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Abstract: This paper addresses the problem of drug injection schedules design for cancer
treatment, in the presence of model parametric uncertainties. It is commonly known that
achieving optimal recovery performances under uncertainties is a complex task. Therefore,
we propose to use a recent optimal control approach, based on the moment optimization
framework. This method allows to formulate and solve robust optimal control problems by
taking into account uncertain parameters and initial states, modeled as probability distributions.
We analyse a two dimensional model that describes the interaction dynamics between tumor
and immune cells. Furthermore, we derive statistically optimal combined strategies of chemo-
and immunotherapy treatments, assuming the knowledge of probability distributions of some
uncertain model parameters, namely, the tumor growth rate and the rate of immune cells
influx. Numerical simulations are carried out in order to illustrate the effects of parametric
uncertainties on dynamics, when using a nominal injection profile. Finally, we compare the
recovery performance of nominal and robust schedules.

Keywords: Biomedical control, robust optimal control, uncertain dynamic systems, generalized
moment problem, cancer treatment scheduling, chemotherapy, immunotherapy.

1. INTRODUCTION

Control design for biological systems is a very promising
topic in the sense that robust control theory can help
to handle the uncertainties which are due to the system
dynamics complexity, the different neglected phenomena
and the lack of knowledge on model parameters.

It is well known that biological phenomena, in particular
tumors, are highly uncertain systems. Both evolution and
treatment effects are patient-dependent. In the context of
cancer treatment, control theory can help to design new
drug delivery schedules and to combine effectively many
therapies, in the presence of parametric uncertainties, in
order to achieve better treatment performances.

The advances in genetics that have taken place recently
led to considerable progress in experimental and clinical
immunology (Eftimie et al., 2016) and many researches on
modeling the immune system dynamics had been carried
out. Since the mathematical modeling of the entire im-
mune system can be a very complex task, researchers focus
on the elements of the immune system that are known to
be significant in controlling the tumor growth (De Pillis,
2006). The readers interested in tumor-immune interac-
tions modeling can refer to De Pillis et al. (2007),De Pillis
et al. (2009), d’Onofrio et al. (2012), Eftimie et al. (2016)
and references therein. The model considered in this pa-
per describes the interactions between two populations,
tumor cells and immune effector cells. It also includes
explicitly two therapies delivery, cytotoxic chemotherapy

and immunostimulation. This model takes into account the
chemotherapy-induced loss of tumor cells and incorporates
the benefical effects of the immune system on controlling
the tumor growth.

Cancer treatment usually implies handling state and input
(drugs amounts) constraints, some nonlinearities, many
uncertainties and optimality issues. It is definitely the
collection of all complexity ingredients in terms of con-
trol design. We can find in the literature many works
regarding the application of optimal control methods on
cancer treatment problems. For instance, Ledzewicz and
Schättler (2008), Schättler et al. (2011) and d’Onofrio and
Cerrai (2009), where optimal protocols for anti-angiogenic
treatment were investigated, or De Pillis et al. (2007)
who designed quadratic and linear controls for a tumor-
immune interactions model with chemotherapy delivery.
However, robust control is not yet extensively studied for
cancer treatment. We can cite for example, Alamir (2014),
where a robust feedback scheme is proposed to schedule
antiangiogenic treatment combined with chemotherapy.
Kovacs et al. (2014) applied an H∞ based robust control
to the same model.

In this paper, we propose to formulate robust optimal
control problems in the moment optimization framework
by lifting a polynomial nonlinear dynamical system to the
infinite-dimensional space of measures. Since the problem
is reformulated in the space of probability measures, it is
straightforward to define states and parameters as random
variables characterized by their probability distributions.



The resulting infinite-dimensional problem is solved us-
ing truncations known as finite-dimensional semidefinite
(SD) hierarchies (Lasserre, 2001), providing a converging
sequence of lower bounds on the optimal solution.

In Section 2, we present the dynamical model used for
numerical simulations. Section 3 recalls the main key
points of the generalized moment problem for optimal
control. The optimal control problems to be solved and
the numerical results are presented in Section 4. Finally,
in Section 5, we discuss advantages and limitations of this
approach and we set some perspectives for future works.

2. DYNAMICAL MODEL

In this paper, we will consider a modified version of
the two dimensional model presented in d’Onofrio et al.
(2012), which describes the interaction dynamics between
the tumor and the immune system. This model had been
intensively used in the literature in order to investigate
its equilibria and propose some optimal control strategies.
For instance, Sharifi et al. (2017) proposed a multiple
model predictive control scheme to design chemo- and
immunotherapy injection schedules.

