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1 Formal Power Series Solutions of Differential Ideals

Twenty years ago I had the opportunity to teach differential elimination methods at Paris VI University
(today Sorbonne University) in some Master course. The beginning of the course — up to differential ideals
— is taught quite easily. But difficulties actually occur as soon as one writes a first equation: what do you
mean by a solution of a differential equation whose left hand side is a general differential polynomial ? The
approach followed by Ritt (a solution is a prime differential ideal which contains the equation) is very elegant
but it is also terribly abstract for students. This time, I have decided to start with a more tedious but much
more intuitive approach: we look for formal power series solutions. This approach actually perfectly suits
the general context of the workshop.

The main issue of this section is: what about expansion points of formal power series 7 They actually
play an important role since the problem of the existence of formal power series solution of differential ideal
is algorithmically decidable if the expansion point is unspecified while it is undecidable if it is fixed. The
undecidability result is given in this section.

1.1 Differential Rings

Reference books are [17] and [12]. The following basic notions are introduced in [12, chap. I, 1].

An operator ¢ on a ring is called a derivation operator if §(a+b) = da + §b and d(ab) = (da) b+ a b for
all elements a, b of the ring.

A differential ring % is defined as a ring with finitely many derivation operators which commute pairwise
i.e. such that d1d.a = d201a for all derivation operators d1,d2 and all a € Z.

A differential field is a differential ring which is a field. If the number m of derivation operators is equal
to 1 then the differential ring is said to be ordinary. If it is greater than 1, the differential ring is said to be
partial.

The operator § which maps every element of a ring to zero is a derivation so that every ring can be
viewed as a trivial differential ring. If the ring is the field Q of the rational numbers, this derivation is the
only possible one since

5(0) = 6(040)
6(1) = o0(1x1)

26(0) = 0,
26(1) = 0,

hence the derivative of any rational number must be zero. More generally, it can be proved that the derivative
of any complex number must be zero.

The equations we handle will have coefficients in some differential field .% such that Q C % C C. Since a
constant is any element whose derivative is zero, we see that % is a field of constants and has characteristic
Zero.

In the context of tropical differential geometry, it may be useful to introduce “independent variables”.
We will see later how to handle them formally in differential algebra. For the moment, let us just say that
the symbols z1,...,z,, are supposed to be related to the derivation operators d1,...,d,, by the relations:
0;z; =1 and 6;2z; = 0 for all 1 <4, < m such that ¢ # j. Thus we may interpret J; as the partial derivative
0/0x;. In the ordinary context, the derivation operator can thus be interpreted as d/dz. However let us
stress that Ritt’s theory and an important part of Kolchin’s one do not require these assumptions and deal
with an abstract differential field .# of characteristic zero.



1.2 Differential Polynomials

From the differential algebra point of view, differential indeterminates are symbols such as u,v over which
derivation operators may apply, giving an infinite set of derivatives. In the ordinary case, interpreting § as
d/dz, one may view differential indeterminates as representing unknown functions u(x) and v(z) and their
derivatives

w0, T, O, iy O, ., ul )

as representing the functions obtained by differentiation.

In the partial case, interpreting the derivation operators as 0; = 9/0x; for 1 < i < m, one may view
differential indeterminates as representing unknown functions u(x1,...,x,,) and v(z1,...,2,,) and their
derivatives as representing the functions obtained by partial differentiations.

In the general case it is convenient, following [12, chap. I, 1] to introduce the commutative semigroup
(written multiplicatively) © generated by the derivation operators. Each derivative operator 6 € © has the
form

[ N

where e1,...,e, € N (the set of the nonnegative integers). Then the corresponding derivative of the
differential indeterminate (say) u will be denoted

em .

0u or Uger e

It represents the function
gerttemy,

N T

The nonnegative integer e; + --- + e,, is said to be the order of the derivative operator . A derivative
operator 0 is said to be proper if its order is strictly positive.

If % is a differential field and U = {uq,...,u,} is a set of n differential indeterminates then the poly-
nomials in the derivatives in ©OU, with coeflicients in .# — the elements of .#[@OU]| — are called differential
polynomials. All together, they form a differential polynomial ring denoted

L) -

f{ul,...,un}.

1.2.1 An Example

Let us consider the ordinary differential polynomial ring .% {u}. Here is an example of a differential polyno-
mial p € #{u} and its first derivatives:

p = @+,
p = 2ui+3uu,
i o= 20u® + 22 +3ui+6ual.

In the sequel, we will define leading derivatives through the general concept of rankings. For the moment,
let us just claim that @, i, u(®) are the leading derivatives of p, p, p. Observe that: 1) each proper derivative
of p has degree 1 in its leading derivative; and 2) these leading derivatives all have the same polynomial as
coeflicient. It is the so-called separant of p i.e. the partial derivative of the differential polynomial p w.r.t.
its leading derivative

0
separant of p = @ _ 2.

o



1.3 Differential Ideals

Let Z denote the differential polynomial ring .% {u1, . .., u,} with m > 0 derivation operators. The following
definitions are borrowed from [17, chap. I, 7] in the ordinary case. They readily apply to the general case,
as pointed out in [17, chap. IX].

A nonempty subset 2 of Z is said to be a differential ideal of Z if:

1. it is an ideal of #Z and

2. it is stable under the action of the derivations i.e. if it is such that p € 2 = 0p € 2 for all derivation
operator 0 € O.

A differential ideal contains an infinite number of differential polynomials unless it consists of the single
differential polynomial 0. The intersection of any finite or infinite number of differential ideals is a differential
ideal.

A differential ideal 2 is said to be perfect if it is equal to its radical i.e. if (3d € N, p? € A) = p € 2A.
The intersection of any finite or infinite number of perfect differential ideals is a perfect differential ideal.

A differential ideal 2 is said to be prime if it is prime in the usual sense i.e. if pg € A = (p € A or g € A).
Every prime differential ideal is perfect.

Let ¥ be any subset of Z.

One denotes [X] the differential ideal of # generated by ¥. Tt is defined as the intersection of all differential
ideals of #Z containing 3. It is the set of all finite linear combinations, with arbitrary elements of % for
coeflicients, of elements of ¥ and their derivatives of any order.

One denotes {X} the perfect differential ideal of Z generated by . Tt is defined as the intersection of all
perfect differential ideals of #Z containing .

Tt is clear that [X] C {¥}. More precisely, we have the following

Proposition 1 Let ¥ be any subset of Z. Then {3} = \/[X]. With words, {3} is the set of all differential
polynomials p € Z for which there exists some r € N such that p" € [X].

The only part of the proof which is not immediate is given by the following Lemma, which essentially is
[17, chap. I, 9, Lemma].

Lemma 1 Let X be any subset and p be any element of Z. If there exists some positive integer r such that
p" € [3] then p?"~1 € [X], where the dot indicates any derivation operator of % .

Proof Assume p” € [¥]. Differentiating p” and dividing by r we have p"~!p € [£]. We thus have proved
the Lemma in the case r = 1. For the general case r > 2, observe that we have proved (1) below for k = 1:

PPt e 3] (1)

We need to establish that (1) holds for ¥ = 7. Assume thus (1) holds with » > 2 and » > k > 1.
Differentiating (1) we get

(T _ k) pT—k—l ka} + (2 k _ 1)p7"—k pQ k_ij c [E] (2)
Multiply (2) by p. Subtract (1) multiplied by (2 k — 1) §. Divide the result by r — k. One gets
prfkfl p2 k+1 c [E] (3)

Repeating the above computation (more rigorously, putting it some proof by induction on r — k), we see
that the Lemma holds in general. O



1.4 Formal Power Series (Ordinary Case)
1.4.1 Informal Introduction

Consider the following ordinary differential polynomial equation
p = WH+azutl. (4)

Its coefficients depend on the “independent variable” x, which is an object that we have not formally in-
troduced. For the moment, let us handle this example informally as if it were a differential polynomial of
F{u}. Its first derivatives are

p = wWHazutl,
p = 2uiu+zxru+u,
po= 20u® 426+ zii+24a,

By analogy with the corresponding concept of algebraic geometry, define an arc as any infinite sequence
of elements of .F

a = (a07a17a27"')

Let us fix some expansion point zg € %.

If p is any element of #{u}, and a is any arc, one defines p(a) as the result of the evaluation of a
differential polynomial at an arc, over zg. It is the element of .% obtained by substituting x¢ to 2 and a; to
u(® for each i > 0, in the differential polynomial p. Over (4), we have:

pla) = al+mzoap+1,
pla) = 2ai1az+x001+ ag,
pla) = 2a1a3+2a3+x9a2+2a,

Define now the mapping ¥ which associates a formal power series centered at xg, to each arc, by the formula

U(a) = Z%ai (z —x0)".

i>0

Then p(¥(a)) denotes the formal power series of .Z[[x — x¢]] obtained by substituting the formal power
series ¥(a) to the differential indeterminate u in p (evaluation of a differential polynomial at a formal power
series). This being understood, according to [20, page 160], the following proposition is “nothing but a simple
computational rule”:

Proposition 2 Let p be any element of the ordinary differential polynomial ring #{u} and a be any arc.
Then

PW(@) = pla) + (@) (z a0) + 5 pla) (x — 70)” + - )
- Z %p(i)(g) (z — o). (©)



Over our example, taking the origin as expansion point, Proposition 2 gives

1
p(¥(a)) = (a%—i—l)—|—(2a1a2+a0)x+5(2a1a3+2a§+2a1)x2+-~-,
p(¥(a)) = (2a1a2+a0)+(2a1a3+2a§+2a1)x—|—-~-,

Let us have a look to the left hand side of (5). A formal power series is zero if and only if all its coefficients
are zero. From Proposition 2, we thus see that if the formal power series ¥(a) annihilates the differential
polynomial p, it also annihilates all its derivatives and, more generally the whole differential ideal® [p].

The coefficients of ¥(a) belong to a field i.e. to an integral domain. Thus if there exists some r € N and
some ¢ € % {u} such that ¥(a) annihilates ¢" then ¥(a) annihilates gq. Therefore, using Proposition 1, we
see that if ¥(a) annihilates p then it annihilates the whole perfect differential ideal {p}.

Let us now have a look at the formal power series standing at the right hand side of (5). It is zero if and
only if the differential polynomial p and all its derivatives are annihilated by the arc a over zy. Argumenting
as above, we see that the right hand side of (5) is zero if and only if the whole perfect differential ideal {p}
is annihilated by the arc a over zy. In summary,

Corollary 1 The formal power series W(a) annihilates the perfect differential ideal {p} if and only if this
perfect differential ideal evaluates to zero at the arc a.

1.4.2 On the Expansion Point

Many algebra books only deal with formal power series centered at the origin. Moreover, classical differential
algebra books [17, 12] do not mention “non autonomous” differential polynomials i.e. differential polynomials
whose coefficients depend on the “independent variables”. In this section we show how formal power series
centered at some zp € .# can be obtained from formal power series centered at the origin, on “autonomous”
differential polynomials at the price of an extra differential indeterminate. We illustrate the process over our
example (4).

We look for a formal power series solution of p centered at some zg € .%. The “independent” variable x
is encoded by an extra differential indeterminate. For legibility, the symbol = is kept for the differential
indeterminate. The symbol used for the derivation is renamed as & which means that formal power series are
sought in Z[[¢]] and that the derivation operator should be interpreted as d/d¢. The differential equation
p = 0 is thus equivalent to the following “autonomous” differential polynomial system of .#{u,x}

W +rzut+l = 0, (7)
i—1 = 0. (8)

Since we are looking for a formal power series centered at xg i.e. such that z(0) = xg, we fix the “initial
condition” of the second equation to z( (the expansion point has been encoded as an initial condition), which
means that we associate to the differential indeterminate = the following arc

r = (Io,L0,0,...), (9)
so that the formal power series solution of (8) is

U(z) = zo+€. (10)

I Notice that this generalization would not have made sense if we had put the “independent variable” in the field of coefficients
since the coefficients of some elements of [p] would then have vanishing denominators.



