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Abstract

When estimating covariance matrices, traditional sample covariance-based es-

timators are straightforward but su↵er from two main issues: 1) a lack of ro-

bustness, which occurs as soon as the samples do not come from a Gaussian

distribution or are contaminated with outliers and 2) a lack of data, which

occurs as soon as the covariance matrix dimension is greater than the sam-

ple size. The first issue can be handled by assuming that samples are drawn

from a heavy-tailed distribution, at the cost of more complex derivations, while

the second issue can be addressed by shrinkage with the di�culty of choosing

the appropriate level of regularization. This work o↵ers both a tractable and

optimal framework based on shrinked likelihood-based M-estimators. First, a

closed-form expression is provided for a regularized covariance matrix estimator

with an optimal shrinkage coe�cient for any sample distribution in the ellipti-

cal family. Then, a complete inference procedure is proposed which can handle

both unknown mean and tail parameter, in contrast to most existing methods

that focus on the covariance matrix parameter requiring pre-set values for the

others. An illustration on synthetic and real brain connectivity data is provided

in the case of the t-distribution with unknown mean and degrees-of-freedom

parameters.
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1. Introduction

Accurate estimation of covariance matrices (or more generally scale matri-

ces) is fundamental in many areas of statistics and machine learning. Examples

include applications in finance [1], bioinformatics and classification [2, 3]. Prac-

titioners usually have to deal with two main di�culties. First, observations

may deviate from the Gaussian distribution due to a particular data generating

process or the presence of outlying data. Ignoring this deviation may conduct

to inadequate predictions and conclusions [3]. A widespread solution to design

so-called robust estimators, is to consider heavy-tailed distributions which can

better accommodate outliers. Among those, elliptical distributions have been

studied as good candidates as they include tractable heavy-tailed distributions

such as the t-distribution, whose tail is controlled by a single degrees-of-freedom

(d.o.f.) parameter [4, 5]. In addition, for elliptical distributions, robust estima-

tors of the scale matrix ⌃ are provided by Maronna’s M-estimators, defined as

the solution e⌃ of a fixed-point relationship e⌃ = E
h
u
⇣
x> e⌃�1x

⌘
xx>

i
where u

is function satisfying a set of general assumptions [6]. Other robust approaches

include the use of contamination models, see e.g. [7] for a recent reference. A

second di�culty is then that the problem dimension may be too large compared

to the number of available observations, which prevents accurate estimation

when this feature is not explicitly taken into account. For example, if the di-

mension p of ⌃ is greater than the sample size n, Maronna’s estimators do not

exist [8]. As a consequence, many authors have proposed alternative estima-

tors which can be divided into two main categories. A first set of approaches

assumes structured matrices so as to reduce the number of parameters to esti-

mate, while a second set of approaches aims at compensating the lack of samples

with regularization or prior knowledge modelling. The first category includes

attempts based on sparsity assumptions such as graphical Lasso, e.g. [9, 10, 11],

and nodewise Lasso, e.g. [12, 13]. Besides not to be always satisfying in small
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sample size settings (see [14] for a recent review), these methods assume Gaus-

sian observations and are therefore not suitable for elliptical distributions with

heavy tails. Generalizations and alternatives have been considered that are

more robust, e.g. [3, 15, 16, 17], but they require a large number of ⌃ entries

to be zero which may be too restrictive in some applications. In this work, we

rather consider estimators in the second category based on shrinkage methods,

introduced in [18]. In shrinkage methods, the considered estimators are convex

combinations of an initial estimator and the identity matrix view as a regu-

larization term. The construction of these estimators rely then on two main

ingredients, the choice of the initial estimator to be regularized and the choice

of the regularization parameter, or equivalently the weight of the identity ma-

trix. As already mentioned, when aiming at robust inference, M-estimators are

good initial basis. Following this line, the authors in [8] have proposed a shrink-

age procedure, with an optimal shrinkage coe�cient, for a particular case of

M-estimators, called Tyler’s estimator where the function u(t) is set to p/t [19].

This choice of u is motivated by the fact that if x is elliptically distributed with

mean µ, then the normalized vector z = (x � µ)/||x � µ|| follows an angular

central Gaussian distribution. This approach has the advantage to be somewhat

non-parametric and has shown a lot of merits in various settings [20, 21, 22].

Unfortunately, a serious limit is that it requires the mean µ to be known in ad-

vance so that the shape of the distribution cannot be taken into account when

estimating the mean. This point has been highlighted in [23], which proposes

to estimate µ assuming x follows a Cauchy distribution (i.e. a t-distribution

with d.o.f. parameter equal to 1), and as a follow-up more recently in [24] with

a generalization to any t-distributions. However, in contrast to [8], none of

these papers provide an optimal shrinkage coe�cient. Although the e↵ect of

tuning this coe�cient may be important, the issue is usually eliminated either

by searching in a finite grid of values [23, 24] or using cross-validation [25], in

both cases at the cost of a higher computational complexity and time.

We aim at building on these previous approaches by providing both a flexible

and optimal framework based on shrinked likelihood-based M-estimators. The
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distribution of x is assumed to be elliptical so that the corresponding function u

and the associated M-estimator can be derived straightforwardly from a maxi-

mum likelihood principle. We propose then a shrinkage version of this estimator

with an explicit formula for the optimal shrinkage coe�cient that depends on

two moments of the radius of x. Then, a complete inference procedure is pro-

posed which does not require neither to pre-set the value of the mean nor that of

the tail parameter. Explicit expressions of the optimal shrinkage coe�cient are

given for Gaussian and t-distributions and an algorithm for estimating both µ

and ⌃ is proposed. Experiments on simulated and real brain connectivity data

illustrate the good behavior of the proposed method in comparison to other

existing methods such as Tyler’s estimator, graphical Lasso, etc.

The paper is organized as follows. Section 2 recalls definitions and the main

properties of elliptical distributions and M-estimators. The optimal shrinkage

problem is addressed in Section 3 with a general formula for the optimal shrink-

age coe�cient. In the following Section 4, the optimal parameter value is given

in the case of multivariate t-distributions together with a practical algorithm

to estimate both the mean and covariance matrix in a potentially low sample

size setting. The proposed estimator and algorithm are illustrated on simulated

and real data respectively in Section 5 and 6. A conclusion ends the paper.

At last, all proofs and supplementary results are provided in Section 8 or as

supplementary material.

2. Preliminaries

2.1. Elliptical distributions

A continuous random vector x 2 Rp follows a multivariate elliptical sym-

metric distribution if its probability density function (pdf) is of the form (see

[26] or [27]):

p(x) = Cp,g |⌃|�1/2g
�
(x� µ)>⌃�1(x� µ)

�
, (1)

where ⌃ 2 Rp⇥p is the scale matrix with determinant |⌃|, µ 2 Rp is the location

or mean vector, Cp,g is a normalizing constant so that p(x) integrates to one.
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The non-negative function g is called the density generator and determines the

shape of the pdf. Also, it is important to note that elliptical distributions have

the stochastic representation x = µ + R⇤U [26], where R (called radius) is

a non negative random variable, ⇤ is a p ⇥ p matrix so that ⇤⇤
> = ⌃ and

U is a p-dimensional random vector following a uniform distribution on the

unit sphere in dimension p (R and U are independent). The radius R and

the generator g are closely related. Indeed, according to Theorem 2.9 in [28],

an elliptical distribution has a generator if and only if the random variable R

has a density, and there exists a link between these two functions (Theorem

3 in [29] gives a similar result). Throughout this paper, we assume that our

elliptical distribution has a generator, and the latter may be defined either by

g, or by its radius R. This family encompasses a lot of well known particular

cases, like the Gaussian distribution (with g(t) = exp(�t/2)) and the Student

distribution (also called t-distribution) with ⌫ > 0 degrees of freedom (with

g(t) = (1 + t/⌫)�(p+⌫)/2). Other examples include the Logistic [30], Kotz [31],

Laplace [32] or Slash [33] distributions.

