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When estimating covariance matrices, traditional sample covariance-based estimators are straightforward but su↵er from two main issues: 1) a lack of robustness, which occurs as soon as the samples do not come from a Gaussian distribution or are contaminated with outliers and 2) a lack of data, which occurs as soon as the covariance matrix dimension is greater than the sample size. The first issue can be handled by assuming that samples are drawn from a heavy-tailed distribution, at the cost of more complex derivations, while the second issue can be addressed by shrinkage with the di culty of choosing the appropriate level of regularization. This work o↵ers both a tractable and optimal framework based on shrinked likelihood-based M-estimators. First, a closed-form expression is provided for a regularized covariance matrix estimator with an optimal shrinkage coe cient for any sample distribution in the elliptical family. Then, a complete inference procedure is proposed which can handle both unknown mean and tail parameter, in contrast to most existing methods that focus on the covariance matrix parameter requiring pre-set values for the others. An illustration on synthetic and real brain connectivity data is provided in the case of the t-distribution with unknown mean and degrees-of-freedom parameters.

Robust estimation, Elliptical distributions

Introduction

Accurate estimation of covariance matrices (or more generally scale matrices) is fundamental in many areas of statistics and machine learning. Examples include applications in finance [START_REF] Ledoit | Improved estimation of the covariance matrix of stock returns with an application to portfolio selection[END_REF], bioinformatics and classification [START_REF] Friedman | Regularized discriminant analysis[END_REF][START_REF] Finegold | Robust graphical modeling of gene networks using classical and alternative t-distributions[END_REF]. Practitioners usually have to deal with two main di culties. First, observations may deviate from the Gaussian distribution due to a particular data generating process or the presence of outlying data. Ignoring this deviation may conduct to inadequate predictions and conclusions [START_REF] Finegold | Robust graphical modeling of gene networks using classical and alternative t-distributions[END_REF]. A widespread solution to design so-called robust estimators, is to consider heavy-tailed distributions which can better accommodate outliers. Among those, elliptical distributions have been studied as good candidates as they include tractable heavy-tailed distributions such as the t-distribution, whose tail is controlled by a single degrees-of-freedom (d.o.f.) parameter [START_REF] Owen | On the class of elliptical distributions and their applications to the theory of portfolio choice[END_REF][START_REF] Bodnar | A test for the weights of the global minimum variance portfolio in an elliptical model[END_REF]. In addition, for elliptical distributions, robust estimators of the scale matrix ⌃ are provided by Maronna's M-estimators, defined as the solution e ⌃ of a fixed-point relationship e

⌃ = E h u ⇣ x > e ⌃ 1 x ⌘ xx > i
where u is function satisfying a set of general assumptions [START_REF] Maronna | Robust M-Estimators of Multivariate Location and Scatter[END_REF]. Other robust approaches include the use of contamination models, see e.g. [START_REF] Chen | Robust Covariance and Scatter Matrix Estimation under Huber's Contamination Model[END_REF] for a recent reference. A second di culty is then that the problem dimension may be too large compared to the number of available observations, which prevents accurate estimation when this feature is not explicitly taken into account. For example, if the dimension p of ⌃ is greater than the sample size n, Maronna's estimators do not exist [START_REF] Chen | Robust Shrinkage Estimation of High-Dimensional Covariance Matrices[END_REF]. As a consequence, many authors have proposed alternative estimators which can be divided into two main categories. A first set of approaches assumes structured matrices so as to reduce the number of parameters to estimate, while a second set of approaches aims at compensating the lack of samples with regularization or prior knowledge modelling. The first category includes attempts based on sparsity assumptions such as graphical Lasso, e.g. [START_REF] Yuan | Model selection and estimation in the Gaussian graphical model[END_REF][START_REF] Banerjee | Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data[END_REF][START_REF] Friedman | Sparse inverse covariance estimation with the graphical Lasso[END_REF],

and nodewise Lasso, e.g. [START_REF] Meinshausen | High-dimensional graphs and variable selection with the Lasso[END_REF][START_REF] Giraud | Estimation of Gaussian graphs by model selection[END_REF]. Besides not to be always satisfying in small sample size settings (see [START_REF] Jankova | Inference in high-dimensional graphical models[END_REF] for a recent review), these methods assume Gaussian observations and are therefore not suitable for elliptical distributions with heavy tails. Generalizations and alternatives have been considered that are more robust, e.g. [START_REF] Finegold | Robust graphical modeling of gene networks using classical and alternative t-distributions[END_REF][START_REF] Ashurbekova | Robust structure learning using multivariate T-distributions[END_REF][START_REF] Liu | High-dimensional semiparametric Gaussian copula graphical models[END_REF][START_REF] Zhao | Calibrated precision matrix estimation for highdimensional elliptical distributions[END_REF], but they require a large number of ⌃ entries to be zero which may be too restrictive in some applications. In this work, we rather consider estimators in the second category based on shrinkage methods, introduced in [START_REF] Ledoit | A well-conditioned estimator for large-dimensional covariance matrices[END_REF]. In shrinkage methods, the considered estimators are convex combinations of an initial estimator and the identity matrix view as a regularization term. The construction of these estimators rely then on two main ingredients, the choice of the initial estimator to be regularized and the choice of the regularization parameter, or equivalently the weight of the identity matrix. As already mentioned, when aiming at robust inference, M-estimators are good initial basis. Following this line, the authors in [START_REF] Chen | Robust Shrinkage Estimation of High-Dimensional Covariance Matrices[END_REF] have proposed a shrinkage procedure, with an optimal shrinkage coe cient, for a particular case of M-estimators, called Tyler's estimator where the function u(t) is set to p/t [START_REF] Tyler | A Distribution-free M-estimator of Multivariate Scatter[END_REF].

This choice of u is motivated by the fact that if x is elliptically distributed with mean µ, then the normalized vector z = (x µ)/||x µ|| follows an angular central Gaussian distribution. This approach has the advantage to be somewhat non-parametric and has shown a lot of merits in various settings [START_REF] Pascal | Covariance Structure Maximum-Likelihood Estimates in Compound Gaussian Noise: Existence and Algorithm Analysis[END_REF][START_REF] Ollila | Complex-valued ICA based on a pair of generalized covariance matrices[END_REF][START_REF] Wiesel | Geodesic convexity and covariance estimation[END_REF].

Unfortunately, a serious limit is that it requires the mean µ to be known in advance so that the shape of the distribution cannot be taken into account when estimating the mean. This point has been highlighted in [START_REF] Sun | Regularized robust estimation of mean and covariance matrix under heavy-tailed distributions[END_REF], which proposes to estimate µ assuming x follows a Cauchy distribution (i.e. a t-distribution with d.o.f. parameter equal to 1), and as a follow-up more recently in [START_REF] Liu | Regularized robust estimation of mean and covariance matrix for incomplete data[END_REF] with a generalization to any t-distributions. However, in contrast to [START_REF] Chen | Robust Shrinkage Estimation of High-Dimensional Covariance Matrices[END_REF], none of these papers provide an optimal shrinkage coe cient. Although the e↵ect of tuning this coe cient may be important, the issue is usually eliminated either by searching in a finite grid of values [START_REF] Sun | Regularized robust estimation of mean and covariance matrix under heavy-tailed distributions[END_REF][START_REF] Liu | Regularized robust estimation of mean and covariance matrix for incomplete data[END_REF] or using cross-validation [START_REF] Tong | Linear shrinkage estimation of covariance matrices using low-complexity cross-validation[END_REF], in both cases at the cost of a higher computational complexity and time.

We aim at building on these previous approaches by providing both a flexible and optimal framework based on shrinked likelihood-based M-estimators. The distribution of x is assumed to be elliptical so that the corresponding function u

and the associated M-estimator can be derived straightforwardly from a maximum likelihood principle. We propose then a shrinkage version of this estimator with an explicit formula for the optimal shrinkage coe cient that depends on two moments of the radius of x. Then, a complete inference procedure is proposed which does not require neither to pre-set the value of the mean nor that of the tail parameter. Explicit expressions of the optimal shrinkage coe cient are given for Gaussian and t-distributions and an algorithm for estimating both µ and ⌃ is proposed. Experiments on simulated and real brain connectivity data illustrate the good behavior of the proposed method in comparison to other existing methods such as Tyler's estimator, graphical Lasso, etc.

The paper is organized as follows. Section 2 recalls definitions and the main properties of elliptical distributions and M-estimators. The optimal shrinkage problem is addressed in Section 3 with a general formula for the optimal shrinkage coe cient. In the following Section 4, the optimal parameter value is given in the case of multivariate t-distributions together with a practical algorithm to estimate both the mean and covariance matrix in a potentially low sample size setting. The proposed estimator and algorithm are illustrated on simulated and real data respectively in Section 5 and 6. A conclusion ends the paper.

