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Machine learning classification techniques are frequently applied to structural and
resting-state fMRI data to identify brain-based biomarkers for developmental disorders.
However, task-related fMRI has rarely been used as a diagnostic tool. Here, we used
structural MRI, resting-state connectivity and task-based fMRI data to detect congenital
amusia, a pitch-specific developmental disorder. All approaches discriminated amusics
from controls in meaningful brain networks at similar levels of accuracy. Interestingly,
the classifier outcome was specific to deficit-related neural circuits, as the group
classification failed for fMRI data acquired during a verbal task for which amusics were
unimpaired. Most importantly, classifier outputs of task-related fMRI data predicted
individual behavioral performance on an independent pitch-based task, while this
relationship was not observed for structural or resting-state data. These results suggest
that task-related imaging data can potentially be used as a powerful diagnostic tool to
identify developmental disorders as they allow for the prediction of symptom severity.

Keywords: multivariate pattern analysis (MVPA), rs-fMRI, sMRI, task-based fMRI, tone deafness, diagnostic,
brain-based biomarkers

INTRODUCTION

One of the main challenges of brain imaging is to provide individual discrimination ability to
inform diagnosis and prognosis of neurodegenerative or developmental disorders at the individual
level (Uddin et al., 2017). A growing number of studies have used machine learning classification
techniques on either structural MRI (sMRI) or resting-state fMRI (rs-fMRI) data to identify brain-
based disorder-related biomarkers (Arbabshirani et al., 2017; Uddin et al., 2017). These methods
have shown great potential in discriminating abnormal development, such as Autism Spectrum
Disorder, attention-deficit hyperactivity disorder or dyslexia, from typical development (Bray et al.,
2009; Arbabshirani et al., 2017). While some studies have shown that decoding performed on task-
related fMRI can yield similar accuracy to sMRI and rs-fMRI in classifying clinical populations
(Shenas et al., 2014; Bruin et al., 2018), the power of task-related fMRI as a diagnostic approach
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has been, to date, somewhat neglected. This is mainly related to
the fact that, unlike task-based fMRI, sMRI, and rs-fMRI imaging
data can be easily acquired from otherwise difficult-to-scan
populations in a relatively short recording period of time (Bruin
et al., 2018). Here, in contrast, we hypothesized that task-based
fMRI may present significant advantages in relating classifier
outcomes to phenotypic or behavioral measures as compared to
sMRI and rs-fMRI data because of the potential specificity they
offer to probe brain activity.

In the present study, we used all three approaches (sMRI,
rs-fMRI, and task-fMRI) to perform imaging-based classification
of congenital amusia, a developmental disorder of the central
auditory system resulting in behavioral impairments of pitch
perception and memory (Albouy et al., 2013a, 2019; Peretz,
2016; Tillmann et al., 2016). These behavioral deficits have
been linked to anatomical abnormalities along the right fronto-
temporal pathway, notably in terms of white and gray matter
concentration in the right inferior frontal gyrus (Hyde et al.,
2006; Albouy et al., 2013a), and in the right superior temporal
gyrus (Hyde et al., 2007; Albouy et al., 2013a), as well
as the structural connectivity between these regions (Loui
et al., 2009). Functional investigations have reported abnormal
responses of the right fronto-temporal pathway including the
auditory cortex and the IFG during pitch perception (Hyde
et al., 2011) and pitch memory (Albouy et al., 2013a, 2015,
2019; Tillmann et al., 2016). During resting state, abnormally
increased connectivity between the auditory cortices and the
Default Mode Network (DMN, a network of areas showing
greater activation during rest than during goal-directed tasks
(Raichle et al., 2001; Greicius et al., 2003) has been reported
in congenital amusia (Leveque et al., 2016). Thus, activity in
the fronto-temporal network during task performance, and
in auditory and DMN networks during resting state might
serve as indexes of the degree of impairment in an individual.
In contrast, amusics show normal memory performance for
mono-syllabic words spoken with a constant pitch (Tillmann
et al., 2009; Albouy et al., 2019) and spoken numbers (digits
spans, Williamson and Stewart, 2010; Albouy et al., 2013b) as well
as intact (i.e., similar to controls) left fronto-temporal network
activation during verbal memory (Caclin and Tillmann, 2018;
Albouy et al., 2019).

In the present study, we investigated whether amusic
individuals can be discriminated from control participants using
whole-brain multivariate pattern analysis applied on sMRI,
resting-state functional connectivity, and task-related fMRI.
Based on previous studies reported above, we hypothesized
that the classifier will be able to discriminate amusics and
controls with sMRI, rs-fMRI and pitch-based task-related
fMRI data. In contrast, we expected the classifier to fail in
discriminating amusics and controls for the task-fMRI data
acquired during verbal memory (sequences of mono-syllabic
words spoken with a fixed pitch of 230 Hz). Finally, by
extracting classifier decision values (distance from the separating
hyperplane) and by relating them to a behavioral score acquired
independently, we tested if we could predict the severity of
behavioral deficits in individual participants. We hypothesized
that pitch-based task-fMRI, which captures brain dynamics

that are specifically related to the behavioral correlates, may
present significant advantages, in relating classifier outcomes to
behavioral measures.

MATERIALS AND METHODS

Participants
Eighteen amusic adults and 18 non-musician controls matched
for gender, age, handedness, years of education, and years of
musical instruction, participated in the study (see details in
Table 1). The amusic group was composed of 13 participants
from Lyon (France) and five from Montreal (Canada). The
control group was composed of 14 participants from Lyon
and four from Montreal. All participants had right-handed
laterality and reported no history of dyslexia, nor history of
neurological or psychiatric disease. They gave their written
informed consent and received a monetary compensation for
their participation. All participants were tested with standard
audiometry and none of them had moderate (35 dB) or severe
(more than 40 dB) peripheral hearing loss at the frequencies
of interest (between 250 to 1000 Hz). All participants had
been thoroughly evaluated on previous testing sessions with
the Montreal Battery of Evaluation of Amusia (MBEA see
Table 1, Peretz et al., 2003). Participants were considered
amusic when they scored below 23 across the six tasks of
the battery (maximum score = 30), the cut-off being two
standard deviations below the average of the normal population
(see Table 1).

To evaluate pitch discrimination thresholds (PDTs), all
participants were tested with a two-alternative forced-choice
task using a two-down/one-up adaptive staircase procedure (see
Tillmann et al., 2009 for details). The average PDT of the amusic
group (ranging from 0.13 to 2.41 semitones) was significantly
higher [worse, t(34) = 3.23, p = 0.002] than that of the control
group (ranging from 0.05 to 0.67 semitones). In agreement with
previous findings (Tillmann et al., 2009, 2016), we observed a
partial overlap in PDTs between amusic and control groups.

These 36 subjects have participated to the structural
imaging (T1-MPRAGE) and Task-fMRI for short-term memory

TABLE 1 | Demographic characteristics of the full sample of amusics and controls.

Demographic Amusics Controls t-Test

characteristics (n = 18) (n = 18)

Age in years 42.4 (14.6) 40.8 (14.0) p = 0.74 (NS)

Gender 11F, 7M 11F, 7M N/A

Education in years 15.0 (3.6) 13.9 (3.1) p = 0.33 (NS)

Musical education in years 0.83 (1.4) 0.33 (1.0) p = 0.23 (NS)

MBEA (Peretz et al., 2003) 20.9 (1.5) 26.7 (1.4) p < 0.0001

PDT (Tillmann et al., 2009) 0.90 (0.88) 0.22 (0.15) p = 0.002

Results on the Montreal Battery of Evaluation of Amusia (MBEA) are expressed
as number of correct responses (average over the six sub-tests of the battery,
maximum score = 30). Pitch Discrimination Thresholds (PDT) are in semitones.
Data are reported as a function of group and groups are compared with t-tests.
“NS” refers to a non-significant difference (p > 0.05) and standard deviations
are in parentheses.
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(tonal and verbal tasks). Note that only a subset of subjects has
participated to the rs-fMRI (13 in each group, all participants
were recorded in Lyon) and task fMRI: pitch localizer (n = 12
in each group, all participants were recorded in Lyon). All
data (in both Montreal and Lyon) were collected using a
3T Philips Achieva TX scanner with a 32-channel head coil.
The study was approved by French and Canadian local ethics
committees on Human Research and all participants gave written
informed consent.

Structural MRI
Participants
The full sample (36 subjects) has participated in this protocol. See
Table 1 for details.

