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for SDR and Backward Compatible HDR Video

Coding
David Gommelet, Julien Le Tanou, Aline Roumy, Member, IEEE, Michaël Ropert,

and Christine Guillemot, Fellow, IEEE,

Abstract—Tone Mapping Operators (TMO) designed for videos
can be classified into two categories. In a first approach, TMOs
are temporal filtered to reduce temporal artifacts and provide a
Standard Dynamic Range (SDR) content with improved temporal
consistency. This however does not improve the SDR coding Rate
Distortion (RD) performances. A second approach is to design
the TMO with the goal of optimizing the SDR coding rate-
distortion performances. This second category of methods may
lead to SDR videos altering the artistic intent compared with the
produced HDR content. In this paper, we combine the benefits
of the two approaches by introducing new Weighted Prediction
(WP) methods inside the HEVC SDR codec. As a first step, we
demonstrate the interest of the WP methods compared to TMO
optimized for RD performances. Then we present the newly
introduced WP algorithm and WP modes. The WP algorithm
consists in performing a global motion compensation between
frames using an optical flow, and the new modes are based on
non linear functions in contrast with the literature using only
linear functions. The contribution of each novelty is studied
independently and in a second time they are all put in competition
to maximize the RD performances. Tests were made for HDR
backward compatible compression but also for SDR compression
only. In both cases, the proposed WP methods improve the RD
performances while maintaining the SDR temporal coherency.

Index Terms—High dynamic range (HDR), Compression,
Tone-Mapping (TMO), Backward-Compatible, HEVC, Weighted
Prediction, Nonlinear Illumination Compensation

I. INTRODUCTION

H IGH Dynamic Range (HDR) imaging allows the repro-
duction of much brighter and darker lights, or luminance

levels, than Standard Dynamic Range (SDR) imaging. The
ultimate aim of HDR imaging is to capture and reproduce
all the dynamic range of the visible light perceivable by the
human eye. This dynamic range goes from 10−6 to 108 nits
thus providing 14 orders of luminance magnitude. The human
is only able to perceive all this dynamic through several eye
adaptation mechanisms, and without these adaptations, it can
instantaneously perceive 5 orders of luminance magnitude. Re-
cently, several HDR displays were proposed, with a minimum
of 5 orders of luminance magnitude, to at least match the
instantaneous human eye vision. In contrast, SDR devices can
only process 3 orders of luminance magnitude.
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To compress HDR content, several solutions are available.
The first solution, adopted by the MPEG standardization
group, consists in applying a PQTF (perceptual quantizer
transfer function) on the HDR values to obtain a new content
represented on 10 bits. Then, this content is compressed with
legacy SDR compression standard such as HEVC. This solu-
tion yields good compression performances and is compatible
with new HDR displays. However, the 10-bit content cannot
be visualized on SDR displays.

A second solution to address both HDR and SDR displays
is to convert HDR content into a SDR signal using a Tone
Mapping Operator (TMO) and transmit both the HDR and
SDR in separate bitstreams. This solution called simulcast is
clearly not optimal in terms of compression performances.

Finally, in a better alternative, the HDR input is first tone
mapped into an SDR version which is encoded with a legacy
codec such as HEVC and sent along with metadata containing
TMO parameters. This signal can be decoded with legacy SDR
displays or it can be inverse tone mapped using the metadata to
yield an HDR reconstructed content. This approach is referred
to as single layer backward-compatible scheme. In addition
to the SDR content and the metadata, one can also send an
enhancement layer containing the HDR residue to improve
the reconstruction of the HDR content. Compression schemes
using an enhancement layer are referred to as two layer (or
scalable) schemes. We showed in a previous contribution [1],
that a two layer scheme can be optimally separated into a
TMO optimization in a single layer scheme followed by a
rate allocation step.

In this paper, as in [2]–[5], we focus on the design of a
single layer scheme for HDR video compression. Our goal is
to design a scheme that would yield both high rate-distortion
(RD) performances and high fidelity between the tone mapped
SDR video and the original HDR video, for example by pre-
serving temporal variations in the input HDR video sequence.
As a matter of fact, many authors tried to improve the temporal
coherency of tone mapped SDR videos by applying a temporal
filtering [2]–[4], [6], [7], or more elaborate operators [8], [9]
on the TMOs of each frame. Although these filtering operators
ensure a better temporal consistency of the SDR frames, this
has been shown to have little impact on the RD performance
of the compression scheme. The authors in [5] instead aim
at designing a TMO that improves the RD compression
performance but does not preserve the illumination variations
present in the HDR content.
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In this paper, we show that, to better preserve the artistic
intent in the tone mapped SDR video, a better alternative con-
sists in applying standard tone mapping operator and in using
appropriate weighted prediction mechanisms for compensating
for illumination variations in the SDR signals. This allows to
improve the SDR RD performances and therefore the HDR
ones, while preserving the artistic intent present in the HDR
signal rather than altering the temporal effect.

Classical WP consists of computing a linear transformation
between the source image and a reference image without
motion compensation. The transformation can be global, i.e.
applied on the whole frame, as implemented in the H264 and
HEVC codec [10, Chap. 5]. It can also be local, either by
storing many possible global WP frames [11]–[13] as multiple
reference frames, or by computing one WP per block [14]. To
avoid the overhead of sending the WP parameters for each
block, the parameters can be computed on neighboring blocks
[15]–[17]. This, however, increases the encoding cost of the
residue due to the lack of accuracy of the WP parameters.
Still, in all these works, the WP parameters are computed
without taking into account any motion compensation and
linear functions, for global WP or local WP are used.

In this paper, we propose both a new algorithm to compute
the WP parameters and different WP models. Instead of
computing the WP directly between the consecutive images,
the proposed WP algorithm uses an optical-flow based motion
compensation. Furthermore, to predict the complex temporal
variations between SDR frames, two new WP models, im-
plying syntax and decoder modifications, are introduced: a
global non-linear WP and a local non-linear WP. The paper is
organized as follows. Section II demonstrates the equivalence
between the proposed global non-linear WP and the temporally
constrained TMO [5]. An overview of the proposed WP
algorithm is proposed in section III with further details on
the HEVC implementation in section IV. Finally, experimental
results are presented in section V.

II. TEMPORALLY CONSTRAINED TMO AND WEIGHTED
PREDICTION

A. Temporally constrained TMO

In [5], the authors proposed to improve the TMO optimiza-
tion of a single layer compression scheme described in [3]
by accounting for the rate R of the tone mapped SDR video.
They expressed this rate as a function of the temporal activity
C(St) of the SDR content, i.e. as:

R ∝ C(St) =
∑
i,j

(
St(i, j)−M

(
St−1(i, j)

))2
(1)

with St the current tone mapped SDR frame, St−1 the previous
tone mapped SDR frame, (i, j) the pixel position in the respec-
tive frame, and M the motion compensation between St−1 and
St, which is computed using an optical flow [18]. This estima-
tor is illumination-invariant. This requires introducing, in the
optimization problem, additional variables, which model the
illumination changes. A solution to this augmented problem
is obtained by a primal-dual minimization approach, which
iterates between the estimation of the illumination changes

and the estimation of the motion field [18]. When computing
the current TMO, called Ft, the SDR frame St is unknown
and the motion compensation cannot be computed. This is
illustrated in Figure 1. To overcome the motion compensation

Fig. 1. Tone Mapping computation for two consecutive HDR frames as in
[5]

problem, the authors estimated M between the HDR frames,
Ht−1 and Ht, and applied it to the SDR frame St−1. However,
the constraint (1) still needs to be expressed as a function of
the TMO Ft. To do so, they parameterize Ft as a piecewise
linear tone curve, but also make a coarse assumption over
the distribution of the HDR values in each bin of the HDR
histogram. They assumed that all values inside one bin have
the exact same value, which is the center of the bin.

Adding the rate constraint (1) to the distortion optimization
problem proposed in [3], the optimization problem in [5] is:

min
sk

N∑
k=1

(
pk.s

−2
k

)
+ λ.C(St) (2)

s.t.

N∑
k=1

sk =
2nb − 1

δ
, ∀k, sk > 0

with nb the bit-depth for the SDR frame, δ the selected interval
for the HDR frame histogram, pk the probability of the k-th
histogram bin, sk the TMO (Ft in Fig 1) slope for the k-th
bin and λ a Lagrangian multiplier to simplify the constrained
problem into an unconstrained one. The remaining constraint
ensures that the TMO curve covers all the SDR dynamic.

Focusing only on the minimization of the rate constraint (1)
(i.e. the specific case where λ = ∞ in (2)), and ignoring the
simplifications made in [5], then (1) becomes:

C(St) =
∑
i,j

(
St −M(St−1)

)2
(3)

Note that, in this equation and the following ones, we removed
the pixel index (i, j) for a simpler notation.