At last, all proofs and supplementary results are provided in Section 8 or as supplementary material.

Preliminaries

Elliptical distributions

A continuous random vector x 2 R p follows a multivariate elliptical symmetric distribution if its probability density function (pdf) is of the form (see [START_REF] Cambanis | On the theory of elliptically contoured distributions[END_REF] or [START_REF] Kelker | Distribution theory of spherical distributions and a locationscale parameter generalization[END_REF]):

p(x) = C p,g |⌃| 1/2 g (x µ) > ⌃ 1 (x µ) , (1) 
where ⌃ 2 R p⇥p is the scale matrix with determinant |⌃|, µ 2 R p is the location or mean vector, C p,g is a normalizing constant so that p(x) integrates to one.

The non-negative function g is called the density generator and determines the shape of the pdf. Also, it is important to note that elliptical distributions have the stochastic representation x = µ + R⇤U [START_REF] Cambanis | On the theory of elliptically contoured distributions[END_REF], where R (called radius) is a non negative random variable, ⇤ is a p ⇥ p matrix so that ⇤⇤ > = ⌃ and U is a p-dimensional random vector following a uniform distribution on the unit sphere in dimension p (R and U are independent). The radius R and the generator g are closely related. Indeed, according to Theorem 2.9 in [START_REF] Fang | Symmetric multivariate and related distributions[END_REF],

an elliptical distribution has a generator if and only if the random variable R has a density, and there exists a link between these two functions (Theorem 3 in [START_REF] Frahm | Generalized elliptical distributions: Theory and applications[END_REF] gives a similar result). Throughout this paper, we assume that our elliptical distribution has a generator, and the latter may be defined either by g, or by its radius R. This family encompasses a lot of well known particular cases, like the Gaussian distribution (with g(t) = exp( t/2)) and the Student distribution (also called t-distribution) with ⌫ > 0 degrees of freedom (with

g(t) = (1 + t/⌫) (p+⌫)/2 ).
Other examples include the Logistic [START_REF] Malik | Multivariate logistic distributions[END_REF], Kotz [START_REF] Nadarajah | The Kotz-type distribution with applications[END_REF],

Laplace [START_REF] Eltoft | On the multivariate Laplace distribution[END_REF] or Slash [START_REF] Arslan | A generalization of the multivariate slash distribution[END_REF] distributions.

In this paper we consider the problem of the scale matrix estimation ⌃ from a set {x 1 , . . . , x n } of n independent and identically distributed (i.i.d.)

p-dimensional observations drawn from an elliptical distribution [START_REF] Ledoit | Improved estimation of the covariance matrix of stock returns with an application to portfolio selection[END_REF]. It is an important task both in the case of known or unknown location or mean vector µ. A lot of methods have already been proposed. For instance, [START_REF] Zhao | Covariance matrices of quadratic forms in elliptical distributions[END_REF] focused on the widely used sample covariance matrix b S = n 1 P n i=1 x i x > i as an estimator of ⌃ (the mean vector µ is here considered as known, i.e. the data has previously been centered). However, being designed for the Gaussian distribution, this method is not suitable for the case of data with outliers. Moreover, it requires the existence of E[xx > ], and this condition is not always fulfilled (see e.g. the Cauchy distribution). To overcome these di culties, [START_REF] Tyler | A Distribution-free M-estimator of Multivariate Scatter[END_REF] proposed another estimator which is a particular case of Maronna's M-estimators [START_REF] Maronna | Robust M-Estimators of Multivariate Location and Scatter[END_REF] detailed in the next section.

To be more specific, we first provide below results for ⌃, but as done in many papers, e.g. [START_REF] Tyler | A Distribution-free M-estimator of Multivariate Scatter[END_REF][START_REF] Chen | Robust Shrinkage Estimation of High-Dimensional Covariance Matrices[END_REF][START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF][START_REF] Ollila | Regularized M -estimators of scatter matrix[END_REF][START_REF] Sun | Regularized robust estimation of mean and covariance matrix under heavy-tailed distributions[END_REF], we propose in practice to estimate the scale matrix normalized by its trace, also called the shape matrix. This both solves an intrinsic identifiability issue within the class of elliptical distributions [START_REF] Tyler | A Distribution-free M-estimator of Multivariate Scatter[END_REF] and helps the convergence of the estimation algorithm [START_REF] Chen | Robust Shrinkage Estimation of High-Dimensional Covariance Matrices[END_REF]. We provide, in Section 3.3, a detailed explanation that we can, without loss of generality, focus on the estimation of the shape matrix or trace-normalized scale matrix, with a trace set to p, i.e. V = p⌃/tr⌃. In particular, this is not the same as assuming directly that tr(⌃) = p. Note also that strictly speaking the covariance matrix when it exists is proportional to the scale matrix so that the term covariance is sometimes used abusively.

M-estimators and Tyler's estimator

Let {x 1 , . . . , x n } be a set of n i.i.d. observations drawn from an elliptical distribution (1) with a known mean vector µ. D. E. Tyler [START_REF] Tyler | A Distribution-free M-estimator of Multivariate Scatter[END_REF] proposed a distribution-free estimator of the trace-normalized covariance matrix by working with the normalized observations z i = xi µ kxi µk 2 . According to [START_REF] Tyler | Statistical analysis for the angular central Gaussian distribution on the sphere[END_REF], each z i follows the angular central Gaussian distribution:

p(z) = (p/2) 2⇡ p/2 |⌃| 1/2 z > ⌃ 1 z p/2 . ( 2 
)
The maximum likelihood principle leads to an implicit estimator e ⌃, solution of

e ⌃ = p n n X i=1 z i z > i z > i e ⌃ 1 z i . (3) 
A fixed point algorithm is usually used to compute e ⌃ with a final normalization step to ensure tr( e ⌃) = p. Tyler's estimator may then also be seen as a particular case of Maronna's M-estimator. Existence and uniqueness of e ⌃ are discussed in [START_REF] Tyler | A Distribution-free M-estimator of Multivariate Scatter[END_REF]. In particular, it is mentioned that the condition n > p is required. Otherwise, according to [START_REF] Muirhead | Aspects of multivariate statistical theory[END_REF], matrix e ⌃ is singular and this estimator is no longer suitable. In the case p n, a regularized Tyler's estimator has been proposed, based on shrinkage methods [START_REF] Chen | Robust Shrinkage Estimation of High-Dimensional Covariance Matrices[END_REF] as specified in the following section.

Regularized Tyler's estimator

Inspired by the shrinkage method of Ledoit and Wolf [START_REF] Ledoit | A well-conditioned estimator for large-dimensional covariance matrices[END_REF], the authors in [START_REF] Chen | Robust Shrinkage Estimation of High-Dimensional Covariance Matrices[END_REF] extended Tyler's method to the high dimensional setting introducing the following regularized fixed point equations. The t th iteration is indicated with index (t):

e ⌃ (t+1) = (1 ⇢) p n n X i=1 z i z > i z > i ⌃ (t) 1 z i + ⇢I, (4) 
⌃ (t+1) = p e ⌃ (t+1) tr( e ⌃ (t+1) ) . ( 5 
)
Here 0  ⇢  1 is a constant which is called shrinkage coe cient. The case of ⇢ = 0 corresponds to the standard non regularized Tyler's estimator while ⇢ = 1 reduces the estimator to the identity matrix. The term ⇢I ensures that the estimator is well-conditioned at each iteration. Both existence and uniqueness of the limit of the procedure (4)-( 5) are proved in [START_REF] Chen | Robust Shrinkage Estimation of High-Dimensional Covariance Matrices[END_REF]. The choice of ⇢ is also discussed. As in [START_REF] Ledoit | A well-conditioned estimator for large-dimensional covariance matrices[END_REF], the authors in [START_REF] Chen | Robust Shrinkage Estimation of High-Dimensional Covariance Matrices[END_REF] proposed to find parameter ⇢ by minimizing the mean-squared error (MSE) between the true matrix ⌃ and the so-called "clairvoyant estimator":

e ⌃ ⇢ = (1 ⇢) p n n X i=1 z i z > i z > i ⌃ 1 z i + ⇢I. (6) 
Thus, ⇢ is chosen as the solution ⇢ ⇤ T of:

⇢ ⇤ T = arg min ⇢ E 2 4 (1 ⇢) p n n X i=1 z i z > i z > i ⌃ 1 z i + ⇢I ⌃ 2 F 3 5 , (7) 
where ||.|| F is the Frobenius norm. The solution can be seen as the value of ⇢ which minimizes the distance between the true ⌃ and its shrinked deformation.