In this paper we consider the problem of the scale matrix estimation ⌃

from a set {x1, . . . ,xn} of n independent and identically distributed (i.i.d.)

p-dimensional observations drawn from an elliptical distribution (1). It is an

important task both in the case of known or unknown location or mean vector

µ. A lot of methods have already been proposed. For instance, [34] focused on

the widely used sample covariance matrix bS = n�1
Pn

i=1 xix>
i as an estimator

of ⌃ (the mean vector µ is here considered as known, i.e. the data has previ-

ously been centered). However, being designed for the Gaussian distribution,

this method is not suitable for the case of data with outliers. Moreover, it re-

quires the existence of E[xx>], and this condition is not always fulfilled (see e.g.

the Cauchy distribution). To overcome these di�culties, [19] proposed another

estimator which is a particular case of Maronna’s M-estimators [6] detailed in

the next section.

To be more specific, we first provide below results for ⌃, but as done in

many papers, e.g. [19, 8, 35, 36, 23], we propose in practice to estimate the
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scale matrix normalized by its trace, also called the shape matrix. This both

solves an intrinsic identifiability issue within the class of elliptical distributions

[19] and helps the convergence of the estimation algorithm [8]. We provide, in

Section 3.3, a detailed explanation that we can, without loss of generality, focus

on the estimation of the shape matrix or trace-normalized scale matrix, with a

trace set to p, i.e. V = p⌃/tr⌃. In particular, this is not the same as assuming

directly that tr(⌃) = p. Note also that strictly speaking the covariance matrix

when it exists is proportional to the scale matrix so that the term covariance is

sometimes used abusively.

2.2. M-estimators and Tyler’s estimator

Let {x1, . . . ,xn} be a set of n i.i.d. observations drawn from an elliptical

distribution (1) with a known mean vector µ. D. E. Tyler [19] proposed a

distribution-free estimator of the trace-normalized covariance matrix by working

with the normalized observations zi = xi�µ
kxi�µk2 . According to [37], each zi

follows the angular central Gaussian distribution:

p(z) =
� (p/2)

2⇡p/2
|⌃|�1/2

�
z>

⌃
�1z

��p/2
. (2)

The maximum likelihood principle leads to an implicit estimator e⌃, solution of

e⌃ =
p

n

nX

i=1

ziz>
i

z>
i
e⌃�1zi

. (3)

A fixed point algorithm is usually used to compute e⌃ with a final normaliza-

tion step to ensure tr(e⌃) = p. Tyler’s estimator may then also be seen as a

particular case of Maronna’s M-estimator. Existence and uniqueness of e⌃ are

discussed in [19]. In particular, it is mentioned that the condition n > p is

required. Otherwise, according to [38], matrix e⌃ is singular and this estimator

is no longer suitable. In the case p � n, a regularized Tyler’s estimator has been

proposed, based on shrinkage methods [8] as specified in the following section.
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2.3. Regularized Tyler’s estimator

Inspired by the shrinkage method of Ledoit and Wolf [18], the authors in

[8] extended Tyler’s method to the high dimensional setting introducing the

following regularized fixed point equations. The tth iteration is indicated with

index (t):

e⌃(t+1) = (1� ⇢)
p

n

nX

i=1

ziz>
i

z>
i ⌃(t)�1zi

+ ⇢I, (4)

⌃
(t+1) =

p e⌃(t+1)

tr(e⌃(t+1))
. (5)

Here 0  ⇢  1 is a constant which is called shrinkage coe�cient. The case

of ⇢ = 0 corresponds to the standard non regularized Tyler’s estimator while

⇢ = 1 reduces the estimator to the identity matrix. The term ⇢I ensures that

the estimator is well-conditioned at each iteration. Both existence and unique-

ness of the limit of the procedure (4)-(5) are proved in [8]. The choice of ⇢ is

also discussed. As in [18], the authors in [8] proposed to find parameter ⇢ by

minimizing the mean-squared error (MSE) between the true matrix ⌃ and the

so-called ”clairvoyant estimator”:

e⌃⇢ = (1� ⇢)
p

n

nX

i=1

ziz>
i

z>
i ⌃�1zi

+ ⇢I. (6)

Thus, ⇢ is chosen as the solution ⇢⇤T of:

⇢⇤T = argmin
⇢

E

2

4
�����(1� ⇢)

p

n

nX

i=1

ziz>
i

z>
i ⌃�1zi

+ ⇢I�⌃

�����

2

F

3

5 , (7)

where ||.||F is the Frobenius norm. The solution can be seen as the value of ⇢

which minimizes the distance between the true ⌃ and its shrinked deformation.

Following the above criteria, an explicit formula for ⇢⇤T is obtained under the

assumption tr(⌃) = p :

⇢⇤T =
p2 + (1� 2/p)tr(⌃2)

(p2 � np� 2n) + (n+ 1 + 2(n� 1)/p)tr(⌃2)
. (8)

In the following developments, we propose to generalize this last result, to the

case when µ is not known and for all M-estimators when the data is sampled
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from a specified elliptically symmetric distribution (1). Under a criterion similar

to (7), we provide a closed-form expression for the optimal shrinkage coe�cient.

3. Optimal shrinkage for M-estimators

Let �µ,⌃(x) = (x�µ)>⌃�1(x�µ) denote the Mahalanobis distance. In this

section, we still suppose that µ is known, and consider the class of Maronna’s

estimators [6, 35] satisfying :

e⌃ = m
⇣
e⌃
⌘
,with (9)

m (⌃) =
1

n

nX

i=1

u (�µ,⌃(xi)) (xi � µ) (xi � µ)> . (10)

By taking u(t) = p/t and µ = 0, we recover Tyler’s estimator (3). Some other

examples of functions u are u(t) = 1 [36], the Huber’s function [39], or the

Student maximum likelihood-based function (p+ ⌫)/(t+ ⌫) [6]. As proposed in

[36], in this paper we consider a regularized estimator:

e⌃↵� = �m (⌃) + ↵I, ↵ � 0,� � 0. (11)

We define the following criteria, similar to (7), for the choice of ↵ and �.

The optimal (↵⇤,�⇤) are chosen such as to minimize the MSE between the

”clairvoyant estimator” e⌃↵� and ⌃:

E
"�����

�
n

nX

i=1

u (�µ,⌃(xi)) (xi � µ) (xi � µ)> + ↵I�⌃

�����

2

F

#
. (12)

Alternatively, another MSE criterion with � = 1 � ↵ has been considered in

[36], for which it is also possible to give the optimal ↵ value. This criterion is

not further considered in our work but we provide the corresponding optimal ↵

formula in Section 1 of the supplementary materials.

The optimal coe�cients ↵⇤ and �⇤ minimizing (12) are given in Section

3.2, for elliptical distributions and for functions u derived from a maximum

likelihood principle as explained in the following section.
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3.1. Choice of function u

Natural choices for u are motivated by the maximum likelihood principle.

Indeed, for an i.i.d. sample {x1, . . . ,xn} from an elliptical distribution with

stochastic representation x = µ + R⇤U, the maximum likelihood estimator

(MLE) of the scale matrix minimizes the negative log-likelihood function:

L(⌃) = � 2

n

nX

i=1

ln (g (�µ,⌃(xi)))� ln |⌃�1|. (13)

The previous equation leads to an implicit estimator of ⌃, obtained through a

fixed point algorithm. However, this approach is no longer suitable if p > n. In

that case, similarly to the approach of [36], the penalized cost function below

can be considered:

L↵�(⌃) =� �
2

n

nX

i=1

ln (g (�µ,⌃(xi)))� ln |⌃�1|

+ ↵ tr(⌃�1). (14)

In what follows, we suppose that the generator g, or equivalently the density

of R, is di↵erentiable. The solution e⌃↵� which minimizes the penalized cost

function L↵�(⌃) can be expressed as:

e⌃↵� =�
1

n

nX

i=1

u(�µ,⌃(xi))(xi � µ)(xi � µ)>+↵I, (15)

with u(t) = �2g0(t)/g(t).