We propose to replace the Gompertzian tumor growth
model in d’Onofrio et al. (2012) with a logistic one(
µCx1

(
1− x1

x∞

))
, which leads to the following polyno-

mial dynamics :

ẋ1 =µCx1 −
µC
x∞

x1
2 − γx1x2 − κXx1u1,

ẋ2 =µI
(
x1 − βx12

)
x2 − δx2 + κY x2u2 + α,

(1)

where x1 and x2 denote, respectively, the number of tumor
cells and the density of effector immune cells (ECs), u1
and u2 are respectively, the delivery profiles of a cytotoxic
agent and an immunostimulator. Table 1 contains the
definitions of the model parameters and their numerical
values.

Table 1. Numerical values and definitions of
the parameters used in model (1) (d’Onofrio

et al., 2012)

Parameter Definition Numerical value

µC tumor growth rate 0.5599 ·107 cells/day
µI tumor stimulated 0.00484 day−1

proliferation rate
α rate of immune 0.1181 day−1

cells influx
β inverse threshold 0.00264
γ interaction rate 1 ·107 cells/day
δ death rate 0.37451 day−1

κX chemotherapeutic 1 ·107 cells/day
killing parameter

κY immunotherapy 1 ·107 cells/day
injection parameter

x∞ fixed carrying capacity 780 ·106 cells

Model (1) has two locally asymptotically stable equilibria.
The macroscopic malignant equilibrium is (xm, ym) '
(735.9, 0.032) and the benign one is (xb, yb) ' (34.98, 0.53).

It is important to notice that the treatment performance
depends highly on the initial conditions, since there is a
coexistence of macro- and microscopic equilibria.

3. OVERVIEW ON GENERALIZED MOMENT
PROBLEM FOR OPTIMAL CONTROL

In this section we will provide an overview on the ba-
sic concepts and computational tools for solving optimal
control problems by resorting to the generalized moment
problem approach. This method, developed by Lasserre
(Lasserre, 2000), is based on the fact that polynomial
optimization problems (thus, a class of nonconvex finite
dimensional problems), are equivalent, under mild assump-
tions, to linear problems in the space of measure, that
are infinite dimensional. Although the infinite dimensional
nature makes the latter problems hardly manageable, re-
laxations can be obtained, providing a converging sequence
of lower bounds on the global optima, under some com-
pactness assumptions. Therefore, generating and solving
such sequence of relaxations, referred to as Lasserre hi-
erarchy (Lasserre, 2001), allows to approach the exact
solution of the original polynomial optimization problem
with arbitrary precision.

This approach has been recently extended to optimal con-
trol problems with a polynomial structure and bounded
constraints (Lasserre et al., 2008), for which sequences
of convex problems can be determined to obtain subop-
timal solutions converging to the exact optimal control.
Moreover, as the linear infinite dimensional problems are
defined over the space of measures, which can be naturally
employed to model probability distributions, this approach
allows to address and solve optimal control problems in-
volving probability distributions as states and parameters.

Consider the polynomial optimal control problem

inf
u(·)

∫ T

0

L(t, x(t), u(t)) dt+ Φ (x(T ))

s.t. ẋ(t) = f(t, x(t), u(t)),

x(t) ∈ X, u(t) ∈ U, t ∈ [0, T ],

x(0) ∈ X0, x(T ) ∈ XT ,

(2)

where x ∈ Rn is the state, u ∈ Rm is the input, functions
f : R × Rn × Rm → R, L : R × Rn × Rm → R and
Φ : Rn → R are polynomials and the constraints sets
X0, X,XT and U are compact basic semi-algebraic sets,
i.e. defined as the union of finitely many intersections of
closed polynomial superlevel sets. Under some additional
assumption on the convexity of the set f(t, x, U) for all t
and x, the optimum of (2) is the same as the optimum of
a linear infinite dimensional optimization problem defined
over the space of probability measures, given below.