C(St) =
∑
i,j

(
Ft(Ht)−M(Ft−1

(
Ht−1)

))2
(4)

If one defines BV the brightness variations from M(Ht−1)
the motion compensated HDR frame Ht−1, to Ht, then Ht =
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BV
(
M(Ht−1)

)
and:

C(St) =
∑
i,j

(
Ft(Ht)−M(Ft−1

(
M−1(BV −1(Ht))

))2
(5)

=
∑
i,j

(
Ft(Ht)− Ft−1

(
BV −1(Ht)

))2
(6)

where (6) follows from the fact that M−1 can be permuted
with Ft−1 since M−1 is a pixels displacement and Ft−1

a global function over the pixel values. Thus, the optimal
solution becomes obvious:

Ft(...) = Ft−1

(
BV −1(...)

)
(7)

The TMO Ft−1 is a global invertible function and BV −1

usually is a pixelwise non-invertible function. The challenge
here, is to reproduce BV −1 with the global invertible function
Ft.

Optimizing (2) with λ = ∞ is clearly not optimal in the
context of backward compatible compression. First, the term
considering the HDR distortion is then completely ignored
which is clearly not optimal for RD performances. Secondly,
the visual quality of the resulting SDR video would be strongly
impacted. Using the optimal solution, all global luminance
variations over an HDR video would disappear in the SDR
video. It is therefore necessary to compromise between dis-
tortion and rate minimization but also temporal regularization.
In practice the authors in [5] empirically chose λ = 0.1 for
their experiments.

B. Weighted Prediction vs. Temporally constrained TMO

The aim of the proposed weighted prediction is to improve
RD performances of the temporally constrained TMO pro-
posed in [5] but with an additional constraint on the SDR
temporal quality or consistency. The proposed method shares
many similarities with this TMO but also differs on key
points, as illustrated in Figure 2. Indeed, using a WP avoids

Fig. 2. Weighted prediction computation for two consecutive HDR frames as
proposed

to compromise between distortion minimization and temporal
regularization. It turns the constrained problem (2) into two
consecutive problems, first minimizing the HDR distortion of
Ht using the TMO [3] and in a second step, inside the video
codec, minimizing the brightness variations between St−1 and
St with a WP. Consequently, the proposed strategy is easily
adaptable to any TMO, contrary to [5]. One can use a TMO
that preserves the SDR perceptual quality or a TMO that

minimizes the distortion under a rate constraint for the still
image and thus benefit from a reduction of spatial and temporal
complexity. Having two steps also allows to know the two
SDR frames before computing the WP and therefore allows
to directly compute the optical flow between St−1 and St.
One could argue that the computation of the optical flow is
more accurate on the HDR level yet, experimentally, we didn’t
found noticeable differences between the computed motions.

Another advantage of the proposed WP is to preserve the
temporal consistency of the SDR content. Indeed, in [5] the
frame St is deliberately modified for compression purposes,
therefore impacting the original temporal consistency when
compared to HDR content. Using a weighted prediction, the
frame St−1 is used to predict St directly inside the encoding
loop. Therefore, the original input SDR video is preserved.

Focusing on the second step, minimizing the brightness
variations with a WP is really similar to minimizing (3):

C(St) =
∑
i,j

(
St −WP

(
M(St−1)

))2
(8)

=
∑
i,j

(
St −WP

(
M(Ft−1(Ht−1))

))2
(9)

=
∑
i,j

(
St −WP

(
M(Ft−1(M

−1(BV −1(Ht))))
))2

(10)

=
∑
i,j

(
St −WP

(
Ft−1(BV −1(Ht))

))2
(11)

=
∑
i,j

(
St −WP

(
Ft−1(BV −1(F−1

t (St)))
))2

(12)

And therefore, the goal is to find WP such that:

WP
(
Ft−1

(
BV −1

(
F−1
t (x)

)))
= idX (13)

with idX the identity map.
Comparing (7) and (13), one realizes that the proposed WP

needs to reproduce a composition of three functions instead
of two for (7). As explained previously, the most difficult part
is to estimate the pixelwise non-invertible function BV since
Ft−1 and Ft are non-linear invertible functions. Approximat-
ing WP by a linear function, as currently done in HEVC,
seems suboptimal as it is a composition of three functions,
each of them being non linear. Therefore, our first proposal
is to use a non-linear function as WP model in HEVC.
To the best of our knowledge, global non-linear WP has
never been proposed so far. This WP is supposed to improve
the RD performances of [5] since the compromise between
HDR distortion and SDR temporal regularization is removed.
In addition, the proposed non-linear WP is not limited to
invertible functions since the HDR content reconstruction is
not needed.

Regarding the second proposed WP model, to better es-
timate the function BV , we extend our global approach to
non-linear local WP. As explained previously, global and local
linear WP have already been studied however, for comparison
purposes, we also implemented these solutions in our frame-
work. In this way, we can better assess the benefits of non-
linear WPs.
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III. NEW MODELS OF WEIGHTED PREDICTION

We now describe the new WP algorithm and the new WP
modes. Here, WP modes refer to the signalization of the
WP function and its parameter, whereas the WP algorithm
is the method used to estimate the WP model parameters.
Note that, the proposed WP algorithm only implies encoder
modifications and is therefore compatible with the current
HEVC standard. In contrast, the new WP modes require
decoder modifications and thus, a modification of the HEVC
standard.

Figure 3 summarizes the WP algorithm and WP modes
presented in the following sections. The HEVC standard
algorithm is improved with an optical flow based algorithm
and the WP modes are extended from one type to four.

Fig. 3. Weighted Prediction Scheme - WP algorithms and WP modes.

A. HEVC Weighted prediction

In the HEVC reference software (HM16.2), the WP is
applied to the frame used in the reference list. This WP is a
global linear function directly derived for the entire reference
frame St−1 by using the average and variance of the luminance
values of the frame to be predicted St and the reference
frame St−1. Therefore, these values do not account for motion
compensation between the two frames. The weighted reference
frame Pt for St is obtained with:

Pt(i, j) =W · St−1(i, j) +O (14)

as reported in [10, eq (5.9)] and with (i, j) the pixel position in
the frame. The frame Pt is later used for motion compensation.
Then, WP is applied if it allows to reduce the sum of absolute
differences (SAD) by at least 1% i.e. if

SAD(St, Pt)

SAD(St, St−1)
≤ 0.99 (15)

This method is simple and fast but provides an imprecise WP
and thus an imprecise luminance compensation.

B. Proposed Weighted Prediction

The proposed WP shares similarities with the WP imple-
mented in the reference Software (see Section III-A). First, it is
also applied on the previous frame St−1 and second, it satisfies
(14). However, there are several ways in which the proposed

WP differs from the classical one. First, the WP parameters
W,O may be local. Second, the WP parameter computation
takes into account motion compensation since it depends on
the motion compensated reference frame M(St−1), and not
the reference frame directly St−1. For fair comparison with
[5], the proposed WP parameters is computed by using the
same optical-flow M [18].

As in the HM16.2, the WP activation in the proposed
encoding process is determined by a threshold:

SAD(St,M(Pt))

SAD(St,M(St−1))
≤ 0.95 (16)

As opposed to (15), the SADs are computed between St and
the motion compensated frame St−1, thus providing much
lower values. In practice, a threshold of 0.99 was leading to
an over-activation of the WP with (16). For these reasons, we
decrease the threshold to 0.95. The same activation threshold
is used for all the following WP modes.

1) Global and Local WP: Using the same WP for the entire
frame results in a small rate overhead cost since we send
only few coefficients by frame. However, using a global WP
suggests that the brightness variations between two frames is
global. For many contents, this assumption is false, hence the
use of local WP. As explained in the introduction, the local
WP can be implemented with different methods. In this case,
we choose to send the local WP as metadata within each CTU
(Coding tree unit/maximum block size) in HEVC.

We implemented 4 WP modes: global linear (GL), global
non-linear (GNL), local linear (LL), local non-linear (LNL).
GL and LL WPs have already been proposed in the litera-
ture but without motion compensation. So, we implemented
GL and LL WPs to assess the RD performance gains due
to luminance compensation and also to compare their RD
performances to the ones obtained with the GNL and LNL
WPs.

The next sections detail the derivations of linear and non-
linear WP parameters. Global and local methods are computed
using the same process, only the input pixels change. In
the global case, all matching pixels between the motion-
compensated frame M(St−1) and the current frame St are
plotted on a 2D graph thus giving a point cloud. In the local
case, the process is exactly the same, except that we plot the
matching pixels of a 64x64 block instead of the entire frame.