Image Preprocessing and Segmentation
High-resolution T1-weighted three-dimensional (3D) images
were acquired using a gradient-echo sequence [160 sagittal
slices; time to repetition (TR) = 2800 ms; time to echo
(TE) = 3.8 ms; flip angle = 8◦; matrix size = 240 × 240; field of
view = 240 mm× 240 mm; voxel size = 1 mm× 1 mm× 1 mm].
All image preprocessing were performed using the VBM
functions of SPM12 (Wellcome Trust Centre for Neuroimaging1,
London, United Kingdom). Before preprocessing, all images
were checked for artifacts and automatically aligned so that
the origin of the coordinate system was located at the
anterior commissure. Using the unified segmentation procedure
implemented in SPM12 (Ashburner and Friston, 2005), the
images were segmented into gray matter, white matter, and
cerebrospinal fluid. For each participant, this resulted in a
set of three images in the same space as the original T1-
weighted image, in which each voxel was assigned a probability
of being gray matter, white matter, and cerebrospinal fluid,
respectively, as well as a normalized version of these images
(using the T1-template from the Montreal Neurological Institute,
provided by SPM12).

Resting State fMRI
Participants
Only a subset of subjects has participated to the rs-fMRI
(13 in each group), all participants were recorded in Lyon. See
Supplementary Table S1 for details.

Data Acquisition and Procedure
Twelve minutes of functional resting-state scans were acquired
using an interleaved 2D T2∗ SENSE echo planar imaging (EPI)
sequence with the sequence parameters of Fauvel et al. (2014): 2D
T2∗-FFE-EPI axial, SENSE factor = 2, TR = 2,382 ms, TE = 30 ms,
flip angle = 80◦, 42 slices, slice thickness = 2.8 mm, no gap,
in-plane resolution = 2.8 mm × 2.8 mm, 280 volumes. During
the resting-state acquisition, participants were required to keep
their eyes closed and stay awake. In the debriefing interview after
the scanning session, all participants reported they were indeed
able to stay awake.

1http://www.fil.ion.ucl.ac.uk/spm/

Data Analysis
Except for seed determination (see below), we used an
adaptation of the processing pipeline of Fauvel et al. (2014) with
SPM81 (Wellcome Department of Imaging Neuroscience Group,
London, United Kingdom). Each functional volume series was
automatically inspected for excessive head movements with the
tsdiffana routine2. No abnormal spike of variance, rotational
(>1.5◦) or translational (>3 mm) movement, was observed
in time series in each group. T1-weighted structural images
were spatially normalized to the Montreal Neurological Institute
(MNI) template (ICBM AVG152), segmented using VBM83, and
smoothed using an 8-mm full width at half maximum (FWHM)
isotropic Gaussian kernel. EPI volumes were corrected for slice
timing, realigned on the first volume, and coregistered to the
T1 volume (see Structural MRI). The coregistered T1 and EPI
volumes were normalized on the basis of the segmented gray
matter, and 4-mm FWHM smoothing was applied to the EPI
volumes. The signal was bandpass filtered (0.01–0.08 Hz). Finally,
the individual segmented gray matter T1 volumes were averaged
in the MNI space, and a binary mask was created including
only voxels with values above 0.3 in the average gray matter
image and with a higher probability to be gray matter than white
matter or cerebrospinal fluid. This binary mask was used in all
subsequent analyses.

Seed Determination
We used functionally defined seeds that were 10-mm-diameter
spheres in right and left Heschl’s gyri, centered on the MNI
coordinates (x = 45 y = −19 z = 6) and (x = −44 y = −18
z = 5) observed in the magnetoencephalographic (MEG) data
of Albouy et al. (2013a). The seeds correspond to the sources
of the N100 responses for tone encoding, where significant
differences of activity and of connectivity with frontal areas were
observed between amusics and controls. The entire sphere was
located within the most medial part of Heschl’s gyri of each
individual’s anatomical MRI and did not overlap with other
non-auditory regions.

Resting-State Analysis
For each participant, the time series were extracted and averaged
across voxels within the seed regions with the MarsBaR toolbox
(Brett et al., 2002), and the correlations between the seed time
series and the time series of all other voxels of the entire brain
gray matter mask were calculated, with motion parameters,
white matter (WM), and cerebrospinal fluid (CSF) time series
as regressors of non-interest. To extract the WM and CSF time
series, WM and CSF masks were computed by thresholding the
mean of the spatially normalized WM and CSF images (≥1)
with ImCalc (SPM8). These masks were then eroded by three
voxels along each of the three axes with Anatomist4. Individual
connectivity maps were then transformed into Z-score maps,
with connectivity defined as a pairwise correlation between the
seed time-series and the time-series of other voxels.

2http://imaging.mrc-cbu.cam.ac.uk/imaging/DataDiagnostics
3http://dbm.neuro.uni-jena.de/vbm/
4http://brainvisa.info/
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Task-fMRI: Short-Term Memory
Participants
The full sample (36 subjects) has participated in this protocol. See
Table 1 for details.

Stimuli
During fMRI acquisition, participants performed four tasks: a
memory task and a perception task for piano tones, and a
memory task and a perception task for monosyllabic words
(see Figure 1B). For the tonal tasks both encoding and

maintenance were investigated, whereas for the verbal task only
maintenance was investigated, so there were two times more trials
for the tonal tasks. For all tasks, at each trial, two sequences (of
words or tones) were presented sequentially and separated by a
silent delay. In the memory task, participants were required to
indicate whether the two sequences were the same or different.
In the perception task, they were required to ignore the first
sequence and indicate whether the last two items of the second
sequence were the same or different. The perception task was
designed as a control condition: participants listened passively

FIGURE 1 | (A) Pitch localizer, schematic of the experimental design. fMRI responses were measured to harmonic tones and Gaussian noise spanning the same
frequency range. Stimuli (denoted by horizontal bars) were presented in a block design, with six stimuli from the same condition presented successively in each
block (red and blue indicate different conditions). Each stimulus (2 s) included several notes that varied in frequency to minimize adaptation. Cochleograms are
shown for an example harmonic tone stimulus (red bar) and an example noise stimulus (blue bar). Cochleograms plot time–frequency decompositions, similar to a
spectrogram, that summarize the cochlea’s response to sound. After each stimulus, a single scan was collected (vertical, gray bars). Adapted from
Norman-Haignere et al. (2016). (B) Auditory tasks. Examples of the stimuli used in Memory and Perception Tasks. Memory Task: Participants had to compare
sequences (tones or words) presented in pairs. For “same” trials the first sequence was repeated as the second sequence of the pair after a 9000 ms delay. For
“different” trials, the second sequence of the pair changed only for one item (in positions 1 to 3, red square). For tonal material, the new item changed the melodic
contour. Perception Task: Participants had to compare the two last items (tones or words) of the second sequence regardless of the first sequence. For “same”
trials, the two last items of the second sequence were identical. For “different” trials, the two last items of the second sequence were different. Adapted from Albouy
et al. (2019). (C) Design for the fMRI experiment and timeline of events during one trial. S1 sequence (pitch sequences, words) lasted 750 ms and was followed by a
constant 9000 ms silent delay during which occurred 3000 ms of functional data acquisition which was followed by the second sequence (750 ms). Participants had
2000 ms to respond, the next trial occurring 2500 to 3000 ms after the end of S2. A 0 to 500 ms jitter was added at the beginning of the trial to maximize the
detection of the BOLD response for the task. As a function of the run, the acquisition of the whole brain volume was realized at two different time periods. Left panel:
For Encoding runs (two runs, pitch Material only), acquisition started 3500 to 4000 ms after the end of the S1 sequence. For Maintenance runs (two runs for pitch
tasks and two runs for verbal tasks), the volume acquisition occurred just before the second sequence (at the end of the silent delay), the acquisition thus starting
from 5500 to 6000 ms after the end of S1. Adapted from Albouy et al. (2019). (D) Right Panel: Performance of amusic and control groups (white, Controls; red,
Amusics) in terms of dprime, presented as a function of Material (pitch, words), and Group (amusics, controls) for the short-term memory tasks. Error bars indicate
SEM. Adapted from Albouy et al. (2019). (E) Group classification results for structural (sMRI), resting state functional connectivity (rs-fMRI), and task related fMRI
[pitch localizer (PL); pitch memory (PM); verbal memory (VM)]. Results are expressed as area under the receiver-operator-characteristic curve (AUC). AUC uses the
distance of a classification output to the decision boundary. Violin plots represent the mean and the median of the AUC in brain regions that were significantly
classifying amusics and controls as revealed by searchlight analysis (black dots indicate significant searchlights for each analysis).
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to the same stimuli (i.e., the first sequence) as the one used in
the memory task, but without actively encoding the information
in memory. All tasks involved two three-sound (words or tones)
sequences (S1, S2), separated by a silent maintenance period
of 9 s. For both tonal and verbal materials, each sound had
a duration of 250 ms, and the three sounds were presented
successively with an inter-stimulus-interval of 0 ms.