Let a = (ag,a1,...) be any arc, associated to the differential indeterminate u. In order to evaluate (7) over
the tuple of arcs (z,a) compute the derivatives of this differential polynomial

p = W4azutl,
p o= 2ui+zu+iu,
o= 20u® 2@ 4 zi+2iu4ui,

Evaluate them over the tuple of arcs

p(z,a) = a%—t—xoao—kl,
p(z,a) = 2aia2+z9a1 +ag,
plz,a) = 2araz+2d3+r00a2 +2a1,

Fix the expansion point to the origin £ = 0. One may now evaluate p over the tuple of formal power series
(¥(z),¥(a)) by applying Proposition 2:

1
p(¥(z),¥(a)) = (af—k:z:oao+1)—|—(2a1a2—|—x0a1—|—a0)§+5(2a1a3—|—2a§—|—:c0a2+2a1)§2—|—---

Since £ = & — xy by (10), one may now eliminate £ from the above formula and get the sought formal power
series, centered at xq, for p:

p(¥(z),¥(a)) = (a?+z0ap+1)+ (2aias+x0ar +ag)(z — x0)

1
—1—5(2a1a3+2a§+m0a2—|—2a1)(a:—x0)2+~-~

1.4.3 Summary

Given a differential polynomial (4), let us call extended system the system (7,8) obtained by encoding the
“independent variable” as an extra differential indeterminate and renaming the derivation as § = d/d¢.

In the sequel, when we will need to consider formal power series solutions or arc solutions of a differential
polynomial, we will often tacitly assume that we consider solutions of the corresponding extended system,
centered at, or over the origin. This actually justifies the fact that the notations p(a) and ¥(a) do not feature
the expansion point.

In the definition of the differential polynomial rings, the extra differential indeterminate used to encode
the “independent variable” will always be omitted and we will write that the differential polynomial (4)
belongs to F{u}.

We will be more precise when there will be any risk of confusion.

Last notice that our encoding does not cover the case of differential polynomials with coefficients in the
ring of formal power series of .%|[z]] as in [1]. However, it covers the case of differential polynomials with
coefficients in .#|z].

1.5 Formal Power Series (Partial Case)

Let us now consider an example in the partial case. The differential polynomial ring is .#{u} with two
derivations, with respect to x and y. The left hand side of the following partial differential equation (PDE)
is a differential polynomial p

uyui —8u+1 = 0. (11)



The first derivatives of p are

p = uyui—Su—i—l,
Pz = Ug (2UyUgy + Uy Ugy + 24 u2),
Dy = 2Ugp Uy Ugy + ui Ugy — 24 4,2 Uy ,
Pow = 2Up Uy Uppy + U2 Upgy + 20y U2, + 4 (U Uy — 6U?) Upy — 48 U2,

Over this example, the two derivatives u, and u, could be considered as the leading derivative of p. Let us
choose u,. Then the leading derivatives of p,, py, Pze ar€ Uszg, Uy, Uzaz- As in the ordinary case, each proper
derivative of p has degree 1 in its leading derivative; these leading derivatives all have the same polynomial
as coefficient. It is the separant of the differential polynomial p
0
separant of p = P 21Uy Uy

Ouy

The leading coefficient of p w.r.t. its leading derivative is called the initial of p. It is the differential
polynomial u,.

The definitions introduced in the ordinary differential case hold amost “as is” in the partial case.

An arc? is defined as an infinite sequence of elements of .. Pairs (i,5) € N? are however used as indices:

a = (ao,oa a1,0, 00,1, @2,0,01,1, 0,2, 3,0, A2,1, 31,2, 0,3, 44,0, - - )

Let us fix some expansion point (zg,yo) € .Z 2.

If p is any element of the partial differential ring .#{u} and a is any arc, one defines p(a) as the result of
the evaluation of the differential polynomial p at an arc a, over (xg,yo). It is the element of % obtained by
substituting zg to z, yo to y and a;; to gy for all 4, j > 0. Over our example we have:

pla) = aoaaiy—8age+1,
pz(a) = a10(2a010a20+arpar; +24ag,),
pyla) = 2a10a0,1 01,1 "‘aio a1 — 24&%70 ap,1
Pac(a) = 2a10a01as0+0aigaz1+2a01a3+4(a10a11 —6ad,)az —48agaly,

We may now generalize to the partial case, the mapping ¥, which associates a formal power series centered
at (zo,yo) to each arc:

11 ) .
V) = Y 5y - wo) (- po) (12)
igzo0 '
Proposition 2 generalizes to

Proposition 3 Let p be any element of the partial differential ring #{u} and a be any arc. Then

p(¥(a) = pla)+p(a)(x—z0)+py(a) (y — vo)
+ 2 pala) (2~ 20) (5~ 0) + -
- 2;011' %pww (@) (x — 20)" (y — o) -

2In the multivariate case, a better terminology would be a “wedge”.



Over our example, Proposition 3 gives:

p(¥(a)) = (a0 aio —8apo+1)+ai0(2a01a20+aipar, +24 a%,o) T+
(2a10a01 01,1 + aio aiq —24 a(2),0 ap1)y+---
p=(¥(a)) = a10(2a0,1a20+ar0a11+24a5,) +

2 2 2 2
(2a1,0a0,1a3,0 +aigaz21 +2a01 030 +4(ar0a11 —6ag0)azo —48agoaig)r +---

The comments following Proposition 2 hold for Proposition 3. In particular, Corollary 1 holds in the partial
case. The analysis conducted in Section 1.4.2 should be modified as follows. Consider the differential
polynomial (11). The two independent variables are encoded by two extra differential indeterminates x
and y. The symbols used for the two derivations are renamed as £ and 7. The extended system associated
o (11), which belongs to F{u,z,y}, is

upug —8u+1=0, zg=1, w,=0, ye=0, y,=1.

The expansion point (xg, yo) is encoded via initial conditions. In particular, the following arcs are associated
to the differential indeterminates = and y

= (x0,1,07...)7
y = (y07071307"')7

18

so that x and y, viewed as functions of the independent variables £ and 7 are

\II( $0+£a
U(y) = yo+n.

&

The rest of the section as well as Section 1.4.3 are easily adapted.

1.6 Denef and Lipshitz Undecidability Result

The following analysis comes from [10, Theorem 4.11]. Let f € #[z] be a polynomial in the usual sense. To
fix ideas, take

flz) = 22-2. (13)

Let p € Z#{u} be the differential polynomial defined as follows, using f to form some differential operator
and applying it to the differential indeterminate u

. as

Over our example, one obtains

2
p = ((x(ir) —2) u, = xiﬁ(miﬂu)—Qu, = z?i42u—2u.

Fact 1. Fix the expansion point at the origin! If a = (ag, aq,...) is any arc then

p(¥(a) = Y aif(i)a’. (15)

i>0



Fact 2. The following identities hold:

E ', and more generally,
i>0

1 PPN 1 — xil...xim/.
1—a 11—z, ‘ Z m
(214eenyim )EN™

1—=x

Combining the two above facts, we see that the differential polynomial equation

1
Po= T which is equivalent to
-z

l-z)p—1 = 0

has a formal power series solution (which is convergent if it exists), centered at the origin, if and only
if a; = 1/f(i) for each ¢ € N. In particular, the formal power series solution exists if and only if the
polynomial f has no positive integer root. This is the case over our example. Indeed, denoting ¢ = (1—z) p—1
we have

qla) = —2a—1,

ga) = 2a0—a,

jla) = 2a1+2as,
¢® ) = —6as+Tas,

Solving, we get

¢ = (‘é’_“’g"“) B (f%)’fl(i)’fz)’f?E;)"">

This construct generalizes to the partial case. Take any f € F|z1,..., 2] and form the differential polyno-

mials
N
p = xlazla-"axmaxm u,
qg = (1—z1)---(1—zy)p—1.

Then ¢ has a formal power series (which is convergent if it exists), centered at the origin, if and only if the
polynomial equation f = 0 has no positive integer solution. By the negative answer of Yuri Matiyasevich
[14] to Hilbert’s Tenth Problem, there does not exist any algorithm for determining whether this is the case
of not, provided that m is large enough (Matiyasevich result holds at least for m > 9).

Observe that, in Fact 1, if an expansion point different from the origin is chosen then (15) is not valid
anymore and the whole argument collapses.

Indeed, as we shall see, there does exist algorithms which decide the following problem: given a system
of differential polynomials p1,...,p, of F{ui,...,u,} with any number of derivation operators, does there
exist an expansion point such that the system has formal power series solutions centered at this point ?

In the ordinary differential case, the situation is complicated. On the positive side, [10, Theorem 3.1]
provides an algorithm which decides the existence of (and compute) a formal power series solution at the
origin, in the ordinary differential case. However, there does not exist any algorithm which decides the
existence of a nonzero formal power series solution at the origin, in the same ordinary differential case [21,
Problem (3)].

10



1.7 General Formulas

Let us come back to the general case of the differential polynomial ring Z = .# {uy, ..., u,} endowed with m
derivations.

The notion of arc, introduced in the former sections, generalizes in the following straightforward way. To
each differential indeterminate u; of &, one associates an arc g, which is an infinite sequence of elements
of # whose coordinates a; (e, ....c,,) are indexed by multi-indices (e1,...,em) € N™,

Formula (12) then generalizes to a formula which maps any tuple of arcs (a;,...,a,) (one arc per
differential indeterminate) to a tuple of formal power series

1 .
\IJ(Qz) = § el e | Qi (e1,....em) (‘Tl - ml,O)EI t (Im - Im,O)em ; 1 <1<m.
! m

(e1,...,em )EN™
A straightforward generalization of Proposition 3 then follows. Corollary 1 may now be generalized as

Proposition 4 Let p1,...,p, be differential polynomials of #{u,...,u,} and a = (a,,...,a,) be any tuple
of arcs.

Then the tuple of formal power series W(a) annihilates the perfect differential ideal A = {p1,...,pr} if
and only if this perfect differential ideal evaluates to zero at the tuple of arcs a.

In the sequel, by a zero of a differential ideal 2, we will mean a tuple of arcs a over some non specified
expansion point or, equivalently, a tuple of formal power series of Z[[x1 — %1,0,...,%m — Tmo]] where
(1,05, %Tm,0) € F™. As pointed out in Section 1.4.3, one may also consider that the expansion point
is part of the zero and that the expansion point is the origin, provided that 2 contains the equations that
encode “independent variables” as differential indeterminates.

If we consider a system of equations p; = --- = p,, = 0 where the p; are differential polynomials, then,
by a solution of the system, we will mean a zero of the perfect differential ideal {p1,...,p,}.

2 A Differential Theorem of Zeros

This section is dedicated to the proof of the differential Theorem of Zeros, in terms of arcs, or of formal
power series.

It is designed as follows: the approach is essentially the one of Ritt. However, some notions which were
not fully designed when Ritt wrote his book (rankings) are modernized using Kolchin’s book. Moreover,
Ritt’s theorems are presented in the general case of partial differential algebra while Ritt’s presentation
focuses on the ordinary differential case. I have also inserted a few propositions much inspired from papers
of Seidenberg.

The title of the next section is a bit overstated: the classical definition of characteristic sets actually is
constructive by many aspects. What the title actually tries to express is that, in this section, we only give
the properties of characteristic sets which are needed to use them in some nonconstructive way, within the
proof of the Ritt-Raudenbush Basis Theorem.