2) Linear WP: For the linear WP modes, the weighted ref-
erence frame is computed using (14). To derive the parameters
W and O, all matching pixels of the motion-compensated
frame and the current frame (64x64 block in the local case)
are plotted on a 2D graph, as illustrated in Figure 4. Then
W and O are obtained with linear least square fitting of this
cloud point. In practice, we chose to constrain the minimum
and maximum values of W and O:

−128 ≤W ≤ 127 (17)
−256 ≤ O ≤ 255 (18)

Figure 4 also shows some examples of GL and LL WPs.
Some samples of the corresponding SDR videos are visible
in Figure 5. For the GL WP, the metadata for each frame only
consists in the two coefficients W and O. On the other hand,
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Fig. 4. Computed WP for two images (top: BodyPainting, bottom: Kore-
anPop). The left charts show the global linear and global non-linear WP
functions (using 20 slopes) for the entire frame. The right charts show the local
linear and local non-linear WP functions (using 5 slopes) for four different
64x64 blocks

Fig. 5. Samples of tested SDR sequences. Each row represents three selected
frames of each sequence. From top to bottom: BodyPainting Frame 4-6-8,
Tangerine Frame 1-10-20, KoreanPop Frame 1-4-18

the metadata for the LL WP depend on the video size but
also on the activation frequency of the WP. The coefficients
W and O are sent for each CTU where the WP improves the
RD performances.

3) Non-linear WP: For the non-linear WP modes, as in [5],
we chose to parameterize WP as a piecewise linear function.
Therefore, the weighted reference frame Pt is computed using
the following equation:
∀i, j ∩ ∀St−1(i, j) ∈ [δ.k, δ.(k + 1)[

Pt(i, j) = (St−1(i, j)− δ.k) · sk + δ ·
k−1∑
j=0

sj (19)

with sk the k-th slope in the piece wise linear function and δ
the interval where each slope applies. In practice, WP always

spans all the possible values of St−1 (0 to 255). Therefore,
δ = 255

n with n the chosen number of slopes.
As for the linear methods, all matching pixels of the motion-

compensated frame and the current frame (64x64 block in
the local case) are plotted on a 2D graph and the slopes sk
are obtained with piecewise linear least square fitting of the
obtained cloud point. An example of GNL and LNL WP is
visible in Figure 4. The value of n was fixed empirically for
both methods, we chose n = 20 for the GNL WP and n = 5
for the LNL WP.

Knowing n, the WP function is fully determined with the
slopes sk. These slopes are represented with real values and
therefore need many bits for their representation. In practice,
we chose to represent the n slopes with n+1 ordinates. Indeed,
the ordinates can be easily rounded without much precision
loss. Therefore, using the GNL WP, the metadata consists in
19 ordinates. As the first and the last ones are always 0 and
255, they are ignored. As for the LL WP, the metadata of the
LNL WP depend on the input size and efficiency of the WP.
Each CTU where the WP improves the RD performances is
sent with 4 ordinates.

IV. HEVC IMPLEMENTATION

The WP algorithm and WP modes are computed once,
as a first step, on the uncompressed video using a Matlab
implementation. Then, in a second time, all these WP modes
are parsed and used in the HEVC reference software (HM16.2)
to encode the video. This method allows to test multiple
strategies in HEVC without recomputing all the WP modes pa-
rameters and optical flows. This section details the specificity
of the HEVC implementation, especially the chosen signaling
for each mode.

A. Frame Level Activation

The first strategy used consists in choosing the WP mode at
a frame level, as illustrated in Figure 3. For the global methods
(GL, GNL), the WP mode is chosen if the SAD criterion (16)
is satisfied. Instead, for the local methods (LL or LNL), each
frame meeting (16) is compressed twice, one time without
WP, and a second time with the current WP (LL, or LNL).
The frame with the best RD performances is then encoded
along with its metadata.

For the linear WPs, the coefficients W and O use a real
representation requiring many bits, in practice, we choose to
round up these values. Empirically, we found that the most
efficient way was to round them after a multiplication by 25.
The coefficient W then needs 13 bits and the coefficient O
14 bits. For the non-linear WPs, each ordinate value requires
8 bits . To reduce the overhead cost, first the difference
of the ordinates is computed and the mean value (δ) is
subtracted (see (19)). This value is then encoded with the VLC
(Variable Length entropy Coding) in the HM16.2. This allows
to compress the coefficients at a rate smaller than 8 bits per
slope.

For the global WPs and local WPs, we just signal the
metadata for each frame where the WP applies. Regarding
the local WPs, we found that it was much efficient to signal
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an one-bit flag for each CTU then sending the WP when it
improves the CTU RD performances. Therefore, each CTU is
compressed with and without the WP then encoded with the
corresponding flag and potentially with the WP parameters.

As mentioned previously, the brightness between two
frames varies greatly depending on the input, even in the
same video. To further improve the RD performances, we also
choose to put all these WP modes in competition since each
of them outperforms the other ones for specific frames. To do
so, each frame is compressed with each WP mode and the
best one is encoded along with the frame. This competition
mode needs an additional signaling at frame level, indeed an
index is sent to signal the chosen WP mode. When using four
competing WP modes the index uses two bits. We also put only
two modes in competition, and thus with an one-bit index.

The algorithm 1 details the HEVC signaling for all WPs
and for the competition modes when we choose the WP at a
frame level.

Algorithm 1 Frame Level Activation - HEVC Signaling at the
encoder side

for all Frame do
Signal if the WP is activated, using 1 bit
if WP is activated then

if Competition between modes is used then
Signal the WP mode for the current frame
1 bit if two competing modes, 2 bits if four compet-
ing modes

end if
if WP == GL then

Write W using 13 bits and O using 14 bits
else if WP == GNL then

Write the 19 ordinates values using the VLC
else

for all CTU do
Signal if the WP is used for the current CTU,
using 1 bit
if WP CTU turn on then

if WP == LL then
Write W using 13 bits and O using 14 bits

else if WP == LNL then
Write the 4 ordinates values using the VLC

end if
end if

end for
end if

end if
end for

B. CTU Level Activation

For the frame level activation, only the local WPs were
decided at a CTU level. For the CTU level activation, this
strategy is applied to all WP modes. If a frame meets the
constraint (16) each CTU is compressed twice, one time
without WP, and a second time with the current WP (GL,
GNL, LL, or LNL). The CTU with the best RD performances
is then encoded along with its metadata. As for section IV-A,

we put the different WP modes in competition using different
combinations. Each competing modes is then used to compress
the CTU and the best one in terms of RD performance is
selected.

Algorithm 2 CTU Level Activation - HEVC Signaling at the
encoder side

for all Frame do
Signal the result of (16) using 1 bit
if (16) then

if WP == GL then
Write the GL WP, W using 13 bits and O using 14
bits

end if
if WP == GNL then

Write the GNL WP, 19 ordinates values using the
VLC

end if
for all CTU do

if Competition between modes is used then
Signal the WP mode for the current CTU
if 1 mode, 1 bit to signal if the WP is used
if 2 competing modes, 1 bit for no WP or 2 bits
for other modes ( 0, 10, 11)
if 3 competing modes, 2 bits by mode, including
no WP (00, 01, 10, 11)
if 4 competing modes, 1 bit for no WP or 3 bits
for other ones (0, 100, 101, 110, 111)

end if
if WP local turn on for the CTU then

if WP == LL then
Write W using 13 bits and O using 14 bits

else if WP == LNL then
Write the 19 ordinates values using the VLC

end if
end if

end for
end if

end for

All WPs use the same representation as the one presented in
section IV-A, however the signaling syntax changes in some
cases, as visible in Algorithm 2. When evaluating only one
WP mode, the process is almost similar. For the global WPs,
we only add one flag by CTU to signal the activation of the
WP, and for the local WPs only the frame decision changes.
Indeed, in section IV-A the decision was made after encoding
the frame twice, in this case we only evaluate (16). The biggest
difference concerns the competition of WP modes, indeed the
chosen mode needs to be signaled for each CTU against only
once with frame level competition. Since the signaling cost is
larger, we evaluated several combinations of WP modes using
two, three or the four of them. The detailed signaling for each
case is explained in Algorithm 2.

Using 4 WP modes, two levels of activation and different
modes of WP competition yield many test cases. The RD
performances of all these different strategies are presented in
the following section.
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V. EXPERIMENTAL RESULTS

To compare the proposed WP methods with the HEVC
WP, we used different test sets. The first test set consists of
6 1920x1080 HDR videos of about 200 frames each, taken
from the MPEG test set [19], [20], and tone-mapped using
6 different TMOs from the literature, therefore providing 36
SDR sequences. Since this MPEG test set does not include
sequences with significant brightness variations interesting
for specifically assessing WP methods, we have added a
second set of 12 SDR video sequences of about 20 frames
with different types of brightness variations (see figure 5)
and different resolutions (from SD to HD). These contents
were selected because they include quite common brightness
variations like fades, concert spot lights or TV shows and
could benefit from a better WP. We point out that the selected
HDR test set is less representative of the possible illumination
changes one may encounter in TV broadcasting for instance.
The motivation behind this test set selection is to see if some
TMOs create brightness variations at the SDR level that can be
compensated by one of the proposed WP modes thus providing
better RD performances for these TMOs.