For the tonal material, 120 different three-tone melodies (that
were used as S1 for the 120 tonal trials, 60 for the memory
task, 60 for the perception task, see below) were created using
eight piano tones differing in pitch height (Cubase software,
Steinberg), all belonging to the key of C Major [C3, D3, E3, F3,
G3, A3, B3, and C4, material from Albouy et al. (2013a)]. For
the verbal material, 60 different sequences (that were used as
S1 for the 60 verbal trials, 30 for the memory task, 30 for the
perception task, see below) were created using six monosyllabic
French words with fixed F0: toux (/tu/- cough), loup (/lu/- wolf),
boue (/bu/- dirt), mou (/mu/- soft), goût (/gu/- taste) and pou
(/pu/- bug), spoken by a female voice [material from Tillmann
et al. (2009)]. F0 of verbal recordings were set constant to 230 Hz
(within the range of the piano tones used in the tonal tasks)
with STRAIGHT (Kawahara and Irino, 2004), and equalized
in loudness using MATLAB software [material adapted from
Tillmann et al. (2009)]. The words were selected from a pool
of recorded words judged as intelligible by eight native French
speakers. For verbal and tonal material, half the S1 sequences
contained items repetition (words or tones) in the second and
third position of the sequence and the other half did not contain
item repetition within the sequence (Figure 1B).

Memory Tasks
There were 60 memory trials (S1, silence, S2) for tones and 30
memory trials (S1, silence, S2) for words, each set being equally
composed of 50% same and 50% different trials. For different
trials, one item of the S2 sequence was different from the S1
sequence (in positions 1 to 3, equally distributed across trials).
For melodies, this new item created a contour-violation in the
melody. The pitch interval size between the original tone in S1
and the changed tone in S2 was above the PDT of all participants
and controlled so that there were 50% of the trials with a medium
interval size (of 1.5, 2, and 2.5 tones in equal proportion) and
50% of trials with a large interval size (of 3, 3.5, and 4 tones).
For verbal sequences, the changed word was selected from the
remaining words that were not presented in the S1 sequence.

Perception Tasks
The perception task consisted of 60 trials (S1, silence, S2) for
tones and 30 trials (S1, silence, S2) for words (see Figure 1A).
Trials were divided into same and different. Importantly,
S1 sequences in perception trials were not strictly identical
to S1 sequence in memory trials, to avoid exact stimulus
repetition, but were similar in terms of melodic contour for
the tonal material.

Procedure
Amusic and control participants performed the four tasks
during fMRI recording. Presentation software (Neurobehavioral

Systems, Albany, CA, United States) was used to run the
experiment and to record button presses. Stimuli were presented
via MRI-compatible insert earphones (NordicNeuroLab, in Lyon
and Etymotic Research in Montreal). The level of sound
presentation was set to 70 dB SPL for all participants. The
experiment was divided into six runs of about 9 min each: 4
runs with tonal material (2 runs for tonal encoding, 2 runs
for tonal maintenance) and 2 runs with verbal material (verbal
maintenance). Within a run, memory and perception tasks were
presented in blocks of 15 trials each and the task order was
counterbalanced across runs and participants. At the beginning
of each run, 5 trials of silence served as baseline. Task instructions
were presented visually at the beginning and at the middle of
each run. During fMRI acquisition, participants were asked to
keep their eyes closed. When the task changed, participants heard
a salient tone burst, looked at the visual instruction on the
screen, and closed their eyes again. The runs were separated by
2–3 min of break. Participants were informed about the material
(tones or words) and the order of the to-be-performed tasks
before each run.

For each trial within a run, participants indicated their answers
by pressing one of two keys of a response device with their right
hand after the end of S2. They had 2 s to respond before the next
trial, which occurred between to 2.5 s and 3.0 s after the end of S2.
In each task, trials were presented in a pseudo-randomized order
with the constraint that the same trial type (same or different)
could not be repeated more than three times in a row. Before
entering the scanner, participants performed 15 practice trials for
each task (with simulated scanner noise) with response feedback.
No feedback was given during the main experiment.

fMRI Design and Acquisition Parameters
A gradient-echo EPI pulse sequence was used to measure whole-
brain blood oxygenation level-dependent (BOLD) signal (47 axial
slices acquired in ascending sequential order; TR, 14000 ms;
volume acquisition, TA = 3000 ms; TE, 30 ms; FA, 90◦; 3 mm slice
thickness; no gap; matrix size, 80× 80; FOV 240 mm× 240 mm;
voxel size, 3 mm × 3 mm × 3 mm). The long TR (14 s including
3 s of image acquisition, TA) is related to the sparse-sampling
paradigm that was used to maximize task-related BOLD response
and minimize auditory masking due to MRI scanning noise
(Belin et al., 1999). Auditory events were synchronized with
fMRI image volume acquisitions at a rate of one image per trial.
Within different blocks, we aimed to capture the hemodynamic
response associated with two different processes. First, the activity
related to the maintenance of the tonal and verbal stimuli was
measured with fMRI volumes acquired 5500 to 6000 ms after
the end of S1 (Figure 1C, lower panel), thereby decreasing
the likelihood of capturing the activity related to the encoding
of the S1 stimulus. In two additional runs, we measured the
activity related to the encoding of the tonal stimuli (Figure 1C
upper panel, with fMRI volumes acquired 3500 to 4000 ms after
the end of S1, i.e., at the expected peak of the hemodynamic
response for auditory processing of S1). The encoding scans were
performed only for the tonal material (2 runs). Note that the
maintenance scans were performed for both verbal and tonal
materials (2 runs each).
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Preprocessing
All image preprocessing was performed using SPM12 (Wellcome
Trust Centre for Neuroimaging1, London, United Kingdom).
Before preprocessing, all images were checked for artifacts and
automatically aligned so that the origin of the coordinate system
was located at the anterior commissure. Preprocessing included
the realignment of functional images and the co-registration of
functional and anatomical data. We then performed a spatial
normalization (voxel size, 3 × 3 × 3) of the T1 and the EPI
images to the Montreal Neurological Institute templates provided
with SPM12 (MNI T1 template and EPI template respectively).
Finally, functional images were spatially smoothed (Gaussian
kernel, 5 mm FWHM).

fMRI Analyses
This analysis includes fMRI data acquired in two scanner sites
(Lyon, Montreal). Multicenter studies can entrain site-dependent
effects in fMRI sensitivity, notably regarding activation effect
sizes. Friedman and Glover (Friedman and Glover, 2006) have
suggested that these confounding effects are mainly linked
to different field strength, hardware, and software used in
different centers. In the present study, we used similar hardware,
software, update version, fMRI sequences, and head coil in
the two MRI centers in order to reduce the risk of scanner
site effect. Individual contrast maps were first calculated for
each participant. A hemodynamic response function (HRF) was
chosen to model the BOLD response such that it accounted for
the long TR of 14 s (micro time resolution of 80 ms; micro
time onset 1; high-pass filter 360-s). At the first level, for each
participant, changes in brain regional responses were estimated
by a general linear model (GLM) (Friston et al., 1995) and
the following memory vs. perception contrast was performed.
Contrasts were computed for the combined [encoding and
maintenance scans] (for tonal material), and for maintenance
scan only for verbal material. These contrasts maps were used in
the multivariate analyses.

Task-fMRI: Pitch Localizer
Participants
Note that only a subset of subjects has participated to the task
fMRI: pitch localizer (n = 12 in each group, all participants were
recorded in Lyon). See Supplementary Table S2 for details.