For this, we briefly introduce the concept of measure and
moments, the reader interested in a more detailed formal-
ization is referred to the related literature, e.g. Lasserre
(2010) and Lasserre et al. (2008). Given a compact set
X ∈ Rn and the Borel σ-algebra B(X), that is a particular
set of subsets of X containing all the open subsets of X, a
Borel measure µ on X is a function that associates a real
value to every element of B(X). A measure is nonnegative
if it takes only nonnegative values, is a probability measure
if it is nonnegative and µ(X) = 1. An example of a
positive measure is the Lebesgue measure, that associates
the surface to sets in R2, the volume to sets in R3 etc.,
while the Dirac measure δz(x) with z ∈ X is a probability
measure that assigns the value 1 to every subset of X



containing z and 0 otherwise. The spaces of measures
and positive measures are denoted M(X) and M+(X),
respectively. Measures can also be defined as the space of
linear functionals acting on the space of functions that are
continuous on X, i.e. by the action they have over the
elements of the dual space C(X) through integration

〈v, µ〉 =

∫
X

v(x)µ(dx),

for all v ∈ C(X). The following linear problem in the space
of measures

inf
µ0,µ,µT

〈L, µ〉+ 〈Φ, µT 〉

s.t.

∫
[0,T ]×X×U

(
∂v(t, x)

∂t
+∇x(v(t, x))′f(t, x, u)

)
dµ

= 〈v, µT 〉 − 〈v, µ0〉, ∀v ∈ C1([0, T ]×X)

µ0 ∈M+({0} ×X0), µT ∈M+({T} ×XT )

µ ∈M+([0, T ]×X × U),

〈1, µ0〉 = 1,
(3)

is infinite dimensional, has uncountable many constraints
and has the same optimum value as the original optimal
control problem (2), under mild assumptions, see Lasserre
et al. (2008).

Such a problem remains highly complex and unmanage-
ably large, however, Lasserre hierarchy (Lasserre, 2001) of
relaxed LMI problems can be determined to obtain subop-
timal solutions that converge, under certain compactness
and convexity assumptions, to the optimal solution of the
original optimal control problem. To obtain the relax-
ations, one has first to consider the relation between the
measure µ0, µ and µT and their moments. Given x ∈ Rn
and σ ∈ Nn, the moment of order σ ∈ Nn of µ ∈M(X) is
defined as :

yσ =

∫
X

xσµ(dx) = 〈xσ, µ〉, (4)

where xσ =
∏n
k=1 x

σk

k . LMI conditions can be given in
terms of the moments of µ that are equivalent to the con-
straint µ ∈ M+(X), conditions that still involve infinite
dimensional matrices which are functions of the infinitely
many variables yσ for all σ ∈ Nn. The relaxations consist,
in practice, in considering the matrix structures obtained
by appropriately truncating the vector of moments to a
finite maximal degree (r) and imposing in (3) constraints
over polynomials of a finite maximal degree in spite of all
v ∈ C1([0, T ] × X). This leads to a hierarchy of finite-
dimensional semidefinite programming problems whose
solutions converge to the solution of the optimal control
problem as the relaxation degree grows.

The particularly interesting feature of this approach is the
fact that, even in case of deterministic dynamical systems,
the initial state as well as the final one and the state along
trajectories, are dealt with by defining measures on the
state space, see (3). The same holds for the input. For
instance, if x0 = x(0) ∈ X0 is a singleton, then the initial
measure µ0 in (3) should be imposed by fixing, for all
σ ∈ Nn, its moments given as :

〈tιxσ, µ0〉 =

{
xσ0 if ι = 0
0 if ι ∈ N+\{0}

Therefore, the polynomial optimization method based on
measures is particularly suitable for dealing with states
and inputs that are characterized by probability distri-
butions, by simply imposing the moments of the related
probability density functions.

In the particular case under study, we aim at designing a
robust optimal control for a dynamical model describing
the tumor growth, the parameters of which are supposed
to be not perfectly known. This lack of knowledge can
be modeled through uncertain parameters characterized
by probability distributions, with compact support. Then,
in practice, it is sufficient to define an extended state
containing both tumor and immune cell populations and
the uncertain parameters, i.e. µC and α, see (1), and
to impose their time invariant characteristic through the
dynamics µ̇C(t) = 0 and α̇(t) = 0. Thus, supposing that
η(µc) and ν(α) denote the probability distributions of
parameters µC and α, the optimal control problem (3)
to be solved should have as initial condition

µ0 = δ0(t)× δx1(0)(x1)× δx2(0)(x2)× η(µc)× ν(α),

imposed through moments of the initial measure.