Following the above criteria, an explicit formula for ⇢ ⇤ T is obtained under the assumption tr(⌃) = p :

⇢ ⇤ T = p 2 + (1 2/p)tr(⌃ 2 ) (p 2 np 2n) + (n + 1 + 2(n 1)/p)tr(⌃ 2 ) . (8) 
In the following developments, we propose to generalize this last result, to the case when µ is not known and for all M-estimators when the data is sampled from a specified elliptically symmetric distribution [START_REF] Ledoit | Improved estimation of the covariance matrix of stock returns with an application to portfolio selection[END_REF]. Under a criterion similar to [START_REF] Chen | Robust Covariance and Scatter Matrix Estimation under Huber's Contamination Model[END_REF], we provide a closed-form expression for the optimal shrinkage coe cient.

Optimal shrinkage for M-estimators

Let µ,⌃ (x) = (x µ) > ⌃ 1 (x µ) denote the Mahalanobis distance. In this section, we still suppose that µ is known, and consider the class of Maronna's estimators [START_REF] Maronna | Robust M-Estimators of Multivariate Location and Scatter[END_REF][START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF] satisfying :

e ⌃ = m ⇣ e ⌃ ⌘ , with (9) 
m (⌃) = 1 n n X i=1 u ( µ,⌃ (x i )) (x i µ) (x i µ) > . ( 10 
)
By taking u(t) = p/t and µ = 0, we recover Tyler's estimator [START_REF] Finegold | Robust graphical modeling of gene networks using classical and alternative t-distributions[END_REF]. Some other examples of functions u are u(t) = 1 [START_REF] Ollila | Regularized M -estimators of scatter matrix[END_REF], the Huber's function [START_REF] Huber | Robust estimation of a location parameter[END_REF], or the Student maximum likelihood-based function (p + ⌫)/(t + ⌫) [START_REF] Maronna | Robust M-Estimators of Multivariate Location and Scatter[END_REF]. As proposed in [START_REF] Ollila | Regularized M -estimators of scatter matrix[END_REF], in this paper we consider a regularized estimator:

e ⌃ ↵ = m (⌃) + ↵I, ↵ 0, 0. (11) 
We define the following criteria, similar to [START_REF] Chen | Robust Covariance and Scatter Matrix Estimation under Huber's Contamination Model[END_REF], for the choice of ↵ and .

The optimal (↵ ⇤ , ⇤ ) are chosen such as to minimize the MSE between the "clairvoyant estimator" e ⌃ ↵ and ⌃:

E " n n X i=1 u ( µ,⌃(xi)) (xi µ) (xi µ) > + ↵I ⌃ 2 F # . (12) 
Alternatively, another MSE criterion with = 1 ↵ has been considered in [START_REF] Ollila | Regularized M -estimators of scatter matrix[END_REF], for which it is also possible to give the optimal ↵ value. This criterion is not further considered in our work but we provide the corresponding optimal ↵ formula in Section 1 of the supplementary materials.

The optimal coe cients ↵ ⇤ and ⇤ minimizing (12) are given in Section 3.2, for elliptical distributions and for functions u derived from a maximum likelihood principle as explained in the following section.

Choice of function u

Natural choices for u are motivated by the maximum likelihood principle.

Indeed, for an i.i.d. sample {x 1 , . . . , x n } from an elliptical distribution with stochastic representation x = µ + R⇤U, the maximum likelihood estimator (MLE) of the scale matrix minimizes the negative log-likelihood function:

L(⌃) = 2 n n X i=1 ln (g ( µ,⌃ (x i ))) ln |⌃ 1 |. ( 13 
)
The previous equation leads to an implicit estimator of ⌃, obtained through a fixed point algorithm. However, this approach is no longer suitable if p > n. In that case, similarly to the approach of [START_REF] Ollila | Regularized M -estimators of scatter matrix[END_REF], the penalized cost function below can be considered:

L ↵ (⌃) = 2 n n X i=1 ln (g ( µ,⌃ (x i ))) ln |⌃ 1 | + ↵ tr(⌃ 1 ). (14) 
In what follows, we suppose that the generator g, or equivalently the density of R, is di↵erentiable. The solution e ⌃ ↵ which minimizes the penalized cost function L ↵ (⌃) can be expressed as:

e ⌃ ↵ = 1 n n X i=1 u( µ,⌃ (x i ))(x i µ)(x i µ) > +↵I, (15) 
with u(t) = 2g 0 (t)/g(t).

We thus consider regularized M-estimators with function u(t) = 2g 0 (t)/g(t).

It is interesting to note that penalizations are linked to prior choice for ⌃ in a Bayesian framework. In ( 14) above, the tr(⌃ 1 ) penalization corresponds to an inverse Wishart prior where the scale matrix hyperparameter is the identity matrix. For a more general matrix hyperparameter T, the penalty would be tr(⌃ 1 T) leading to a regularized estimator similar to [START_REF] Ashurbekova | Robust structure learning using multivariate T-distributions[END_REF] with a penalty term replaced by ↵T and = 1 ↵. Theorem 3.1 below can then be generalized to this case. This result and its proof are given in Section 2 of the supplementary materials.

Theoretical value of

(↵ ⇤ , ⇤ )
The proof of Theorem 3.1 below providing closed form formulas for the optimal shrinkage parameters (↵ ⇤ , ⇤ ) is given in Section 8.1. The sphericity measure ⇣ introduced in [START_REF] Zhang | Automatic diagonal loading for Tyler's robust covariance estimator[END_REF] is used to simplify the expressions. Sphericity ⇣ 2 [0, p 1] is defined as

⇣ = p tr(⌃ 2 ) tr(⌃) 2 1 .
It measures how close ⌃ is to a scaled identity matrix, with ⇣ = 0 when ⌃ is proportional to identity and ⇣ = p 1 when ⌃ has rank 1.

Theorem 3.1 (Optimal shrinkage coe cients). Let x = µ+R⇤U be a stochastic representation of the elliptically distributed x, where ⇤⇤ T = ⌃ and R is a positive random variable with a di↵erentiable pdf and u(t) = 2g 0 (t)/g(t). The oracle coe cients (↵ ⇤ , ⇤ ) which minimize (12) are

⇤ = n⇣ ⇣ (⇣ + 1) ⇣ n 1 + 2f 2 p(p+2) ⌘ + f 2 p+2 n ⌘ (16) 
↵ ⇤ =(1 ⇤ ) tr(⌃) p , (17) 
where

f 2 = E ⇥ u(R 2 ) 2 R 4 ⇤ and ⇤ 2 [0, 1], ↵ ⇤ 0 for p 2.
These optimal values involve the quantity f 2 . In [START_REF] Chen | Robust Shrinkage Estimation of High-Dimensional Covariance Matrices[END_REF], the particular choice u(t) = p/t and assumption tr(⌃) = p are made, hence ↵ ⇤ = 1 ⇤ and f 2 = p 2 . In the following proposition, other choices of u are considered and the corresponding f 2 values provided for several radius R. In the sequel, 2 k denotes the Chisquared distribution with k degrees-of-freedom (d.o.f.) and F p,⌫ denotes the Fisher distribution with d.o.f. parameters p and ⌫. Proposition 3.1 (Some values of f 2 ). Let x = µ+R⇤U, where R is a positive random variable with a di↵erentiable pdf, and u(t) = 2g 0 (t)/g(t).

1. If R 2 is distributed as 2 p , then x follows a Gaussian distribution, u(t) = 1 and therefore:

f 2 = E h u R 2 2 R 4 i = p(p + 2). ( 18 
) 2. If R 2 is distributed as ⇣ 1 2 2 2q+p 2 s ⌘ 1/s
, then x follows a Kotz-type distribution, u(t) = 2(1 q)/t + 2s t s 1 and therefore:

f 2 = E h u R 2 2 R 4 i = p(p + 2s) + 4s(q 1). ( 19 
)
3. If R 2 is distributed as pF p,⌫ , then x follows a t-distribution with ⌫ > 0 degrees-of-freedom, u(t) = (p + ⌫)/(t + ⌫) and therefore :

f 2 = E h u R 2 2 R 4 i = (⌫ + p)(p + 2)p p + ⌫ + 2 . ( 20 
)
The proof is provided in Section 8.2. The above formulas for f 2 are consistent with the fact that when ⌫ goes to +1, the t-distribution tends to the Gaussian distribution and expression (20) tends to [START_REF] Ledoit | A well-conditioned estimator for large-dimensional covariance matrices[END_REF]. A similar check can be done using that the Gaussian distribution is a particular case of Kotz-type distributions with s = 1, q = 1 and = 1/2.

Combining Theorem 3.1 and Proposition 3.1, the optimal shrinkage coecients can be specified for the above distributions. In the following result, we restrict to the Gaussian and t-distributions.