Stimuli
Stimuli were composed of either harmonic tone complexes or
Gaussian noise (see Figure 1A for a schematic of the design). The
tone complexes contained harmonics 3–6 of their fundamental
frequency (F0). We did not include the fundamental frequency
or second harmonic in the stimulus because they are not needed
to produce a robust pitch percept (Houtsma and Smurzynski,
1990) and because their inclusion produces an excitation pattern
(the average cochlear response as a function of frequency) that
more substantially differs from that of noise due to their wide
spacing in the cochlea. Gaussian noise sounds were filtered to
span the same frequency range as the harmonic tone complexes.
Each stimulus lasted 2 s and included 6 “notes” that were varied

in frequency to minimize adaptation (for details, see Norman-
Haignere et al., 2013). For each stimulus, the overall frequency
range across all notes spanned either a low or high spectral
region. We used two frequency ranges so that we could also
test for tonotopic organization as a positive control in case
amusic participants showed weaker or absent pitch responses.
Our analyses focused on characterizing pitch-responsive voxels
by contrasting responses to harmonic tones and noise, combining
across the two frequency ranges (frequency-selective responses
reflecting tonotopy were evident in both groups, as expected).
To assess pitch responses, we contrasted responses to harmonic
tones and noise, and summed this contrast across both low-
and high-frequency ranges to maximize statistical power: [low
tones - low noise] + [high tones - high noise]. The mean
F0s for the low- and high-frequency harmonic notes were 166
and 666 Hz, respectively (yielding frequency ranges of the
harmonics spanning 0.5–1 and 2–4 kHz, respectively). Noise
was not used to mask cochlear distortion products because for
spectrally ‘resolvable’ harmonics like those tested here, distortion
products have little effect on the response of pitch regions
(Norman-Haignere and McDermott, 2016).

To focus subjects’ attention on the stimuli, participants
performed a rhythm judgment task intended to be similarly
difficult for amusics and controls: each stimulus had notes of either
equal durations (333 ms) or irregular durations (183–583 ms),
and subjects were instructed to indicate whether they heard a
regular or irregular rhythm using a button press. Performance on
the rhythm task was similar between amusics and controls, with
no significant group difference [t(20) = 1.42; p = 0.17].

Procedure
Stimuli were presented in a sparse, blocked design, with 6.2 s
stimuli from the same condition presented successively in each
block (Figure 1A). After each stimulus, a single scan was collected
(Belin et al., 1999). Each participant completed a single run
of the experiment, which included five blocks for each of the
four conditions and five blocks of silence to provide a baseline
with which to compare responses (each block lasted 20.4 s).
Condition orders were pseudorandom and counterbalanced
across participants: for each participant, a set of condition
orders was selected from a large set of randomly generated
orders (20,000) such that, on average, each condition was equally
likely to occur at each point in the run and each condition
was preceded equally often by every other condition in the
experiment. Presentation software (Neurobehavioral Systems)
was used to present sounds in the scanner and record button
responses. Sounds were presented at a fixed level (70 dB SPL)
using MRI-compatible earphones (Nordic NeuroLab).

Data Acquisition and Preprocessing
The details of the scanning sequence were identical to that used in
Norman-Haignere et al. (2013). Briefly, each functional volume
(e.g., a single 3D image) comprised 15 slices covering most of
the superior temporal cortex and oriented parallel to the superior
temporal plane (slices were 4 mm thick with a 2.1 mm× 2.1 mm
in-plane resolution). Volumes were acquired every 3.4 s. Each
acquisition lasted 1 s and stimuli were presented in the 2.4 s gap
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of silence between acquisitions (Figure 1B). Functional volumes
were motion corrected and aligned to the anatomical volume
from each participant. Head motion and voxel SNR were similar
between the two groups, with no significant difference in either
measure [t(20) < 0.2, p > 0.8 for both]. The aligned volumes
were resampled to the high-density surface mesh computed by
FreeSurfer for each individual participant; and these individual-
participant meshes were aligned to the mesh of a standardized
template brain (the MNI305 FsAverage brain). Note that this
mapping to surface was done only for the Pitch localizer to
allow a comparison between univariate results reported in the
original paper (Norman-Haignere et al., 2016) and multivariate
results presented in the current study using analysis using exactly
similar data. After alignment, the mesh data were smoothed using
a relatively small kernel (3 mm FWHM) and interpolated to a
1.5 × 1.5 mm grid using a flattened representation of the surface
mesh. We used a slightly larger smoothing kernel to compute
the group-averaged, whole-brain maps described below (5 mm
FWHM) to account for the local variability of cortical responses
across participants.

Regression Analyses
Each voxel was fit with a GLM, with one regressor per stimulus
condition. The regressors for each stimulus condition were
computed in the standard way, using an estimate of the HRF. This
HRF estimate was calculated from the data using a finite-impulse
response (FIR) model, rather than assuming a fixed parametric
form. To model sources of noise, we included the following
nuisance regressors: a linear-trend regressor (to account for
signal drift) and the first 10 principal components from voxel
responses in white matter (to account for sources of noise with
high variance across voxels).

Estimating the Hemodynamic Response Function
Each time point in the HRF was modeled with a separate
“candlestick” regressor, with a 1 for all scans that occurred a
fixed time delay after the onset of a stimulus block (regardless
of stimulus type/condition) and a 0 for all other scans. These
candlestick regressors were fit to each voxel’s response using
ordinary least squares. The weights for each regressor, which
collectively provide an estimate of each voxel’s HRF, were then
averaged across voxels and participants. We averaged responses
across the 10% of voxels in the superior temporal plane (the
anatomical region most responsive to sound) of each participant
that were best explained by the candlestick regressors (the
estimated HRF was robust to the exact number of voxels selected;
e.g., selecting the top 50% of voxels yielded similar results).
This analysis provided an estimate of the average HRF to a
stimulus block in our experiment across all conditions and
participants. Regressors for each condition and each participant
were computed from this HRF and fit to the voxel responses.

Whole-Brain Contrast Maps
We calculated maps showing voxels with a significant response
preference for sounds with pitch (harmonic tones > noise).
Each voxel’s response time course was fit with the four
stimulus regressors and 11 nuisance regressors described above.

The weights for the tone and noise regressors were subtracted
and then summed across the two frequency ranges (i.e., [low
tones – low noise] + [high tones – high noise]). This difference
score for each voxel and participant was converted to a z-statistic
(using ordinary least-squares equations). These z-maps were then
mapped back to the volume using FreeSurfer to perform the
searchlight analyses (see below).

Multivariate Analysis
We were interested in classifying participants as amusic
or control according to their structural MRI, resting state
connectivity maps and task-related fMRI data. Imaging metrics
for task-based fMRI were optimized for univariate analyses: the
fMRI designs were defined to generate bold signal associated
with the tasks of interest (Pitch localizer, short-term memory for
tones and short-term memory for words). For sMRI we focused
on whole brain GM and WM volumes for which abnormalities
have already been reported with univariate analyses in congenital
amusia. Similarly, for resting state, we investigated whole brain
connectivity patterns with seeds in bilateral auditory cortices for
which abnormal connectivity with the default mode network
have been reported. Multivariate analyses were performed using
the Decoding Toolbox (Hebart et al., 2014) and LibSVM’s
linear support vector machine (SVM) implementation5. A linear
classifier was chosen as MRI (sMRI, fMRI) data contains many
more features than examples, and classification of such data is
generally susceptible to over-fitting. One way of alleviating the
danger of over-fitting is to choose a simple function (such as
a linear function) for classification, where each feature affects
the prediction solely via its weight and without interaction with
other features (rather than more complex classifiers, such as
non-linear SVMs or artificial neural networks, which can let
interactions between features and non-linear functions thereof
drive the prediction). Linear SVMs are pairwise classifiers; we
thus ran analyses on pairs of “conditions” (i.e., amusic group
vs. control group). We used motion corrected, normalized,
and smoothed data.

All classification analyses were performed using a leave-one-
out cross-validation procedure. For example, the classifier was
trained on data from 35 of the images and tested on data from the
36th image, repeated 36 times. In all analyses, SVM classification
was performed using a searchlight procedure (Kriegeskorte
et al., 2006) whereby the classification algorithm considers only
voxels from a small sphere of space (radius = 12 mm, see
Klein and Zatorre (2015) for a similar procedure). The radius
of the searchlight was based on the largest voxel size of our
five different datasets (3 × 3 × 3). Twelve mm corresponds to
four voxels in the fMRI data, a radius classically used in fMRI
literature (see guidelines of the software we used (Hebart et al.,
2014) and previous work from our lab (Klein and Zatorre, 2015).
We decided to use the similar radius for all analyses in order
to be able to compare the classification outputs for the different
imaging metrics.