2.1 Characteristic Sets — The Nonconstructive Definition

A sequence of derivative operators
01,609,053, ... (16)

is called a Dickson sequence if none of the 6; divides any of its successors i.e. if, for all k£ > i > 1, there does
not exist any derivative operator ¢ such that 6, = @#;. See Figure 1.

Proposition 5 (Dickson’s Lemma) Every Dickson sequence is finite.

11
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Figure 1: Graphical illustration of the beginning of a Dickson sequence in two derivations 6y, 6o, 03 =
636, (5320(512/, (52. Each time a derivative operator is introduced, the set of possible following operators, corre-
sponding to the non shaded area, shrinks. It is clear that all possible prolongations are finite, though it is

possible to build sequences of arbitrary length.

Proof By induction on the number m of derivation operators. The Proposition is clear if m = 1 since every
strictly decreasing sequence of nonnegative integers is finite. Assume m > 1 and that the Lemma holds for
every Dickson sequence built with less than m derivation operators. Denote 6; = 07 ; for all ¢ > 1 where the
derivative operators p; are free of the derivation operator §;. Every infinite sequence of nonnegative integers
contains an infinite increasing subsequence. Thus if some Dickson sequence (16) were infinite, it would
contain an infinite subsequence (#;) whose orders e; would be increasing. The corresponding subsequence
(;) would then be an infinite Dickson sequence. This contradiction with the induction hypothesis concludes
the proof of the Lemma. [

Let U = {uq,...,un} be a set of differential indeterminates. A ranking [12, chap. I, 8] is a total order
on the infinite set OU which satisfies the two following axioms, for all derivatives v,w € OU and every
derivative operator 6 € O:

1. v < v and

2. v<w= v < Ow.

Proposition 6 Every ranking is a well-ordering (i.e. every strictly decreasing sequence of derivatives is

finite).

Proof If a strictly decreasing sequence of derivatives were infinite, it would contain an infinite subsequence
(0;u) of derivatives of the same differential indeterminate u. The first axiom of rankings implies that the
corresponding subsequence of derivative operators (6;) is a Dickson sequence. By Dickson’s Lemma, such a
sequence cannot be infinite. [

Let Z = F{uy,...,u,} be a differential polynomial ring. Fix any ranking and consider some differential
polynomial p € Z \ .Z.

The leading derivative (the leader in Kolchin’s terminology) of p is the highest derivative v such that
deg(p,v) > 0.

Let v be the leading derivative of p and d = deg(p, v).

The rank of p is the monomial v<.

The ranking induces a total ordering on ranks as follows. A rank v? is said to be less than a rank w®
if v < w with respect to the ranking or v = w and d < e. It is convenient to extend the above definitions
by introducing some artificial rank, common to all nonzero elements of .% and considering that it is strictly

12



less than the rank of any element of Z \ .%. If p,q are two nonzero differential polynomials, we will write
p < q to express the fact that the rank of p is strictly less than the one of q. Proposition 6 implies that any
such ordering on ranks is a well-ordering.

The initial of p is the leading coefficient of p, viewed as a univariate polynomial in v. In general, the
initial of p is a differential polynomial of Z. If A is a set of differential polynomials, we will write “the
initials of A” instead of “the initials of the elements of A”.

The separant of p is the differential polynomial dp/dv. If A is a set of differential polynomials, we will
write “the separants of A” instead of “the separants of the elements of A”.

Axioms of rankings imply:

1. the initial and the separant of p have ranks less than the rank v? of p;
2. any proper derivative fp of p has rank 6v; its initial is the separant of p.

Let ¢ € Z and p € Z \ .Z be two differential polynomials. Let p have rank v<.

The differential polynomial ¢ is said to be partially reduced with respect to p if it does not depend on
any proper derivative of v i.e. if, for every proper derivative operator 6, we have deg(q, 6v) = 0.

The differential polynomial ¢ is said to be (fully) reduced with respect to p if it is partially reduced with
respect to p and deg(q,v) < d.

Autoreduced Sets. A set of differential polynomials A C Z \ % is said to be autoreduced if its elements
are pairwise reduced with respect to each other i.e. if, for every pair (p, q) of distinct elements of A, we have
q reduced with respect to p.

Proposition 7 Every autoreduced set is finite.

Proof Let A be an autoreduced set. If A were infinite, it would contain an infinite subset of differential
polynomials whose leading derivatives 6;u would be derivatives of the same differential indeterminate wu.
Enumerating the corresponding derivative operators 6; according to any order, one gets a Dickson sequence.
By Dickson’s Lemma, such a sequence cannot be infinite. Thus A is finite. [J

Let A be an autoreduced set and p € Z \ # be a differential polynomial reduced with respect to A (i.e.
with respect to all elements of A). Then B = AU {p} is not autoreduced but, if one removes from B any
differential polynomial which is not reduced with respect to p, one gets another autoreduced set A’. This
process can actually be viewed as an extremely simplified version of some “completion process”. It plays an
important role in the theory. The following definition actually permits us to say that A’ is lower than A.

Ordering on Autoreduced Sets. Let A = {p1,...,p,} and A" = {p},...,pl,} be two autoreduced sets
such that p; < --- <p, and pj <--- < pl,. The set A’ is said to be lower than the set A if

1. there exists some index j € [1, min(r,7’)] such that p’ < p; and the two subsets {pi,...,p;—1} and
{P1,---,pj_1} have the same set of ranks ; or

2. no such j exists and r < r’ (longer sets are lower).

Observe that the above relation is transitive [17, chap. I, 4] and defines a total ordering on autoreduced sets
of ranks. The proof of the following proposition comes from [12, chap. I, 10, Proposition 3].

Proposition 8 Every nonempty set of autoreduced sets contains a minimal element.
Proof Let o/ be a nonempty set of autoreduced sets. Define an infinite sequence

A =)D Doy D
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by defining % (i > 0) as the set of all the autoreduced sets belonging to %1, which involve at least 4
elements, and whose ith element has lowest possible rank, vfi. If all the subsets <7 were nonempty then
the set of all (v;) would form an infinite autoreduced set: a condraction to Proposition 7. Thus there exists
some ¢ > 0 such that & is nonempty and o/; = @ for j > i. Any element of o7 is a minimal element of <.
O

The next Proposition actually is nothing but a restatement of Proposition 8.
Proposition 9 FEvery strictly decreasing sequence of autoreduced sets is finite.

Proof By Proposition 7. O

If 3 is any subset of #Z then ¥ contains autoreduced subsets, since the empty set is an autoreduced set.
Definition 1 Let ¥ be any subset of Z. A characteristic set of ¥ is any minimal autoreduced subset of X..
The next proposition is emphasized in [17, chap. I, 5].

Proposition 10 Let ¥ be any subset of Z, A be a characteristic set of ¥ and p € Z\ F be a differential
polynomial reduced with respect to A.

Denote 3 + p the set obtained by adjoining p to .

The characteristic sets of ¥ + p are lower than A.

Corollary 2 Let ¥ be any subset of Z and A be a characteristic set of X.. Then % does not contain any
differential polynomial of # \ F, reduced with respect to A.

2.2 Ritt’s Reduction Algorithms

Let f,g be two polynomials of .#[z], where . is a ring and deg(g,x) > 0, one denotes prem(f,g,z) the

pseudoremainder of f by g (it is the polynomial r(2) mentioned in [23, chap. I, 17, Theorem 9, page 30]).
Let now A C Z \ % be a finite set of differential polynomials and f € #Z be a differential polynomial.
The partial remainder of f by A, denoted partialrem(f, A) is defined inductively as follows:

1. if f is partially reduced with respect to all elements of A then partialrem(f, A) = f else

2. there must exist some p € A with leading derivative v and some proper derivative operator 6 such that
deg(f,6v) > 0. Among all such triples (p, v, 8), choose one such that fv is maximal with respect to the
ranking. Then partialrem(f, A) = partialrem(prem(f, 0p, 0v), A).

The following example is useful in Section 3.4.1. Take f = i + v and A made of a single differential
polynomial p = %2 +wv. The leading derivative of p is #t. The differential polynomial f is not partially reduced
with respect to p. Differentiating, we get p = 2w i + ¥. The pseudodivision of f by p computes the following
relation. The differential polynomial g is the partial remainder of f by p.

20 (i+v) = 1 x(2uii+9)+2vi—1). (17)
=N ~—
h f g P g

Proposition 11 Let A C Z\.F be a finite set of differential polynomials, f € X be a differential polynomial
and g = partialrem(f, A). Then g is partially reduced with respect to A and there exists a power product h of
the separants of A such that

hf = g mod [A]. (18)
The full remainder of f by A, denoted fullrem(f, A), is defined as follows. Denote A = {p1,...,pr},

assuming p; < -+ < pp.

14



1. if f is reduced with respect to all elements of A then fullrem(f, A) = f else
2. if f is not partially reduced with respect to A then fullrem(f, A) = fullrem(partialrem(f, A), A) else

3. there must exist some index ¢ € [1,7] such that deg(f,v;) > deg(p;,v;) where v; denotes the lead-
ing derivative of p;. Among all such indices 4, fix the maximal one. Then define fullrem(f, A) as
fullrem(prem(f, p;, v;), A).

The following example is useful in Section 3.4.2. Take f = 2uuy, vyy + 2u§ vy —4u, and A = p1,po, p3
with p; = uZ —4u, pp = uy — vy u and p3 = vy. The leading derivatives are u,, u, and v,. The reduction
of f is achieved by three pseudodivisions. The full remainder is g3. The power product h = hy hy hg = 1.

1 x(2uuyvly+2u§vl—4ux) = 2UUy Ugyy —|—2u§vw—4uw,
v M~ —/ ——
ha f q1 62P3
x g1
1 x(2ulv, —4u,) = 2v, (U2 —4u)+8uv, —4du,, (19)
\h,./ ) N , Yy \ ,
2 g1 qz 1 92
1 xBuvy —4uy) = —4 X(uz —vpu)+4uv, .
hs g2 a3 P2 g3

Proposition 12 Let A C #Z\.F be a finite set of differential polynomials, f € X be a differential polynomial
and g = fullrem(f, A). Then g is reduced with respect to A and there exists a power product h of the initials
and the separants of A such that

hf = g mod [4]. (20)

2.3 Characteristic Sets of Prime Differential Ideals

Consider a prime differential ideal 9B different from &. Assume a ranking is fixed and a characteristic set A
of P is known.

Proposition 13 Let f be any differential polynomial of 2. Then fullrem(f, A) =0 if and only if f € °B.

Proof Denote g = fullrem(f, A). The implication < from right to left. Assume f € B. Since A C P we
have g € B by the relation (20) of Proposition 12. The differential polynomial g cannot belong to Z \ .#
by Corollary 2, since it is reduced with respect to all elements of A. It cannot be a nonzero element of .%#
because P £ #Z. Thus g = 0.

The implication = from left to right. Assume g = 0. Then the product h f € B. By Corollary 2, the
initials and separants of A do not belong to 8 since they are reduced with respect to all elements of A.
Since h is a power product of these initials and separants and 3 is prime, we have f € B3. O

The following notations are defined in [12, chap. 0, 1; and chap. I, 9]. In Kolchin’s book, the notation
[A] : H® seems to occur for the first time in [12, chap. IV, 9, Lemma 2].

If S is a subset and 2l is an ideal of Z then 2A: S is the ideal of the elements p € % such that, for
some power product h of elements of S, we have hp € A (if 2 is a differential ideal, so is 2 : S*°). An
alternative definition is provided by means of a localization [13, chap. II, 3]: if M denotes the multiplicative
family generated by S and M ~!2l denotes the ideal generated by 2 in the localized ring M 1'%, then
A: 80 =M 1ANZ.