We thus consider regularized M-estimators with function u(t) = �2g0(t)/g(t).

It is interesting to note that penalizations are linked to prior choice for ⌃ in

a Bayesian framework. In (14) above, the tr(⌃�1) penalization corresponds to

an inverse Wishart prior where the scale matrix hyperparameter is the identity

matrix. For a more general matrix hyperparameter T, the penalty would be

tr(⌃�1
T) leading to a regularized estimator similar to (15) with a penalty term

replaced by ↵T and � = 1� ↵. Theorem 3.1 below can then be generalized to

this case. This result and its proof are given in Section 2 of the supplementary

materials.
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3.2. Theoretical value of (↵⇤,�⇤)

The proof of Theorem 3.1 below providing closed form formulas for the

optimal shrinkage parameters (↵⇤,�⇤) is given in Section 8.1. The sphericity

measure ⇣ introduced in [40] is used to simplify the expressions. Sphericity

⇣ 2 [0, p� 1] is defined as

⇣ =
p tr(⌃2)

tr(⌃)2
� 1 .

It measures how close ⌃ is to a scaled identity matrix, with ⇣ = 0 when ⌃ is

proportional to identity and ⇣ = p� 1 when ⌃ has rank 1.

Theorem 3.1 (Optimal shrinkage coe�cients). Let x = µ+R⇤U be a stochas-

tic representation of the elliptically distributed x, where ⇤⇤
T = ⌃ and R is a

positive random variable with a di↵erentiable pdf and u(t) = �2g0(t)/g(t). The

oracle coe�cients (↵⇤,�⇤) which minimize (12) are

�⇤=
n⇣⇣

(⇣ + 1)
⇣
n� 1 + 2f2

p(p+2)

⌘
+ f2

p+2 � n
⌘ (16)

↵⇤=(1� �⇤)
tr(⌃)
p

, (17)

where f2 = E
⇥
u(R2)2R4

⇤
and �⇤ 2 [0, 1], ↵⇤ � 0 for p � 2.

These optimal values involve the quantity f2. In [8], the particular choice u(t) =

p/t and assumption tr(⌃) = p are made, hence ↵⇤ = 1��⇤ and f2 = p2. In the

following proposition, other choices of u are considered and the corresponding

f2 values provided for several radius R. In the sequel, �2
k denotes the Chi-

squared distribution with k degrees-of-freedom (d.o.f.) and Fp,⌫ denotes the

Fisher distribution with d.o.f. parameters p and ⌫.

Proposition 3.1 (Some values of f2). Let x = µ+R⇤U, where R is a positive

random variable with a di↵erentiable pdf, and u(t) = �2g0(t)/g(t).

1. If R2 is distributed as �2
p, then x follows a Gaussian distribution, u(t) = 1

and therefore:

f2 = E
h
u
�
R2

�2
R4

i
= p(p+ 2). (18)
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2. If R2 is distributed as
⇣

1
2��

2
2q+p�2

s

⌘1/s
, then x follows a Kotz-type distri-

bution, u(t) = 2(1� q)/t+ 2s�ts�1 and therefore:

f2 = E
h
u
�
R2

�2
R4

i
= p(p+ 2s) + 4s(q � 1). (19)

3. If R2 is distributed as pFp,⌫ , then x follows a t-distribution with ⌫ > 0

degrees-of-freedom, u(t) = (p+ ⌫)/(t+ ⌫) and therefore :

f2 = E
h
u
�
R2

�2
R4

i
=

(⌫ + p)(p+ 2)p

p+ ⌫ + 2
. (20)

The proof is provided in Section 8.2. The above formulas for f2 are consistent

with the fact that when ⌫ goes to +1, the t-distribution tends to the Gaussian

distribution and expression (20) tends to (18). A similar check can be done using

that the Gaussian distribution is a particular case of Kotz-type distributions

with s = 1, q = 1 and � = 1/2.

Combining Theorem 3.1 and Proposition 3.1, the optimal shrinkage coe�-

cients can be specified for the above distributions. In the following result, we

restrict to the Gaussian and t-distributions.

Corollary 3.1 (Optimal shrinkage coe�cients for multivariate Gaussian and

t-distributions). The optimal shrinkage coe�cients are given by,

1. For the Gaussian distribution:

�⇤ =
n⇣

(n+ 1)⇣ + p+ 1
(21)

↵⇤ =
(⇣ + p+ 1)

(n+ 1)⇣ + p+ 1

tr(⌃)

p
. (22)

2. For the t-distribution with ⌫ > 0 degrees of freedom:

�⇤=
n⇣⇣

n� 1 + 2 (⌫+p)
(⌫+p+2)

⌘
⇣ + (⌫+p)

(⌫+p+2) (p+ 2)� 1
(23)

↵⇤=

⇣
2 (⌫+p)
(⌫+p+2) � 1

⌘
⇣ + (⌫+p)

(⌫+p+2) (p+ 2)� 1
⇣
n� 1 + 2 (⌫+p)

(⌫+p+2)

⌘
⇣ + (⌫+p)

(⌫+p+2) (p+ 2)� 1

tr(⌃)
p

. (24)
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We now have explicit formulas for our optimal shrinkage coe�cients in the t-

distribution case including (for ⌫ = 0) the Tyler’s coe�cient ⇢⇤T (equal to ↵⇤

when tr(⌃) = p) specified in (8) [8]. In practice, it still remains to compute

estimations for tr(⌃), ⇣ and ⌫ to get values for ↵⇤ and �⇤. However, the need

for tr(⌃) actually disappears with the use of a trace-normalized version of the

scale matrix, namely V = p⌃/tr(⌃). This is detailed in the next section.

3.3. Trace-normalized scale matrices

Within the class of elliptical distributions, the scale matrix ⌃ su↵ers from

some identifiability issue in the sense that the distribution defined in (1) is

unchanged when ⌃ is replaced by c⌃ and g by g1 where g1(t) = cp/2g(ct) for

any fixed positive scalar c. In other words, any triplet (µ,⌃, g) can be replaced

by (µ, c⌃, g1). This change in g corresponds to changing R into R1 = R/
p
c.

The previous results apply for any new triplet (µ, c⌃, g1). It is easily checked

that the sphericity ⇣ is unchanged and that for u1 chosen following the maximum

likelihood principle, i.e. u1(t) = �2 g0
1(t)

g1(t)
, then u1(t) = cu(ct) and the quantity

f2 is unchanged. Consequently, the optimal shrinkage coe�cients in Theorem

3.1 are changed into ↵⇤
1 = c↵⇤ and �⇤

1 = �⇤, which implies that using expression

(15), e⌃↵⇤
1�

⇤
1
= ce⌃↵⇤�⇤ . These two matrices have the same trace-normalization,

i.e. pe⌃↵⇤
1�

⇤
1
/tr(e⌃↵⇤

1�
⇤
1
) = pe⌃↵⇤�⇤/tr(e⌃↵⇤�⇤). Applying this in particular with

c = p/tr(⌃), it follows an algorithm detailed in Section 4 that provides an

estimation of the trace-normalized V = p⌃/tr(⌃) for which we can use the fact

that tr(V) = p by construction. ConsideringV, the expression for the optimal �

is then unchanged and given by �⇤ in (16) while the expression for ↵⇤ simplifies

into ↵⇤ = 1 � �⇤. Similarly, it is easy to check that the mean estimation, as

proposed in Section 4, is not impacted by the trace-normalization.