Results are expressed as area under the receiver-operator-
characteristic curve (AUC) of category identification, which uses

5http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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the distance of a classification output to the decision boundary
and can provide results about the information content using a
graded rather than a binary response (see Hebart et al., 2014).
AUC was calculated using an average of the cross-validation folds,
and this value was assigned to the center voxel of the sphere. This
procedure was repeated using every brain voxel as a searchlight
center (∼35,000–45,000 spheres), yielding local accuracy maps
for the entire brain. The analysis output was a unique map
containing for each voxel the classification AUC.

Statistical Analysis
To assess whether these classification values were significant, we
compared maps of classification accuracy with a null distribution
of permutations. Each permutation was constructed by randomly
reordering group labels and by repeating the same analysis
1000 times thus providing a null distribution that was used
for assessing significance. To correct for multiple comparisons,
we used a simple variant of cluster-correction suited for the
permutation test (Norman-Haignere et al., 2016). For each set
of permuted condition orders, we computed a map of voxelwise
significance values using the permutation analysis just described.
We then thresholded this uncorrected voxelwise significance map
(p < 0.05) and recorded the size of the largest contiguous voxel
cluster that exceeded this threshold. Using this approach, we
built up a null distribution for cluster sizes across the 1000
permutations. To evaluate significance, we counted the fraction
of times that the cluster sizes for this null distribution exceeded
that for each observed cluster (based on un-permuted orders and
the same p < 0.05 voxelwise threshold). For significant brain
regions, we extracted the decision values (estimated for each
cross validation fold separately and indicating the distance of
each participant to the separating hyperplane) of the statistical
peak (maximum zscore after permutation testing and cluster
correction) to estimate Pearson’s correlation with behavioral data.

The behavioral data consisted in participants’ accuracy for
the short-term memory task for pitch sequences described above
that has been performed by all 36 participants. The pitch
short-term memory tasks was used instead of the Montreal
Battery of Evaluation of amusia (MBEA; Peretz et al., 2003) to
perform correlations with brain classification because: (1) the
participants were defined as amusics or controls based on
the MBEA scores only and thus, (2) the pitch memory task
constituted an independent behavioral metric that (3) shows
an overlap in performance between amusics and controls
(see Figure 1D). This task thus allowed us to investigate if
participants who can potentially be misclassified in brain imaging
data as amusics (or controls) show comparable performance in
the pitch memory task.

Note that this potential link between classification outcome
and behavior was not estimated for the task-fMRI tonal short-
term memory, as the correlation would have been performed
with behavioral data acquired during the actual fMRI recording.
This analysis would thus not be comparable with the correlation
analyses performed between the behavioral data (tonal short-
term memory task) and the other imaging metrics (sMRI,
rs-fMRI, task-fMRI Pitch Localizer) that have been acquired
either without or with a different behavioral task.

Finally, is it relevant to note that the tonal short-term memory
task is correlated with the MBEA (see Albouy et al., 2019), and the
MBEA has been used behaviorally to define group membership.
One can argue that a significant correlation might be driven by
the group difference. To avoid this possible effect, for significant
correlations, a null distribution of r-values was generated by
permuting 10,000 times the behavioral data within each group.
To evaluate significance, we estimated the fraction of times that
the r-value for this null distribution exceeded that of the un-
permuted data. With is approach, if an observed correlation is
a consequence of the group membership and nothing more,
it should not matter which individual has which score and,
we would expect to get the same magnitude of correlation
than with the un-permuted (original) data. In contrast, if the
probability of obtaining r-value for this null distribution that
exceeds that of the un-permuted data is below p = 0.05 we could
reasonably argue that a circularity argument could not account
for the findings.

RESULTS

Whole-brain searchlight analyses (Support Vector Machine,
leave-one-out cross-validation procedure, permutation statistics,
and cluster-level corrections) were performed on five different
datasets consisting in: (A) a set of gray and white matter
concentrations maps extracted from T1-MPRAGE volumes (data
from Albouy et al., 2019); (B) whole-brain rs-fMRI seed-based
connectivity maps with seeds in the right and left auditory
cortices (data from Leveque et al., 2016); and (C) three task-fMRI
datasets (data from Norman-Haignere et al., 2016; Albouy et al.,
2019) consisting of: a pitch localizer (Figure 1A), a short-term
memory task for pitch (Figures 1B–D), and a short-term memory
task for words (control dataset, Figures 1B–D). Data are from
36 subjects (18 amusics – 18 controls) who participated to the
structural imaging (T1-MPRAGE) and Task-fMRI for short-term
memory (tones, words). Note that only a subset of these subjects
participated in the rs-fMRI (13 in each group, all participants
were recorded in Lyon) and task fMRI: pitch localizer (n = 12
in each group, all participants were recorded in Lyon).

Figure 1D illustrated the behavioral performance of amusics
and controls for these short-term memory tasks, where a
Group (amusics, controls) by Material (pitch, words) interaction
[F(1,34) = 18.42, p < 0.001] revealed decreased performance in
amusics as compared to controls for pitch memory (p < 0.001),
but not for verbal memory (p = 0.99, Tukey corrected). fMRI
designs are depicted in Figures 1A,C.

The classification was successful (see details below, Figure 1E)
in right temporal and frontal brain regions and DMN, for
all datasets, except for the task-related fMRI acquired during
the verbal memory task, as predicted from the literature (see
Figure 1E). Note that classification accuracy [estimated as area
under the receiver-operator-characteristic curve (AUC)] was not
significantly different (McNemar tests-corrected for multiple
comparisons performed on AUC values of the significant
searchlights; all ps > 0.39) between the successful classifiers.
Below we describe these results for each dataset.
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FIGURE 2 | Group classification results for structural data (White Matter).
Results are displayed on a single participant T1 in the MNI space provided by
SPM12. Bar plots represent sensitivity (red) and specificity (white) of the
classifier.

Structural MRI
The pattern of white-matter concentration in the right STG
(Figure 2, peak at x = 36 y =−32 z = 5; cluster size k = 39; cluster-
level corrected p = 0.026) discriminated amusics from controls
significantly above chance level (AUC 71.69% ± 0.45 SEM of
significant searchlights, p< 0.05). However, this classifier showed
lower sensitivity (62.25± 0.79%, percentage of amusics correctly
identified as amusics) than specificity (72.07± 1.07%, percentage
of controls correctly identified as controls), thus questioning its
predictive capacity (high rate of false negatives). This was also
illustrated by the absence of correlation between the classifier
decision values and participant behavioral performance in the
short-term memory task for pitch [r(34) = −0.09, p > 0.05].
Finally, the classification based on gray-matter maps showed a
unique cluster in the right Inferior frontal gyrus (permutation
testing), but this effect did not survive cluster correction (see
Supplementary Figure S1).

Resting-State fMRI
For resting-state data, the MVPA analyses revealed that the
pattern of connectivity between the auditory cortices and the
default mode network allowed classifying amusics vs. controls.
Indeed, classification based on connectivity maps for seeds in the
right and left Heschl’s gyri (MNI coordinates (x = 45 y = −19
z = 6) and (x =−44 y =−18 z = 5), coordinates from Albouy et al.,
2013a) showed high AUC (right seed: 77.93 ± 0.07%, p < 0.05;
left seed: 78.68 ± 0.09%) in several clusters (see Figure 3 and
Table 2 for details) of the Default Mode Network (as revealed
by the overlap between the significant clusters of the present
study and a mask of the DMN extracted from a coordinate-based
meta-analysis6 (Acikalin et al., 2017).

6https://identifiers.org/neurovault.collection:1653

Interestingly, similar sensitivity and specificity were observed
(right seed: sensitivity 71.09 ± 0.18%, specificity 70.33 ± 0.19%;
left seed: sensitivity 72.13 ± 0.21%, specificity 70.26 ± 0.20%),
confirming the predictive capacity of the classifier. However,
classifier decision values were not correlated with participant
behavioral performance in the short-term memory task for pitch
[all rs(20) < 0.29, all ps > 0.05].