Denote now H 4 the set of the initials and separants of A. Proposition 13 implies that, if A is a charac-
teristic set of a prime differential ideal 3 then

B = [A]:HY.
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2.4 The Ritt-Raudenbush Basis Theorem

The differential polynomial ring is Z = .#{u1,...,un}. The two next propositions are slight adaptations of
[17, chap. I, 10].

Proposition 14 Let f, g be two differential polynomials and 2 be a perfect differential ideal of # such that
fg €. Then, for all derivative operators 0, @, the product (6f) (¢g) € 2.

Proof The proof is by induction on the sum of the orders of the derivative operators 6 and ¢. The basis
of the induction (case of two operators of order zero) holds by assumption. Assume that the Proposition
holds for all derivative operators 6, ¢ such that the sum of their orders is equal to some positive integer and
consider any derivation operator 6. Then, differentiating (0f) (vg), we have (60f) (¢g) + (8f) (dpg) € A
Multiply by 6f and use the fact that (6f) (pg) € 2 (induction hypothesis). Then (6f)? (0pg) € 2 and,
since 2 is perfect, (0f) (0pg) € 2. The fact that (60f) (pg) € 2 is proved similarly. OJ

Following [17, chap. I, 9], in order to reduce possible confusion on the meaning of curly braces, if p is a
differential polynomial and ¥ is a set, we will often denote ¥ + p the set obtained by adjoining p to X.

Proposition 15 Let f,g be two differential polynomials and 3 be a set of differential polynomials of 2.
Then {4+ fg} ={E+ f}n{X+g}.

Proof The inclusion C is clear. Let us prove the converse one. Let h € {¥ + f} N {X + g}. Then there
exists differential polynomials p,q € [X], f € [f], § € [g] and, by Proposition 1, a positive integer ¢ such
that bt = p+ f and h* = ¢+ g. Multiply these two equalities termwise. Then there exists a differential
polynomial 7 € [¥] such that h?' = r + fg. Since f € [f] and g € [g], there exists finitely many differential
polynomials my , such that

fg = > may (0F) (vg).

0,p€0

The product fg € {X + fg}. Thus, by Proposition 14, every product (0f) (¢g) € { + f ¢g}. Thus we have
he{Z+fg}. O

The remaining part of this section comes from [17, chap. I, 12-16]. Let ¥ be an infinite subset of Z. A
subset ® of ¥ is said to be a basis of X if ® is finite and ¥ C {®}.

Lemma 2 Let 3 be an infinite subset of Z. If ¥ contains a nonzero element of % then X2 has a basis.

Proof Let a be any nonzero element of ¥ N.%. Then the set {a} is a basis of X. O

Theorem 1 (Ritt-Raudenbush Basis Theorem) Every infinite subset of # has a basis.

Proof We assume that there exists infinite subsets of % with no basis and seek a contradiction. Let X be
such a subset and assume moreover that, among all infinite sets with no basis, 3 is such that its characteristic
sets are minimal.

Let A be a characteristic set of .

“Perform” Ritt’s full reduction algorithm, with respect to A, over all ¢ € ¥\ A. For each ¢ € ¥\ A,
there exists a power product h, of initials and separants of A and a differential polynomial g4, reduced with
respect to A such that

hgq = gq mod [A]. (21)
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Introduce the two following sets (the plus sign standing for “union”):

A = {hgqlqgeX\A}+ A,
Q = {gglqeX\A}+A.

The set Q2 must have a basis. Indeed, if it contains any nonzero element of .% it has a basis by Lemma 2.
Otherwise, since the differential polynomials g, are reduced with respect to A, its characteristic sets are
lower than A by Proposition 10 thus it cannot lack a basis by the minimality assumption on X.

Thus there exists finitely many differential polynomials ¢i,...,¢; € ¥ \ A such that the set & =
{9g1>---19¢.} + A is a basis of Q (observe that is is always possible to enlarge a basis with finitely many
further differential polynomials).

Claim: the set ¥ = {hq, q1,...,hq, ¢} + A is a basis of A.

Each hy, ¢i — g4, (1 < i <'t), belongs to the perfect differential ideals {®} and {¥} by Proposition 12
and the fact that A is a subset of both & and V.

Thus, since each g4, € ® (1 < i <), we see that each hq, ¢; € {®} (1 <i<t)and ¥ C {®}. Conversely,
since each hy, ¢; € ¥, we see that each g,, € {¥} and ® C {¥}. Thus both perfect differential ideals {®}
and {U} are equal.

Since ® is a basis of © we have Q C {®}. Since the full remainder g, of each ¢ € ¥ belongs to 2, we see
that the corresponding product hy ¢ of each ¢ € ¥ belongs to {Q}, which is included in {®} = {¥}. Thus
A C {T} and the claim is proved.

Let fi,..., fs denote the initials and separants of A. By Lemma 3, there exists an index 1 < i < s such
that the set ¥ + f; has no basis. The differential polynomial f; ¢ .% by Lemma 2. Thus the set ¥ + f; has a
characteristic set lower than A by Proposition 10. This contradiction with the minimality assumption on %
completes the proof of the Theorem. [

The next Lemma is involved in the proof of the Ritt-Raudenbush Basis Theorem. The differential
polynomials f; actually are the initials and separants of some characteristic set of 3.

Lemma 3 Let 3 be an infinite subset of Z and f1,..., fs be differential polynomials of %. Let
A = {hyq]| g€ X and hy is some power product of f1,..., fs}.
If ¥ has no basis and A has a basis then at least one of the sets X + f;, for 1 <i < s, has no basis.

Proof We assume that all sets ¥ + f; (1 <i < s) have a basis and seek a contradiction.

Let ¥ = {hg, q1,...,hq, g} be a basis of A. Since a basis can always be enlarged as long as it remains
finite, there exists some finite set ® C 3 such that: 1) ® + f; is a basis of ¥ + f; (1 < i < s) and; 2)
qi,---,q € ®. Let g denote the product fi--- fs.

By Proposition 15, the perfect differential ideal {¥ 4 g} is the intersection of the perfect differential
ideals {X + f;} (1 <i <s) ; similarly, the perfect differential ideal {® + g} is the intersection of the perfect
differential ideals {® + f;}. Since each ® + f; is a basis of ¥ + f; we have

S

S4g) = (WE4f) € ({e+s) = (@+g).

i=1 i=1

Thus ® + g is a basis of X + g.
Thus, for each differential polynomial p € X, there exists a relation

pt = r+mibig+-+mebeg

where d > 1, e > 0, the m; are differential polynomials of Z and r € [®]. Multiplying by p we get

P = rp+mipbigt -+ mepbeg (22)
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Since q1,...,q € ® we have ¥ C {®}. Since, moreover, p € ¥ and g is the product of the f;, we have
pg € {A} C {¥} C {®}. Thus, by Proposition 15, we have pf;g € {®} for 1 <i < e. Since r € [P] we have
rp € {®}. Thus, using (22), we have p € {®}, which means that ® is a basis of 3: the sought contradiction.
O

Corollary 3 Let 2 be a perfect differential ideal of . Then there exists a finite ® C A such that A = {P}.
Theorem 2 FEvery perfect differential ideal 2 is a finite intersection of prime differential ideals.

Proof We assume that there exists some perfect differential ideal 2{ with no such presentation and seek a
contradiction. The perfect differential ideal 2 thus cannot be prime. Let f, g be two differential polynomials
such that the product fg € A but f,g ¢ A. By Proposition 14 we have 2 = {2+ f} N {A+ g}. At least one
of these two perfect differential ideals — say 2; = {20+ f} — is not a finite intersection of prime differential
ideals; and we have 2 C 2(;. Repeating this argument, we see that there exists an infinite sequence of perfect
differential ideals

ACA CAy C -+ (23)

Let 2 be the union of all these ideals. By the Ritt-Raudenbush Basis Theorem, there exists a finite set
® C Q such that  C {®}. The set ® must be a subset of some 2; in (23). Thus A3 C {®} C A;. This
contradiction with the fact that the inclusions of (23) are strict completes the proof of the Theorem. O

Let 2 be a perfect differential ideal of Z. A representation
A = PNy, (24)

of /A as an intersection of prime differential ideals B; is said to be minimal if, for all indices 1 < 4,57 < o
such that i # j we have B; ¢ B;. Anticipating on Theorem 3, these prime differential ideals are uniquely
defined. Ritt calls them the essential prime divisors of 2 [17, chap. I, 17]. We prefer to call them the
essential components of 2.

Theorem 3 There exists a unique minimal representation of a perfect differential ideal A as a finite inter-
section of prime differential ideals.

Proof The existence comes from Theorem 2.

For the uniqueness, fix some representation (24). It suffices to prove that if 98 is a prime differential ideal
such that 2 C B then there exists some index 1 < i < p such that B; C B. If this were not the case then
each B; would contain some differential polynomial f; such that f; ¢ P (1 <14 < g). Since B is prime, the
product f = f; --- f, would not belong to ‘B either. However, it would belong to . This contradiction with
the hypothesis 2 C 8 completes the proof of the Theorem. O

The following example comes from [17, chap. II, §].
{0 —4u} = [0 —4u,i—2]N[u.

The differential polynomial %2 — 4 u is irreducible but its first derivative actually factors as 21 (ii — 2). The
perfect differential ideal on the left hand side of (25) is not prime. It has two essential components, given on
the right hand side of (25). The solution of the first component is the family of parabolas (x + ¢)? where ¢
is an arbitrary constant. The solution of the second component is the zero function. The singleton 4% — 4 u
is a characteristic set of the prime differential ideal [4? — 4w, i — 2].

A variant comes from [17, chap II, 19]. The perfect differential ideal generated by 4% — 4u? is actually
prime. Its solution is the family of functions (z + ¢)~2 where c is an arbitrary constant. The zero function
also is a solution but (quoting Ritt) “we see, letting |c| increase, that a differential polynomial which vanishes
for every (z +c¢)~2 vanishes for u = 0. Thus u = 0 is in the general solution”. The prime differential ideal [u]
is not an essential component of {t> — 4u3}. See also [12, chap. IV, 15, Remark 1].
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2.5 Zeros of a Prime Differential Ideal

This section is much inspired by papers of Seidenberg. See the proof of [19, Theorem 6].

The differential polynomial ring is Z = % {uy, ..., u,} endowed with m derivations. Since we are going to
solve polynomial systems and look for solutions in .%, there are constraints on .%. The content of this section
is valid if % is a universal field extension of the field Q of the rational numbers (i.e. if .Z is algebraically
closed and has an infinite transcendence degree over Q) [23, chap. VI, 5bis]. To fix ideas, we may consider
that % is the field C of the complex numbers.

Consider a prime differential ideal B different from Z. Assume a ranking is fixed and a characteristic
set A of P is known. Denote pq,...,p, the elements of A and assume p; < -+ < p,..

Denote X the finite set of the derivatives A depends on, including the extra differential indeterminates
used to encode the “independent variables” in the extended system associated to A, in the sense of Sec-
tion 1.4.3.

Denote V' C X the set of leading derivatives of A. Then ©OU \ ©V denotes the possibly infinite set of
the elements of OU which are not the derivative of any element of V. Let ©* denote the set of all proper
derivative operators. Then ©*V denotes the set of all derivatives which are proper derivatives of some
element of V. The three sets V,©U \ OV and ©*V are pairwise disjoint. Their union is ©U.

Process. The following process defines an expansion point and a tuple of arcs a.