4. Regularized trace-normalized scale matrix estimator for the mul-

tivariate t-distribution

In this section and in the sequel, we focus on the multivariate t-distribution case,

and aim at estimating the mean vector µ andV = p⌃/tr(⌃) using our shrinkage
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methodology. The first step is thus to estimate the optimal shrinkage parameters

which as explained above reduces to estimating �⇤ as given in (16) (with ↵⇤ =

1� �⇤). According to Corollary 3.1, �⇤ may be estimated using estimators of ⇣

(unchanged by the trace-normalization) and ⌫. The next paragraph gives some

suitable estimators for these quantities.

4.1. Estimation of the optimal values ↵⇤ and �⇤

To provide a numerical expression of ↵⇤ and �⇤, the unknown quantities ⇣ and

⌫ need to be estimated. For ⇣, we use the estimator proposed in [40] defined as:

⇣̂ = p tr(S2)� p

n
� 1, where (25)

S =
1

n

nX

i=1

(xi � bµ)(xi � bµ)>

kxi � bµk2 and bµ =
1

n

nX

i=1

xi. (26)

Note that in matrix S above, bµ is usually replaced by the median. Results were

similar with the sample mean, which is then kept when comparing with other

methods for fairness.

Regarding the d.o.f. parameter ⌫, for t-distributions, the norm ||x||2 is

regularly varying with tail index 1/⌫ [41], i.e. :

8t > 0, lim
z!+1

P (||x||2 > tz)

P (||x||2 > z)
= t�1/⌫ . (27)

Di↵erent estimators of the tail index are available in the literature, the most

popular and widespread being the Hill estimator, introduced in [42]. By taking

the inverse of the latter, we define an estimator ⌫̂kn of ⌫ :

⌫̂kn =

 
1

kn

knX

i=1

ln

✓ ||x[i]||2
||x[kn+1]||2

◆!�1

, (28)

where x[i] denotes the ordered observations such that ||x[1]||2 � . . . � ||x[kn+1]||2 �

. . . � ||x[n]||2. The Hill estimator, and therefore ⌫̂kn , are related to a number kn.

On a theoretical point of view, the latter has to fulfill kn ! +1 and kn/n ! 0

as n ! +1, and leads to a compromise between a variable and biased estima-

tion of ⌫. Indeed, a small kn leads to a low biased and high variable estimation,

while a large kn increases the bias and reduces the variance (see Section 3.2

13



in [43] for details). Therefore, the choice of kn, usually chosen as bnbc with

0 < b < 1, is an important point, and is discussed in [44] in the t-distribution

case. According to [44], a choice of b  4/(⌫ + 4) is suitable. In the sequel,

b = 0.25 is chosen, filling the last inequality for all ⌫  12, i.e. in most cases.

Using the same setting as in Section 5 below, the quality of the proposed Hill-

based estimator is illustrated in the supplementary materials Section 4, Figure

1. In this setting, the estimated value is overall always above the true value,

with a reduced and small bias as n increases. One advantage of the proposed

method, with respect to the more traditional method of moments, is not to

require the existence of moments. Other estimation procedures are possible but

were not investigated in this study.

4.2. Joint scale matrix and mean estimation

In the previous sections we assumed that the mean vector µ was known.

When the mean vector is unknown, the sample mean bµ = 1/n
Pn

i=1 xi can be

used as an estimator but it is likely to perform poorly in the presence of outliers

or simply in high-dimensional cases. The estimation of the scale matrix can

then be severely degraded by an inaccurate estimation of the mean vector µ.

To overcome this di�culty, we focus on the joint mean - scale matrix estimation

as the solution of a system of equations of the following form defining Maronna’s

M-estimators [6]:

0 =
1

n

nX

i=1

h (�µ,⌃(xi)) (xi � µ), (29)

⌃ =
1

n

nX

i=1

u (�µ,⌃(xi)) (xi � µ) (xi � µ)> , (30)

where the functions h and u satisfy a set of general assumptions stated in [6].

We propose to extend this approach to the high-dimensional/small sample size

case by replacing the scale matrix by its regularized estimator. More specifically,

the trace normalized scale matrix V is considered as explained in Section 3.3.

It follows the iterative algorithm below for µ and V. Denoting the tth iteration

14



with index (t):

µ(t+1) =

Pn
i=1 h

⇣
(xi � µ(t))>V(t)�1(xi � µ(t))

⌘
xi

Pn
i=1 h ((xi � µ(t))>V(t)�1(xi � µ(t)))

, (31)

eV(t+1) =
�
n

nX

i=1

u
⇣
(xi � µ(t+1))>V(t)�1(xi � µ(t+1))

⌘

⇥ (xi � µ(t+1))(xi � µ(t+1))> + (1� �)I, (32)

V(t+1) = p
eV(t+1)

tr(eV(t+1))
. (33)

The optimal � coe�cient, for any distribution in the elliptical family, can be

computed using expression (16). This value involves ⇣ and the parameters defin-

ing the distribution of the radius R. While ⇣ can be estimated using expression

(25), the estimation of the R distribution parameters may not be obvious and

requires additional examination. One possible solution is to set these parame-

ters to fixed values representing the prior knowledge about the distribution of

R. Another solution is to choose the parameters values corresponding to the

heaviest tail case within the chosen distribution subclass. For example, for the

multivariate t-distribution, the authors in [23] propose to set ⌫ = 1, in other

words, to focus on the Cauchy distribution, which corresponds to a heavy-tail

representative among the subclass of t-distributions. To keep more flexibility,

these parameters could also be estimated using a maximum likelihood approach,

possibly using the Expectation-Maximization (EM) algorithm. The EM algo-

rithm is tractable for a subclass of the elliptical family referred to as Gaussian

scale mixtures (GSM) [45]. GSM distributions include the generalized Gaussian,

the multivariate t-distribution, the Pearson type VII distribution, etc.

Hereafter, Algorithm 1 provides a simple algorithm for the joint mean - scale

matrix estimation for the multivariate t-distribution. This algorithm does not

require an additional step for the estimation of the d.o.f. ⌫ in contrast to an

EM algorithm implementation that would iteratively update ⌫ as well as µ and

V. Instead, in Algorithm 1, ⌫ is evaluated once through the Hill estimator (28)

and used then for both the estimation of ↵⇤, �⇤ and that of µ and V.

We do not provide a convergence proof for Algorithm 1 but we note that
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Algorithm 1 Small sample size trace normalized scale matrix and mean esti-

mation for a multivariate t-distribution

1: Initialize V to V
(0) an arbitrary positive definite matrix and µ to µ(0) an

arbitrary vector

2: Estimate d.o.f. b⌫ using (28) and b�⇤ using (23) and (25), and b↵⇤ = 1� b�⇤.

3: Iterate the following steps until convergence:

3.1: Update the mean vector µ as :

µ(t+1) =

Pn
i=1 w̄

(t+1)
i xi

Pn
i=1 w̄

(t+1)
i

,

where w̄(t+1)
i =

b⌫ + p

b⌫ + (xi � µ(t))>
�
V(t)

��1
(xi � µ(t))

. (34)

3.2: Compute matrix eV(t+1) as :

eV(t+1) = b�⇤ p+ b⌫
n

⇥
nX

i=1

(xi � µ(t+1))(xi � µ(t+1))>

(xi � µ(t+1))>
�
V(t)

��1
(xi � µ(t+1)) + b⌫

+ b↵⇤
I. (35)

3.3: Update V as the trace-normalized eV(t+1) :

V
(t+1) = p

eV(t+1)

tr(eV(t+1))
.
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step 3.3 in Algorithm 1 is crucial for convergence. Indeed, considering only

the part involving V assuming µ fixed, the convergence of the iterations derives

from concave Perron-Frobenius theory following the proof given in [8] (Appendix

VIII.A) with only minor adaptations. It appears in this proof that the normal-

ization in step 3.3 is essential. In practice, we did observe unstable behaviors

when this normalization was not imposed.