Only the luminance compression is considered in the fol-
lowing results. It could be easily extended to the chrominance
components by computing the WP in a similar manner. The
WPs were implemented in the HM16.2 using the default
lowdelay P Main configuration file [21]. For sake of sim-
plicity, we reduce the number of reference frames from 4
to 1. Thus, each P frame only use one reference frame. The
same encoding configuration is used in Section V-A, V-B and
V-C. The encoding were performed using four quantization
parameters (QP) (i.e. QP=22, 27, 32, and 37) and therefore
the Bjontegaard rate (BD-rate) gains [22] were computed on
the 4 resulting RD points. All the following BD-rate gains are
computed using the HM16.2 without WP as a reference. The
RD performances of the HEVC reference software WP are
reported in each table for comparison purposes.

A. Rate-distortion performances using frame level activation

Table I shows the results using the frame level activation
presented in section IV. The first column represents the BD
rate gains of the HEVC reference software WP (i.e. with a
global linear function) with respect to the HEVC without WP.
Here BD-rate gains correspond to negative values. The second
one represents the BD-rate gains of the GL WP. In these
two cases, the WP uses the same model, therefore, the gains
are due to the proposed optical flow based algorithm for WP
parameter estimation. For almost each sequence the proposed
algorithm outperforms the existing one and on average it
provides around 1.6% BD-rate gains. It can be noticed that the
current HEVC WP is sometimes responsible of significant loss,
especially for the sequences KoreanPop, PopIdol and Guetta0.
Actually, these three sequences present mainly local variations
which may explain why the HEVC WP fails. The first new WP
model, GNL, further improves the RD performances, around
2.5% BD-rate gains. However, for the three same sequences
with local variations, we observe some losses compared to the
GL algorithm. Indeed, predicting a local transformation with

a global one can be tricky and it’s more difficult to find the
optimal solution. Figure 4 perfectly illustrates this problem.
For the KoreanPop sequence, we can see a large point cloud
which is difficult to predict using a global WP. In the local
case, the point clouds are narrowed and the local WPs better
fit them. These observations are confirmed by the RD results
using local WPs for these three sequences. On the other hand,
the average RD results are much worse than the ones using
global WPs. For the other sequences with global brightness
variations, the local WPs are not efficient since it requires a
non negligible overhead cost for each CTU.

This first result analysis shows that the global and local WPs
are complementary. Using all the WPs in the same encoder
could only provide better RD performances, as visible in Table
I. The combination of the 4 WP modes provides around 3.13%
BD-rate gains compared to the HEVC WP. We tested different
combinations using one global and one local WP and the most
efficient match is GNL-LL which provides around 2.97% BD-
rate gains compared to the HEVC WP. Limiting the frame
competition to 2 modes isn’t more efficient since the overhead
cost savings is negligible. Therefore, for the second test set,
we only tested the combination of the 4 WP modes.

To give an insight into the extra complexity, the last line
of Table I reports the ratio of the encoding complexity, in
percentage, between several WP modes and the reference
software. The ratio is averaged over all sequences. It can be
observed that the classical HEVC WP allows to reduce the
encoding complexity. This can be explained by the fact that
with a better quality reference frame, prediction and transform
can be avoided (with the skip mode). As for the proposed
methods, the complexity increase ranges from 23% to 36%,
when only one mode is implemented (GL and GNL). Using
the multiple WP modes in competition requires a multi-pass
encoding, hence the coding time is multiplied by the number
of used WP modes. Note that in all remaining tests of the table,
the mode without WP is added to the competition. Therefore,
the test labelled LL uses two modes for competition, the test
LNL also two modes, 4WP uses five modes, and GL-GNL
three modes.

Table II shows the results using the second test set, the 36
SDR tone-mapped sequences. The TMOs mentionned in Table
II are the following ones: Mai [3], Reinhard [23], Ferwerda
[24], Mertens [25], Raman [26] and Schlick [27]. On average,
the observations are the same than for Table I. The non-linear
WPs improve the RD performances and the combination of
the 4 WP modes provides the best RD performances. Some
HDR sequences, like Balloon or Market, present very few
brightness variations and therefore presents no improvement in
RD performances using the TMOs [3], [23]–[25]. However, for
the TMOs [26], [27], these sequences present high RD gains.
For the other sequences also, these TMOs usually present the
higher RD gains. Indeed, these TMOs can generate temporal
flickering on the resulting SDR sequences therefore increasing
the SDR temporal variations. The proposed WP modes can
predict efficiently these flickering artifacts, therefore compen-
sate it and improve the RD performances.

To conclude on the first results, we can notice that the pro-
posed optical flow based algorithm is better for the estimation
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TABLE I
BD-RATE GAINS OF THE HEVC WP (COLUMN 1) AND OF THE PROPOSED WP USING FRAME ACTIVATION WITH RESPECT TO THE

HEVC STANDARD WITHOUT ANY WP. SDR TEST SEQUENCES IN A LOW DELAY P CONFIGURATION USING 1 FRAME OF TYPE P

Sequences HEVC
WP GL GNL LL LNL 4 WP GNL LL

BodyPainting -9,15% -10,26% -11,13% -10,65% -9,99% -12,76% -13,22%
Concert -2,35% -2,38% -2,44% -0,59% -1,48% -2,96% -2,49%

Eurovision 0,01% 0,01% 0,01% 0,01% -0,15% 0,01% 0,01%
KoreanPop 8,17% -3,02% -0,79% -4,49% -3,30% -4,62% -4,51%
LeMatch 0,04% 0,04% 0,04% 0,12% -0,06% -0,15% 0,12%
Guetta-0 3,65% -0,30% -0,27% -0,26% -0,06% -0,52% -0,44%
Guetta-2 -0,37% -0,06% -0,10% -0,16% 0,02% -0,18% -0,29%
RedBull -37,08% -36,20% -40,91% -4,03% -6,86% -40,65% -40,70%
PopIdol 0,61% -1,34% -0,54% -2,07% -1,35% -2,07% -2,23%
SkyFade -12,60% -13,63% -13,66% -0,06% -2,26% -13,81% -12,88%
SunFade -23,00% -24,17% -25,72% 5,89% 4,63% -24,73% -24,59%

Tangerine -10,27% -10,30% -16,64% 3,51% 0,74% -17,55% -16,72%
Average BD-Rate

Gain -6,86% -8,47% -9,34% -1,07% -1,68% -9,99% -9,83%

Average encoding
complexity 97,11% 123,42% 136,39% 233,98% -225,48% 588,26% 326,43%

of WP model parameters than the actual one in the HM16.2,
and that the proposed non-linear WPs outperforms the linear
ones. We also demonstrated that global and local weighted
prediction are complementary and their combination further
improves the RD performances.

B. Rate-distortion performances using CTU level activation

Table III shows the results using the CTU level activation
presented in section IV. On average, the observations for the
frame level activation remains valid for this case. The principal
difference with the previous results of Table I is that each
mode needs an overhead cost for each CTU. Surprisingly, it
does not impact the RD performances of global WPs. On the
contrary, the GL and GNL WPs using CTU activation present
0.43% BD-rate gains and 0.37% BD-rate gains compared to
the ones using frame activation. Note that, for GL and GNL,
the overhead cost is relatively small (1 bit per CTU). As
explained in section IV, the process for local WPs using CTU
activation is almost similar to the ones using frame activation.
In the CTU activation case, we rely on the threshold (16) to
decide the use of the WP.

Using the combination of 4 WP at CTU level provides
the same results as those obtained at frame level. The better
accuracy of this competition just counterbalance the overhead
cost for each CTU. Also here, we tested several combinations
of WP, as explained in section IV. Table III only presents
the RD performance of the most efficient combination, which
is GL-GNL-LL WPs, providing on average 3.44% BD-rate
gains against the classical HEVC WP. Indeed, limiting the
competition to these three modes is more efficient than using
the 4 WP model since we move from a cost of 3 bits by CTU
to 2 bits by CTU (See algorithm 2).

Table IV shows the results using the same test set as in Table
II. On average, observations are coherent with the ones made
in Table II or III, except that the competition of four WP modes
provides the best RD performances instead of GL-GNL-LL.
The proposed WP modes outperforms the RD performances of

the existing WP modes and the better RD gains are achieved
with the TMOs that generate temporal flickering artifacts.

To conclude on these results, we showed that using a CTU
competition for WPs modes can be more interesting than the
frame level activation except for some marginal cases where
the overhead cost limits the BD-rate gains.

C. HDR rate-distortion performances using best WP modes

The previous sections V-A and V-B present the RD gains
on SDR sequences. In this section, we present the RD perfor-
mances obtained on the HDR level using the invertible TMO
[3] and the best WP modes: the 4 WP modes with frame
level activation, the 4WP modes and GL-GNL-LL modes
with CTU level activation. The SDR RD performances of this
configuration are already presented in Table II and IV. In this
case, the SDR videos are inverse tone mapped to reconstruct
the HDR sequences and the RD performances are computed
using different HDR metrics: the tPSNR [28] in Table V, the
PU-PSNR [29] in Table VI, the PU-SSIM [29] in Table VII
and the HDRVDP [30] in Table VIII.