1. Solve the following system as a nondifferential polynomial system of %[ X], where h denotes the product
of the initial and separants of A

plz---:p,,,:o, h#o.

2. Assign any value from % to the derivatives of OU \ OV and to the “independent variables” encoding
differential indeterminates which were not already assigned values at Step 1.

3. Let v be any element of ©*V. By Ritt’s partial reduction process, compute a power product h of
separants of A and a differential polynomial g such that

hv = ¢ mod [4]. (25)
Then assign to v the value of g/h.
A few remarks:

e the polynomial system to be solved at Step 1 is triangular in the sense that each equation p; = 0
introduces at least one indeterminate;

o if the field .# is the field of the complex numbers, which is algebraically closed, the polynomial system
to be solved has solutions;

o since the differential indeterminates which encode the “independent variables” belong to X, the con-
straint h # 0 may forbid some expansion points;

e at the end of Step 2, the expansion point is fixed;

e at Step 3, the differential polynomials h and g depend on derivatives which were assigned values at
Steps 1 and 2.

As an example, let us consider the differential polynomial p = 2?4 4+ @ — 2u from Section 1.6, for-
mula (14). We have X = {z,u,u, i} and V = {ii} and OU \ OV = &. The system of Z [z, u,u,i] to be
solved at Step 1 is

i+ru—2u=0, z#0.
The constraint thus imposes that the first coordinate xg of the arc x = (g, 1,0, ...) assigned to x is different
from zero. With other words, the origin is not allowed as an expansion point by the process. However, (14)
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comes from the polynomial (13) which has no positive integer solution. Thus, as seen in Section 1.6, the
differential polynomial p has a formal power series for £y = 0. In summary, the system to be solved at Step 1
may forbid more expansion points than necessary.

Proposition 16 The tuple of arcs a or equivalently the formal power series ¥(a) defined by the above process
provides a zero of the prime differential ideal 3.

Proof The proof is by induction on the leading derivative v of the differential polynomials f € 9, ordered
by the ranking. This transfinite induction [22, chap. 9, 4] is allowed by Proposition 6.

Basis. Thanks to Proposition 13, the elements f € P with lowest leading derivative satisfy h f = ¢p;
where h is a power of the initial of p; (the lowest element of A) and ¢ is some differential polynomial. Since p;
is annihilated by a and h is not, the differential polynomial f must vanish.

General case. Let v be the leading derivative of some f € 3. Assume (induction hypothesis) that every
element of P with leading derivative less than v is annihilated by a. We may assume, without loss of
generality, that the initial of f does not belong to 8. Thus, thanks to Proposition 13, we must have v € OV

Subcase 1. Assume v € V. Perform Ritt’s full reduction algorithm over f. Then there exists a power
product h of initials and separants of A such that h f € [A] by Propositions 12 and 13. Observe now that, in
this reduction process, the first pseudodivision is performed with respect to the differential polynomial p; € A
with leading derivative v. The following pseudodivisions are performed with respect to differential polyno-
mials of © A with leading derivatives strictly less than v; and the differential polynomial i does not depend
either on any derivative greater than or equal to v. Removing all the elements of © A which are annihi-
lated according to the induction hypothesis, we see that there exists a differential polynomial g such that
h f = qp;. Since p; is annihilated by a and h is not, the differential polynomial f must vanish.

Subcase 2. Assume v € ©*V and that there is a single differential polynomial p; € A, with leading
derivative v; such that, for some 6 € ©*, we have v = 6v;.

Consider Ritt’s partial reduction (25) which yielded the value of v. In this reduction process, the first
pseudodivision is performed with respect to fp; and since the differential polynomial to be reduced is a mere
derivative, the first pseudoquotient is 1. Then, argumenting as in Subcase 1 and removing all the elements
of ®A which are annihilated according to the induction hypothesis, we see that hv = g + 0p;. Since the
value assigned to v is g/h, we see that fp; vanishes at a.

Perform now Ritt’s full reduction algorithm over f. Then there exists a power product h of initials
and separants of A such that h f € [A] by Proposition 12. Argumenting as in Subcase 1 and removing all
the elements of ©® A which are annihilated according to the induction hypothesis, we see that there exists a
differential polynomial ¢ such that h f = q0p;. Since Op; is annihilated by a and h is not, the differential
polynomial f must vanish.

Subcase 3. Assume v € ©*V and that there exist many different (say two) differential polynomials p;, p; €
A, with leading derivatives v;,v; such that, for some 6;,6; € ©*, we have v = 0,v; = 0,;v;.

One of these two differential polynomials (say p;) was used to assign a value to v. As proved in Subcase 2,
the differential polynomial 8;p; is annihilated by a.

Denote s; and s; the separants of p; and p;. The cross derivative s; 0;p; — s; 8;p; belongs to B and either
is zero or has a leading derivative strictly less than v. Thus it is annihilated by a, according to the induction
hypothesis. Since 6;p; is annihilated and the separants are not, the differential polynomial 6;p; must vanish
also.

Perform now Ritt’s full reduction algorithm over f. Argumenting as in Subcase 2, we see that f must
vanish at a also. I

In the proof of the next Proposition, some field & is introduced. This field seems to be a field of definition,
which is a notion introduced in [12, chap. III, 3].

Proposition 17 Let f be a differential polynomial and P be a prime differential ideal of Z%.
If f ¢ B then P has a zero which does not annihilate f.
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Proof The idea of the proof consists in proving that 8 has a generic (or general) zero i.e. a zero which
only annihilates the elements of 3. A zero a is generic if .% (a) is isomorphic to the field of fractions of % /.
See [22, chap. 16].

In the field of fractions of % /B, the derivatives in OU \ OV are transcendental over .#. This is an easy
corollary to Proposition 13. Moreover, the process described at the beginning of this section for building a
zero of P shows that, for every derivative v € OV, the set (OU \ OV) + v is algebraically dependent over .#
in Z/%. Thus OU \ ©V provides a transcendence basis of the field of fractions of Z /%P over .Z.

In order to obtain a zero a of 3 which does not annihilate f, it is thus sufficient to assign to the derivatives
in ©OU \ OV, values which are transcendental over .%.

The issue (solved below) is that the coordinates of g belong to .# thus cannot be transcendental over .#.

Perform Ritt’s full reduction algorithm over f using some characteristic set A of 8. Then, by Propo-
sition 12, there exists a power product h of initials and separants of A and differential polynomials g, m; ¢
such that

hf = g+ Z m.o Op; .
1<1<r,
0o

Since Ritt’s reduction algorithm is “rational”, the above formula holds in any differential polynomial ring
P{u,...,uy} such that & contains the rational numbers plus the finitely many coeflicients of f and the
elements of the characteristic set A. We can thus choose for 2 a finite extension of the field of the rational
numbers, over which the field .# has an infinite degree of transcendency.

Thus, assigning values in .% which are transcendental over 2 to the derivatives in OU \ ©V, we obtain
a generic zero a of the prime differential ideal P N P{uy,...,u,}. Since f,g ¢ B, they do not belong
to PN 2{uy,...,u,} either so that they are not annihilated by a. In the differential polynomial ring %, the
zero g is no more generic but it still does not annihilate f, which is the result we are looking for. (O

2.6 A Differential Theorem of Zeros

Let .% be a universal extension of the field of the rational numbers. To fix ideas, one may let .# be the
field C of the complex numbers. Let Z = #{uy,...,u,} endowed with m derivations. Let us stress that,
in the statement of the next Theorem, the expansion points of the solutions depend on the solutions. With
other words, we are looking for solutions in the ring of formal power series Z[[x1 — 21,0, ..., Zm — Tm,o)] for
unspecified x10,...,Zm0 € #. As pointed out in Section 1.4.3, we may also consider that the expansion
point is the origin, provided that the differential system under consideration is assumed to be “extended”.

Theorem 4 (Differential Theorem of Zeros) Let p1 = -+ = p. = 0 be a system of polynomial differential
equations and f be a differential polynomial of #. Let A = {p1,...,p.} be the perfect differential ideal of #
generated by the left hand sides of the equations.

If f € A then f annihilates over every solution of the system of equations.

Conversely, if every solution of the system of equations annihilates f then f € 2.

Proof The first statement is clear and is valid for any field .%. For the second statement, we assume f ¢ 2
and prove that the system of equations has a solution which does not annihilate f. By Theorem 3, there
exists a prime differential ideal 9 such that 2 C P and f ¢ B. By Proposition 17, the prime differential
ideal 3 has a zero which does not annihilate f. This zero is a solution of the system of equations. [

The Theorem implies that a system has no solution if and only if 1 € 20 where 2 denotes the perfect
differential ideal that generated by the system. As we shall see in the next section, there exists an algorithm
which decides if 1 € 2. Thus the Theorem would be false if the expansion point were fixed to (say) the
origin since, otherwise, we would have a contradiction with Denef and Lipshitz undecidability result.
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3 Differential Elimination Methods

This section is dedicated to the question: given a set of differential polynomials ¥, how can we proceed to
implement (24) ? Given a ranking, is it possible to compute, from the input system, one characteristic set
for each essential prime component of the perfect differential ideal {3} generated by % ?

The answer to the last question is no.

What we can do is this: from 3, compute finitely many autoreduced sets A. Each of these sets defines
a differential ideal A = [A] : HS® and provides, through Ritt’s reduction technique, a decision algorithm for
membership testing in 2. Moreover, the intersection of the differential ideals defined by the sets A is equal
to the perfect differential ideal {X}.

The differential ideals 2 are actually perfect but not necessarily prime. However, there exists algorithms
to decompose them as intersections of prime differential ideals, presented by characteristic sets.

We thus can compute a finite decomposition (24) but it is not necessarily minimal. Surprisingly, there is
no known algorithm to make the computed decomposition minimal. In particular, there is no known general
algorithm to decide the inclusion of two prime differential ideals presented by characteristic sets.

It should be noticed that, in the case of a perfect differential ideal generated by a single differential
polynomial, the minimal decomposition (24) can be computed, thanks to the Low Power Theorem. Ritt
proves it in the ordinary case in [17, chap. III]. A general version is available in [12, chap. IV, 15, Theorem
6].

This section is structured as follows. Section 3.1 actually provides a new definition of characteristic
sets, starting from the question: what can prevent an autoreduced set A to be a characteristic set of the
differential ideal that it defines ? The new definition relies on some test. Section 3.2 shows that this test
can be made algorithmic by means of resultant computations. As a byproduct we get, in Section 3.3, an
algorithm for computing normal forms of differential polynomials modulo the differential ideals defined by
characteristic sets. This normal form algorithm permits us to compute solutions (arcs, formal power series)
of these (non necessarily prime) differential ideals. Last, in Section 3.4, we sketch an algorithm for computing
the decomposition of a perfect differential ideal as an intersection of perfect differential ideals defined by
characteristic sets.

This section aims at explaining the ideas but we will not give proofs, which are too long. Two key
ideas (the unmixedness property of ideals defined by triangular sets and the fact that the ideals of the form
(A): S are radical) are recent, in the sense that they do not appear in Kolchin’s book. We will almost not
address historical considerations in these notes. We refer interested readers to [7, sect. 8.

3.1 Characteristic Sets — The Constructive Definition

As stated in Proposition 13, if A is a characteristic set of a prime differential ideal B then, it provides a
membership decision algorithm to 9B: for any differential polynomial p € # we have p € B if and only if
fullrem(p, A) = 0. In turn, the decision algorithm implies that 8 is equal to [A]: H3®, which is the differential
ideal generated by [A], saturated by the multiplicative family generated by the initials and separants of A.

