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Abstract When estimating covariance matrices, traditional sample covariance-
based estimators are straightforward but suffer from two main issues: 1) a lack
of robustness, which occurs as soon as the samples do not come from a Gaussian
distribution or are contaminated with outliers and 2) a lack of data when the
number of parameters to estimate is too large compared to the number of available
observations, which occurs as soon as the covariance matrix dimension is greater
than the sample size. The first issue can be handled by assuming samples are drawn
from a heavy-tailed distribution, at the cost of more complex derivations, while
the second issue can be addressed by shrinkage with the difficulty of choosing
the appropriate level of regularization. In this work we offer both a tractable
and optimal framework based on shrinked likelihood-based M-estimators. First, a
closed-form expression is provided for a regularized covariance matrix estimator
with an optimal shrinkage coefficient for any sample distribution in the elliptical
family. Then, a complete inference procedure is proposed which can also handle
both unknown mean and tail parameter, in contrast to most existing methods
that focus on the covariance matrix parameter requiring pre-set values for the
others. An illustration on synthetic and real data is provided in the case of the
t-distribution with unknown mean and degrees-of-freedom parameters.

Keywords Covariance estimation · Small sample size · Shrinkage methods ·
Robust estimation · Elliptical distributions.

1 Introduction

Accurate estimation of covariance matrices (or more generally scale matrices)
is fundamental in many areas of statistics. Examples include applications in fi-
nance [21], bioinformatics and classification [12]. Practitioners usually have to
deal with two main difficulties. First, observations may deviate from the Gaus-
sian distribution due to a particular data generating process or the presence of
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outlying data. Ignoring this deviation may conduct to inadequate predictions and
conclusions [9]. A widespread solution to design so-called robust estimators, is to
consider heavy-tailed distributions which can better accommodate outliers. Among
those, elliptical distributions have been studied as good candidates as they include
tractable heavy-tailed distributions such as the t-distribution, whose tail is con-
trolled by a single degrees-of-freedom (dof) parameter (see [33] or [4]). In addition,
for elliptical distributions, robust estimators of the scale matrix Σ are provided
by Maronna’s M-estimators, defined as the solution Σ̃ of a fixed-point relation-

ship Σ̃ = E
[
u
(
x>Σ̃−1x

)
xx>

]
where u is function satisfying a set of general

assumptions (see [26]). A second difficulty is then that the problem dimension
may be too large compared to the number of available observations, which pre-
vents accurate estimation when this feature is not explicitly taken into account.
For example, if the dimension p of Σ is greater than the sample size n, previous
Maronna’s estimators are known to perform poorly [6]. As a consequence, many
authors have proposed alternative estimators which can be divided into two main
categories. A first set of approaches assumes structured matrices so as to reduce
the number of parameters to estimate, while a second set of approaches aims at
compensating the lack of samples with regularization or prior knowledge mod-
elling. The first category includes attempts based on sparsity assumptions such
as graphical Lasso, e.g. [3, 11, 44], and nodewise Lasso, e.g. [13, 27]. Besides not
to be always satisfying in small sample size settings (see [19] for a recent review),
these methods assume Gaussian observations and are therefore not suitable for el-
liptical distributions with heavy tails. Generalizations have been considered more
recently that are more robust [2, 9], but they require a large number of Σ entries
to be zero which may be too restrictive in some applications. In this work, we
rather consider estimators in the second category based on shrinkage methods,
introduced in [22]. In shrinkage methods, the considered estimators are convex
combinations of an initial estimator and the identity matrix view as a regulariza-
tion term. The construction of these estimators rely then on two main ingredients,
the choice of the initial estimator to be regularized and the choice of the regular-
ization parameter, or equivalently the weight of the identity matrix. As already
mentioned, when aiming at robust inference, M-estimators are good initial ba-
sis. Following this line, the authors in [6] have proposed a shrinkage procedure,
with an optimal shrinkage coefficient, for a particular case of M-estimators, called
Tyler’s estimator where the function u(t) is set to p/t [39]. This choice of u is
motivated by the fact that if x is elliptically distributed with mean µ, then the
normalized vector z = (x−µ)/||x−µ|| follows an angular central Gaussian distri-
bution. This approach has the advantage to be somewhat non-parametric and has
shown a lot of merits in various settings [31,34,43]. Unfortunately, a serious limit
is that it requires the mean µ to be known in advance so that the shape of the
distribution cannot be taken into account when estimating the mean. This point
has been highlighted in [36], which proposes to estimate µ assuming x follows
a Cauchy distribution (i.e. a t-distribution with dof parameter equal to 1), and
as a follow-up more recently in [24] with a generalization to any t-distributions.
However, in contrast to [6], none of these papers provide an optimal shrinkage
coefficient. Although the effect of tuning this coefficient may be important, the
issue is usually eliminated either by searching in a finite grid of values [24, 36]
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or using cross-validation [38] in both cases at the cost of a higher computational
complexity and time.