On average, the RD gains are consistent with all metrics,
a little lower for the HDRVDP. These RD performances are
consistent with the TMO-generated SDR ones and demonstrate
that improving the SDR RD performances can improve the
HDR ones. Furthermore, the SDR content is not impacted and
therefore the temporal quality is preserved.

D. Rate-distortion performances using multiple references

The previous results were presented using the default HEVC
lowdelay P Main configuration file with only one reference
frame. This configuration allows to more accurately assess
the contribution of each WP models. Indeed, with multiple
references frames, local blocks can be predicted using different
reference frames, thus allowing implicit local brightness adap-
tation when using only global WP. For multiple references,
we have chosen the low delay B configuration instead of the
low delay P configuration. Although the two configurations
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TABLE II
BD-RATE GAINS OF THE HEVC WP (COLUMN 1) AND OF THE PROPOSED WP USING FRAME ACTIVATION WITH RESPECT TO THE

HEVC STANDARD WITHOUT ANY WP. SDR TONE-MAPPED TEST SEQUENCES IN A LOW DELAY P CONFIGURATION USING 1 FRAME OF
TYPE P

Sequences TMO HEVC
WP GL GNL LL LNL 4 WP

Mai 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %
Reinhard 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %
Ferwerda 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %
Mertens 0.01 % 0.02 % 0.24 % -0.04 % -0.15 % -0.12 %
Raman -5.95 % -5.74 % -7.88 % -2.30 % -3.97 % -7.52 %

Balloon

Schlick 0.05 % 0.05 % 0.05 % 0.05 % 0.05 % 0.05 %
Mai -0.03 % -0.13 % -0.01 % 0.25 % -0.17 % -0.13 %

Reinhard -0.32 % -0.40 % -0.09 % -0.43 % -0.49 % -0.61 %
Ferwerda -0.07 % -0.31 % -0.03 % -0.15 % -0.40 % -0.28 %
Mertens -0.07 % 0.01 % -0.01 % -0.33 % -0.23 % -0.28 %
Raman -4.00 % -3.58 % -3.53 % -2.11 % -2.15 % -3.52 %

Carousel3

Schlick -0.07 % 0.02 % 0.01 % -0.37 % -0.34 % -0.43 %
Mai 0.00 % -0.22 % -0.14 % -0.33 % -0.53 % -0.60 %

Reinhard -0.04 % -0.47 % -0.37 % -0.53 % -0.80 % -0.86 %
Ferwerda -0.22 % -0.79 % -0.47 % -1.06 % -1.12 % -1.28 %
Mertens 0.00 % -0.02 % 0.04 % -0.46 % -0.42 % -0.56 %
Raman -3.00 % -2.94 % -3.26 % -1.80 % -2.09 % -3.06 %

Carousel4

Schlick -0.06 % -0.36 % -0.28 % -0.65 % -0.99 % -1.00 %
Mai -0.10 % -0.12 % -0.10 % 0.06 % 0.01 % -0.37 %

Reinhard 0.06 % 0.01 % 0.14 % -0.19 % -0.24 % -0.18 %
Ferwerda -0.67 % -0.69 % -0.97 % -1.97 % -0.64 % -2.16 %
Mertens -0.01 % 0.00 % -0.01 % -0.24 % -0.11 % -0.25 %
Raman -5.80 % -5.34 % -4.92 % -2.82 % -2.63 % -5.28 %

FireEater

Schlick -2.42 % -2.53 % -5.25 % -3.15 % -2.86 % -5.41 %
Mai 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %

Reinhard 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %
Ferwerda 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %
Mertens -0.05 % -0.04 % 0.05 % -0.27 % -0.45 % -0.42 %
Raman -30.22 % -25.90 % -32.84 % -17.25 % -21.83 % -31.51 %

Market

Schlick -4.84 % -13.79 % -31.02 % -16.01 % -27.68 % -37.33 %
Mai -0.01 % -1.62 % -1.29 % -1.58 % -3.13 % -3.33 %

Reinhard -0.15 % -2.03 % -2.53 % -2.92 % -4.50 % -4.71 %
Ferwerda -0.38 % -1.45 % -2.67 % -4.75 % -5.20 % -5.76 %
Mertens -0.25 % -0.46 % -0.31 % -2.78 % -2.88 % -3.06 %
Raman -6.12 % -6.12 % -9.77 % -6.03 % -7.36 % -9.17 %

Tibul

Schlick -1.51 % -2.28 % -5.28 % -5.67 % -7.59 % -7.60 %
Mai -0,02 % -0,35 % -0,25 % -0,26 % -0,63 % -0,74 %

Reinhard -0,07 % -0,48 % -0,47 % -0,68 % -1,00 % -1,06 %
Ferwerda -0,22 % -0,54 % -0,69 % -1,32 % -1,22 % -1,58 %
Mertens -0,06 % -0,08 % 0,00 % -0,69 % -0,71 % -0,78 %
Raman -9,18 % -8,27 % -10,37 % -5,39 % -6,67 % -10,01 %

Average

Schlick -1,48 % -3,15 % -6,96 % -4,30 % -6,57 % -8,62 %
Average -1.85 % -2.14 % -3.12 % -2.11 % -2.80 % -3.80 %

are similar, the low delay B configuration enables the use of
bi-prediction for all frames. Hence, this configuration allows
to evaluate the impact of both, multiple-referencing and bi-
prediction, on the proposed scheme efficiency. The weighted
bi-prediction add another candidate for each local block, again
implicitly accounting for local illumination change compensa-
tion.

To assess the performance of the proposed optical flow
based algorithm and new WP models, we also performed tests
using the default HEVC lowdelay B Main configuration file
while maintaining the 4 reference frames. Table IX shows the
results using the frame level activation and Table X, the results
with CTU level activation. For these tests, we only focus on
the SDR test set.

With the GL results in Table IX, we can see that the pro-
posed optical flow based algorithm still outperforms the HEVC
algorithm with a BD-rate improvement of 3%. However, unlike
the configuration using one reference frame, the non linear WP
models do not outperform the linear one. This observation is
mainly explained with the overhead difference between the
linear WP model and the non linear ones. Indeed, the non
linear WP overhead is multiplied by four since we use four
reference frames. We also tested several competitions of WP
model and using the GL and GNL models, we obtain a BD-
rate improvement of 0.5% when compared to the GL model.

For the CTU level results in Table X, we can notice that
the GNL WP model outperform the GL one with a BD-rate
gain around 0.5%. For the local WP models, the LL WP model
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TABLE III
BD-RATE GAINS OF THE HEVC WP (COLUMN 1) AND OF THE PROPOSED WP USING CTU ACTIVATION WITH RESPECT TO THE HEVC

STANDARD WITHOUT ANY WP. SDR TEST SEQUENCES IN A LOW DELAY P CONFIGURATION USING 1 FRAME OF TYPE P

Sequences HEVC
WP GL GNL LL LNL 4 WP GL GNL

LL
BodyPainting -9,15% -12,12% -12,58% -10,60% -9,88% -14,46% -14,45%

Concert -2,35% -4,48% -4,38% -0,60% -1,52% -4,88% -5,17%
Eurovision 0,01% 0,01% 0,01% 0,01% 0,01% 0,01% 0,01%
KoreanPop 8,17% -5,54% -4,54% -4,49% -3,30% -7,35% -7,28%
LeMatch 0,04% -0,14% -0,15% 0,12% -0,16% -0,24% -0,27%
Guetta-0 3,65% -0,64% -0,61% -0,26% -0,08% -1,22% -1,12%
Guetta-2 -0,37% -0,42% -0,60% -0,16% -0,04% -0,95% -0,78%
RedBull -37,08% -35,05% -39,02% -3,92% -6,24% -36,49% -38,68%
PopIdol 0,61% -2,44% -2,24% -2,07% -1,36% -3,99% -3,85%
SkyFade -12,60% -12,98% -13,54% 0,16% -1,83% -14,21% -15,25%
SunFade -23,00% -21,43% -22,95% 6,13% 4,51% -21,31% -21,80%

Tangerine -10,27% -11,55% -15,93% 4,01% 2,03% -14,50% -14,95%
Average -6,86% -8,90% -9,71% -0,97% -1,49% -9,97% -10,30%

provides better results than the LNL WP model. As in Section
V-B, the 4 WP competition is penalized by a signaling cost of
3 bits by CTU while the competition GL, GNL and LL only
uses 2 bits by CTU. For these reasons, only the competition
of GL, GNL and LL provides BD-rate gains, around 0,8%,
when compared to the GL WP model.