During the computations of an elimination process, it is easy to determine if a set A of differential
polynomials is autoreduced. But is it the characteristic set of some differential ideal 2 7 is it necessary for 2
to be prime in order to have the membership decision algorithm stated above 7

The answer to both questions is no. There are actually two obstacles which may prevent an autoreduced
set A to be a characteristic set of the differential ideal A = [A] : HY® that it defines (let us use this term
rather than “generate” since A does not generate 2A): a nondifferential obstacle and a differential one, which
only occurs in the partial case.

3.1.1 The Nondifferential Obstacle

Let us denote (A) the nondifferential ideal generated by A, I4 the set of the initials, and S4 the set of the
separants of A. Consider the following set

A = p,pp = u'—1, (u+1)v—1.
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It is an autoreduced set of % {u,v} provided that the ranking imposes v < v. The ideal (A4): I$° is equal to
(2v —1,u — 1) (the saturation by the initial u 4+ 1 of ps permits to remove one factor of p;), which actually
is a prime ideal. This ideal contains the polynomial u — 1, which is reduced with respect to A, proving
that A is not a characteristic set of (A): IS°. Since (A): I C A, we see that A is not a characteristic set
of the differential ideal 2 either. The same argument proves that A does not provide a membership decision
algorithm to 2 since fullrem(u — 1, A) = u — 1 though u — 1 € 2L

The above problem comes from the fact that the initial of some differential polynomial p; € A is a zero
divisor modulo the ideal defined by the differential polynomials py,...,p;—1 i.e. the differential polynomials
of A with ranks lower than p;.

Beware to the fact that the technical aspect of the above statement is necessary, since the initials of A
never are zero divisors modulo the ideal (A) : I$°, for the obvious reason that they then belong to the
multiplicative family by which the ideal is saturated.

Informally speaking, we are heading towards a definition of characteristic sets based on the requirement
that the initials are not zero divisors, i.e. are regular, in some quotient ring. We may thus relax the
degree condition which occurs in the definition of autoreduced sets. Instead of considering sets A which are
autoreduced, we consider, more generally, sets A which are: 1) triangular i.e. which have pairwise distinct
leading derivatives; and 2) partially autoreduced i.e. whose elements are pairwise partially reduced with
respect to each other.

Regular Chains. Let A =p;,...,p, be a partially autoreduced triangular set of differential polynomials
of Z. For each index i € [1,7], denote A; = pi,...,p; and a; = (A;) : [ the ideal of % defined by A;.
Then A is said to be a regular chain® if, for each i € [2,r], the initial of p; is regular in the ring Z/a;_1.
One may also use the following inductive definition

Definition 2 A partially autoreduced triangular set of differential polynomials A = p1,...,p, is a regular
chain if r =1 or r > 1, A,_1 is a regular chain and the initial of p, is reqular in Z/a,_1.

It can be proved (but the proof is long) that a regular chain A provides a membership decision algorithm
to a = a,.. Indeed, to avoid any differentiation in the reduction process, consider a differential polynomial f,
partially reduced with respect to a regular chain A. Then f € a if and only if fullrem(f, A) = 0.

Thus, up to the relaxed degree condition, a regular chain A is a characteristic set of a. More precisely,
we can say that: 1) an autoreduced regular chain A is a characteristic set of a ; and 2) a regular chain A has
the same rank as the characteristic sets of a.

Notice that the ideal a is not necessarily prime.

Notice also that a may have characteristic sets which are not regular chains. Indeed, consider the following
set

A = P, P2 = u271,v71.

Assume u < v. Then A is an autoreduced regular chain thus a characteristisc set of a = (A). Multiply po
by u — 1. The result is autoreduced and has the same rank as A. It is thus also a characteristic set of a.
However, the initial u — 1 of (u — 1) p2 is a zero divisor in %/ay, which implies that the characteristic set is
not a regular chain.

Regular Differential Chains. As mentioned above, the differential obstacle only concerns the partial
case. Let us thus assume that Z is an ordinary differential polynomial ring and A is a regular chain of Z.
Let us moreover assume A is autoreduced. Is A a characteristic set of 2 = [A]: HY in general ? The answer
is no. Consider the following autoreduced regular chain made of a single differential polynomial, featuring a
multiple factor

A = p o= (-1)(u+1).

3The concept of regular chain was introduced in the context or usual polynomials, where the notion of a partially autoreduced
set is irrelevant. The definition we give in these lecture notes are specifically tuned for the context of differential algebra.
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Differentiating p we get
p = (u+1)Bu—1u.

The separant (u+1) (3u—1) of p has a common factor? with p. Thus, because of the saturation process, the
differential polynomial u — 1, which is reduced with respect to A, belongs to 2l and A is not a characteristic
set of A. We thus need to impose an extra condition on regular chains.

Let A = py,...,p, be a regular chain of #Z. For each index i € [1,7], denote A; = py,...,p; and a; =
(A;) + I the ideal of # defined by A;.

Definition 3 A regular chain A is said to be squarefree if, for each i € [1,7], the separant of p; is not a
zero divisor in the ring Z/a;.

In the ordinary differential case, a squarefree regular chain is called a regular differential chain (there is
an extra condition in the partial case).

It can be proved (but the proof is long) that a regular differential chain A provides a membership decision
algorithm to 2. Indeed, let f be a differential polynomial and A be a regular differential chain of %. Then
f € if and only if fullrem(f, A) = 0.

Thus, up to the relaxed degree condition, a regular differential chain A is a characteristic set of 2. More
precisely, we can say that: 1) an autoreduced regular differential chain is a characteristic set of 2 ; and 2) a
regular differential chain A has the same rank as the characteristic sets of 2.

Moreover, it can be proved that if A is a regular differential chain then the ideal a is equal to (A) : HY
(the proof is easy) and that both ideals a and 2 are radical ideals (the proof is long). In particular, 2 is
perfect. The fact that a is radical is a consequence of a result known as Lazard’s Lemma.

3.1.2 The Differential Obstacle

Consider the following set
A = P1, P2 = Ug — U, Uy.

It is an autoreduced set of the differential polynomial ring .#{u, v}, endowed with derivations 6, and &,
provided that the ranking imposes that u is less than v, and v,. Its initials and separants are equal to 1.
It is thus a squarefree regular chain of .7 {u, v}, defining (and generating) a differential ideal 2 = [A]. The
differential polynomial §,p; —6,p2 = u, belongs to 2 and is reduced with respect to A, proving that A is not
a characteristic set of 2. This differential polynomial is a particular case of a A-polynomial, defined below.

Let A = py,...,p. be a partially autoreduced triangular subset of a differential polynomial ring &
endowed with m > 1 derivations. Since m > 1, it may happen that the leading derivatives 6;u and 6;u of
two elements p; and p; of A are derivatives of the same differential indeterminate «. Such a pair of differential
polynomials is called a critical pair of A. Denote 6;; the least common multiple of 6; and 6; so that 6;;u
is the least common derivative of the two leading derivatives 6;u and 6;u. Then, denoting s; and s; the
separants of p; and pj, the A-polynomial A;; = A(p;,p;) is defined as

oy g Ly 2
g, P s 0, Dj (26)

Alpi,pj) = sj
It is either an element of .# or a differential polynomial with leading derivative strictly less than 0;;u.
Indeed, in (26), the leading derivatives of both differential polynomials (6;;/6;)p; and (6;;/6,)p; are both
equal to 8;;u but a cancellation occurs (by design) so that deg(A;;,0;;u) = 0.
Denote A;; C ©A the set of the derivatives of the elements of A with leading derivatives strictly less
than 6;;u. The critical pair (p;,p;) of A is said to be solved if the A-polynomial A;; belongs to the nondif-
ferential ideal defined by A;; i.e. if A;; € (4;5): HSX?J" Remarks:

4This is not a surprise since the separant of a differential polynomial is the derivative of this polynomial in the usual sense
thus every irreducible factor of p with multiplicity d > 2 is a factor of its separant with multiplicity d — 1.
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1. if we denote Z;; the ring of all differential polynomials of # with leading derivatives strictly less
than 0;;u. We have (A;;) : Hﬁi_’j C AN Z;; but the equality does not hold in general ; in particular, if
the critical pair is not solved, the inclusion is strict ;

2. if fullrem(A;;, A) = 0 then the critical pair is solved ;

3. for a given finite set A, there are only finitely many critical pairs.

Definition 4 A partially autoreduced triangular set A of differential polynomials is said to be coherent if
all its critical pairs are solved.

Since a partially autoreduced triangular set has no critical pair in the ordinary differential case, the following
definition holds in both the ordinary and the partial differential context.

Definition 5 A regular differential chain is a coherent squarefree regular chain of partially autoreduced
differential polynomials.

All the comments following the definition of regular differential chains in the ordinary case apply “as
is” in the partial case, to the new definition. In particular, an autoreduced regular differential chain is a
characteristic set of the differential ideal that it defines. The part of the proof (which is long) which addresses
the consequences of the coherence property is known as Rosenfeld’s Lemma [18]. A close version was proved
by Seidenberg [19, Theorem 6].

3.2 Identifying Zero Divisors

The idea of using resultants to identify zero divisors modulo ideals defined by regular chains comes from [9].
It was generalized to the differential case in [§].

The differential polynomial ring is #Z = F{u1,...,u,} with m derivations. Let A = p1,...,p, be a
partially autoreduced triangular set of differential polynomials of Z. Let V = vq,...,v, be the set of the
leading derivatives of A and Zy, = F[OU \ ©*V] denote the ring of the differential polynomials of % which
are partially reduced with respect to A. Denote 2 = [A] : HY® the differential ideal defined by A.

In the next Proposition, A needs not be a regular chain and the two ideals 2 and (A): H3® may contain 1.
For a proof, see [18, Lemma].

Proposition 18 (Rosenfeld’s Lemma)
If A is a coherent, partially autoreduced triangular set of differential polynomials of Z then

ANZ, = (A):HP.

Let A be a partially autoreduced triangular set (not necessarily coherent), f, f be two differential poly-
nomials of # and ¢,g be their partial remainders by A. We have f € 2 if and only if ¢ € 2. Similar
statements hold for the pair (f, §) and the pair of products (f f, gg). Thus f is a zerodivisor in %/ if and
only if g, which belongs to %y, is a zerodivisor in Z /2 ; moreover, if g is a zerodivisor in % /2 then there
exists g € %y with g ¢ 2, such that the product gg € 2.

In summary, in our study of zero divisors in £ /2, we may restrict ourselves, with no loss of generality,
to differential polynomials partially reduced with respect to A i.e. to the ring %o/ (AN %).

Assume now that A is moreover coherent. Then Rosenfeld’s Lemma applies and we may restrict our
study of zero divisors, with no loss of generality, to the ring %Zo/(A) : HY.

In general, the polynomial ring % is not finitely generated since there may exist infinitely many deriva-
tives in OU \ OV. However, only finitely many derivatives occur in a given differential polynomial g and
the elements of A. Let wy,...,w; € OU \ OV denote the finitely many derivatives needed to form a finitely
generated subring #; = F[v1,..., v, w1,...,w| of Zy containing the differential polynomials under con-
sideration. We see that we may restrict our study of zero divisors, with no loss of generality, to the ring
F#1/(A) HY.
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The restriction to %) is important because it is a Notherian ring [23, chap. IV] and the Lasker-Nother
Theorem characterizes the zero divisors of %1/(A): HY®. According to [23, chap. IV, 6, Corollary 3 to
Theorem 11], the set of all zero divisors is the union of the associated prime ideals (isolated and embedded)
of (A): HY.

Let a denote any of the ideals (A) : HY, (A) 1 IS° or (A): S.