5. Results on simulated data

In this section we conduct a simulation study to illustrate the performance

of the proposed shrinkage approach through Algorithm 1. In our experiments,

an autoregressive (AR) covariance structure is considered :

(⌃)ij = r|i�j|, r 2 (0, 1). (36)

When r tends to 0, then ⌃ is close to an identity matrix; when r tends to 1,

then ⌃ is close to a singular matrix of rank 1. As pointed out earlier, the choice

of b for computing the degrees of freedom parameter ⌫̂kn in (28) is an important

issue. The optimal theoretical value of this parameter depends on the true ⌫

through formula b ⇡ 4/(⌫+4). Here we choose b = 0.25 which corresponds to a

suitable value for ⌫  12. This allows a robust estimation of ⌫ both for heavy-

tailed distributions (e.g. with ⌫ = 1 corresponding to a Cauchy distribution)

and light-tailed distributions (e.g. ⌫ = 12).

In the first experiment, we simulate data from a multivariate t-distribution in

dimension p = 50, with the following di↵erent d.o.f. parameter ⌫ 2 {1, 2, 3, 6, 10}

and various AR schemes with r 2 {0.1, 0.7, 0.9}. The mean µ is set to the vec-

tor with all components equal to 5. For each pair of parameters (⌫, r) and for

a sample size n varying from 5 to 50, 100 data sets are generated leading to

estimations bµs, b⌃s for s = 1 to 100. The performance of a method is then as-

sessed using the normalized mean square-error (NMSE) for both ⌃ and µ. Since

tr(⌃) = p, we can directly compare the true ⌃ with our estimations. In more

17



general cases, we would compare to the true trace-normalized p⌃
tr(⌃) instead:

NMSE(⌃) =
E
n
kb⌃�⌃k2F

o

k⌃k2F
⇡ 1

100

100X

s=1

kb⌃s �⌃k2F
k⌃k2F

, (37)

NMSE(µ) =
E
�
kbµ� µk2F

 

kµk2F
⇡ 1

100

100X

s=1

kbµs � µk2F
kµk2F

. (38)

For each data set, five di↵erent algorithms are then used leading to five di↵erent

estimators of ⌃ and four di↵erent estimators of µ. In this setting, since tr(⌃) =

p, estimating ⇣ is equivalent to estimating tr(⌃2), for which propose to use

p2tr(S2) � p2

n , where S is defined in (26). The derivation of this expression is

explained in more details in Section 3 of the supplementary materials.

Then, the following methods were used for the NMSE(⌃) comparison:

• The algorithm proposed in [8] that estimates ⌃ on the data centered by

the sample mean (sm), referred to as ”Tyler sm”. As a plug-in estimate

for tr(⌃2) to compute ⇢⇤T in (8) the authors use p2tr(S2).

• For a fair comparison with ”Tyler sm”, we run only steps 3.2 and 3.3 of

Algorithm 1, setting µ to the sample mean and estimating ⌃ on the data

centered by the sample mean. Moreover, for the estimation of �⇤ in (23)

we also use p2tr(S2) for tr(⌃2) instead of p2tr(S2)�p2/n. This algorithm

is denoted as ”t-dist sm”.

• To demonstrate the impact of estimating µ iteratively instead of using the

sample mean, we run Algorithm 1 where tr(⌃2) in b�⇤ is estimated using

p2tr(S2). This algorithm is referred to as ”t-dist”.

• We run the full Algorithm 1 referred to as ”t-dist-2”. Both ⌃ and µ are

computed iteratively and �⇤ is set with ⇣ in (25).

• At last we run Algorithm 1 with the theoretical oracle �⇤(⌃, ⌫) in (23)

obtained with the true values of ⌃ and ⌫ denoted as ”Oracle”.

To illustrate the impact of the estimation of µ, a comparison of the NMSE(µ)

values is also provided for the four estimators resulting from the above algo-

rithms, namely :
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• the sample mean denoted by ”sm”;

• the estimation of µ resulting from the ”t-dist” algorithm;

• the estimation of µ resulting from the ”t-dist-2” algorithm (Algorithm 1);

• the estimation of µ from the ”Oracle” algorithm.

The results are illustrated in Figure 1 while more complete results are shown

in Figures 2 and 3 in the supplementary materials, Section 4. In all scenarios,

the proposed ”t-dist” and ”t-dist-2” algorithms are consistently the closest to

the ”Oracle” procedure, which as expected always provides the best results

with the minimal NMSE(⌃) and NMSE(µ). More specifically, the ”t-dist”

and ”t-dist-2” performances are very close to the ideal oracle estimator with

increasing n. However, it can be noted that ”t-dist-2” outperforms ”t-dist”

significantly, especially for NMSE(⌃) when the sample sizes are small. Since

”t-dist” and ”t-dist-2” di↵er only in the way they estimate tr(⌃2) for �⇤ in (23),

the performance loss of ”t-dist” over ”t-dist-2” can be attributed to the bias of

the estimator p2tr(S2) as compared to p2tr(S2)� p2/n.

To illustrate the importance of estimating µ and ⌫, we can focus on the

comparison of the ”t-dist”, ”t-dist sm” and ”Tyler sm” algorithms, which all

use the same estimator p2tr(S2) for tr(⌃2). For both ”Oracle” and ”t-dist”

methods, NMSE(⌃) steadily decreases as n increases. In contrast, the ”Tyler

sm” and ”t-dist sm” algorithms show in some cases irregular NMSE curves due

to a bad estimation of µ by the sample mean. As illustrated in Figure 1(b) and

supplementary Figure 3(a,b,c), this is particularly so for small d.o.f. like ⌫ = 1.

This confirms the potential limits of methods that do not estimate µ accurately

as pointed out in [23]. As regards the impact of ⌫, it is not easy to illustrate

separately the e↵ect of ⌫ from that of µ. To do so we consider the comparison

of ”Tyler sm” and ”t-dist sm” algorithms (Figures 2 and 3). In the first step,

both procedures employ the sample mean vector to center the original data. In

the second step, the covariance matrix is computed using the iteration given in

(4) for Tyler’s estimator with b⇢T⇤ defined in (8) and iteration given in step 3.2
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for ”t-dist sm” with b�⇤ in (23). Tyler’s procedure can be viewed as an extreme

case of the multivariate t-distribution with ⌫ = 0. Accordingly, we expect that

the di↵erence between the two estimators becomes more significant for larger

values of ⌫. The better results provided by ”t-dist sm” over ”Tyler sm” are

shown more specifically on Figure 3 for ⌫ = 10 where the main gains appear

for small sample sizes (Figure 3(b)). Algorithm ”t-dist sm” also outperforms

”Tyler sm” for smaller d.o.f. like ⌫ = 1 but with an increasing gain as n becomes

larger (see Figure 2(c,d)). However, for small ⌫ the di↵erences are somewhat

less visible due to larger NMSEs coming mainly from a bad estimation of µ.

When ⌫ is large, the resulting curve for ”t-dist sm” coincides with the one

for ”t-dist”. This is not surprising as the t-distribution tends to the Gaussian

distribution when ⌫ tends to 1 so that the mean vector in (34) becomes closer

to the sample mean. This result is confirmed by Figure 1(d,f), supplementary

Figure 3(j,k,l) for ⌫ = 6 and supplementary Figure 3(m,n,o) for ⌫ = 10. Overall

estimating the d.o.f. parameter ⌫ in step 3.2 is important, especially in the small

sample size regime, and more generally because it allows a better estimation of

the mean vector µ which seems to have a critical impact of the covariance

structure estimation. For both aspects, our proposed procedure improves over

the regularized Tyler’s algorithm. Regarding the impact of the choice of r, it

does not seem to lead to significantly di↵erent conclusions (see Figures 2 and 3

in supplementary materials).