Corollary 3.1 (Optimal shrinkage coe cients for multivariate Gaussian and t-distributions). The optimal shrinkage coe cients are given by, 1. For the Gaussian distribution:

⇤ = n⇣ (n + 1)⇣ + p + 1 (21) 
↵ ⇤ = (⇣ + p + 1) (n + 1)⇣ + p + 1 tr(⌃) p . ( 22 
)
2. For the t-distribution with ⌫ > 0 degrees of freedom:

⇤ = n⇣ ⇣ n 1 + 2 (⌫+p) (⌫+p+2) ⌘ ⇣ + (⌫+p) (⌫+p+2) (p + 2) 1 (23) 
↵ ⇤ = ⇣ 2 (⌫+p) (⌫+p+2) 1 ⌘ ⇣ + (⌫+p) (⌫+p+2) (p + 2) 1 ⇣ n 1 + 2 (⌫+p) (⌫+p+2) ⌘ ⇣ + (⌫+p) (⌫+p+2) (p + 2) 1 tr(⌃) p . ( 24 
)
We now have explicit formulas for our optimal shrinkage coe cients in the tdistribution case including (for ⌫ = 0) the Tyler's coe cient ⇢ ⇤ T (equal to ↵ ⇤ when tr(⌃) = p) specified in [START_REF] Chen | Robust Shrinkage Estimation of High-Dimensional Covariance Matrices[END_REF] [START_REF] Chen | Robust Shrinkage Estimation of High-Dimensional Covariance Matrices[END_REF]. In practice, it still remains to compute estimations for tr(⌃), ⇣ and ⌫ to get values for ↵ ⇤ and ⇤ . However, the need for tr(⌃) actually disappears with the use of a trace-normalized version of the scale matrix, namely V = p⌃/tr(⌃). This is detailed in the next section.

Trace-normalized scale matrices

Within the class of elliptical distributions, the scale matrix ⌃ su↵ers from some identifiability issue in the sense that the distribution defined in (1) is unchanged when ⌃ is replaced by c⌃ and g by g 1 where g 1 (t) = c p/2 g(ct) for any fixed positive scalar c. In other words, any triplet (µ, ⌃, g) can be replaced by (µ, c⌃, g 1 ). This change in g corresponds to changing

R into R 1 = R/ p c.
The previous results apply for any new triplet (µ, c⌃, g 1 ). It is easily checked that the sphericity ⇣ is unchanged and that for u 1 chosen following the maximum likelihood principle, i.e. u 1 (t) = 2

g 0 1 (t)
g1(t) , then u 1 (t) = cu(ct) and the quantity f 2 is unchanged. Consequently, the optimal shrinkage coe cients in Theorem 3.1 are changed into ↵ ⇤ 1 = c↵ ⇤ and ⇤ 1 = ⇤ , which implies that using expression [START_REF] Ashurbekova | Robust structure learning using multivariate T-distributions[END_REF], e

⌃ ↵ ⇤ 1 ⇤ 1 = c e ⌃ ↵ ⇤ ⇤
. These two matrices have the same trace-normalization, i.e. p e

⌃ ↵ ⇤ 1 ⇤ 1 /tr( e ⌃ ↵ ⇤ 1 ⇤ 1 ) = p e ⌃ ↵ ⇤ ⇤ /tr( e ⌃ ↵ ⇤ ⇤ ).
Applying this in particular with c = p/tr(⌃), it follows an algorithm detailed in Section 4 that provides an estimation of the trace-normalized V = p⌃/tr(⌃) for which we can use the fact that tr(V) = p by construction. Considering V, the expression for the optimal is then unchanged and given by ⇤ in (16) while the expression for ↵ ⇤ simplifies into ↵ ⇤ = 1

⇤ . Similarly, it is easy to check that the mean estimation, as proposed in Section 4, is not impacted by the trace-normalization.

Regularized trace-normalized scale matrix estimator for the multivariate t-distribution

In this section and in the sequel, we focus on the multivariate t-distribution case, and aim at estimating the mean vector µ and V = p⌃/tr(⌃) using our shrinkage methodology. The first step is thus to estimate the optimal shrinkage parameters which as explained above reduces to estimating ⇤ as given in ( 16) (with ↵ ⇤ = 1 ⇤ ). According to Corollary 3.1, ⇤ may be estimated using estimators of ⇣ (unchanged by the trace-normalization) and ⌫. The next paragraph gives some suitable estimators for these quantities.

Estimation of the optimal values ↵ ⇤ and ⇤

To provide a numerical expression of ↵ ⇤ and ⇤ , the unknown quantities ⇣ and ⌫ need to be estimated. For ⇣, we use the estimator proposed in [START_REF] Zhang | Automatic diagonal loading for Tyler's robust covariance estimator[END_REF] defined as:

⇣ = p tr(S 2 ) p n 1, where (25) 
S = 1 n n X i=1 (x i b µ)(x i b µ) > kx i b µk 2 and b µ = 1 n n X i=1 x i . (26) 
Note that in matrix S above, b µ is usually replaced by the median. Results were similar with the sample mean, which is then kept when comparing with other methods for fairness.

Regarding the d.o.f. parameter ⌫, for t-distributions, the norm ||x|| 2 is regularly varying with tail index 1/⌫ [START_REF] Hashorva | On the regular variation of elliptical random vectors[END_REF], i.e. :

8t > 0, lim

z!+1 P (||x|| 2 > tz) P (||x|| 2 > z) = t 1/⌫ . ( 27 
)
Di↵erent estimators of the tail index are available in the literature, the most popular and widespread being the Hill estimator, introduced in [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF]. By taking the inverse of the latter, we define an estimator ⌫kn of ⌫ :

⌫kn = 1 k n kn X i=1 ln ✓ ||x [i] || 2 ||x [kn+1] || 2 ◆ ! 1 , (28) 
where

x [i] denotes the ordered observations such that ||x [1] || 2 . . . ||x [kn+1] || 2 . . . ||x [n] || 2 .
The Hill estimator, and therefore ⌫kn , are related to a number k n .

On a theoretical point of view, the latter has to fulfill k n ! +1 and k n /n ! 0 as n ! +1, and leads to a compromise between a variable and biased estimation of ⌫. Indeed, a small k n leads to a low biased and high variable estimation, while a large k n increases the bias and reduces the variance (see Section 3.2 in [START_REF] De Haan | Extreme value theory: an introduction[END_REF] for details). Therefore, the choice of k n , usually chosen as bn b c with 0 < b < 1, is an important point, and is discussed in [START_REF] Usseglio-Carleve | Estimation of conditional extreme risk measures from heavy-tailed elliptical random vectors[END_REF] in the t-distribution case. According to [START_REF] Usseglio-Carleve | Estimation of conditional extreme risk measures from heavy-tailed elliptical random vectors[END_REF], a choice of b  4/(⌫ + 4) is suitable. In the sequel, b = 0.25 is chosen, filling the last inequality for all ⌫  12, i.e. in most cases.

Using the same setting as in Section 5 below, the quality of the proposed Hillbased estimator is illustrated in the supplementary materials Section 4, Figure 1. In this setting, the estimated value is overall always above the true value, with a reduced and small bias as n increases. One advantage of the proposed method, with respect to the more traditional method of moments, is not to require the existence of moments. Other estimation procedures are possible but

were not investigated in this study.

Joint scale matrix and mean estimation

In the previous sections we assumed that the mean vector µ was known.

When the mean vector is unknown, the sample mean b µ = 1/n P n i=1 x i can be used as an estimator but it is likely to perform poorly in the presence of outliers or simply in high-dimensional cases. The estimation of the scale matrix can then be severely degraded by an inaccurate estimation of the mean vector µ.

To overcome this di culty, we focus on the joint mean -scale matrix estimation as the solution of a system of equations of the following form defining Maronna's M-estimators [START_REF] Maronna | Robust M-Estimators of Multivariate Location and Scatter[END_REF]:

0 = 1 n n X i=1 h ( µ,⌃ (x i )) (x i µ), (29) 
⌃ = 1 n n X i=1 u ( µ,⌃ (x i )) (x i µ) (x i µ) > , (30) 
where the functions h and u satisfy a set of general assumptions stated in [START_REF] Maronna | Robust M-Estimators of Multivariate Location and Scatter[END_REF].

We propose to extend this approach to the high-dimensional/small sample size case by replacing the scale matrix by its regularized estimator. More specifically, the trace normalized scale matrix V is considered as explained in Section 3.3.