We aim at building on these previous approaches by providing both a flexi-
ble and optimal framework based on shrinked likelihood-based M-estimators. The
distribution of x is assumed to be elliptical so that the corresponding function
u and the associated M-estimator can be derived straightforwardly from a maxi-
mum likelihood principle. We propose then a shrinkage version of this estimator
with an explicit formula for the optimal shrinkage coefficient that depends on two
moments of the radius of x. Then, a complete inference procedure is proposed
which does not require neither to pre-set the value of the mean nor that of the
tail parameter. Explicit expressions of the optimal shrinkage coefficient are given
for Gaussian and t-distributions and an algorithm for estimating both µ and Σ
is proposed. Experiments on simulated and real data illustrate the good behavior
of the proposed method in comparison to other existing methods such as Tyler’s
estimator, graphical Lasso, etc.

The paper is organized as follows. Section 2 recalls definitions and the main
properties of elliptical distributions and M-estimators. The optimal shrinkage
problem is addressed in Section 3 with a general formula for the optimal shrinkage
coefficient. In the following Section 4, the optimal parameter value is given in the
case of multivariate t-distributions together with a practical algorithm to estimate
both the mean and covariance matrix in a potentially low sample size setting.
The proposed estimator and algorithm are illustrated on simulated and real data
respectively in Section 5 and 6. A conclusion ends the paper. At last, all proofs
and supplementary results are provided in Appendix.

2 Preliminaries

2.1 Elliptical distributions

A continuous random vector x ∈ Rp follows a multivariate elliptical symmetric
distribution if its probability density function (pdf) is of the form (see [5] or [20]):

p(x) = Cp,g|Σ|−1/2g
(

(x− µ)>Σ−1(x− µ)
)
, (1)

where Σ ∈ Rp×p is the scale matrix with determinant |Σ|, µ ∈ Rp is the location
or mean vector, Cp,g is a normalizing constant so that p(x) integrates to one.
The non-negative function g() is called the density generator and determines the
shape of the pdf. Also, it is important to note that elliptical distributions have
the stochastic representation x = µ + RΛU [5], where R (called radius) is a non
negative random variable, Λ is a p × p matrix so that ΛΛ> = Σ and U is a
p-dimensional random vector following a uniform distribution on the unit sphere
of dimension p (R and U are independent). The radius R and the generator g are
closely related. Indeed, according to Theorem 2.9 in [8], an elliptical distribution
has a generator if and only if the random variable R has a density, and there
exists a link between these two functions (Theorem 3 in [10] gives a similar result).
Throughout this paper, we assume that our elliptical distribution has a generator,
and the latter may be defined either by g, or by its radius R. In addition, to avoid
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identifiability issues (for any scaling factor γ, (µ, R/γ, γΛ) and (µ, R,Λ) lead to
the same distribution), we assume in the rest of the paper that the trace of Σ is
p, denoted by tr(Σ) = p.

This family encompasses a lot of well known particular cases, like the Gaussian
distribution (with g(t) = exp(−t/2)) and the Student distribution (also called t-
distribution) with ν > 0 degrees of freedom (with g(t) = (1+ t/ν)−(p+ν)/2). Other
examples include the Logistic [25], Kotz [29], Laplace [7] or Slash [1] distributions.