6. Application to brain connectivity data.

Robust estimation of covariance matrices is especially needed for real data

where we know that Gaussian hypotheses are generally not true. This is the case

for the inference of brain connectivity. Thanks to non invasive neuroimaging,

brain recordings are now available to follow the activity of the brain during a task

or at rest. Using functional magnetic resonance imaging (fMRI), one volume

of the brain is acquired every one second or less for several minutes. Usually

each volume is composed of thousands of voxels that are gathered into a set of
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(a) NMSE(⌃), ⌫ = 1 (b) NMSE(µ), ⌫ = 1

(c) NMSE(⌃), ⌫ = 6 (d) NMSE(µ), ⌫ = 6

(e) NMSE(⌃), ⌫ = 10 (f) NMSE(µ), ⌫ = 10

Figure 1: Multivariate t-distribution with AR(r) covariance structure (p = 50, r = 0.1,

⌫ 2 {1, 6, 10} and µ is set to a vector of 5). Normalized mean squared-errors for ⌃ (first

column) and µ (second column) are computed over 100 simulated samples of n observations

each with n varying from 5 to 50.
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(a) r = 0.1, ⌫ = 1, 5  n  50 (b) r = 0.1, ⌫ = 1, 5  n  15

(c) r = 0.1, ⌫ = 1, 15  n  30 (d) r = 0.1, ⌫ = 1, 30  n  50

Figure 2: Multivariate t-distribution with AR(r) covariance structure (p = 50, r = 0.1, ⌫ = 1

and µ is set to a vector of 5): comparison of NMSE(⌃) for ”Tyler sm” and ”t-dist sm”

algorithms when the mean is fixed to the sample mean. Normalized mean squared-errors are

computed over 100 simulated samples of n observations each. Varying values of n from 5 to

50 (a) are also plotted separately for better layout in (b,c,d).
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(a) r = 0.1, ⌫ = 10, 5  n  50 (b) r = 0.1, ⌫ = 10, 5  n  15

(c) r = 0.1, ⌫ = 10, 15  n  30 (d) r = 0.1, ⌫ = 10, 30  n  50

Figure 3: Moderate-tailed t-distribution (⌫ = 10) with AR(r) covariance structure (p = 50,

r = 0.1 and µ is set to a vector of 5): comparison of NMSE(⌃) for ”Tyler sm” and ”t-dist

sm” algorithms when the mean is fixed to the sample mean. Normalized mean squared-errors

are computed over 100 simulated samples of n observations each. Varying values of n from 5

to 50 (a) are also plotted separately in (b,c,d).
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hundreds of parcels or brain regions. Each brain region is then associated to a

time series. These data are still too complex to provide an easy visualisation

and interpretation. Brain connectivity graphs or networks are then constructed

by defining nodes as brain regions and edges as connections between time series

associated to these brain regions. This allows a spatio-temporal modeling of the

brain while functioning.

In this application, to quantify the links between time series, edges are as-

sociated to partial correlations read on inverse covariance matrices. Inference

of brain connectivity graphs depends then on accurate estimation of covari-

ance or precision matrices. To compare objectively di↵erent methods, we use

a test-retest dataset selected from a larger dataset publicly released as part

of the Human Connectome Project (HCP), WU-Minn Consortium (https:

//www.humanconnectome.org/).

More details can be found in [46]. We select 100 subjects who have been scanned

twice in two di↵erent sessions of about 15 minutes each. These two sessions

are divided into two sub-sessions of half duration and denoted respectively by

S11, S12 for session 1 and S21, S22 for session 2. Shorter sessions are more com-

mon in practice and they represent a higher challenge for the tested approaches.

Following [46], fMRI time series are analyzed through their wavelets decompo-

sitions providing vectors of wavelets coe�cients resulting in datasets of size

n = 547. However, the wavelets coe�cients being not independent, the actual

e↵ective sample size is evaluated as being only 37. The number of brain re-

gions is set to p = 90 based on a commonly used parcellation of the brain into

90 regions [47].

Before processing, several statistical tests were performed to check the heavy-

tailed non-Gaussian nature of the time series. Multivariate Gaussianity tests

exist but they are generally designed for conventional low-dimensional data.

Proposals have been made in the small sample size setting, e.g. [48], based on

robust estimations of the mean and covariance matrix but they could not be

used here as this is precisely the goal of the paper to provide such estimations.

However, since marginals of Gaussian vectors are all Gaussian, Shapiro-Wilk
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Figure 4: Quantile quantile plots for the time series corresponding to region 1 (first marginal),

in sub-session S11. Each color represents one of the 100 subjects. Empirical quantiles are

plotted against theoretical Gaussian quantiles.

tests were performed on 1D marginals. They resulted for most subjects in the

rejection of the Gaussian hypothesis. As an illustration, the histograms of the

p-values for the first and 90th marginals (i.e. brain regions 1 and 90), in the

first sub-session S11 for the 100 subjects, are shown in supplementary Figure 4.

For 50% of the subjects, normality is rejected at a significance level lower than

0.005 for the first region and lower than 0.007 for the 90th region. In both cases,

the average p-value was of 0.05. For an additional visual illustration, quantile-

quantile plots, for each of the 100 subjects, session S11, region 1 (first marginal),

are shown in Figure 4 below. A similar plot for the 90th region is shown in

supplementary Figure 5. The departure from the straight line indicates non

Gaussianity and the presence of an heavy tail. The adequation to an elliptical

distribution was then not formally tested but 2D scatter plots provided visual

hints showing acceptable elliptical shapes. The first and 90th marginals of the

first 16 subjects are provided in supplementary Figure 6. Similar results and

plots were obtained for most of the subjects and sessions.

The reliability of each structure learning approach is then evaluated by mea-
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suring for each subject, the graph properties di↵erences for the four pairs of

sub-sessions coming from di↵erent sessions, (S11, S21), (S11, S22), (S12, S21) and

(S12, S22). For each dataset, five di↵erent approaches are considered:

• Sample partial correlation denoted as ”sample pc”.

• Shrinkage using the Ledoit-Wolf’s estimator in [18] referred as ”lw”.

• Maximum-likelihood for a t-distribution using EM [49] defined as ”t-dist

em”.

• Graphical Lasso using [11] which we refer to as ”glasso” (the tuning pa-

rameter � in ”glasso” algorithm for each subject in each sub-session was

obtained by cross-validation with k = 3 folds).

• Our shrinkage Algorithm 1 for a t-distribution. We call this method ”t-

dist-2 shrink”.

In contrast to simulated data experiments, results with Tyler’s estimators

are not shown here because they provide results similar to the Ledoit-Wolf’s

estimator.

In order to produce graphs with a fixed comparable number of edges, we

apply soft-thresholding to each obtained matrix. For each subject in each sub-

session, we then obtain an adjacency matrix that defines an unweighted graph

for which a graph metric called global e�ciency is computed. This metric is

related to the communication e�ciency of a node i with all other nodes (detailed

information can be found in [50]). If G = (V,E) denotes a graph with V as its

set of p vertices and E as its edge set, the global e�ciency Eglobi is defined as

the inverse of the harmonic mean of the set of the minimum path lengths Lij

between node i 2 V and all other nodes j 2 V in the graph:

Eglobi =
1

p� 1

X

j2V

1

Lij
. (39)

Here p is the number of brain regions. Then by averaging these global e�ciency

values over all nodes, one value of this parameter is derived for a given graph.
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Consequently, for a given pair of sub-sessions, 200 global e�ciency values, one

per each subject in each sub-session, are computed for a given pre-set percentage

of edges in the graphs.

6.1. Brain connectivity graphs

As an illustration, Figure 5 displays, for five subjects and sub-sessions S11

and S22, the global e�ciency computed for each region of the brain with either

sample partial correlations or partial correlations using our shrinkage method.