It follows the iterative algorithm below for µ and V. Denoting the t th iteration with index (t):

µ (t+1) = P n i=1 h ⇣ (xi µ (t) ) > V (t) 1 (xi µ (t) ) ⌘ xi P n i=1 h ((xi µ (t) ) > V (t) 1 (xi µ (t) )) , (31) 
e

V (t+1) = n n X i=1 u ⇣ (xi µ (t+1) ) > V (t) 1 (xi µ (t+1) ) ⌘ ⇥ (xi µ (t+1) )(xi µ (t+1) ) > + (1 )I, (32) 
V (t+1) = p e V (t+1)
tr( e

V (t+1) ) . ( 33 
)
The optimal coe cient, for any distribution in the elliptical family, can be computed using expression [START_REF] Liu | High-dimensional semiparametric Gaussian copula graphical models[END_REF]. This value involves ⇣ and the parameters defining the distribution of the radius R. While ⇣ can be estimated using expression [START_REF] Tong | Linear shrinkage estimation of covariance matrices using low-complexity cross-validation[END_REF], the estimation of the R distribution parameters may not be obvious and requires additional examination. One possible solution is to set these parameters to fixed values representing the prior knowledge about the distribution of R. Another solution is to choose the parameters values corresponding to the heaviest tail case within the chosen distribution subclass. For example, for the multivariate t-distribution, the authors in [START_REF] Sun | Regularized robust estimation of mean and covariance matrix under heavy-tailed distributions[END_REF] propose to set ⌫ = 1, in other words, to focus on the Cauchy distribution, which corresponds to a heavy-tail representative among the subclass of t-distributions. To keep more flexibility, these parameters could also be estimated using a maximum likelihood approach, possibly using the Expectation-Maximization (EM) algorithm. The EM algorithm is tractable for a subclass of the elliptical family referred to as Gaussian scale mixtures (GSM) [START_REF] Gómez-Sánchez-Manzano | Sequences of elliptical distributions and mixtures of normal distributions[END_REF]. GSM distributions include the generalized Gaussian, the multivariate t-distribution, the Pearson type VII distribution, etc.

Hereafter, Algorithm 1 provides a simple algorithm for the joint mean -scale matrix estimation for the multivariate t-distribution. This algorithm does not require an additional step for the estimation of the d.o.f. ⌫ in contrast to an EM algorithm implementation that would iteratively update ⌫ as well as µ and V. Instead, in Algorithm 1, ⌫ is evaluated once through the Hill estimator [START_REF] Fang | Symmetric multivariate and related distributions[END_REF] and used then for both the estimation of ↵ ⇤ , ⇤ and that of µ and V.

We do not provide a convergence proof for Algorithm 1 but we note that Algorithm 1 Small sample size trace normalized scale matrix and mean estimation for a multivariate t-distribution

1: Initialize V to V (0)
an arbitrary positive definite matrix and µ to µ (0) an arbitrary vector 2: Estimate d.o.f. b ⌫ using ( 28) and b ⇤ using ( 23) and ( 25), and b ↵ ⇤ = 1 b ⇤ .

3: Iterate the following steps until convergence:

3.1: Update the mean vector µ as :

µ (t+1) = P n i=1 w(t+1) i x i P n i=1 w(t+1) i , where w(t+1) i = b ⌫ + p b ⌫ + (x i µ (t) ) > V (t) 1 (x i µ (t) ) . ( 34 
)
3.2: Compute matrix e V (t+1) as :

e V (t+1) = b ⇤ p + b ⌫ n ⇥ n X i=1 (x i µ (t+1) )(x i µ (t+1) ) > (x i µ (t+1) ) > V (t) 1 (x i µ (t+1) ) + b ⌫ + b ↵ ⇤ I. ( 35 
)
3.3: Update V as the trace-normalized e V (t+1) :

V (t+1) = p e V (t+1) tr( e V (t+1) )
. step 3.3 in Algorithm 1 is crucial for convergence. Indeed, considering only the part involving V assuming µ fixed, the convergence of the iterations derives from concave Perron-Frobenius theory following the proof given in [START_REF] Chen | Robust Shrinkage Estimation of High-Dimensional Covariance Matrices[END_REF] (Appendix VIII.A) with only minor adaptations. It appears in this proof that the normalization in step 3.3 is essential. In practice, we did observe unstable behaviors when this normalization was not imposed.

Results on simulated data

In this section we conduct a simulation study to illustrate the performance of the proposed shrinkage approach through Algorithm 1. In our experiments, an autoregressive (AR) covariance structure is considered :

(⌃) ij = r |i j| , r 2 (0, 1). (36) 
When r tends to 0, then ⌃ is close to an identity matrix; when r tends to 1, then ⌃ is close to a singular matrix of rank 1. As pointed out earlier, the choice of b for computing the degrees of freedom parameter ⌫kn in [START_REF] Fang | Symmetric multivariate and related distributions[END_REF] is an important issue. The optimal theoretical value of this parameter depends on the true ⌫ through formula b ⇡ 4/(⌫ + 4). Here we choose b = 0.25 which corresponds to a suitable value for ⌫  12. This allows a robust estimation of ⌫ both for heavytailed distributions (e.g. with ⌫ = 1 corresponding to a Cauchy distribution) and light-tailed distributions (e.g. ⌫ = 12).

In the first experiment, we simulate data from a multivariate t-distribution in dimension p = 50, with the following di↵erent d.o.f. parameter ⌫ 2 {1, 2, 3, 6, 10}

and various AR schemes with r 2 {0.1, 0.7, 0.9}. The mean µ is set to the vector with all components equal to 5. For each pair of parameters (⌫, r) and for a sample size n varying from 5 to 50, 100 data sets are generated leading to estimations b µ s , b ⌃ s for s = 1 to 100. The performance of a method is then assessed using the normalized mean square-error (NMSE) for both ⌃ and µ. Since tr(⌃) = p, we can directly compare the true ⌃ with our estimations. In more general cases, we would compare to the true trace-normalized p⌃ tr(⌃) instead:

NMSE(⌃) = E n k b ⌃ ⌃k 2 F o k⌃k 2 F ⇡ 1 100 100 X s=1 k b ⌃ s ⌃k 2 F k⌃k 2 F , (37) 
NMSE(µ) = E k b µ µk 2 F kµk 2 F ⇡ 1 100 100 X s=1 k b µ s µk 2 F kµk 2 F . ( 38 
)
For each data set, five di↵erent algorithms are then used leading to five di↵erent estimators of ⌃ and four di↵erent estimators of µ. In this setting, since tr(⌃) = p, estimating ⇣ is equivalent to estimating tr(⌃ 2 ), for which propose to use

p 2 tr(S 2 ) p 2 n
, where S is defined in [START_REF] Cambanis | On the theory of elliptically contoured distributions[END_REF]. The derivation of this expression is explained in more details in Section 3 of the supplementary materials.

Then, the following methods were used for the NMSE(⌃) comparison:

• The algorithm proposed in [START_REF] Chen | Robust Shrinkage Estimation of High-Dimensional Covariance Matrices[END_REF] that estimates ⌃ on the data centered by the sample mean (sm), referred to as "Tyler sm". As a plug-in estimate for tr(⌃ 2 ) to compute ⇢ ⇤ T in (8) the authors use p 2 tr(S 2 ).

• For a fair comparison with "Tyler sm", we run only steps 3.2 and 3.3 of Algorithm 1, setting µ to the sample mean and estimating ⌃ on the data centered by the sample mean. Moreover, for the estimation of ⇤ in [START_REF] Sun | Regularized robust estimation of mean and covariance matrix under heavy-tailed distributions[END_REF] we also use p 2 tr(S 2 ) for tr(⌃ 2 ) instead of p 2 tr(S 2 ) p 2 /n. This algorithm is denoted as "t-dist sm".

• To demonstrate the impact of estimating µ iteratively instead of using the sample mean, we run Algorithm 1 where tr(⌃ 2 ) in b ⇤ is estimated using p 2 tr(S 2 ). This algorithm is referred to as "t-dist".

• We run the full Algorithm 1 referred to as "t-dist-2". Both ⌃ and µ are computed iteratively and ⇤ is set with ⇣ in [START_REF] Tong | Linear shrinkage estimation of covariance matrices using low-complexity cross-validation[END_REF].

• At last we run Algorithm 1 with the theoretical oracle ⇤ (⌃, ⌫) in [START_REF] Sun | Regularized robust estimation of mean and covariance matrix under heavy-tailed distributions[END_REF] obtained with the true values of ⌃ and ⌫ denoted as "Oracle".

To illustrate the impact of the estimation of µ, a comparison of the NMSE(µ)

values is also provided for the four estimators resulting from the above algorithms, namely :

• the sample mean denoted by "sm";

• the estimation of µ resulting from the "t-dist" algorithm;

• the estimation of µ resulting from the "t-dist-2" algorithm (Algorithm 1);

• the estimation of µ from the "Oracle" algorithm.