To assess the performance of the proposed optical flow
based WP algorithm, we also performed tests using the default
HEVC Random Access configuration file with 8 reference
frames. Table XI shows the results using the frame level
activation and Table XII, the results with CTU level activation.
The Random Access configuration provides lower BD-rate
gains than the Low Delay configuration (compare Table IX
with Table XI, and X with XII).

Interestingly, the BD-rate gains of all WP methods, includ-
ing the HEVC one, are reduced compared to low delay config-
urations (compare Table IX with Table XI, and X with XII).
This can be explained by the fact that in the Random Access
configuration, future frames are used as reference. Now, if an
illumination change occurs on the current frame, it is highly
possible that the future reference frames experience the same
illumination. Consequently WP, which aims at compensating
for illumination changes, will bring little gain in the Random
Access configuration. However, all the proposed WP methods
provide larger gains than the HEVC WP.

E. Localized rate-distortion performances

Evaluating the RD performances of the WP in a fair manner
is not obvious. For some sequences, the gains can be localized
on a specific frame and therefore minimized when averaging
the gains over the entire sequence. To overcome this problem,
we computed the BD-rate gains for each frame, using 4 RD
points (4 QPs), for each frame and plotted them on Figure 6.
The green curves represent the best competition mode using
frame competition and the blue curves represent the best ones
using the CTU competition. The abscissa represents the frame
index in display order of the sequence and the ordinates, the
associated BD-Rate gains. For the BodyPainting sequence,
limiting the test sequence to the frame 4 to 9, the BD-rate
gains would have been even better.

Fig. 6. Rate Gain by frame using SDR PSNR and SDR rate. From top to
bottom: BodyPainting, Tangerine, KoreanPop
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TABLE IV
BD-RATE GAINS OF THE HEVC WP (COLUMN 1) AND OF THE PROPOSED WP USING CTU ACTIVATION WITH RESPECT TO THE HEVC
STANDARD WITHOUT ANY WP. SDR TONE-MAPPED TEST SEQUENCES IN A LOW DELAY P CONFIGURATION USING 1 FRAME OF TYPE P

Sequences TMO HEVC
WP GL GNL LL LNL 4 WP GL GNL

LL
Mai 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %

Reinhard 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %
Ferwerda 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %
Mertens 0.01 % -0.09 % -0.14 % -0.04 % -0.12 % -0.33 % -0.24 %
Raman -5.95 % -5.72 % -7.59 % -2.30 % -4.01 % -7.74 % -7.73 %

Balloon

Schlick 0.05 % 0.05 % 0.05 % 0.05 % 0.05 % 0.05 % 0.05 %
Mai -0.03 % -0.58 % -0.59 % 0.15 % -0.14 % -1.04 % -0.84 %

Reinhard -0.32 % -0.82 % -0.88 % -0.43 % -0.51 % -1.67 % -1.58 %
Ferwerda -0.07 % -1.17 % -0.99 % -0.16 % -0.36 % -1.91 % -1.55 %
Mertens -0.07 % -0.37 % -0.32 % -0.33 % -0.21 % -0.77 % -0.73 %
Raman -4.00 % -4.06 % -4.16 % -2.08 % -2.04 % -5.29 % -5.20 %

Carousel3

Schlick -0.07 % -0.60 % -0.52 % -0.37 % -0.36 % -1.04 % -1.03 %
Mai 0.00 % -0.83 % -0.76 % -0.33 % -0.53 % -1.57 % -1.38 %

Reinhard -0.04 % -1.16 % -1.20 % -0.52 % -0.79 % -2.07 % -1.88 %
Ferwerda -0.22 % -1.63 % -1.52 % -1.06 % -1.12 % -2.80 % -2.62 %
Mertens 0.00 % -0.60 % -0.57 % -0.45 % -0.42 % -1.36 % -1.18 %
Raman -3.00 % -3.59 % -4.01 % -1.79 % -2.07 % -4.90 % -4.76 %

Carousel4

Schlick -0.06 % -1.13 % -1.05 % -0.65 % -0.95 % -2.18 % -1.89 %
Mai -0.10 % -0.87 % -0.62 % 0.06 % 0.01 % -1.62 % -1.22 %

Reinhard 0.06 % -0.14 % -0.23 % -0.19 % -0.04 % -1.25 % -0.81 %
Ferwerda -0.67 % -2.04 % -2.03 % -1.97 % -1.51 % -4.75 % -3.85 %
Mertens -0.01 % -0.28 % -0.23 % -0.24 % -0.13 % -0.66 % -0.59 %
Raman -5.80 % -5.90 % -5.70 % -2.82 % -2.62 % -7.52 % -7.32 %

FireEater

Schlick -2.42 % -2.78 % -5.71 % -3.15 % -2.86 % -6.70 % -6.39 %
Mai 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %

Reinhard 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %
Ferwerda 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %
Mertens -0.05 % -0.34 % -0.35 % -0.27 % -0.38 % -0.95 % -0.70 %
Raman -30.22 % -26.35 % -31.27 % -17.26 % -21.32 % -31.60 % -31.88 %

Market

Schlick -4.84 % -16.10 % -38.67 % -16.00 % -27.92 % -39.73 % -39.48 %
Mai -0.01 % -3.93 % -3.19 % -1.58 % -3.11 % -5.82 % -5.29 %

Reinhard -0.15 % -3.90 % -4.31 % -2.92 % -4.46 % -7.13 % -6.49 %
Ferwerda -0.38 % -3.27 % -4.78 % -4.75 % -5.20 % -8.73 % -8.13 %
Mertens -0.25 % -1.71 % -1.69 % -2.78 % -2.88 % -4.60 % -4.03 %
Raman -6.12 % -7.40 % -11.04 % -6.05 % -7.04 % -12.21 % -12.09 %

Tibul

Schlick -1.51 % -3.76 % -7.14 % -5.67 % -7.54 % -9.94 % -8.99 %
Mai -0,02 % -1,03 % -0,86 % -0,28 % -0,63 % -1,67 % -1,45 %

Reinhard -0,07 % -1,00 % -1,10 % -0,67 % -0,96 % -2,02 % -1,79 %
Ferwerda -0,22 % -1,35 % -1,55 % -1,32 % -1,36 % -3,03 % -2,69 %
Mertens -0,06 % -0,57 % -0,55 % -0,69 % -0,69 % -1,45 % -1,25 %
Raman -9,18 % -8,84 % -10,63 % -5,38 % -6,52 % -11,54 % -11,50 %

Average

Schlick -1,48 % -4,05 % -8,84 % -4,30 % -6,60 % -9,92 % -9,62 %
Average -1.85 % -2.81 % -3.92 % -2.11 % -2.79 % -4.94 % -4.72 %

TABLE V
HDR BD-RATE GAINS USING TPSNR OF THE HEVC WP

(COLUMN 1) AND OF THE PROPOSED WP WITH RESPECT TO THE
HEVC STANDARD WITHOUT ANY WP. HDR TEST SEQUENCES IN

A LOW DELAY P CONFIGURATION USING 1 FRAME OF TYPE P

Sequences TMO HEVC
WP

Frame
4WP

CTU
4WP

CTU GL
GNL LL

Balloon Mai 0.01 % 0.01 % 0.01 % 0.01 %
Carousel3 Mai -0.10 % -0.14 % -0.91 % 0.39 %
Carousel4 Mai 0.05 % -0.63 % -1.56 % -1.34 %
FireEater Mai -0.15 % -0.33 % -1.94 % -1.57 %
Market Mai 0.01 % 0.01 % 0.01 % 0.01 %
Tibul Mai -0.05 % -3.24 % -5.83 % -5.18 %

Average -0.04 % -0.72 % -1.70 % -1.41 %

TABLE VI
HDR BD-RATE GAINS USING PU-PSNR OF THE HEVC WP

(COLUMN 1) AND OF THE PROPOSED WP WITH RESPECT TO THE
HEVC STANDARD WITHOUT ANY WP. HDR TEST SEQUENCES IN

A LOW DELAY P CONFIGURATION USING 1 FRAME OF TYPE P

Sequences TMO HEVC
WP

Frame
4WP

CTU
4WP

CTU GL
GNL LL

Balloon Mai 0.01 % 0.01 % 0.01 % 0.01 %
Carousel3 Mai -0.08 % -0.02 % -0.87 % -0.34 %
Carousel4 Mai 0.07 % -0.62 % -1.53 % -1.31 %
FireEater Mai -0.12 % -0.34 % -1.95 % -1.63 %
Market Mai 0.01 % 0.01 % 0.01 % 0.01 %
Tibul Mai -0.03 % -3.25 % -5.80 % -5.15 %

Average -0.02 % -0.70 % -1.69 % -1.40 %
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TABLE VII
HDR BD-RATE GAINS USING PU-SSIM OF THE HEVC WP