The global e�ciency values are on average between 0.35 for the right Precentral

region and 0.53 for the left Putamen region. Regions with high global e�-

ciency greater than 0.5 include the post Cingulum, Amygdala, Frontal Middle

Orbital, Occipital Inferior and Thalamus regions. Whereas regions with low

e�ciency less than 0.4 include the Precentral, Postcentral, Parietal Superior

and Frontal Superior regions. The qualitative comparison between the two sub-

sessions highlights a higher similarity and reproducibility between sessions with

our shrinkage method ”t-dist-2 shrink”, Figure 5 (b), than with sample partial

correlation ”sample pc”, Figure 5 (a). Similar results are observed for other

subjects and other pairs of sub-sessions.

6.2. Test-retest reliability

To quantify more specifically the di↵erences between the five tested methods,

we evaluate their ability to provide similar results between two sessions via the

so-called intraclass correlation coe�cient (ICC) between the sessions. Using the

global e�ciency values for each subject in each session, we compute their within-

subject (sw) and between-subject (sb) mean square di↵erences, as detailed in

the Appendix of [46]. In our case, with two sessions, the ICC is then given by

ICC =
sb � sw
sb + sw

. (40)

When for each subject, similar global e�ciency values are found in the two

sessions, then the ICC is close to 1 and the reliability is high. In contrast, ICC

is close to 0 when the reliability is low. The ICC may take negative values when
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(b) t-dist-2 shrink

Figure 5: Global e�ciency per brain region (node) for brain graphs with 10% of edges. Five

subjects are displayed (columns). Two sessions S11 (first and third rows) and S22 (second

and fourth rows) are compared using (a) sample partial correlations and (b) our proposed

shrinkage approach. A high global e�ciency means that the node/region is well connected to

other nodes. Hubs generally show a high global e�ciency. In contrast, a low global e�ciency

means that the shortest path length is large, and is typical of less connected nodes.
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the variance within subjects is larger than between subjects. This is due to

statistical errors given a particular dataset and should be considered as a non

reliable estimation.

Figure 6 represents, for sessions S11 and S22, ICC values with respect to the

pre-set percentage of edges in the graphs, referred to as the cost. Shrinkage

methods (”lw” and ”t-dist-2 shrink”) have the largest range of costs where ICC

is above 0.4, Figure 6(a). This is confirmed by the computation of p-values,

Figure 6 (b), where p-values allow to check whether the ICC is significantly

larger than zero. The ICC computed using empirical partial correlation and EM

for a t-distribution are nearly equal to 0 for any cost showing a poor reliability

of global e�ciency. Glasso is also showing poor performance because of the

di�culties to choose the regularisation parameters. For additional confirmation

that shrinkage schemes provide better results than sample partial correlation, we

further check sb values as an increase in sb may artificially increase ICC values.

Figure 7 displays sb and sw values obtained with the two shrinkage methods

against the sample partial correlation values. Figure 7 (b) shows clearly that

sb behaves similarly in all three methods which allows then a fair comparison

between them. In contrast, Figure 7 (a) shows that there is a clear decrease of

sw using methods based on shrinkage. This confirms that shrinkage estimators

such as ”lw” and ”t-dist-2 shrink” show very good similar performances and

improve the reliability of global e�ciency on this test-retest dataset.

Similar conclusions hold for the other pairs of sessions. The corresponding

ICC and p-values plots can be found in Section 5 of the supplementary materials,

Figures 7 and 8.

7. Conclusion

In this paper, we address the issue of robust covariance matrix estimation in

settings where the sample size is small compared to the number of parameters

and the mean is not known a priori. Elliptical distributions are considered to

improve robustness. In particular, we focus on Student’s t-distributions for their
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(a) ICC (b) p-value

Figure 6: Intraclass correlation coe�cient (ICC) between two fMRI sessions (S11 and S22) (a)

and associated p-values (b) with respect to the pre-set percentage of edges in the graphs (cost).

The ICC values are shown for the various estimators considered in this study. The larger

the ICC, the higher the consistency between the two sessions and the higher the estimator

reliability.

(a) Within-subject variances (sw) (b) Between-subject variances (sb)

Figure 7: Within-subject sw (a) and between-subject sb (b) variances, for sessions S11 and

S22, using di↵erent estimators. Values of sw and sb for two shrinkage methods (”lw” and ”t-

dist-2 shrink”) are plotted against values obtained using sample partial correlation. The black

line indicates the line of equal values. Red and grey dots correspond to varying percentages

of edges in the graphs.
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ability to model heavy tails and to handle outliers. A regularisation approach

based on shrinkage is then used to face the relative lack of data. These two

aspects are combined and lead to a penalized maximum likelihood based esti-

mator assuming the observations follow a multivariate Student’s t-distribution.

The proposed approach is showed to fulfill theoretical results for more general

elliptical distributions, and it has the advantage to be implemented easily in

practice.

Among regularized robust estimators, the proposed estimator has several

desirable properties: 1) the penalization level or regularizing coe�cient is not

tuned manually but estimated via a closed-form formula deriving from a mini-

mum mean squared-error principle, 2) prior knowledge on the mean and degree-

of-freedom parameter values are not needed and both these parameters can be

estimated in a data driven way, at last 3) the e�cient algorithm that is derived

shows good estimation accuracy when compared to the standard Tyler’s esti-

mator on simulated data and to additional standard methods on real data. In

particular our experiments confirm the importance of a good estimation of the

mean and the potential advantage of methods that aim at estimating both the

mean and covariance matrix.

8. Proof of the main results

8.1. Proof of Theorem 3.1

Using the same notation as in [8], we define matrix eC as:

eC = m (⌃) =
1

n

nX

i=1

u (�µ,⌃(xi)) (xi � µ)(xi � µ)>. (41)

Deriving (12) with respect to ↵ leads to:

↵⇤ =
tr(⌃)� �⇤E

h
tr(eC)

i

p
. (42)

Since the vectors xi = µ+Ri⇤Ui for 1  i  n are elliptically distributed and

⌃ = ⇤⇤
>, then (see e.g. [26]):

(xi � µ)(xi � µ)> = R2
i⇤UiU

>
i ⇤

>
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and (xi � µ)>⌃�1(xi � µ) = R2
i . Thus,

eC =
1

n

nX

i=1

u(R2
i )R

2
i⇤UiU

>
i ⇤

>,

and tr
⇣
eC
⌘
=

1

n

nX

i=1

u(R2
i )R

2
i tr

�
⇤UiU

>
i ⇤

>� .

Using that Ri and Ui are independent and that E
⇥
UiU

>
i

⇤
= 1

pI, it comes,

E
h
tr
⇣
eC
⌘i

=
1

n

nX

i=1

E
⇥
u(R2

i )R
2
i

⇤
tr
�
⇤E

⇥
UiU

>
i

⇤
⇤

>�

= f1tr(⌃)/p, (43)

where f1 = E
⇥
u(R2)R2

⇤
using R to represent the common distribution of the

Ri’s.

M-estimators satisfy the following relationship [6, 35]:

E
h
u
⇣
(x� µ)> (�⌃)�1 (x� µ)

⌘
(�⌃)�1 (x� µ) (x� µ)>

i
= I,

where � is a positive scalar that depends on u and g (see e.g. [35] eq.(44) and

(45)). Taking the trace on both sides and noticing that tr
⇣
⌃

�1 (x� µ) (x� µ)>
⌘
=

(x� µ)> ⌃
�1 (x� µ) = R2, it comes E

⇥
u(R2/�)R2/�

⇤
= p . If u(t) = �2g0(t)/g(t)

then the quantity f1 = E
⇥
u(R2)R2

⇤
can be computed directly using integration

by parts and is equal to p, which also shows that � = 1. For more general u,

the value of f1 is not straightforward. For u(t) = �2g0(t)/g(t), the fact that

f1 = p leads thus to E
h
tr(eC)

i
= tr(⌃).