The results are illustrated in Figure 1 while more complete results are shown in Figures 2 and3 in the supplementary materials, Section 4. In all scenarios, the proposed "t-dist" and "t-dist-2" algorithms are consistently the closest to the "Oracle" procedure, which as expected always provides the best results with the minimal NMSE(⌃) and NMSE(µ). More specifically, the "t-dist" and "t-dist-2" performances are very close to the ideal oracle estimator with increasing n. However, it can be noted that "t-dist-2" outperforms "t-dist" significantly, especially for NMSE(⌃) when the sample sizes are small. Since "t-dist" and "t-dist-2" di↵er only in the way they estimate tr(⌃ 2 ) for ⇤ in ( 23), the performance loss of "t-dist" over "t-dist-2" can be attributed to the bias of the estimator p 2 tr(S 2 ) as compared to p 2 tr(S 2 ) p 2 /n.

To illustrate the importance of estimating µ and ⌫, we can focus on the comparison of the "t-dist", "t-dist sm" and "Tyler sm" algorithms, which all use the same estimator p 2 tr(S 2 ) for tr(⌃ 2 ). For both "Oracle" and "t-dist" methods, NMSE(⌃) steadily decreases as n increases. In contrast, the "Tyler sm" and "t-dist sm" algorithms show in some cases irregular NMSE curves due to a bad estimation of µ by the sample mean. As illustrated in Figure 1(b) and supplementary Figure 3(a,b,c), this is particularly so for small d.o.f. like ⌫ = 1.

This confirms the potential limits of methods that do not estimate µ accurately as pointed out in [START_REF] Sun | Regularized robust estimation of mean and covariance matrix under heavy-tailed distributions[END_REF]. As regards the impact of ⌫, it is not easy to illustrate separately the e↵ect of ⌫ from that of µ. To do so we consider the comparison of "Tyler sm" and "t-dist sm" algorithms (Figures 2 and3). In the first step, both procedures employ the sample mean vector to center the original data. In the second step, the covariance matrix is computed using the iteration given in (4) for Tyler's estimator with b ⇢ T ⇤ defined in [START_REF] Chen | Robust Shrinkage Estimation of High-Dimensional Covariance Matrices[END_REF] and iteration given in step 3.2

for "t-dist sm" with b ⇤ in ( 23). Tyler's procedure can be viewed as an extreme case of the multivariate t-distribution with ⌫ = 0. Accordingly, we expect that the di↵erence between the two estimators becomes more significant for larger values of ⌫. The better results provided by "t-dist sm" over "Tyler sm" are shown more specifically on Figure 3 for ⌫ = 10 where the main gains appear for small sample sizes (Figure 3(b)). Algorithm "t-dist sm" also outperforms "Tyler sm" for smaller d.o.f. like ⌫ = 1 but with an increasing gain as n becomes larger (see Figure 2(c,d)). However, for small ⌫ the di↵erences are somewhat less visible due to larger NMSEs coming mainly from a bad estimation of µ.

When ⌫ is large, the resulting curve for "t-dist sm" coincides with the one for "t-dist". This is not surprising as the t-distribution tends to the Gaussian distribution when ⌫ tends to 1 so that the mean vector in [START_REF] Zhao | Covariance matrices of quadratic forms in elliptical distributions[END_REF] becomes closer to the sample mean. This result is confirmed by Figure 1(d,f), supplementary does not seem to lead to significantly di↵erent conclusions (see Figures 2 and3 in supplementary materials).

Application to brain connectivity data.

Robust estimation of covariance matrices is especially needed for real data where we know that Gaussian hypotheses are generally not true. This is the case for the inference of brain connectivity. Thanks to non invasive neuroimaging, brain recordings are now available to follow the activity of the brain during a task or at rest. Using functional magnetic resonance imaging (fMRI), one volume of the brain is acquired every one second or less for several minutes. Usually each volume is composed of thousands of voxels that are gathered into a set of hundreds of parcels or brain regions. Each brain region is then associated to a time series. These data are still too complex to provide an easy visualisation and interpretation. Brain connectivity graphs or networks are then constructed by defining nodes as brain regions and edges as connections between time series associated to these brain regions. This allows a spatio-temporal modeling of the brain while functioning.

In this application, to quantify the links between time series, edges are associated to partial correlations read on inverse covariance matrices. Inference of brain connectivity graphs depends then on accurate estimation of covariance or precision matrices. To compare objectively di↵erent methods, we use a test-retest dataset selected from a larger dataset publicly released as part of the Human Connectome Project (HCP), WU-Minn Consortium (https: //www.humanconnectome.org/).

More details can be found in [START_REF] Termenon | Reliability of graph analysis of resting state fMRI using test-retest dataset from the human connectome project[END_REF]. We select 100 subjects who have been scanned

twice in two di↵erent sessions of about 15 minutes each. These two sessions are divided into two sub-sessions of half duration and denoted respectively by S 11 , S 12 for session 1 and S 21 , S 22 for session 2. Shorter sessions are more common in practice and they represent a higher challenge for the tested approaches.

Following [START_REF] Termenon | Reliability of graph analysis of resting state fMRI using test-retest dataset from the human connectome project[END_REF], fMRI time series are analyzed through their wavelets decompositions providing vectors of wavelets coe cients resulting in datasets of size n = 547. However, the wavelets coe cients being not independent, the actual e↵ective sample size is evaluated as being only 37. The number of brain regions is set to p = 90 based on a commonly used parcellation of the brain into 90 regions [START_REF] Tzourio-Mazoyer | Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[END_REF].

Before processing, several statistical tests were performed to check the heavytailed non-Gaussian nature of the time series. Multivariate Gaussianity tests exist but they are generally designed for conventional low-dimensional data.

Proposals have been made in the small sample size setting, e.g. [START_REF] Chen | A nonparametric normality test for high-dimensional data[END_REF], based on robust estimations of the mean and covariance matrix but they could not be used here as this is precisely the goal of the paper to provide such estimations.

However, since marginals of Gaussian vectors are all Gaussian, Shapiro-Wilk For 50% of the subjects, normality is rejected at a significance level lower than 0.005 for the first region and lower than 0.007 for the 90 th region. In both cases, the average p-value was of 0.05. For an additional visual illustration, quantilequantile plots, for each of the 100 subjects, session S 11 , region 1 (first marginal), are shown in Figure 4 below. A similar plot for the 90 th region is shown in supplementary Figure 5. The departure from the straight line indicates non Gaussianity and the presence of an heavy tail. The adequation to an elliptical distribution was then not formally tested but 2D scatter plots provided visual hints showing acceptable elliptical shapes. The first and 90 th marginals of the first 16 subjects are provided in supplementary Figure 6. Similar results and plots were obtained for most of the subjects and sessions.

The reliability of each structure learning approach is then evaluated by mea-suring for each subject, the graph properties di↵erences for the four pairs of sub-sessions coming from di↵erent sessions, (S 11 , S 21 ), (S 11 , S 22 ), (S 12 , S 21 ) and (S 12 , S 22 ). For each dataset, five di↵erent approaches are considered:

• Sample partial correlation denoted as "sample pc".

• Shrinkage using the Ledoit-Wolf's estimator in [START_REF] Ledoit | A well-conditioned estimator for large-dimensional covariance matrices[END_REF] referred as "lw".

• Maximum-likelihood for a t-distribution using EM [START_REF] Liu | ML estimation of the t distribution using EM and its extensions[END_REF] defined as "t-dist em".

• Graphical Lasso using [START_REF] Friedman | Sparse inverse covariance estimation with the graphical Lasso[END_REF] which we refer to as "glasso" (the tuning parameter in "glasso" algorithm for each subject in each sub-session was obtained by cross-validation with k = 3 folds).

• Our shrinkage Algorithm 1 for a t-distribution. We call this method "tdist-2 shrink".

In contrast to simulated data experiments, results with Tyler's estimators are not shown here because they provide results similar to the Ledoit-Wolf's estimator.

In order to produce graphs with a fixed comparable number of edges, we apply soft-thresholding to each obtained matrix. For each subject in each subsession, we then obtain an adjacency matrix that defines an unweighted graph for which a graph metric called global e ciency is computed. This metric is related to the communication e ciency of a node i with all other nodes (detailed information can be found in [START_REF] Rubinov | Complex network measures of brain connectivity: uses and interpretations[END_REF]). If G = (V, E) denotes a graph with V as its set of p vertices and E as its edge set, the global e ciency Eglob i is defined as the inverse of the harmonic mean of the set of the minimum path lengths L ij between node i 2 V and all other nodes j 2 V in the graph:

Eglob i = 1 p 1 X j2V 1 L ij . ( 39 
)
Here p is the number of brain regions. Then by averaging these global e ciency values over all nodes, one value of this parameter is derived for a given graph.

Consequently, for a given pair of sub-sessions, 200 global e ciency values, one per each subject in each sub-session, are computed for a given pre-set percentage of edges in the graphs.