In this paper we consider the problem of the scale matrix estimation Σ under
the assumption that the data is elliptically distributed. It is an important task
both in the case of known or unknown location or mean vector µ. A lot of methods
have already been proposed. For instance, [46] focused on the widely used sample

covariance matrix Ŝ = n−1∑n
i=1 xix

>
i as an estimator of Σ (the mean vector µ

is here considered as known, i.e. the data has previously been centered). However,
being designed for the Gaussian distribution, this method is not suitable for the
case of data with outliers. Moreover, it requires the existence of E[xx>], and this
condition is not always fulfilled (see e.g. the Cauchy distribution). To overcome
these difficulties, [39] proposed another estimator which is a particular case of
Maronna’s M-estimators [26] detailed in the next section.

2.2 M-estimators and Tyler’s estimator

Let {x1, . . . ,xn} be a set of n independent and identically distributed observations
drawn from an elliptical distribution (1) with a known mean vector µ. Tyler [39]
proposed a distribution-free estimator of the trace-normalized covariance matrix
by working with the normalized observations zi = xi−µ

‖xi−µ‖2 . According to [40],
each zi follows the angular central Gaussian distribution:

p(z) =
Γ (p/2)

2πp/2
|Σ|−1/2

(
z>Σ−1z

)−p/2
. (2)

Then maximum likelihood principle leads to an implicit estimator Σ̃, solution of

Σ̃ =
p

n

n∑
i=1

ziz
>
i

z>i Σ̃
−1zi

. (3)

A fixed point algorithm is thus usually used to estimate Σ with a final normal-
ization step to ensure tr(Σ̃) = p. Tyler’s estimator may then also be seen as a

particular case of Maronna’s M-estimator. Existence and uniqueness of Σ̃ are dis-
cussed in [39]. In particular, it is mentioned that condition n > p is required.

Otherwise, according to [28], matrix Σ̃ is singular and this estimator is no longer
suitable. In the case p ≥ n, a regularized Tyler’s estimator has been proposed,
based on shrinkage methods [6] as specified in the following section.

2.3 Regularized Tyler’s estimator

Inspired by the shrinkage method of Ledoit and Wolf [22], the authors in [6] ex-
tended Tyler’s method to the high dimensional setting introducing the following
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regularized fixed point equations. The tth iteration is indicated with index (t):

Σ̃(t+1) = (1− ρ)
p

n

n∑
i=1

ziz
>
i

z>i Σ
(t)−1zi

+ ρI, (4)

Σ(t+1) =
Σ̃(t+1)

tr(Σ̃(t+1))/p
. (5)

Here 0 ≤ ρ ≤ 1 is a constant which is called shrinkage coefficient. The case of ρ = 0
corresponds to the standard non regularized Tyler’s estimator while ρ = 1 reduces
the estimator to the identity matrix. The term ρI ensures that the estimator is
well-conditioned at each iteration. Both existence and uniqueness of the limit of
the procedure (4)-(5) are proved in [6]. The choice of ρ is also discussed. As in [22],
the authors in [6] propose to find parameter ρ by minimizing the mean-squared
error (MSE) between the true matrix Σ and the so-called ”clairvoyant estimator”:

Σ̃ρ = (1− ρ)
p

n

n∑
i=1

ziz
>
i

z>i Σ
−1zi

+ ρI. (6)

Thus, ρ is chosen as the solution ρ∗T of:

ρ∗T = arg min
ρ

E

[∥∥∥∥∥(1− ρ)
p

n

n∑
i=1

ziz
>
i

z>i Σ
−1zi

+ ρI−Σ

∥∥∥∥∥
2

F

]
, (7)

where ||.||F is the Frobenius norm. The solution can be seen as the value of ρ which
minimizes the distance between the trueΣ and its shrinked deformation. Following
the above criteria, an explicit formula for ρ∗T is obtained under the assumption
tr(Σ) = p :

ρ∗T =
p2 + (1− 2/p)tr(Σ2)

(p2 − np− 2n) + (n+ 1 + 2(n− 1)/p)tr(Σ2)
. (8)

In the next section, we propose to generalize this last result, to the case when µ
is not known and for all M-estimators when the data is sampled from a specified
elliptically symmetric distribution (1). Under a criteria similar to (7), we provide
a closed-form expression for the optimal shrinkage coefficient.

