ∂r = 0
or more explicitely

d 2 r ds 2 - 1 2 r s r 2 1 -r s r ( dr ds ) 2 + c 2 2 r s r 2 (1 - r s r )( dt ds ) 2 = 0 *
On the other hand, the Schwarzchild line element can still be written 1. This step is assuredly non-rigorous, even unsupported in any way. It is a simple scaffolding which is then removed once the adequate metric is built ! 2. We use here the classical formula for velocity composition : relative velocity = absolute velocity -velocity of the dragged frame (Galileo -Newton). The time remains Newtonian and cdt -→ cdt (we neglect any term expressed as a function of the square of the speed of rotation). Similarly, the product of the speed of the particle by the rotational speed is assumed to be negligible compared to c 2 ).

1 = c 2 1 - r s r ( dt ds ) 2 - 1 1 -r s

3.

The speed of rotation must decrease rapidly when we move away from the rotating object (just like a whirlwind in a river is limited to a small singular region). On the other hand, the exponent (the strong decrease in r -3 ) is more difficult to justify. Let's say that the extra term added in the metric must not be felt at infinity (which would be the case if the decrease was slower). A physical solution requires that the metric be asymptotically flat at infinity. 4. It is appropriate to express dx, dy, dz according to dr, dθ, dϕ. On the other hand, we have symmetrized on the pair of time-space variables (dt, dϕ).

r

  Substituting for dt ds (issued from * * ) in the equation * gives thus dr ds → 0 for r → ∞ and inward free fall ⇒ dr < 0). The Euler-Lagrange equation for t is An astronaut at rest, placed at a position labelled by the space coordinate r and at a time coordinate labelled by t, measures the free fall speed of a particle. At this stage, we assume then that the intuitively deduced ds 2 (1) is accurate. For this observer the proper length is then dρ * = ( 1 -r S r ) -1 dr and the proper time dτ * = ( 1 -r S r )dt ). The measured velocity is given byv (r) = dρ *By identifying, we find v (r) = -c r s r This relationship is formally equivalent to that obtained in newtonian mechanics even though by a luckily coincidence ! Section 3

NotesSection 2