Then a is either equal to % (if 1 € a) or unmixed dimensional [23, chap. VII, 7], which implies that all
its associated prime ideals are isolated and have the same dimension (the proof is long and ultimately relies
on Macaulay’s unmixedness Theorem [23, chap. VII, 8, Theorem 26]). Then it is not difficult to see that,
if p is an associated prime ideal of a (assuming it is different from ;) then pN.Z[wy,...,w:] = (0), proving
that any nonzero element of .#[wy, ..., w;] is a regular element (i.e. a non zero divisor) in % /a.

This property is important because a differential polynomial g € % is a zero divisor in %1 /a if and only
if it a zero divisor in the total ring of fractions (called total quotient ring in [23, chap. I, 19]) of %1 /a, which
is the ring obtained by inverting all the regular elements of %;/a. Define %o = F(w1,...,wt)[v1,...,v.].
By the unmixedness property of a, the rings %; /a and %5/a have the same total ring of fractions. We thus
see that a differential polynomial g is a zero divisor in % /a if and only if it is a zero divisor, in the ring
%2/0.

In the case of a = (A) : SP°, it can be proved that »/a is isomorphic to a direct product of fields
(the proof essentially relies on the basic properties of the separants mentioned in the former section and
the Chinese Remainder Theorem [13, chap. II, 2]). This implies that %5/a does not involve any nilpotent
element i.e. any zero divisor, a power of which is zero which, in turn, implies the following Proposition. An
incomplete proof first appears in [4]. It was fixed in [15, 16].

Proposition 19 (Lazard’s Lemma)
The ideal (A): S is radical.

Since 1) an ideal is radical if and only if it is the intersection of its associated prime ideals ; and 2) (A): HY
is the intersection of the associated prime ideals of (A): SG° which do not contain any element of I4, we see
that (A) : HY also is a radical ideal.

Then, it is easy to see that, if A is coherent, then 1) the differential ideal 2 is radical hence admits
a representation (24) (page 18) as an intersection of essential components ; for ¢ € [1,¢] ; and 2) there
is a bijection between these essential components and the associated prime ideals p; of (4) : HY® given by
B Ny = p; for i € [1, 9]

3.2.1 Decision Algorithms Available With Regular Chains

So far, we have not assumed that A is a regular chain. For simplicity, let us place ourselves in the ring %,
of the differential polynomials partially reduced with respect to A and denote a = (A4) : IT° in .

Let us introduce two algorithms: the pseudoremainder prem(g, A) and the resultant res(g, A) of a differ-
ential polynomial g € %, by A.

The Pseudoremainder. The pseudoremainder of a differential polynomial by a set A is defined induc-
tively using the pseudoremainder of a differential polynomial by another one, with respect to some derivative:
1. prem(g, o) = g and
2. prem(g,{p1,...,pr}) = prem(prem(g, p, ), {P1,- -, Pr—1}) if 7 > 1.

The Resultant. Similarly, the resultant of a differential polynomial by a set A is defined inductively using
the resultant of two differential polynomials with respect to some derivative [13, chap. IV, 10]:

1. res(g,@) = g and

2. res(g,{p1,...,pr}) = res(res(g, pr,v.),{pP1,...,Pr=1}) if > 1.
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If A is a regular chain then the unmixedness property of a permits to prove that this ideal is necessarily
different from %,. The following Proposition can be proved:

Proposition 20 Let A be a partially autoreduced triangular set and g be a differential polynomial of %, .
Then the following properties are equivalent:

1. A is a regular chain,
2. g € a if and only if prem(g, A) = 0,

3. g is a zerodivisor in %1 /a if and only if res(g, A) = 0.

An Example. This example shows that the resultant computation hides subtleties and must be performed
from top to bottom. Consider the following regular differential chain (assuming v > u) and the differential
polynomial f =u +v — 31,

A = p,p = (u—1)(u—3),v—10u.
The resultant of f by A is the differential polynomial go. Since it is nonzero, f is regular in 2 /2.

res(f, p2,v) —11u+31 g1,
res(gi,p1,u) = —40 = 92-

Let us now consider f = res(f,pi,u) = (30 — v) (28 — v). The resultant of f by A is the differential
polynomial g4. Since it is zero, f is a zero divisor in % /2.

res(f,p2,v) = (30 —10u) (28 —10u) g3,
res(gl’)vplvu) = 0 = 94.

The last property of Proposition 20 permits to determine if a given partially autoreduced triangular set A
is a regular chain. Indeed, denoting i the initial of any pp € A, for k € [1,7], the set A is seen to be a
regular chain if and only if res(ig, {p1,...,pr—1) #0 for k=2,3,...,r.

It also permits to determine if a given regular chain is squarefree. Indeed, denoting sj the separant of
any pr € A, for k € [1,r], the regular chain A is seen to be squarefree if and only if res(sg, {p1,...,pr) # 0
for k € [1,r].

Noticing that fullrem(f, A) = prem(partialrem(f, A)) for any differential polynomial f € %, we thus see
that the following Proposition holds

Proposition 21 Let A be a coherent, partially autoreduced triangular set and f be a differential polynomial
of Z. Then the following properties are equivalent:

1. A is a regqular differential chain,
2. f e if and only if fullrem(f, A) =0,
3. f is a zerodivisor in % /2 if and only if res(partialrem(f, A), A) = 0.

3.2.2 Testing the Inclusion of Differential Ideals

Let A and B be two regular differential chains, defining differential ideals 2 and B in Z. If A ¢ 9B then
A ¢ B. If AC B and all elements of H4 are regular in %Z/%B then 2 C B. However, if A C B and there
exists some h € H4 which is either zero or a zero divisor in %/ then we cannot conclude.

The problem comes from the fact that A is not a basis of 2. In the nondifferential case, the inclusion

problem can be decided since, thanks to Grobner bases and the Rabinowitsch trick, it is possible to compute
a basis of (A): HY.
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3.3 Normal Forms and Formal Power Series Solutions

The content of this section comes from [3, 6]. By a differential fraction, we mean a fraction f/g of two
differential polynomials of %, with g # 0.

Proposition 22 (and Definition of Normal Forms)

Let A = py,...,pr be a regular differential chain, A the differential ideal that it defines and f/g be a
differential fraction of %. The normal form of f/g modulo A exists: it is the unique differential fraction p/q
such that

1. p is fully reduced with respect to A,
2. g€ FOU\ OV],

3. f/g and p/q are equal in the total ring of fractions of % /.

3.3.1 Computation of Normal Forms

Normal forms can be computed by Algorithm 1, which relies on Algorithms 2 and 3 which, in turn, rely on
inverse/resultant computations.

Algorithm 1: NF (f/g, A) the normal form of a general differential fraction

input : a differential fraction f/g and a differential regular chain A with g regular in R/2
output: the normal form of f/g modulo A
1 compute hy f = f (mod [A]) where hy denotes a power product of separants of A
; /* by computing f = partialrem(f, A) */
2 compute hy g =g (mod [A]) where h, denotes a power product of separants of A
; /* by computing g = partialrem(g, A) */

3 return NFfrac hy {,A
hyg

The resultant of two polynomials can be computed by means of subresultant sequences. Moreover,
there exists extended versions of the algorithms for computing subresultant sequences [11] which permit to
express the resultant of two polynomials as a linear combination of these two polynomials, with polynomial
coefficients. These algorithms imply the following algorithmic Proposition

Proposition 23 Let A = py,...,p, be a reqular differential chain and g € %y be a differential polynomial
partially reduced with respect to A. Then there exist differential polynomials q,q1,qz,...,q. of %y such that

qg = res(g,A)+api+q@pr+-+ 4o (27)

The differential polynomial res(g, A) € .F[OU \ OV].

Let g € %, be a differential polynomial partially reduced with respect to a regular differential chain A.
If res(g, A) # 0 then g and res(g, A) are both regular elements of % /2 and the fraction ¢/ res(g, A) (where ¢
comes from (27)) is said to be an inverse of ¢ modulo A. It actually is an inverse of g in the total ring of
fractions of Z /2.

For simplicity, it is assumed that A is a regular differential chain in Algorithm 2. Strictly speaking,
this assumption actually makes the recursive call at line 7 incorrect since a subset of a coherent set is not
necessarily coherent (but a subset of squarefree regular chain is a squarefree regular chain).
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Algorithm 2: NFpoly(f, A) the normal form of a partially reduced differential polynomial

input : a differential polynomial f € #Zy and A = py,...,p, a regular differential chain
output: the normal form of f modulo A

1 if A is empty then

2 return f

3 else

4 denote 7, and v, the initial and the leading derivative of p, ;

5 | compute iy f=g+qp,; /* by computing g = prem(f,p,,v,) */
6 compute u/s an inverse of i, modulo A ;

7 return (1/s%) x NFpoly(u®g,{p1,...,Pr-1})

8 end

Algorithm 3: NFfrac(f/g, A) the normal form of a partially reduced differential fraction

input : a fraction f/g and a regular differential chain A with f,g € %, and g regular in R/
output: the normal form of f/g modulo A

1 compute u/s an inverse of g modulo A ;

2 return (1/s) x NFpoly(u f, A)

3.3.2 Application to the Computation of Formal Power Series Solutions

In Section 2.5, a process is described for computing a zero of differential prime ideal, presented by a char-
acteristic set. First of all, notice that this process holds “as is” for the radical differential ideals defined by
regular differential chains. Now, normal forms provide a variant of this process, which is convenient but
slightly less general than the one of Section 2.5 since the set of forbidden expansion points and initial values
may increase.

Let A= pi,...,pr be a regular differential chain, defining a perfect differential ideal A = [A]: H® of Z.
Denote X the finite set of the derivatives A depends on, including the extra derivatives used to encode the
“independent variables” in the extended system associated to A, in the sense of Section 1.4.3.

Denote V' C X the set of leading derivatives of A. Then OU \ ©V denotes the possibly infinite set of
the elements of ©OU which are not the derivative of any element of V. Let ©* denote the set of all proper
derivative operators. Then ©*V denotes the set of all derivatives which are proper derivatives of some
element of V.

The following process defines an expansion point and a tuple of arcs a such that a or equivalently, the
formal power series ¥(a), is a zero of 2.

Process.

1. Let h denote the product of the initials and separants of A and f/g the normal form of 1/h modulo A.
Solve the following system as a nondifferential system of .7 [X]

pr=-=p.=0, g#0.

2. Assign any value from .% to the derivatives of OU \ OV and to the “independent variables” encoding
differential indeterminates which were not already assigned values at Step 1.

3. Let v € ©*V be a proper derivative of some leading derivative of A. Assign to v the value of its normal
form modulo A.

A few remarks:
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the idea of the above Process is that, among the zeros which annihilate p; = --- = p,, = 0, we should
only forbid the ones which prevent us to compute normal forms i.e. the ones which annihilate their
denominators;

the irreducible factors of the denominators of all normal forms considered at Step 3 are factors of the
differential polynomial g defined at Step 1.

Every tuple of values which annihilates h is forbidden by g # 0 since we have the identity h f/g = 1
in the total ring of fractions of % /2 so that the system to be solved at Step 1 in this section cannot
have more solutions than that of Section 2.5.

In some cases, the system to be solved at Step 1 has strictly less solutions than that of Section 2.5.
Consider the set
A = pi,pp = v -1, (v—w)u—=z.

It is a regular differential chain for any ranking such that u is the leading derivative of po. We have
h = v — w. The normal form of 1/h modulo A is (v + w)/(1 — w?) so that the system to be solved at
Step 1 involves the constraint w? # 1. However, the constraint h # 0 allows w = =£1, provided that v
has the opposite sign.