Task-fMRI: Short-Term Memory
fMRI responses were measured to pitch memory and pitch
perception trials (Figure 1A, see section “Materials and
Methods”). The perception task was designed as a control
condition: participants listened passively to the same stimuli
(i.e., the first sequence) as the one used in the memory task,
but without actively encoding the information in memory
(Figure 1B). By contrasting memory and perception trials, we
aimed to identify the brain networks specifically related to short-
term memory processes in each group. The MVPA analyses
were thus performed on first-level contrast maps (different of
beta weights) for the contrast [memory–perception]. We found
that the pattern of functional activity during pitch memory
in the right IFG (triangular part, x = 48 y = 34 z = 10,
k = 240, cluster-level corrected p = 0.001) discriminates amusics
from controls significantly above chance level (Figure 4A,
AUC 74.45 ± 0.07%, Sensitivity 67.19 ± 0.28%, Specificity
66.62 ± 0.35%). As mentioned in Section “Materials and
Methods,” the correlation between behavioral data and classifier
outcome was not evaluated for the task-fMRI tonal short-term
memory, as the correlation would have been performed with
behavioral data acquired during the actual fMRI recording.
Finally, as predicted, the classifier was not able to decode
the groups on the task-related fMRI data for verbal material
(Figure 1E, no significant cluster).

Task-fMRI: Pitch Localizer
fMRI responses were measured to harmonic tones and Gaussian
noise spanning the same frequency range (Figure 1A), while
participants performed a non-pitch related task focusing on
rhythmic features. We then calculated maps showing voxels
with a significant response preference for sounds with pitch.
The MVPA analyses were done on these first-level z-maps
for the contrast [harmonic tones – Gaussian noise]. The
pattern of functional activity in the right Heschl’s gyrus
(x = 51 y = −23 z = 7, k = 69 cluster-level corrected
p = 0.001, Figure 4B) discriminates amusics from controls
significantly above chance level (AUC 78.67 ± 0.32%, Sensitivity
70.65 ± 0.72%, Specificity 69.37 ± 0.77%). Finally, and
more importantly, the classifier decision values were positively
correlated with participants’ performance in tonal short-
term memory [r(20) = 0.64, p < 0.001; Figure 4B, right
panel]. After generating the null distribution of r-values (10k
permutations of behavior values within each group), the
probability of obtaining r-values for this null distribution that
exceeds that of the un-permuted data was p = 0.01. We
could thus reasonably argue that this effect is not driven by
group membership (see section “Materials and Methods”). The
correlation was significant only for task-based fMRI unlike
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FIGURE 3 | Group classification for the resting state connectivity data. Classification was performed on whole brain connectivity maps with seeds in the left (A) and
right (B) auditory cortices. Results are displayed single participant T1 in the MNI space provided by SPM12. Bar plots represent sensitivity (red) and specificity (white)
of the classifier.

TABLE 2 | Coordinates of regions of significantly above chance level decoding for
the rs-fMRI data.

Seed H Regions x y z mm Cluster
size

p-cluster-
level

corrected

Right AC L Middle cingulate gyrus −10 10 42 606 p = 0.001

Gyrus rectus∗ −4 23 −24 313 p = 0.01

Angular gyrus∗ −35 −63 45 432 p = 0.003

Inferior temporal gyrus −57 −38 −23 528 p = 0.001

Left AC R Angular gyrus∗ 57 −50 28 336 p = 0.008

Middle frontal gyrus∗ 41 26 35 404 p = 0.003

Superior frontal gyrus 17 58 25 259 p = 0.02

Post-central gyrus 17 −36 77 258 p = 0.021

Coordinates are in the MNI space and correspond to the peak of each cluster. R,
right; L, left; AC, auditory cortex.∗Clusters overlapping with the DMN (see https:
//identifiers.org/neurovault.collection:1653, Acikalin et al., 2017).

any of the other imaging metrics reported above: r-values
were significantly higher than for structural and resting state
data (all ps < 0.05).

DISCUSSION

In the present study, we showed that structural MRI, resting-
state connectivity, and pitch-related fMRI data (pattern of
BOLD activation) were able to discriminate amusic individuals
from typical control participants. Decoding was observed in
meaningful brain networks as the results reproduce previous
univariate results [sMRI (new dataset), rs-fMRI (reused form
Leveque et al., 2016) and task-fMRI short-term memory (reused
from Albouy et al., 2019)]. The only difference concerns the
task fMRI – Pitch localizer (Norman-Haignere et al., 2016)
that highlight a group difference in the right auditory cortex
during pitch perception. The implications of these findings are
discussed below.

For structural MRI, classification analysis highlighted the
right STG, a region where decreased white-matter concentration
in amusics as compared to controls have been reported
(Albouy et al., 2013a). For rs-fMRI, classification revealed
several clusters of the DMN, such as medial prefrontal
or bilateral inferior parietal regions. This is in line with
Leveque et al. (2016), who have interpreted this effect as a
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FIGURE 4 | Group classification results for task-related functional imaging. (A) Group classification for the tonal short-term memory data. (B) Group classification for
the pitch localizer data. Scatter plot indicates classification decision values against behavioral performance in a pitch memory task Results are displayed single
participant T1 in the MNI space provided by SPM12. Bar plots represent sensitivity (red) and specificity (white) of the classifier.

marker of incomplete maturation of the auditory networks in
congenital amusia.

For task-based fMRI, classification performed during pitch
memory revealed that pattern of activity in the right IFG
discriminates amusics from controls. This result is in line with
previous neuroimaging studies in congenital amusia reporting
decreased or abnormal activity in the right IFG during pitch
perception and memory (Hyde et al., 2011; Albouy et al., 2013a,
2015, 2019; Peretz, 2016; Tillmann et al., 2016). Interestingly,
the classifier was not able to decode the groups on the task-
related fMRI data for verbal material, indicating that the classifier
outcome is specific to the engagement of neural circuits dedicated
to pitch processing (impaired in congenital amusia), but not

others. This result also confirms that the relative accuracy
of the multivariate classifier (cross-validated) is unlikely to
reflect over-fitting. Moreover this observed specificity for pitch-
related tasks (disorder related) allows ruling out other confounds
such as differences in head motion or attentional differences
between the groups.

Finally, the pattern of functional activity in the right Heschl’s
gyrus (Pitch localizer dataset) also discriminated amusics from
controls. This group difference in the auditory cortex contrasts
with a prior fMRI study using the same dataset, where we found
that the overall anatomical distribution and selectivity of pitch-
responsive voxels was similar between amusics’ and controls
(Norman-Haignere et al., 2016). Our new results demonstrate
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that there are subtle but reliable differences in the pattern of pitch
selectivity between amusics and controls in primary auditory
cortex, revealing the utility of classification-based approaches
compared with standard univariate and region-of-interest (ROI)
analyses. Our results are also consistent with prior reports
showing abnormal electrophysiological responses in amusics’
auditory cortices using Magnetoencephalography (Albouy et al.,
2013a, 2015). Because of fMRI’s superior spatial precision our
results reveal a candidate anatomical locus in auditory cortex for
pitch-specific deficits in amusia.

Interestingly, successful classifiers (see Figure 1E) were all
showing AUC around 70–80%. This level of discrimination
power is line with a recent study (Serrallach et al., 2016)
showing a classification accuracy of around 70% in MEG and
sMRI and psychometric behavioral data using linear regression
methods to find specific biomarkers for ADHD, attention deficit
disorder (ADD) and dyslexia. It is relevant to note that the
authors were able to reach a sensitivity of around 90% when
combining all these data in one classification analysis. It would
be thus very interesting for future work to estimate the power of
such multimodal classification in identifying congenital amusia.
Finally, the successful classifiers exhibited similar specificity and
sensitivity except for the classification performed on structural
data. Indeed decoding observed in the right STG showed
lower sensitivity than specificity (see section “Results” or below)
suggesting that structural changes can be considered as a less
sensitive biomarker for the identification of congenital amusia
than the functional changes in the right AC and IFG task-related
activity and in the AC resting-state functional connectivity.

When relating the classifier decision values to a behavioral
metric, we showed that task based fMRI classification decision
values were positively predicting participants’ performance in
tonal short-term memory, unlike any of the other imaging
data (sMRI, rs-fMRI). The correlation values were significantly
different form sMRI and rs-fMRI, thus suggesting that task-
related imaging data can be used as a more powerful diagnostic
tool than sMRI and rs-fMRI to identify developmental disorders,
as it allows defining fine-grained patterns of brain activity
that predict behavioral performance and thus yield relevant
information about symptom severity.