(COLUMN 1) AND OF THE PROPOSED WP WITH RESPECT TO THE
HEVC STANDARD WITHOUT ANY WP. HDR TEST SEQUENCES IN

A LOW DELAY P CONFIGURATION USING 1 FRAME OF TYPE P

Sequences TMO HEVC
WP

Frame
4WP

CTU
4WP

CTU GL
GNL LL

Balloon Mai 0.01 % 0.01 % 0.01 % 0.01 %
Carousel3 Mai 0.34 % 0.22 % -0.72 % -0.08 %
Carousel4 Mai 0.16 % -0.39 % -1.45 % -1.12 %
FireEater Mai -0.13 % -0.21 % -1.55 % -1.36 %
Market Mai 0.02 % 0.02 % 0.02 % 0.02 %
Tibul Mai -0.03 % -2.76 % -5.28 % -4.89 %

Average 0.06 % -0.52 % -1.50 % -1.24 %

TABLE VIII
HDR BD-RATE GAINS USING HDRVDP OF THE HEVC WP

(COLUMN 1) AND OF THE PROPOSED WP WITH RESPECT TO THE
HEVC STANDARD WITHOUT ANY WP. HDR TEST SEQUENCES IN

A LOW DELAY P CONFIGURATION USING 1 FRAME OF TYPE P

Sequences TMO HEVC
WP

Frame
4WP

CTU
4WP

CTU GL
GNL LL

Balloon Mai 0.01 % 0.01 % 0.01 % 0.01 %
Carousel3 Mai 0.17 % 0.45 % 0.46 % 1.12 %
Carousel4 Mai 0.33 % -0.78 % -2.04 % -1.56 %
FireEater Mai 0.47 % -0.29 % -1.29 % -1.37 %
Market Mai 0.01 % 0.01 % 0.01 % 0.01 %
Tibul Mai -0.02 % -3.02 % -5.21 % -4.55 %

Average 0.16 % -0.60 % -1.34 % -1.06 %

On average, the proposed WPs always outperforms the
HEVC weighted prediction except in a specific case at the
beginning of the Tangerine sequence using the combination
of GL-GNL-LL. For this frame, the threshold (16) wrongly
activates the WP for the current frame therefore imposing an
overhead cost for all CTUs. Since we are at the beginning
of a fade-in, the corresponding rate of the frame is very low
therefore the overhead cost result in a large BD-rate loss, while
in fact it’s negligible compared to the other frame rates. This
presentation for the BD-rate gains also allows to appreciate the
performance of the WP. Indeed, for some frame, the BD-rate
gains go up to 26% for BodyPainting, 14% for KoreanPop and
45% for Tangerine.

Figure 7 shows the BD-rate gains computed on the HDR
sequences Tibul, FireEater and Caroussel4 using the HDRVDP
metric. In this case, we show the results using the 4 WP
modes with CTU competition since it provides the best RD
performances in Tables II and IV. The HDR sequences contain
around 200 frames, but for sake of clarity we only plotted the
gains for a subset of frame with much temporal variations.
As explain above, encoding all the frame of the sequence can
round down the WP gains, thereby Figure 7 shows BD-Rate
gains up to 14% for Tibul, 21% for FireEater and 7% for
Carousel4.

F. Learning the weights locally to reduce the overhead

Local methods need to send the WP coefficients for each
block. To avoid this overhead, the parameters can be com-
puted on neighboring blocks as in [15]–[17]. This, however,
increases the encoding cost of the residue due to the lack of

Fig. 7. Rate Gain by frame using HDRVDP and SDR rate. From top to
bottom: Tibul, FireEater, Carousel4

accuracy of the WP parameters. Thus, this leads to a tradeoff.
This idea is compatible with the proposed weight computation
based on optical flow and has been tested for LL (see Table
XIII) and LNL (see Table XIV) WP methods. Different
context sizes have been tested to compute the coefficients. The
contexts are either 1, 4 or 64 pixels large. In all cases, learning
the weights from a local and causal neighborhood achieves a
greater BD-rate gain than the method with signaling. The best
performance is obtained when the context is 64 pixel large for
LL WP and 4 pixel large for LNL WP.

G. Discussions

For sake of comparison, we implemented the solution
proposed in [5]. Our implementation tested with various
parameters and same test conditions did not lead to any RD
gains compared to [3], while the proposed WPs improve the
BD-Rate performances of the single layer compression scheme
[3].

As explained in section IV the optical flows and WPs
are computed prior to the encoding process. The accuracy
of WPs could possibly be improved if done directly in the
encoding loop. Indeed, all computation could be made with the
reconstructed frame St−1 instead of the source frame. Besides,
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TABLE IX
BD-RATE GAINS OF THE HEVC WP (COLUMN 1) AND OF THE PROPOSED WP USING FRAME ACTIVATION WITH RESPECT TO THE
HEVC STANDARD WITHOUT ANY WP. SDR TEST SEQUENCES IN A LOW DELAY B CONFIGURATION USING 4 FRAMES OF TYPE B

Sequences HEVC
WP GL GNL LL LNL 4 WP GL GNL

BodyPainting -13,58% -14,37% -13,60% -12,14% -10,97% -14,87% -15,15%
Concert -18,28% -18,29% -17,55% -5,04% -3,89% -18,30% -18,35%

Eurovision 0,02% 0,01% -0,13% 0,10% -0,40% -0,68% -0,14%
KoreanPop 2,69% -4,77% -3,26% -3,59% -2,17% -3,21% -4,85%
LeMatch 0,12% -0,11% -0,11% 0,10% 0,19% 0,15% -0,10%
Guetta-0 2,95% -0,67% -0,63% -0,79% -0,16% -0,70% -0,94%
Guetta-2 -0,15% -0,48% -0,52% -0,35% -0,26% -0,56% -0,66%
RedBull -42,81% -50,55% -50,45% -2,28% -0,31% -50,49% -51,09%
PopIdol 0,46% -2,36% -2,21% -2,08% -1,27% -2,24% -2,92%
SkyFade -21,30% -23,37% -23,13% -0,34% 1,09% -23,66% -24,34%
SunFade -38,17% -44,89% -41,28% 6,98% 8,64% -42,95% -44,46%

Tangerine -17,99% -21,84% -22,86% 4,15% 3,60% -25,15% -24,81%
Average -12,17% -15,14% -14,64% -1,27% -0,49% -15,22% -15,66%

TABLE X
BD-RATE GAINS OF THE HEVC WP (COLUMN 1) AND OF THE PROPOSED WP USING CTU ACTIVATION WITH RESPECT TO THE HEVC

STANDARD WITHOUT ANY WP. SDR TEST SEQUENCES IN A LOW DELAY B CONFIGURATION USING 4 FRAMES OF TYPE B

Sequences HEVC
WP GL GNL LL LNL 4 WP GL GNL

LL
BodyPainting -13,58% -13,68% -13,55% -12,07% -10,88% -14,78% -15,56%

Concert -18,28% -17,41% -17,17% -4,96% -3,78% -16,89% -18,63%
Eurovision 0,02% -0,21% -0,53% 0,29% -0,34% -1,19% -0,54%
KoreanPop 2,69% -6,47% -6,37% -3,59% -2,17% -7,13% -8,37%
LeMatch 0,12% 0,54% 0,81% 0,53% 0,25% 0,27% 1,15%
Guetta-0 2,95% -0,84% -1,06% -0,61% -0,02% -1,50% -1,86%
Guetta-2 -0,15% -0,67% -1,20% -0,24% -0,05% -1,13% -1,33%
RedBull -42,81% -45,22% -47,14% -0,17% -0,20% -42,56% -46,83%
PopIdol 0,46% -3,03% -3,50% -2,07% -1,27% -4,25% -4,94%
SkyFade -21,30% -19,98% -21,21% 0,99% 1,10% -17,43% -21,38%
SunFade -38,17% -34,94% -33,75% 9,28% 9,55% -26,91% -31,08%

Tangerine -17,99% -17,62% -19,81% 5,60% 5,19% -17,19% -19,13%
Average -12.17% -13.29% -13.71% -0.59% -0.22% -12.56% -14.04%

TABLE XI
BD-RATE GAINS OF THE HEVC WP (COLUMN 1) AND OF THE PROPOSED WP USING FRAME ACTIVATION WITH RESPECT TO THE

HEVC STANDARD WITHOUT ANY WP. SDR TEST SEQUENCES IN A RANDOM ACCESS CONFIGURATION USING 8 FRAMES OF TYPE B

Sequences HEVC
WP GL GNL LL LNL 4 WP GL GNL

BodyPainting -18,02% -18,93 % -17,95 % -15,38 % -13,63 % -19,20 % -19,68 %
Concert -22,68% -22,54 % -21,67 % -5,52 % -3,90 % -22,17 % -22,55 %

Eurovision 0,20 % 0,01 % -0,10 % -0,21 % -0,18 % -6,27 % -1,19 %
KoreanPop 4,31 % -3,50 % -3,13 % -3,02 % -2,55 % -3,61 % -3,55 %
LeMatch 0,07 % 0,08 % 0,03 % 0,79 % 1,04 % 0,12 % 0,16 %
Guetta-0 2,75 % -0,48 % -0,49 % -0,01 % 0,78 % -0,12 % -0,66 %
Guetta-2 0,47 % -0,39 % -0,42 % -0,28 % -0,10 % -0,58 % -0,71 %
RedBull -32,91% -38,71 % -38,68 % -1,02 % -0,69 % -38,28 % -39,05 %
PopIdol -0,56 % -3,03 % -2,80 % -3,27 % -2,48 % -3,27 % -3,80 %
SkyFade -11,40% -12,36 % -12,28 % 0,55 % 1,51 % -12,13 % -12,81 %
SunFade -24,67% -28,87 % -26,58 % 5,24 % 6,51 % -27,23 % -28,51 %

Tangerine -12,37% -14,87 % -15,62 % 3,59 % 3,41 % -16,76 % -16,84 %
Average -9,57% -11,97% -11,64% -1,55% -0,86% -12,46% -12,43%

regarding the optical flow, we tested a few others [31], [32]
but the preliminary results were better using the presented one.
However, it’s quite likely that more robust optical flows could
improve the precision of the weighted prediction and therefore
the RD performances.