As well in this section as in Section 2.5, the constraints h # 0 or g # 0 may forbid values for which
solutions actually exist. This phenomenon may be “easier to observe” when using the normal form
algorithm. Consider the differential polynomial

p = W—uP+38

in the ordinary differential polynomial ring #{u}. Let A be the regular differential chain involving p
as single element. It can be proved that

{p} = [A:HP N[’ -8, 4.

The differential ideal [u® —8, 4] obviously admits a single solution which is the arc a = (2,0, ...) leading
to the formal power series ¥(a) = 2. Let us now consider the regular differential chain A. Dropping
the numerical constant, we have h = . The normal form of 1/h modulo A is u/(u® — 8) which implies
that any arc whose first coordinate is 2 is forbidden thus that any formal power series u(z) with initial
condition u(0) = 2 is forbidden. However, the computation of the normal forms of the first derivatives
of u suggests that this constraint is pointless:

az = (3/2)u?,

a3 = 3duu,

ag = (15/2)u® — 24,
as = (45/2)0u?,

ag = (315/4)u* —360u,

Indeed, it is quite easy to prove that if the differential polynomial p has the form @2 + q with q € .7 [u]
(no “independent variable” among the coefficients) then the normal form of any derivative of i is a
differential polynomial of % [u, ).

Let us come back to our example and choose the forbidden value ag = 2. Then necessarily a; = 0
(since a? — a3 + 8 = 0) and, evaluating the normal forms above over this beginning of arc we get the
solution

a = (2,0,6,0,36,0,540,0,12960, 0, 486000, .. .)
3 3 9 15
_ 2,2 4,9 6 2 8, 10 10, .
Ua) = 243z +2x +4x +28x +112x +
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3.4 A Sketched Elimination Algorithm

The content of this section is much inspired from the descriptions of the RosenfeldGroebner algorithm given
in [5, 2].

There exists an algorithm which gathers as input any finite system ¥ of differential polynomials (and a
ranking) and outputs finitely many regular differential chains Ay, ..., A; such that

()} = [ HE 00 [A] HE

If 1 € {¥} then t = 0. Thus, thanks to the differential Theorem of Zeros, this algorithm permits to decide
whether ¥ has solutions over some unspecified expansion point.

This algorithm proceeds in two main steps. In the first step, it computes finitely many regular differential
systems of the form A = 0, S # 0 where A is a coherent, partially autoreduced triangular set of differential
polynomials and S is a set of differential polynomials partially reduced with respect to A. A regular differ-
ential system defines the perfect differential ideal [A] : S°° which is the ideal of the differential polynomials
which annihilate over all the solutions of the system. A regular differential system may have no solution.
In that case, [A] : S = Z. The perfect differential ideal {¥} is the intersection of the perfect differential
ideals defined by the regular differential systems produced at the first step.

In the second step, the algorithm transforms each regular differential system A = 0, .S # 0 into finitely
many regular differential chains (none if the regular differential system has no solution). The intersection
of the perfect differential ideals defined by the regular differential chains is equal to the perfect differential
ideal [A] : §°°.

Let us sketch the algorithm, called regCharacteristic, for the second step. Its principle consists in testing
whether A is a squarefree regular chain by testing the regularity of the initials and separants of A, processing
the elements of A from bottom up and implementing the ideas explained in Section 3.2. This being done, A
is proved to be a regular differential chain and the regularity of all the elements of S can be verified. Every
regular element of S which is proved regular is discarded. Of course, it may happen that some differential
polynomial is proved to be a zero divisor at some stage. In that case, a factorization of some p;, € A is
discovered. This exhibited factorization permits to split the current system into two branches. If one of the
factors of p; divides an element of S then the corresponding branch is discarded. The regularity test can
be achieved by means of the resultant computations explained in Section 3.2 however this test “as is” does
not provide the factorization. A possibility consists in using a recursive variant of the extended Euclidean
algorithm such as the one provided in [3, Appendix].

The main ideas underlying a complete elimination algorithm are explained through two examples, in the
following sections.

3.4.1 An Ordinary Differential Example

See Figure 2. The differential polynomial ring is .%{u,v}.
(1)  di+v=0, w+v=0.

The ranking is such that every derivative of w is greater than any derivative of v (the differential inde-
terminate u is eliminated). The leading derivatives of the two differential polynomials are 4 and @. The
first differential polynomial is not partially reduced with respect to the first one. The partial remainder
computation is carried out in (17), page 14. This computation amounts to differentiate the second equation,
giving

20u+0v=0
then replace i by —0/(2) in the first one, giving

v

=0.
2u+v
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Then replace the first equation by the numerator of the reduced equation, which is the partial remainder g,
provided that the separant 2, which is the differential polynomial h of (17), is different from zero. The
solutions of (¥) which annihilate the separant are considered separately. We obtain a splitting® of (3;) into

(3) i+v=0, wW4+v=0, a=0

and
(23) 200 —0v=0, wW+v=0 u#0.

Consider (X5). Simplify the second equation using the third one. One gets v = 0. This system thus simplifies
as a regular differential system
(34  a=0, v=0

whose solutions are u(z) = ¢ and v(x) = 0 where ¢ is an arbitrary constant. This system is a regular
differential chain. Consider now (33) (23). The two first equations have the same leading derivative: it is
nottriangular. To get a triangular set, apply Ritt’s reduction algorithm which informally amounts to proceed
as follows: replace u by 0/(2v) in the second equation, giving

o 2
<2’U> +v=0.

Replace the second equation by the numerator of the reduced equation, provided that v # 0 and consider
separately the solutions of (¥3) which annihilate v. One obtains a splitting of (X3) into two systems

(B5)  2vu—9=0, @?+v=0, v=0, Ww#0

and
(B6)  2vu—9=0, *+40°=0, 4#0, v#O0.

Consider (X5). The equation v = 0 reduces to zero the first one, by Ritt’s reduction algorithm. It also
permits to simplify the second equation. We then get a system

(37)  4*=0, v=0, w#0

which is a regular differential system. The regCharacteristic algorithm may then be applied over it. By a
gcd computation between the equation %2 = 0 and the inequation @ # 0, it concludes that this system has
no solution. Let us discard it and come back to (3g). It is not yet a regular differential system because the
separant 20 of the second equation does not belong to the inequation set. This is solved by splitting (2g)
into two systems which separate the solutions of (Xg) which satisfy © = 0 from the ones which satisfy © # 0.
One gets two systems

(Zg) 2o —0=0, *4+403=0, v=0, @#0, v#O0.

(Bg)  2vu—9=0, *+40°=0, 0#0, u#0, v#O0.

Argumenting as for (37), we see that (Xg) has no solution. The system (Xg) (3g) is a regular differential
system. Its set of equations actually form a regular differential chain. We may then discard the inequation
% # 0 which is not an initial or a separant of the chain. The solutions of (¥9) actually are u(x) = ¢;—In(z+cz)
and v(z) = —1/(z + c2)? where ¢; and ¢y are arbitrary constants.

51t is actually not the same type of splitting as in regCharacteristic because it does not correspond to a factorization.
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Figure 2: The splitting tree of Section 3.4.1.

Summary. Every solution of (¥;) is either a solution of (X4) or of (£gy). Conversely, the solutions of (X4)
and (Xg) are solutions of (£;1). Therefore,

{ii+v, a>+v} = [0, v]N[2va—v, *+40%]: (v0)>®. (28)

This decomposition permits to decide membership to the perfect differential ideal 2 generated by ;. Indeed,
a differential polynomial p € 2l if and only if its normal form with respect to both regular differential chains
is zero. This is actually the case for v,y + 6v2.

Let us assume that the two differential ideals on the right hand side of (28) are prime. It is not clear if
the second one is included or not in the first one since the separants v and ¥ belong to [, v]. Performing the
elimination process over the same system, with respect to a ranking which eliminates v, one actually gets
the following single regular differential chain

{ii+v, 0® +v} = [w+a?, i—0? (29)

Its leading derivatives are v and . The differential ideal defined by the chain is thus prime (if it were not
prime, one of its equations would factor, which is impossible since their leading degrees are 1). We can then
conclude that, in (28), the component [, v] is redundant.

On this case, we have been able to compute the minimal decomposition but this is not always possible.
For this reason, we cannot, in general decide whether a differential polynomial p is a zero divisor in 2 /.
Indeed, if [@, v] had been an essential component, the differential polynomial v would have been a zero
divisor in Z /2.

3.4.2 A Partial Differential Example

See Figure 3. The differential polynomial ring is .# {u, v} endowed with two derivations d, and &,. The three
differential polynomials of 3, are denoted fi1, fo and fs.

(%1) u§—4u:0, Uy — V=0, vy =0.
The ranking is

T D> Ugy > Ugy > Uyy > Ugg > Ugy > Uyy > Ug > Uy > Vg > Uy > U > V.
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The leading derivatives are thus u,, u, and v,. The system is partially autoreduced and triangular. Is it
coherent ? The two first equations form a critical pair {f1, fa}. To form the A-polynomial, differentiate the
first equation by d,

0z f1 = 2uy Ugy — dug.

Differentiate the second equation by d, and multiply it by the separant 2u, of the first equation, giving
2uy Oy fo = 2Uy (Ugy — Uy U — Vg Uy).

Subtract,
A(f1, fo) =2uuy vgy + 2u§ Uy — 4 Uy.

The full reduction of this A-polynomial by (X;) is detailed in (19), page 15. One gets a fourth equation f, =
uv, = 0 (the full remainder) which is inserted in the system

(32) u§—4u:0, Ug —Vu=0, v,=0, uv,=0.

The insertion of f; implies that the critical pair {f1, fo} is now solved. However, a new critical pair {f3, f4}
is generated. Before forming the new A-polynomial, the system is split on the initial of f;. One then
considers separately the solutions of (32) which annihilate u from the ones which do not. One gets

(33) uf/—élu:O7 Uy —vpu=0, v,=0, wv,=0, u=0

and
(24) u§—4u:07 upy =0, v,=0, vy,=0, u0.

The system (X3) simplifies to
(25) ’Uy = 0, u = 0

which actually is a regular differential chain. Its solutions are u(x, y) = 0 and v(z, y) = p(z) where p(z) is
an arbitrary function of .

Consider (X4). The critical pair {fi, fo} is solved. The critical pair {f3, fs} is solved also since
A(fs, fa) = 0. This system is thus coherent. It is not yet a regular differential system because the separant u,,
of f1 does not belong to the inequation set. One then splits (34) into

(3s5) ui—4u=0, up =0, v,=0, v,=0, u,=0, u#0

and
(36) u§—4u:O7 uy; =0, v, =0, v, =0, uy#0, u#0.

System (X5) has no solution: the new equation u, = 0 permits to simplify the first one and obtain u = 0,
which is incompatible with the inequation u # 0. System (Xg) is a regular differential system. Its set of
equations even for a regular differential chain. The regCharacteristic algorithm permits to prove that the
inequation u # 0, which is not an initial or a separant of the chain, is regular modulo the differential ideal
defined by the chain. It is thus discarded. The solutions of (Xg) are u(z, y) = (y + c1)? and v(z, y) = co
where ¢; and co are arbitrary constants.

Summary. Every solution of (X;) is a solution of (X3) or (3g), and conversely. Thus

2_

{“12; —du, up —vpu, vy} = [u, vy] N[y

4w, Uy, Uy, Vz] 7 (uy)™. (30)
By normal form computations, it is easy to see that u and v, do not belong to the perfect differential ideal 2A

generated by ¥;. However, the product uv, belongs to 2 (its normal form modulo each regular differential
chain on the right hande side of (30) is zero). Thus 2 is thus not a prime differential ideal.
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Figure 3: The splitting tree of Section 3.4.2.
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