It follows (17), i.e. ↵⇤ = tr(⌃)
p (1� �⇤) that allows then to write e⌃↵� =

� eC+ (1� �) tr(⌃)
p I before deriving (12) w.r.t. �. This leads to:

�⇤ =
E
h
tr
⇣
eC⌃

⌘i
� tr(⌃)

p E
h
tr
⇣
eC
⌘i

E
h
tr
⇣
eC2
⌘i

� 2 tr(⌃)
p E

h
tr
⇣
eC
⌘i

+ tr(⌃)2

p

. (44)

where E
h
tr(eC)

i
= tr(⌃) and similarly, E

h
tr
⇣
eC⌃

⌘i
= f1tr

�
⌃

2
�
/p = tr(⌃2).

For the term E
h
tr
⇣
eC2
⌘i

, we can write:

eC2 =
1

n2

nX

i=1

nX

j=1

u(R2
i )R

2
i u(R

2
j )R

2
j⇤UiU

>
i ⇤

>
⇤UjU

>
j ⇤

>,
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and using the mutual independence of all Ui’s and Ri’s and their common

distribution represented by variable U and R respectively, it comes,

E
h
tr(eC2)

i
=

1

n2

⇣X

i 6=j

E
⇥
u(R2)R2

⇤2
tr
�
(⇤E

⇥
UU

>⇤
⇤

>)2
�

+
nX

i=1

E
⇥
(u(R2)R2)2

⇤
E
⇥
tr
�
(U>

⇤
>
⇤U)2

�⇤⌘

=
n� 1

n

f2
1 tr(⌃2)

p2
+

1

n
f2 E

⇥
(U>

⇤
>
⇤U)2

⇤
.

Following [8], to compute the last expectation, we can use the fact that for

an elliptical distribution, the particular decomposition of ⌃ is irrelevant. In

particular we can take ⇤ = DA
1/2 where ⌃ = DAD

T is the eigenvalue de-

composition of ⌃. Thus ⇤>
⇤ = A where A is the diagonal matrix containing

the eigenvalues of ⌃. For our purpose, we actually only need that A = ⇤
T
⇤ is

diagonal since then tr(A) = tr(⌃) and tr(A2) = tr(⌃2). Let a1, . . . , ap be the

diagonal entries of A and denote the elements of U as U = (u1, . . . , up)>, the

last expectation can be computed as,

E
h�
U

>
AU

�2i
= E

2

4
pX

k=1

a2ku
4
k +

X

k 6=m

akamu2
ku

2
m

3

5

=
pX

k=1

a2kE
⇥
u4
k

⇤
+
X

k 6=m

akamE
⇥
u2
ku

2
m

⇤
.

At last, it comes from Lemma 2 in [51] that , E
⇥
u4
k

⇤
= 3

p(p+2) and E
⇥
u2
ku

2
m

⇤
=

1
p(p+2) for k 6= m. Then,

E
h�
U

>
AU

�2i
=

1

p(p+ 2)

0

@3
pX

k=1

a2k +
X

k 6=m

akam

1

A

=
1

p(p+ 2)

�
2tr(A2) + (tr(A))2

�

=
1

p(p+ 2)

�
2tr(⌃2) + tr(⌃)2

�
.
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We finally get:

E
h
tr(eC2)

i
=

1

n2


n

✓
f2

1

p(p+ 2)

�
2tr(⌃2) + tr(⌃)2

�◆

+(n2 � n)

✓
f2
1
1

p2
tr(⌃2)

◆�

=tr(⌃2)
⇣n� 1

n
+ f2

2

np(p+ 2)

⌘

+ tr(⌃)2f2
1

np(p+ 2)
.

The shrinkage coe�cient �⇤ thus takes the form:

�⇤=
tr(⌃2)� tr(⌃)2

p

tr(⌃2)
⇣

n�1
n + 2f2

np(p+2)

⌘
+ f2tr(⌃)2

np(p+2) � tr(⌃)2

p

,

and the result is proved.

Note also that this expression of �⇤ is by construction always in [0, 1] if

p � 2. Indeed, the di↵erence between the numerator and denominator is

tr(⌃2)

✓
2f2

np(p+ 2)
� 1

n

◆
+

f2
np(p+ 2)

tr(⌃)2.

Since f2 = E
⇥
(u(R2)R2)2

⇤
, Jensen inequality gives f2 � f2

1 = p2, and

2f2
np(p+ 2)

� 1

n
� p� 2

n(p+ 2)
� 0,

and �⇤  1. Similarly, since⌃ is a symmetric matrix, we have tr(⌃)2  tr(⌃2)p,

and therefore �⇤ � 0. ⇤

8.2. Proof of Proposition 3.1

Let us denote fR the pdf of R. According to Theorem 2.9 in [28], we have:

fR(t) =
(2⇡)

p
2

�
�p
2

� tp�1g(t2) , g(t) =
�
�p
2

�

(2⇡)
p
2

t(1�p)/2fR(
p
t).

We prove each case separately.

1. If R2 is a Chi-squared distribution with p degrees of freedom, then:

g(t) =
�
�p
2

�

(2⇡)
p
2

t(1�p)/2fR(
p
t) = (2⇡)�p/2 exp

✓
� t

2

◆
.

It thus comes u(t) = 1, and f2 = E
⇥
�4
p

⇤
. The moments of the Chi-squared

distribution lead to f2 = p(p+ 2).
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2. Some straightforward calculations lead to:

g(t) =
�
�p
2

�

�
� 2q+p�2

2s

� �
2q+p�2

2s

⇡
p
2

tq�1 exp (��ts)

and therefore

u(t) = 2
1� q

t
+ 2�sts�1.

By noticing that u(t)2t2 = 4(1�q)2+8�s(1�q)ts+4�2s2t2s, the moment

E
⇥
u(R2)2R4

⇤
may thus be rewritten as follows:

4(1� q)2 + 4s(1� q)E
h
�2

2q+p�2
s

i
+ s2E

⇣
�2

2q+p�2
s

⌘2
�
.

Using the moments of the Chi-squared distribution concludes the proof.

3. If R2/p is a Fisher distribution with p and ⌫ degrees of freedom, it is

known that x follows a p-variate t-distribution with ⌫ degrees of freedom.

In this case, g(t) is given by (⌫⇡)�p/2 (1 + t/⌫)�(p+⌫)/2, and therefore

u(t) = (p+ ⌫)/(t+ ⌫). In addition,

E
⇥
u(R2)2R4

⇤
=

Z 1

0

�
u(r2)

�2
r4fR(r)dr

=

Z 1

0
4

�
g0(r2)

�2

(g(r2))2
r4

2⇡
p
2

�
�p
2

�rp�1g(r2)dr

=

Z 1

0
8

�
g0(r2)

�2

g(r2)

⇡
p
2

�
�p
2

�rp+3dr

=8
⇡

p
2

�
�p
2

�
Z 1

0

�
g0(r2)

�2

g(r2)
rp+3dr.

The ratio (g0(r2))2/g(r2) may be rewritten here:

�
g0r2(r

2)
�2

g(r2)
=

1
4

�
�
p+⌫
2

�

�
�
⌫
2

�
⇡

p
2

⌫� p
2�2(⌫ + p)2

✓
1 +

r2

⌫

◆� ⌫+p+4
2

.

Combining the previous relationships obtained, it comes:

E
⇥
u(R2)2R4⇤ =

�
�
p+⌫
2

�

�
�
⌫
2

�
�
�
p
2

� (⌫ + p)2

⇥
Z 1

0

✓
r2

⌫

◆ p
2+1 ✓

1 +
r2

⌫

◆� ⌫+p
2 �2

d

✓
r2

⌫

◆
.
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Using the known moments of the t-distribution leads to:

E
⇥
u(R2)2R4

⇤
=

�
�p+⌫

2

�

�
�
⌫
2

�
�
�p
2

� (⌫ + p)2
�
�p
2 + 2

�
�
�
⌫
2

�

�
�p+⌫

2 + 2
�

=
(⌫ + p)(p+ 2)p

p+ ⌫ + 2
.

⇤
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