VI. CONCLUSION

In the context of the backward compatible HDR com-
pression of videos, we demonstrated that using a weighted
prediction is better than using a temporally optimized TMO in
terms of RD performances. This is explained by the fact that,
with the weighted prediction, the joint optimization problem of
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TABLE XII
BD-RATE GAINS OF THE HEVC WP (COLUMN 1) AND OF THE PROPOSED WP USING CTU ACTIVATION WITH RESPECT TO THE HEVC

STANDARD WITHOUT ANY WP. SDR TEST SEQUENCES IN A RANDOM ACCESS CONFIGURATION USING 8 FRAMES OF TYPE B

Sequences HEVC
WP GL GNL LL LNL 4 WP GL GNL

LL
BodyPainting -18,02 % -18,12% -17,97 % -15,60 % -13,44 % -19,24 % -19,83%

Concert -22,68 % -21,46% -21,28 % -5,73 % -3,69 % -20,58 % -22,29%
Eurovision 0,20 % -0,10% -0,24 % 0,21 % 0,01 % -0,87 % -0,64%
KoreanPop 4,31 % -5,23% -5,29 % -2,33 % -1,48 % -6,05 % -7,58%
LeMatch 0,07 % 0,44% 0,47 % 0,72 % 0,29 % 0,53 % 0,48%
Guetta-0 2,75 % -0,65% -0,97 % -0,15 % 0,48 % -1,02 % -0,91%
Guetta-2 0,47 % -0,37% -0,56 % -0,11 % 0,13 % -0,73 % -0,85%
RedBull -32,91 % -34,62% -35,22 % -0,19 % -0,35 % -33,34 % -35,17%
PopIdol -0,56 % -2,84% -3,29 % -1,95 % -1,55 % -4,57 % -4,86%
SkyFade -11,40 % -10,56% -11,34 % 0,95 % 1,59 % -8,95 % -10,62%
SunFade -24,67 % -22,45% -21,80 % 7,42 % 8,17 % -17,02 % -19,26%

Tangerine -12,37 % -12,98% -13,61 % 4,27 % 4,57 % -12,45 % -13,33%
Average -9,57 % -10,75% -10,92% -1,04% -0,44% -10,36% -11,24%

TABLE XIII
BD-RATE GAINS OF THE HEVC WP (COLUMN 1) AND OF THE PROPOSED LL WP WITHOUT SIGNALLING USING A DIFFERENT

NEIGHBORHOOD WIDTH (NBR). SDR TEST SEQUENCES IN A LOW DELAY P CONFIGURATION USING 1 FRAME OF TYPE P

Sequences HEVC
WP

LL as in
Tab I

Without
signalling

NBR 1

Without
signalling

NBR 4

Without
signalling
NBR 64

BodyPainting -9,15% -10,65 % -11,65 % -11,76 % -12,05 %
Concert -2,35% -0,59 % -2,88 % -3,03 % -2,86 %

Eurovision 0,01% 0,01 % 0,01 % 0,01 % 0,01 %
KoreanPop 8,17% -4,49 % -5,11 % -5,21 % -5,25 %
LeMatch 0,04% 0,12 % 0,08 % 0,18 % 0,04 %
Guetta-0 3,65% -0,33 % -0,83 % -0,81 % -0,70 %
Guetta-2 -0,37% -0,16 % -0,07 % -0,16 % -0,10 %
RedBull -37,08% -4,03 % -14,18 % -14,40 % -14,84 %
PopIdol 0,61% -2,07 % -2,55 % -2,79 % -2,65 %
SkyFade -12,60% -0,06 % -3,23 % -4,33 % -4,62 %
SunFade -23,00% 5,89 % 0,90 % 0,34 % 0,02 %

Tangerine -10,27% 3,51 % -0,94 % -1,63 % -1,97 %
Average -6,86% -1,07% -3,37% -3.63% -3.75%

TABLE XIV
BD-RATE GAINS OF THE HEVC WP (COLUMN 1) AND OF THE PROPOSED LNL WP WITHOUT SIGNALLING USING A DIFFERENT

NEIGHBORHOOD WIDTH (NBR). SDR TEST SEQUENCES IN A LOW DELAY P CONFIGURATION USING 1 FRAME OF TYPE P

Sequences HEVC
WP

LNL as
in Tab I

Without
signalling

NBR 1

Without
signalling

NBR 4

Without
signalling
NBR 64

BodyPainting -9,15% -9,99 % -9,81 % -10,74 % -12,00 %
Concert -2,35% -1,48 % -3,40 % -3,73 % -3,30 %

Eurovision 0,01% -0,15 % 0,01 % 0,01 % 0,01 %
KoreanPop 8,17% -3,30 % -3,77 % -3,82 % -3,74 %
LeMatch 0,04% -0,06 % -0,47 % -0,34 % -0,16 %
Guetta-0 3,65% -0,06 % -0,41 % -0,43 % -0,37 %
Guetta-2 -0,37% 0,02 % -0,11 % -0,02 % -0,09 %
RedBull -37,08% -6,86 % -18,79 % -20,62 % -18,71 %
PopIdol 0,61% -1,35 % -2,42 % -2,28 % -2,16 %
SkyFade -12,60% -2,26 % -7,80 % -8,29 % -7,07 %
SunFade -23,00% 4,63 % -5,17 % -5,01 % -3,21 %

Tangerine -10,27% 0,74 % -5,60 % -5,37 % -3,45 %
Average -6,86% -1,68% -4,81% -5,05% -4.52%

the TMO and the WP is separable: (i) the TMO optimization,
and (ii) the WP optimization. Instead, the temporally opti-
mized TMO requires to jointly optimize the two functions,
which requires some simplifying assumptions to compromise
between rate and distortion minimization, as well as temporal

regularization. Another benefit of the WP approach is that the
SDR can be optimized with respect to some other criterion, not
only for compression but rather aesthetic purpose. Therefore,
we proposed a new weighted prediction algorithm and new
weighted prediction modes to handle more efficiently the
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large diversity of brightness variations in video sequences.
The proposed algorithm consists in performing a global mo-
tion compensation, based on an optical-flow, followed by
the computation of different weighted predictions modes or
models. The proposed modes consist in computing a global
or local non-linear functions to predict the current frame,
unlike state-of-the-art methods always based on linear func-
tions. The performances of the proposed algorithm and each
mode is evaluated to identify the best ones, then all modes
are put in competition in the same encoding process. This
competing strategy is made at two levels, frame and CTU,
and different modes combinations are studied. The several
proposed weighted prediction modes range from a complex
(many metadata) but accurate prediction model (local non-
linear) to a less complex and rough prediction model (global
linear). It has been shown that depending on the image, at
least one of the proposed weighted predictor outperforms
the WP implemented in HEVC. Therefore, we propose to
allow competition between all the proposed WP modes, and
this brings BD-rate gain of about 10% with respect to the
HEVC reference software and about 3.5% with respect to
the HEVC software with existing WP enabled. Indeed, this
competition allows to compensate more types of brightness
variation. The RD results also show the superiority of non-
linear functions, either in global or local weighted prediction,
compared to linear ones despite a higher signaling overhead.
The RD performances are improved on SDR graded content
and also with TMO-generated SDR content, especially when
the TMO introduces flickering artifacts. The RD performances
were also improved on the HDR level and thus shows that the
proposed solution can improve the HDR RD performances
while maintaining the SDR temporal consistency.
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Michaël Ropert is currently heading the advanced
video team at Ericsson in France. He holds a PhD
degree from Rennes I University (1995). Previously,
(1991-1992) he was teacher in applied mathematics.
He has been with France Télécom in the areas of
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