This study shows the power of task-related fMRI data
to identify and predict behavioral performance in congenital
amusia. However this study does not allow concluding for
the generalizability of this approach. Further work is thus
needed to confirm the advantage of task-related fMRI over
structural MRI and rs-fMRI to predict symptom severity in
other developmental disorders. Moreover, it is relevant to note
that the sample size is relatively small for an imaging-based
classification analysis (see Varoquaux, 2018). However, our
results performed at the whole-brain level highlighted specific
brain regions and networks that have previously been reported
as abnormal/malfunctioning in congenital amusia, rather than
inconsistent or unusual regions that would be more typical of
false-positive responses for example.

Overall, our findings show that task-based imaging
classifications identify key dysfunctional brain regions and
circuits that allow to (1) improve our understanding of the

biological basis of neurodevelopmental and learning disorders
and (2) predict symptom severity. We propose that such
approach might have a beneficial and generalizable impact on
diagnosis of developmental and learning disorders, such as
dyslexia (Jaffe-Dax et al., 2017) where similar deficits in the
ability to perceive and memorize rapidly changing acoustic
information have been reported.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this manuscript will
be made available by the authors, without undue reservation, to
any qualified researcher.

ETHICS STATEMENT

The study was approved by French and Canadian local ethics
committees on Human Research and all participants gave written
informed consent.

AUTHOR CONTRIBUTIONS

PA, AC, IP, BT, and RZ: conceptualization. PA, YL, and SN-H:
methodology and fMRI pre-processing. PA: data recording, fMRI
analysis, writing – original draft, and visualization. AC, BT, IP,
and RZ: resources, supervision, and project administration. PA,
AC, SN-H, YL, IP, and RZ: writing – review and editing.

FUNDING

This work was supported by a grant from “Agence Nationale de la
Recherche” (ANR) of the French Ministry of Research ANR-11-
BSH2-001-01 to BT and AC and by a grant from the Canadian
Institutes of Health Research to IP. PA was funded by the
Banting post-doctoral fellowship. This work was conducted in the
framework of the LabEx CeLyA (“Centre Lyonnais d’Acoustique,”
ANR-10-LABX-0060) and of the LabEx Cortex (“Construction,
Function and Cognitive Function and Rehabilitation of the
Cortex,” ANR-11-LABX-0042) of Université de Lyon, within
the program “Investissements d’avenir” (ANR-11-IDEX-0007)
operated by the French National Research Agency (ANR).

ACKNOWLEDGMENTS

We thank Lesly Fornoni and Mihaela Felezeu for their
contribution in the recruitment of amusic participants in Lyon
and Montreal, and Patrick Bermudez for his contribution in
the fMRI design.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnins.2019.
01165/full#supplementary-material

Frontiers in Neuroscience | www.frontiersin.org 12 October 2019 | Volume 13 | Article 1165

https://www.frontiersin.org/articles/10.3389/fnins.2019.01165/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2019.01165/full#supplementary-material
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01165 October 26, 2019 Time: 15:13 # 13

Albouy et al. Decoding Amusia With Task-fMRI

REFERENCES
Acikalin, M. Y., Gorgolewski, K. J., and Poldrack, R. A. (2017). A coordinate-based

meta-analysis of overlaps in regional specialization and functional connectivity
across subjective value and default mode networks. Front. Neurosci. 11:1. doi:
10.3389/fnins.2017.00001

Albouy, P., Mattout, J., Bouet, R., Maby, E., Sanchez, G., Aguera, P. E., et al. (2013a).
Impaired pitch perception and memory in congenital amusia: the deficit starts
in the auditory cortex. Brain 136, 1639–1661. doi: 10.1093/brain/awt082

Albouy, P., Schulze, K., Caclin, A., and Tillmann, B. (2013b). Does tonality
boost short-term memory in congenital amusia? Brain Res. 1537, 224–232.
doi: 10.1016/j.brainres.2013.09.003

Albouy, P., Mattout, J., Sanchez, G., Tillmann, B., and Caclin, A. (2015). Altered
retrieval of melodic information in congenital amusia: insights from dynamic
causal modeling of MEG data. Front. Hum. Neurosci. 9:20. doi: 10.3389/fnhum.
2015.00020

Albouy, P., Peretz, I., Bermudez, P., Zatorre, R. J., Tillmann, B., and Caclin, A.
(2019). Specialized neural dynamics for verbal and tonal memory: fMRI evidence
in congenital amusia. Hum. BrainMapp. 40, 855–867. doi: 10.1002/hbm.24416

Arbabshirani, M. R., Plis, S., Sui, J., and Calhoun, V. D. (2017). Single
subject prediction of brain disorders in neuroimaging: promises and pitfalls.
Neuroimage 145, 137–165. doi: 10.1016/j.neuroimage.2016.02.079

Ashburner, J., and Friston, K. J. (2005). Unified segmentation. Neuroimage 26,
839–851. doi: 10.1016/j.neuroimage.2005.02.018

Belin, P., Zatorre, R. J., Hoge, R., Evans, A. C., and Pike, B. (1999). Event-related
fMRI of the auditory cortex. Neuroimage 10, 417–429. doi: 10.1006/nimg.1999.
0480

Bray, S., Chang, C., and Hoeft, F. (2009). Applications of multivariate pattern
classification analyses in developmental neuroimaging of healthy and clinical
populations. Front. Hum. Neurosci. 3:32. doi: 10.3389/neuro.09.032.2009

Brett, M., Anton, J. L., Valabregue, R., and Poline, J. B. (2002). Region of interest
analysis using the marsbar toolbox for SPM 99. Neuroimage 16:497.

Bruin, W., Denys, D., and Van Wingen, G. (2018). Diagnostic neuroimaging
markers of obsessive-compulsive disorder: initial evidence from structural
and functional MRI studies. Prog. Neuropsychopharmacol. Biol. Psychiatry 91,
49–59. doi: 10.1016/j.pnpbp.2018.08.005

Caclin, A., and Tillmann, B. (2018). Musical and verbal short-term memory:
insights from neurodevelopmental and neurological disorders. Ann. N. Y. Acad.
Sci. doi: 10.1111/nyas.13733 [Epub ahead of print].

Fauvel, B., Groussard, M., Chetelat, G., Fouquet, M., Landeau, B., Eustache, F.,
et al. (2014). Morphological brain plasticity induced by musical expertise is
accompanied by modulation of functional connectivity at rest. Neuroimage 90,
179–188. doi: 10.1016/j.neuroimage.2013.12.065

Friedman, L., and Glover, G. H. (2006). Report on a multicenter fMRI quality assu-
rance protocol. J. Magn. Reson. Imaging 23, 827–839. doi: 10.1002/jmri.20583

Friston, K., Holmes, A., Worsley, K. J., Poline, J. B., Frith, C. D., and Frackowiak,
R. S. J. (1995). Statistical parametric maps in functional imaging: a general linear
approach. Hum. Brain Mapp. 2, 189–210. doi: 10.1002/hbm.460020402

Greicius, M. D., Krasnow, B., Reiss, A. L., and Menon, V. (2003). Functional
connectivity in the resting brain: a network analysis of the default mode hypo-
thesis. Proc. Natl. Acad. Sci. U.S.A. 100, 253–258. doi: 10.1073/pnas.0135058100

Hebart, M. N., Gorgen, K., and Haynes, J. D. (2014). The decoding toolbox (TDT):
a versatile software package for multivariate analyses of functional imaging data.
Front. Neuroinform. 8:88. doi: 10.3389/fninf.2014.00088

Houtsma, A. J. M., and Smurzynski, J. (1990). Pitch identification and
discrimination forcomplex tones with many harmonics. J. Acoust. Soc. Am. 87,
304–310. doi: 10.1121/1.399297

Hyde, K. L., Lerch, J. P., Zatorre, R. J., Griffiths, T. D., Evans, A. C., and Peretz, I.
(2007). Cortical thickness in congenital amusia: when less is better than more.
J. Neurosci. 27, 13028–13032. doi: 10.1523/jneurosci.3039-07.2007

Hyde, K. L., Zatorre, R. J., Griffiths, T. D., Lerch, J. P., and Peretz, I. (2006).
Morphometry of the amusic brain: a two-site study. Brain 129, 2562–2570.
doi: 10.1093/brain/awl204

Hyde, K. L., Zatorre, R. J., and Peretz, I. (2011). Functional MRI evidence of an
abnormal neural network for pitch processing in congenital amusia. Cereb.
Cortex 21, 292–299. doi: 10.1093/cercor/bhq094