4. NUMERICAL RESULTS

4.1 Nominal optimal control problem

Similarly to d’Onofrio et al. (2012) and Sharifi et al.
(2017), we assume that the initial state of the system
dynamics (1) is (x10, x20) = (600, 0.1), we also consider
that the maximum drug dose is 1 for both chemotherapy
and immunotherapy. Furthermore, we add constraints on
the immune cells density and the number of tumor cells
in order to ensure the compactness of the state set X.
Another constraint on the final tumor size is imposed in
order to drive the tumor to the benign region. The nominal
(i.e. considering nominal values of model parameters)
optimal control problem that we propose to solve for
t ∈ [0, 60] is the following:

min
u1(·),u2(·)

J(x1, x2, u1, u2)

s.t. ẋ1 = µCx1

(
1− x1

x∞

)
− γx1x2 − κXx1u1,

ẋ2 = µI
(
x1 − βx12

)
x2 − δx2 + α+ κY x2u2,

x1(0) = 600, x2(0) = 0.1,

x1(60) 6 100,

0 6 u1 6 1 , 0 6 u2 6 1,

0 6 x1 6 780 , 0 6 x2 6 5,

t ∈ [0, 60].
(5)

The cost J is chosen according to the objectives that one
seeks to achieve. It can contain many terms such as final
states, integrals of state trajectories and control inputs,
with different penalties in order to achieve a trade-off
between the different control objectives. Problem (5) can
be reformulated in the framework of moment optimization
via GloptiPoly 3 (Henrion et al., 2009), as explained in
Section 3, and can be solved using YALMIP and the
semidefinite programming solver MOSEK. The control
inputs are approximated, based on the knowledge of their
moments, using Christoffel-Darboux kernel, for more de-
tails, see (Marx et al., 2019). For practical reasons, time



and states trajectories are scaled to [0, 1], therefore, the
control inputs presented in this paper are computed for
scaled dynamics.

Let’s consider for instance the minimization of the cost
J1 = x1(60). Figure 1 shows the approximations of control
inputs that we obtained after solving the reformulated
problem corresponding to (5) with J = J1. The evolution
of state trajectories with those controls is presented in
Figure 2, we can see that the tumor burden decreases
slowly to reach the final value that lies in the benign region.
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Fig. 1. Control inputs chemotherapy (u1) and im-
munotherapy (u2), for J1.
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Fig. 2. States trajectories for J1.

Assuming that we want the tumor size to decrease faster,
we can minimize J2 =

∫
x1(t)dt. The approximated control

inputs are presented in Figure 3, we can notice that the
chemotherapy profile is aggressive and persistent, this is
due to the choice of the cost which considers only the
minimization of the integral of x(t). Such controls are
not allowed practically because of the high toxicity of the
cytotoxic agent.
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Fig. 3. Control inputs chemotherapy (u1) and im-
munotherapy (u2), for J2.
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Fig. 4. States trajectories for J2

Figure 4 shows that the state corresponding to the tumor
cells, x1, goes to 0 faster than in Figure 2. Furthermore,
we can see that the immune cells density goes up rapidly
to reach very high values (thus, violating the imposed
constraint 0 6 x2 6 5).

Since chemotherapy has damaging side effects on the
human body, it is common to frame an optimal control
problem so that the total amount of drugs is minimized
(De Pillis et al., 2007). It is also important to take a
look at the evolution of the immune system, because the
immune-weakening has damaging effects on the human
body. Thereby, one can easily notice that the choice of
the cost J , to be minimized, is very important in order to
meet the control objectives.

Now, we propose to minimize J3 = x1(60)+0.4
∫
x2(t)dt+

0.01
∫
u1(t)dt + 0.01

∫
u2(t)dt. As we can see in Figure 5,

penalizing the control inputs integrals allows to reduce
considerably the injected drugs amounts. In Figure 5, we
show the graphs in the time interval [0, 5] to emphasis the
differences between the two profiles, since for t ∈ [5, 60],
u1(t) = 0 and u2(t) = 0.
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Fig. 5. Control inputs chemotherapy (u1) and im-
munotherapy (u2), for J3.

Figure 6 shows that the states converge to the benign
equilibrium at around 30 days. Therefore, the control
profiles approximated by minimizing J3 allow to satisfy
perfectly the standard control objectives, since they drive
the states to the benign equilibrium (xb, yb). Furthermore,
we can notice that those drug injection profiles minimize
rapidly the tumor while maintaining a relatively strong
immune system.
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Fig. 6. States trajectories for J3.
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Fig. 7. Monte-Carlo tests on the nominal schedules

Even though controls in Figure 5 satisfy standard objec-
tives in the context of nominal optimal control, we will
show that when the dynamics are subject to parameters
uncertainties, those controls will not meet the goals set in
the optimal control problem.

Let’s assume that µC ∼ N (0.5599, 0.1) truncated in
[0, 1.1198] and α ∼ N (0.1181, 0.05) truncated in [0, 0.2362].