3 Optimal shrinkage for M-estimators

Let x1, . . . ,xn denote i.i.d random realizations of a p-variate elliptical random
vector x = µ + RΛU. In this section, we suppose that µ is known, and consider
the class of Maronna’s estimators satisfying :

Σ̃ = m
(
Σ̃
)
, (9)

with m (Σ) =
1

n

n∑
i=1

u
(

(xi − µ)>Σ−1 (xi − µ)
)

(xi − µ) (xi − µ)> . (10)
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By taking u(t) = p/t and µ = 0, we recover Tyler’s estimator (3). Some other
examples of functions u are u(t) = 1 [32], the Huber’s function [18], or the Student
maximum likelihood-based function (p + ν)/(t + ν) [26]. As proposed in [32], in
this paper we consider a regularized estimator:

Σ̃ρ = βm (Σ) + αI, (11)

where α = ρ and β = 1− ρ. This choice of α and β will be discussed and justified
later (see proposition 2 below). We define the following criteria, similar to (7),
for the choice of ρ. The optimal ρ∗ will be chosen such as to minimize the MSE
between the ”clairvoyant estimator” Σ̃ρ and Σ:

E

[∥∥∥∥∥1− ρ
n

n∑
i=1

u
(

(xi − µ)>Σ−1 (xi − µ)
)

(xi − µ) (xi − µ)> + ρI−Σ

∥∥∥∥∥
2

F

]
.

(12)

The next theorem presents the closed-form solution to problem (12) for elliptical
distributions. Note that the result holds for any function u. Alternatively, another
MSE criterion has been considered in [32], for which it is also possible to give
the optimal ρ value. This criterion is not further considered in our work but we
provide the corresponding optimal ρ formula in Appendix 8.6.

Theorem 1 (Optimal shrinkage coefficient) Let x = µ+RΛU be a stochastic
representation of the elliptically distributed variable x. The oracle coefficient ρ∗

which minimizes (12) is, under the condition tr(Σ) = p,

ρ∗ =
tr(Σ2)

(
f2
1
n−1
np2 + f2

2
np(p+2) − f1

1
p

)
+ f2

p
n(p+2) − f1 + p

tr(Σ2)
(
f2
1
n−1
np2 + f2

2
np(p+2)

)
+ f2

p
n(p+2) − 2f1 + p

, (13)

where f1 = E
[
u(R2)R2

]
and f2 = E

[
u(R2)2R4

]
.

The proof is provided in Appendix 8.1. When considering for u the Tyler’s function
u(t) = p/t, the result in [6] is recovered. Indeed, it follows f1 = p and f2 = p2,
which leads in turns to the optimal shrinkage coefficient formula (8).

We can now discuss the choice of the function u. For this purpose, we propose
to take a function motivated by the likelihood. Indeed, the maximum likelihood
estimator (MLE) of the covariance matrix minimizes the negative log-likelihood
function:

L(Σ) = − 2

n

n∑
i=1

ln
(
g
(

(xi − µ)>Σ−1(xi − µ)
))
− ln |Σ−1|. (14)

The previous equation leads to an implicit estimator of Σ, obtained through a
fixed point algorithm. However, we recall that this approach is no longer suitable
if p > n. In that case, similarly to the approach of [32], we consider the penalized
cost function:

Lρ(Σ) =− (1− ρ)
2

n

n∑
i=1

ln
(
g
(

(xi − µ)>Σ−1(xi − µ)
))
− ln |Σ−1|+ ρtr(Σ−1).