Jaffe-Dax, S., Frenkel, O., and Ahissar, M. (2017). Dyslexics’ faster decay of implicit
memory for sounds and words is manifested in their shorter neural adaptation.
Elife 6:e20557. doi: 10.7554/eLife.20557

Kawahara, H., and Irino, T. (2004). “Underlying principles of a high-quality speech
manipulation system STRAIGHT and its application to speech segregation,” in
Speech Separation by Humans and Machines, ed. P. L. Divenyi, (Alphen aan den
Rijn: Kluwer Academic), 167–180. doi: 10.1007/0-387-22794-6_11

Klein, M. E., and Zatorre, R. J. (2015). Representations of invariant musical
categories are decodable by pattern analysis of locally distributed bold responses
in superior temporal and intraparietal sulci. Cereb. Cortex 25, 1947–1957. doi:
10.1093/cercor/bhu003

Kriegeskorte, N., Goebel, R., and Bandettini, P. (2006). Information-based
functional brain mapping. Proc. Natl. Acad. Sci. U.S.A. 103, 3863–3868.
doi: 10.1073/pnas.0600244103

Leveque, Y., Fauvel, B., Groussard, M., Caclin, A., Albouy, P., Platel, H., et al.
(2016). Altered intrinsic connectivity of the auditory cortex in congenital
amusia. J. Neurophysiol. 116, 88–97. doi: 10.1152/jn.00663.2015

Loui, P., Alsop, D., and Schlaug, G. (2009). Tone deafness: a new disconnection
syndrome? J. Neurosci. 29, 10215–10220. doi: 10.1523/JNEUROSCI.1701-09.
2009

Norman-Haignere, S., Kanwisher, N., and Mcdermott, J. H. (2013). Cortical
pitch regions in humans respond primarily to resolved harmonics and are
located in specific tonotopic regions of anterior auditory cortex. J. Neurosci. 33,
19451–19469. doi: 10.1523/JNEUROSCI.2880-13.2013

Norman-Haignere, S., and McDermott, J. H. (2016). Distortion products in
auditory fMRI research: measurements and solutions. Neuroimage 129, 401–
413. doi: 10.1016/j.neuroimage.2016.01.050

Norman-Haignere, S. V., Albouy, P., Caclin, A., Mcdermott, J. H., Kanwisher,
N. G., and Tillmann, B. (2016). Pitch-responsive cortical regions in congenital
amusia. J. Neurosci. 36, 2986–2994. doi: 10.1523/JNEUROSCI.2705-15.
2016

Peretz, I. (2016). Neurobiology of congenital amusia. Trends. Cogn. Sci. 20, 857–
867. doi: 10.1016/j.tics.2016.09.002

Peretz, I., Champod, A. S., and Hyde, K. (2003). Varieties of musical disorders.Ann.
N. Y. Acad. Sci. 999, 58–75. doi: 10.1196/annals.1284.006

Raichle, M. E., Macleod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., and
Shulman, G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci.
U.S.A. 98, 676–682.

Serrallach, B., Gross, C., Bernhofs, V., Engelmann, D., Benner, J., Gundert, N., et al.
(2016). Neural biomarkers for dyslexia. Front. Neurosci. 10:324. doi: 10.3389/
fnins.2016.00324

Shenas, S. K., Halici, U., and Cicek, M. (2014). A comparative analysis of functional
connectivity data in resting and task-related conditions of the brain for disease
signature of OCD. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 978–981.
doi: 10.1109/EMBC.2014.6943756

Tillmann, B., Leveque, Y., Fornoni, L., Albouy, P., and Caclin, A. (2016). Impaired
short-term memory for pitch in congenital amusia. Brain Res. 1640, 251–263.
doi: 10.1016/j.brainres.2015.10.035

Tillmann, B., Schulze, K., and Foxton, J. M. (2009). Congenital amusia: a short-
term memory deficit for non-verbal, but not verbal sounds. Brain Cogn. 71,
259–264. doi: 10.1016/j.bandc.2009.08.003

Uddin, L. Q., Dajani, D. R., Voorhies, W., Bednarz, H., and Kana, R. K.
(2017). Progress and roadblocks in the search for brain-based biomarkers of
autism and attention-deficit/hyperactivity disorder. Transl. Psychiatry 7:e1218.
doi: 10.1038/tp.2017.164

Varoquaux, G. (2018). Cross-validation failure: small sample sizes lead to large
error bars. Neuroimage 180, 68–77. doi: 10.1016/j.neuroimage.2017.06.061

Williamson, V. J., and Stewart, L. (2010). Memory for pitch in congenital amusia:
beyond a fine-grained pitch discrimination problem. Memory 18, 657–669.
doi: 10.1080/09658211.2010.501339

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2019 Albouy, Caclin, Norman-Haignere, Lévêque, Peretz, Tillmann and
Zatorre. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 13 October 2019 | Volume 13 | Article 1165

https://doi.org/10.3389/fnins.2017.00001
https://doi.org/10.3389/fnins.2017.00001
https://doi.org/10.1093/brain/awt082
https://doi.org/10.1016/j.brainres.2013.09.003
https://doi.org/10.3389/fnhum.2015.00020
https://doi.org/10.3389/fnhum.2015.00020
https://doi.org/10.1002/hbm.24416
https://doi.org/10.1016/j.neuroimage.2016.02.079
https://doi.org/10.1016/j.neuroimage.2005.02.018
https://doi.org/10.1006/nimg.1999.0480
https://doi.org/10.1006/nimg.1999.0480
https://doi.org/10.3389/neuro.09.032.2009
https://doi.org/10.1016/j.pnpbp.2018.08.005
https://doi.org/10.1111/nyas.13733
https://doi.org/10.1016/j.neuroimage.2013.12.065
https://doi.org/10.1002/jmri.20583
https://doi.org/10.1002/hbm.460020402
https://doi.org/10.1073/pnas.0135058100
https://doi.org/10.3389/fninf.2014.00088
https://doi.org/10.1121/1.399297
https://doi.org/10.1523/jneurosci.3039-07.2007
https://doi.org/10.1093/brain/awl204
https://doi.org/10.1093/cercor/bhq094
https://doi.org/10.7554/eLife.20557
https://doi.org/10.1007/0-387-22794-6_11
https://doi.org/10.1093/cercor/bhu003
https://doi.org/10.1093/cercor/bhu003
https://doi.org/10.1073/pnas.0600244103
https://doi.org/10.1152/jn.00663.2015
https://doi.org/10.1523/JNEUROSCI.1701-09.2009
https://doi.org/10.1523/JNEUROSCI.1701-09.2009
https://doi.org/10.1523/JNEUROSCI.2880-13.2013
https://doi.org/10.1016/j.neuroimage.2016.01.050
https://doi.org/10.1523/JNEUROSCI.2705-15.2016
https://doi.org/10.1523/JNEUROSCI.2705-15.2016
https://doi.org/10.1016/j.tics.2016.09.002
https://doi.org/10.1196/annals.1284.006
https://doi.org/10.3389/fnins.2016.00324
https://doi.org/10.3389/fnins.2016.00324
https://doi.org/10.1109/EMBC.2014.6943756
https://doi.org/10.1016/j.brainres.2015.10.035
https://doi.org/10.1016/j.bandc.2009.08.003
https://doi.org/10.1038/tp.2017.164
https://doi.org/10.1016/j.neuroimage.2017.06.061
https://doi.org/10.1080/09658211.2010.501339
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Decoding Task-Related Functional Brain Imaging Data to Identify Developmental Disorders: The Case of Congenital Amusia
	Introduction
	Materials and Methods
	Participants
	Structural MRI
	Participants
	Image Preprocessing and Segmentation

	Resting State fMRI
	Participants
	Data Acquisition and Procedure
	Data Analysis
	Seed Determination
	Resting-State Analysis

	Task-fMRI: Short-Term Memory
	Participants
	Stimuli
	Memory Tasks
	Perception Tasks
	Procedure
	fMRI Design and Acquisition Parameters
	Preprocessing
	fMRI Analyses

	Task-fMRI: Pitch Localizer
	Participants
	Stimuli
	Procedure
	Data Acquisition and Preprocessing
	Regression Analyses
	Estimating the Hemodynamic Response Function
	Whole-Brain Contrast Maps

	Multivariate Analysis
	Statistical Analysis

	Results
	Structural MRI
	Resting-State fMRI
	Task-fMRI: Short-Term Memory
	Task-fMRI: Pitch Localizer

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