Brain connectivity graphs

As an illustration, Figure 5 

Test-retest reliability

To quantify more specifically the di↵erences between the five tested methods, we evaluate their ability to provide similar results between two sessions via the so-called intraclass correlation coe cient (ICC) between the sessions. Using the global e ciency values for each subject in each session, we compute their withinsubject (s w ) and between-subject (s b ) mean square di↵erences, as detailed in the Appendix of [START_REF] Termenon | Reliability of graph analysis of resting state fMRI using test-retest dataset from the human connectome project[END_REF]. In our case, with two sessions, the ICC is then given by

ICC = s b s w s b + s w . ( 40 
)
When for each subject, similar global e ciency values are found in the two sessions, then the ICC is close to 1 and the reliability is high. In contrast, ICC is close to 0 when the reliability is low. The ICC may take negative values when the variance within subjects is larger than between subjects. This is due to statistical errors given a particular dataset and should be considered as a non reliable estimation. 

Conclusion

In this paper, we address the issue of robust covariance matrix estimation in settings where the sample size is small compared to the number of parameters and the mean is not known a priori. Elliptical distributions are considered to improve robustness. In particular, we focus on Student's t-distributions for their The ICC values are shown for the various estimators considered in this study. The larger the ICC, the higher the consistency between the two sessions and the higher the estimator reliability. ability to model heavy tails and to handle outliers. A regularisation approach based on shrinkage is then used to face the relative lack of data. These two aspects are combined and lead to a penalized maximum likelihood based estimator assuming the observations follow a multivariate Student's t-distribution.

The proposed approach is showed to fulfill theoretical results for more general elliptical distributions, and it has the advantage to be implemented easily in practice.

Among regularized robust estimators, the proposed estimator has several desirable properties: 1) the penalization level or regularizing coe cient is not tuned manually but estimated via a closed-form formula deriving from a minimum mean squared-error principle, 2) prior knowledge on the mean and degreeof-freedom parameter values are not needed and both these parameters can be estimated in a data driven way, at last 3) the e cient algorithm that is derived shows good estimation accuracy when compared to the standard Tyler's estimator on simulated data and to additional standard methods on real data. In particular our experiments confirm the importance of a good estimation of the mean and the potential advantage of methods that aim at estimating both the mean and covariance matrix.

Proof of the main results

Proof of Theorem 3.1

Using the same notation as in [START_REF] Chen | Robust Shrinkage Estimation of High-Dimensional Covariance Matrices[END_REF], we define matrix e C as:

e C = m (⌃) = 1 n n X i=1 u ( µ,⌃ (x i )) (x i µ)(x i µ) > . (41) 
Deriving [START_REF] Meinshausen | High-dimensional graphs and variable selection with the Lasso[END_REF] with respect to ↵ leads to:

↵ ⇤ = tr(⌃) ⇤ E h tr( e C) i p . (42) 
Since the vectors x i = µ + R i ⇤U i for 1  i  n are elliptically distributed and ⌃ = ⇤⇤ > , then (see e.g. [START_REF] Cambanis | On the theory of elliptically contoured distributions[END_REF]):

(x i µ)(x i µ) > = R 2 i ⇤U i U > i ⇤ > and (x i µ) > ⌃ 1 (x i µ) = R 2 i . Thus, e C = 1 n n X i=1 u(R 2 i )R 2 i ⇤U i U > i ⇤ > ,
and tr

⇣ e C ⌘ = 1 n n X i=1 u(R 2 i )R 2 i tr ⇤U i U > i ⇤ > .
Using that R i and U i are independent and that E

⇥ U i U > i ⇤ = 1 p I, it comes, E h tr ⇣ e C ⌘i = 1 n n X i=1 E ⇥ u(R 2 i )R 2 i ⇤ tr ⇤E ⇥ U i U > i ⇤ ⇤ > = f 1 tr(⌃)/p, (43) 
where

f 1 = E ⇥ u(R 2 )R 2 ⇤ using R to represent the common distribution of the R i 's.
M-estimators satisfy the following relationship [START_REF] Maronna | Robust M-Estimators of Multivariate Location and Scatter[END_REF][START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF]:

E h u ⇣ (x µ) > ( ⌃) 1 (x µ) ⌘ ( ⌃) 1 (x µ) (x µ) > i = I,
where is a positive scalar that depends on u and g (see e.g. [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF] eq.( 44) and ( 45)). Taking the trace on both sides and noticing that tr

⇣ ⌃ 1 (x µ) (x µ) > ⌘ = (x µ) > ⌃ 1 (x µ) = R 2 , it comes E ⇥ u(R 2 / )R 2 / ⇤ = p . If u(t) = 2g 0 (t)/g(t)
then the quantity

f 1 = E ⇥ u(R 2 )R 2 ⇤
can be computed directly using integration by parts and is equal to p, which also shows that = 1. For more general u, the value of f 1 is not straightforward. For u(t) = 2g 0 (t)/g(t), the fact that

f 1 = p leads thus to E h tr( e C) i = tr(⌃).
It follows [START_REF] Zhao | Calibrated precision matrix estimation for highdimensional elliptical distributions[END_REF], i.e. ↵ ⇤ = tr(⌃) p (1 ⇤ ) that allows then to write e ⌃ ↵ = e C + ( 1) tr(⌃) p I before deriving (12) w.r.t. . This leads to: 

⇤ = E h tr ⇣ e C⌃ ⌘i tr(⌃) p E h tr ⇣ e C ⌘i E h tr ⇣ e C 2 ⌘i 2 tr(⌃) p E h tr ⇣ e C ⌘i + tr(⌃) 2 p . (44 
e C 2 = 1 n 2 n X i=1 n X j=1 u(R 2 i )R 2 i u(R 2 j )R 2 j ⇤U i U > i ⇤ > ⇤U j U > j ⇤ > ,
and using the mutual independence of all U i 's and R i 's and their common distribution represented by variable U and R respectively, it comes,

E h tr( e C 2 ) i = 1 n 2 ⇣ X i6 =j E ⇥ u(R 2 )R 2 ⇤ 2 tr (⇤E ⇥ UU > ⇤ ⇤ > ) 2 + n X i=1 E ⇥ (u(R 2 )R 2 ) 2 ⇤ E ⇥ tr (U > ⇤ > ⇤U) 2 ⇤ ⌘ = n 1 n f 2 1 tr(⌃ 2 ) p 2 + 1 n f 2 E ⇥ (U > ⇤ > ⇤U) 2 ⇤ .
Following [START_REF] Chen | Robust Shrinkage Estimation of High-Dimensional Covariance Matrices[END_REF], to compute the last expectation, we can use the fact that for an elliptical distribution, the particular decomposition of ⌃ is irrelevant. In particular we can take ⇤ = DA 1/2 where ⌃ = DAD T is the eigenvalue decomposition of ⌃. Thus ⇤ > ⇤ = A where A is the diagonal matrix containing the eigenvalues of ⌃. For our purpose, we actually only need that A = ⇤ T ⇤ is diagonal since then tr(A) = tr(⌃) and tr(A 2 ) = tr(⌃ 2 ). Let a 1 , . . . , a p be the diagonal entries of A and denote the elements of U as U = (u 1 , . . . , u p ) > , the last expectation can be computed as, We finally get: t q 1 exp ( t s ) and therefore u(t) = 2 1 q t + 2 st s 1 .

E h U > AU 2 i = E 2 
E h tr( e C 2 ) i = 1 n 2  n ✓ f
By noticing that u(t) 2 t 2 = 4(1 q) 2 + 8 s(1 q)t s + 4 2 s 2 t 2s , the moment

E ⇥ u(R 2 ) 2 R 4 ⇤
may thus be rewritten as follows:

4(1 q) 2 + 4s(1 q)E h

2 2q+p 2 s i + s 2 E  ⇣ 2 2q+p 2 s ⌘ 2 .
Using the moments of the Chi-squared distribution concludes the proof.

3. If R 2 /p is a Fisher distribution with p and ⌫ degrees of freedom, it is known that x follows a p-variate t-distribution with ⌫ degrees of freedom.