Remark 1: The considered distributions are not based
on practical knowledge of the system parameters, they
are chosen only to illustrate the problem of handling
parametric uncertainties. The robust schedules will be
designed considering truncated distributions in order to
satisfy compactness conditions.

Figure 7 presents 100 Monte-Carlo simulations with ran-
dom values of µC and α (the random selection is carried
out according to their corresponding probability distribu-
tions). It shows that there is a probability of 19% for the
states to converge to the malignant equilibrium (xm, ym)
(i.e. leading to patients death). Therefore, it is crucial to
consider the potential uncertainties on model parameters.

4.2 Robust optimal control problem

Let’s extend system (1) to the following dynamics:

ẋ1 = µCx1 −
µC
x∞

x1
2 − γx1x2 − κXx1u1,

ẋ2 = µI
(
x1 − βx12

)
x2 − δx2 + κY x2u2 + α,

µ̇C = 0,

α̇ = 0.

(6)

The state augmentation in (6) allows to characterize µC
and α by their probability distributions, as explained in
Section 3. Similarly to problem (5), one can reformulate
the robust optimal control problem with dynamics (6) by
including the moments of the parameters distributions.

Figure 8 presents a comparison between nominal and
robust injection schedules, approximated after minimizing
the cost J3 in the nominal case and E (J3) in the robust
case, since we have a flow of trajectories, generated by the
parameters distributions . We can notice that similarly to
the nominal profiles, the robust ones are also single doses
injected at the begining of the treatment. However, we
can see that the robust profiles use more amounts of drugs
which highlights the importance of taking into account
parametric uncertainties description.
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Fig. 8. Chemo- and immunotherapy schedules (robust and
nominal), for J3.

Figure 9 presents 100 Monte-Carlo simulations using the
approximated robust injection profiles. We can notice
that the probability of convergence to the malignant
equilibrium has been reduced from 19%, using the nominal
profiles, to 8%, in the case of robust schedules.

4.3 Cost-based performance comparison

Problem (5) can be written in a compact form as follows :

min
u1(·),u2(·)

J(x1, x2, u1, u2)

s.t. g(x1, x2, u1, u2) ≤ 0.
(7)
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Fig. 9. Monte-Carlo tests on the robust schedules



In order to effectively compare the performance of nominal
and robust schedules, we write the equivalent problem of
(7) as :

min
u1(·),u2(·)

J(x1, x2, u1, u2) + ρ max(g(x1, x2, u1, u2), 0),

(8)
where ρ ∈ R is arbitrary big.

Using the asymptotic equivalence between (7) and (8), we
computed the costs corresponding to nominal and robust
profiles, based on Monte-Carlo simulations that we carried
out for both schedules. Table 2 shows that the mean and
variance of the costs corresponding to robust schedules,
are considerably less than those of the nominal costs.
This is mainly due to the excessive number of constraints
violations that occur when applying nominal controls.

Table 2. Statistics of the normalized costs
(nominal and robust)

Mean Variance

Nominal cost 0.20 0.14
Robust cost 0.12 0.07

Table 3 presents a comparison between the computational
times of the nominal optimal control problem (OCP) and
the robust one. We notice a considerable difference in the
computational cost, it is mainly due to the increase of the
problem dimension, after performing dynamics extension
to solve the robust OCP. Increasing the relaxation order
r allows to have better approximations on the moments,
however, it increases the problem dimension and therefore,
the computational time.

Table 3. Computation times on hp EliteBook
2.60GHz Intel Core i7

Relaxation order r Computation time (mn)

Nominal OCP 8 ' 1
Robust OCP 8 ' 62

5. CONCLUSION AND DISCUSSION

We presented in this paper preliminary results on the
application of moment optimization theory to schedule
cancer treatment. We highlighted the importance of tak-
ing into account parametric uncertainties in the optimal
control problem. Furthermore, we designed robust and
optimal combined chemo- and immunotherapy injection
profiles that allow to meet specific objectives.

The moment optimization approach can be very promis-
ing for many applications, since it allows to reconstruct
optimal injection schedules for a class of nonlinear sys-
tems with parametric uncertainties considerations. How-
ever, it may have some limitations, mainly the restriction
on polynomial dynamics and the limited dimension (state
and control variables) that can be handled. Although the
required computational time is high in the case of solving
a robust OCP, in some applications, it remains crucial to
guarantee robust performances.

Finally, furture work will be focused on exploring the
uncertainties effects of other model parameters on cancer
schedules treatment design, including uncertainties on
initial states and investigating the consequences of adding
a minimal immune cells density constraint in the OCP.
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