In this case, g(t) is given by (⌫⇡) p/2 (1 + t/⌫) (p+⌫)/2 , and therefore u(t) = (p + ⌫)/(t + ⌫). In addition, The ratio (g 0 (r 2 )) 2 /g(r 2 ) may be rewritten here:

E ⇥ u(R 2 ) 2 R 4 ⇤ = Z 1 
g 0 r 2 (r 2 ) 2 g(r 2 ) = 1 4 p+⌫ 2 ⌫ 2 ⇡ p 2 ⌫ p 2 2 (⌫ + p) 2 ✓ 1 + r 2 ⌫ ◆ ⌫+p+4 2 .
Combining the previous relationships obtained, it comes:

E ⇥ u(R 2 ) 2 R 4 ⇤ = p+⌫ 2 ⌫ 2 p 2 (⌫ + p) 2 ⇥ Z 1 0 ✓ r 2 ⌫ ◆ p 2 +1 ✓ 1 + r 2 ⌫ ◆ ⌫+p 2 2 d ✓ r 2 ⌫ ◆ .
Using the known moments of the t-distribution leads to: ⇤

E ⇥ u(R 2 ) 2 R 4 ⇤ =

Figure 3 (

 3 Figure 3(j,k,l) for ⌫ = 6 and supplementary Figure 3(m,n,o) for ⌫ = 10. Overall estimating the d.o.f. parameter ⌫ in step 3.2 is important, especially in the small sample size regime, and more generally because it allows a better estimation of the mean vector µ which seems to have a critical impact of the covariance structure estimation. For both aspects, our proposed procedure improves over the regularized Tyler's algorithm. Regarding the impact of the choice of r, it

  (a) NMSE(⌃), ⌫ = 1 (b) NMSE(µ), ⌫ = 1 (c) NMSE(⌃), ⌫ = 6 (d) NMSE(µ), ⌫ = 6 (e) NMSE(⌃), ⌫ = 10 (f) NMSE(µ), ⌫ = 10

Figure 1 :

 1 Figure 1: Multivariate t-distribution with AR(r) covariance structure (p = 50, r = 0.1, ⌫ 2 {1, 6, 10} and µ is set to a vector of 5). Normalized mean squared-errors for ⌃ (first column) and µ (second column) are computed over 100 simulated samples of n observations each with n varying from 5 to 50.

  (a) r = 0.1, ⌫ = 1, 5  n  50 (b) r = 0.1, ⌫ = 1, 5  n  15 (c) r = 0.1, ⌫ = 1, 15  n  30 (d) r = 0.1, ⌫ = 1, 30  n  50

Figure 2 :

 2 Figure 2: Multivariate t-distribution with AR(r) covariance structure (p = 50, r = 0.1, ⌫ = 1 and µ is set to a vector of 5): comparison of NMSE(⌃) for "Tyler sm" and "t-dist sm" algorithms when the mean is fixed to the sample mean. Normalized mean squared-errors are computed over 100 simulated samples of n observations each. Varying values of n from 5 to 50 (a) are also plotted separately for better layout in (b,c,d).

  (a) r = 0.1, ⌫ = 10, 5  n  50 (b) r = 0.1, ⌫ = 10, 5  n  15 (c) r = 0.1, ⌫ = 10, 15  n  30 (d) r = 0.1, ⌫ = 10, 30  n  50
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 3 Figure 3: Moderate-tailed t-distribution (⌫ = 10) with AR(r) covariance structure (p = 50, r = 0.1 and µ is set to a vector of 5): comparison of NMSE(⌃) for "Tyler sm" and "t-dist sm" algorithms when the mean is fixed to the sample mean. Normalized mean squared-errors are computed over 100 simulated samples of n observations each. Varying values of n from 5 to 50 (a) are also plotted separately in (b,c,d).

Figure 4 :

 4 Figure 4: Quantile quantile plots for the time series corresponding to region 1 (first marginal), in sub-session S 11 . Each color represents one of the 100 subjects. Empirical quantiles are plotted against theoretical Gaussian quantiles.

  displays, for five subjects and sub-sessions S 11 and S 22 , the global e ciency computed for each region of the brain with either sample partial correlations or partial correlations using our shrinkage method. The global e ciency values are on average between 0.35 for the right Precentral region and 0.53 for the left Putamen region. Regions with high global eciency greater than 0.5 include the post Cingulum, Amygdala, Frontal Middle Orbital, Occipital Inferior and Thalamus regions. Whereas regions with low e ciency less than 0.4 include the Precentral, Postcentral, Parietal Superior and Frontal Superior regions. The qualitative comparison between the two subsessions highlights a higher similarity and reproducibility between sessions with our shrinkage method "t-dist-2 shrink", Figure 5 (b), than with sample partial correlation "sample pc", Figure 5 (a). Similar results are observed for other subjects and other pairs of sub-sessions.

Figure 6

 6 Figure 6 represents, for sessions S 11 and S 22 , ICC values with respect to the pre-set percentage of edges in the graphs, referred to as the cost. Shrinkage methods ("lw" and "t-dist-2 shrink") have the largest range of costs where ICC is above 0.4, Figure 6(a). This is confirmed by the computation of p-values, Figure 6 (b), where p-values allow to check whether the ICC is significantly larger than zero. The ICC computed using empirical partial correlation and EM for a t-distribution are nearly equal to 0 for any cost showing a poor reliability of global e ciency. Glasso is also showing poor performance because of the di culties to choose the regularisation parameters. For additional confirmation that shrinkage schemes provide better results than sample partial correlation, we further check s b values as an increase in s b may artificially increase ICC values.

Figure 7

 7 Figure 7 displays s b and s w values obtained with the two shrinkage methods against the sample partial correlation values.Figure 7 (b) shows clearly that s b behaves similarly in all three methods which allows then a fair comparison between them. In contrast, Figure 7 (a) shows that there is a clear decrease of s w using methods based on shrinkage. This confirms that shrinkage estimators such as "lw" and "t-dist-2 shrink" show very good similar performances and improve the reliability of global e ciency on this test-retest dataset. Similar conclusions hold for the other pairs of sessions. The corresponding ICC and p-values plots can be found in Section 5 of the supplementary materials, Figures 7 and 8.

Figure 6 :

 6 Figure 6: Intraclass correlation coe cient (ICC) between two fMRI sessions (S 11 and S 22 ) (a) and associated p-values (b) with respect to the pre-set percentage of edges in the graphs (cost).

Figure 7 :

 7 Figure 7: Within-subject sw (a) and between-subject s b (b) variances, for sessions S 11 and S 22 , using di↵erent estimators. Values of sw and s b for two shrinkage methods ("lw" and "tdist-2 shrink") are plotted against values obtained using sample partial correlation. The black line indicates the line of equal values. Red and grey dots correspond to varying percentages of edges in the graphs.

= f 1 For

 1 tr ⌃ 2 /p = tr(⌃ 2 ).

1 p

 1 At last, it comes from Lemma 2 in[START_REF] Chen | Shrinkage algorithms for MMSE covariance estimation[END_REF] that , (p+2) for k 6 = m. Then, 2 ) + tr(⌃) 2 .

2 g(r 2 )

 22 r p+3 dr.

  p)(p + 2)p p + ⌫ + 2.

  The shrinkage coe cient ⇤ thus takes the form:Let us denote f R the pdf of R. According to Theorem 2.9 in[START_REF] Fang | Symmetric multivariate and related distributions[END_REF], we have:We prove each case separately.1. If R 2 is a Chi-squared distribution with p degrees of freedom, then:

	2. Some straightforward calculations lead to:
				2 +(n 2 n) p(p + 2) 1 ✓ f 2 1 =tr(⌃ 2 ) ⇣ n 1 n + f 2 p 2 tr(⌃ 2 ) 2tr(⌃ 2 ) + tr(⌃) 2 np(p + 2) 2 ⌘ 1 ◆ g(t) = 2q+p 2 p 2s 2 2q+p 2 2s p ⇡ 2	◆
								+ tr(⌃) 2 f 2	1 np(p + 2)	.
			⇤ =	tr(⌃ 2 )	⇣	tr(⌃ 2 ) tr(⌃) 2 p n + 2f 2 n 1 np(p+2) ⌘ + f 2 tr(⌃) 2 np(p+2)	tr(⌃) 2 p
						✓	2f 2 np(p + 2)	1 n	◆	+	f 2 np(p + 2)	tr(⌃) 2 .
	Since f 2 = E	⇥	(u(R 2 )R 2 ) 2 ⇤	, Jensen inequality gives f 2 f 2 1 = p 2 , and
						2f 2 np(p + 2)	1 n	p 2 n(p + 2)	0,
	and f R (t) =	(2⇡) p 2	p 2	t p 1 g(t 2 ) , g(t) =	p 2 (2⇡)	2 p	t (1 p)/2 f R (	p	t).
			g(t) =	p 2 (2⇡)	p 2	t (1 p)/2 f R (	p	t) = (2⇡) p/2 exp	✓	t 2	◆	.
	It thus comes u(t) = 1, and f 2 = E	⇥ 4 p	⇤	. The moments of the Chi-squared
	distribution lead to f 2 = p(p + 2).

, and the result is proved.

Note also that this expression of ⇤ is by construction always in [0, 1] if p 2. Indeed, the di↵erence between the numerator and denominator is tr(⌃ 2 ) ⇤  1. Similarly, since ⌃ is a symmetric matrix, we have tr(⌃) 2  tr(⌃ 2 )p, and therefore ⇤ 0. ⇤ 8.2. Proof of Proposition 3.1
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