(15)
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In what follows, we suppose that the generator g, or equivalently the density of
R, is differentiable. The solution Σ̃ρ which minimizes the penalized cost function
Lρ(Σ) can be expressed as:

Σ̃ρ =(1− ρ)
1

n

n∑
i=1

u
(

(xi − µ)>Σ̃−1
ρ (xi − µ)

)
(xi − µ)(xi − µ)> + ρI, (16)

with u(t) = −2g′(t)/g(t).

It is interesting to note that penalizations are linked to prior choice for Σ in
a Bayesian framework. In (15) above, the tr(Σ−1) penalization corresponds to
an inverse Wishart prior where the scale matrix hyperparameter is the identity
matrix. For a more general scale matrix hyperparameter T, the penalty would be
tr(Σ−1T) and we would get a regularized estimator similar to (16) with a penalty
term replaced by ρT. Theorem 1 can then be generalized to this case. This result
and its proof are given in Appendix 8.2.

We thus defined a regularized M-estimator with function u(t) = −2g′(t)/g(t). The
main difficulty is now to calculate the terms f1 and f2 in Theorem 1. The next
result provides a general formula for f1 while f2 has to be computed differently
for each distribution.

3.1 Theoretical value of ρ∗

Let u(t) = −2g′(t)/g(t) (the radius R is thus supposed to have a differentiable
pdf). It is remarkable that for most elliptical distributions, f1 = p in that case.

Proposition 1 (Value of f1) Let x = µ+RΛU, where R is a positive random
variable with a differentiable pdf fR such that fR(r) > 0 for all r > 0, rfR(r)→ 0
as r goes to either 0 or +∞. If u(t) = −2g′(t)/g(t), then f1 = p.

The proof is provided in Appendix 8.3. The following corollary follows straight-
forwardly.

Corollary 1 Under the assumptions of Theorem 1 and Proposition 1:

ρ∗ =
tr(Σ2)

(
f2

2
np(p+2) −

1
n

)
+ f2

p
n(p+2)

tr(Σ2)
(

1− 1
n + f2

2
np(p+2)

)
+ f2

p
n(p+2) − p

. (17)

Note that the conditions of Proposition 1 encompass all the well known elliptical
distribution (Gaussian, Student and all the examples mentioned in the paper). If f1
has a general expression, this is unfortunately not the case for f2. In the following
section, we focus on the multivariate t-distribution, for which these two terms can
be explicitly calculated. We also provide for illustration the case of the Kotz-type
distribution. Beforehand, we first justify the choice of α = ρ and β = 1−ρ in (11).
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3.2 Optimal regularized estimators

Consider the regularized covariance matrix in the general form:

Σ̃αβ = βm (Σ) + αI, (18)

where α ≥ 0, β ≥ 0. Next proposition provides the relationship between the oracle
shrinkage coefficients α and β for functions u which are derived from maximum
likelihood estimation of the covariance matrix of an elliptical distribution. The
coefficients are found under the same criteria as in (12). Thus we are looking for
the optimal α and β such that:

(α∗, β∗) = arg min
α,β≥0

E

[∥∥∥∥∥βn
n∑
i=1

u
(

(xi − µ)>Σ−1 (xi − µ)
)

(xi − µ) (xi − µ)>

+ αI−Σ

∥∥∥∥∥
2

F

]
. (19)

Proposition 2 Let x = µ+RΛU be a stochastic representation of an elliptically
distributed variable x. The coefficients α∗ and β∗ are related through the following
formula: α = tr(Σ)

p (1− f1
p β), where f1 = E

[
u(R2)R2

]
.

The proof is provided in Appendix 8.4. From the proposition we directly get that,
under the assumption tr(Σ) = p, coefficient α = 1− f1

p β and under Proposition 1
for functions u coming from maximum likelihood, it comes moreover that α = 1−β.
However, general formulas for α and β are also provided in the proof of Proposition
2 in the Appendix.

4 Regularized covariance matrix estimator for the multivariate
t-distribution

Theorem 1 provides a general result for all elliptical distributions. However, equa-

tion (13) depends on the moments f1 = E
[
u(R2)R2

]
and f2 = E

[(
u(R2)

)2
R4
]
,

so that to be useful in practice, expressions for ρ∗ require further developments. In
the following section, we provide further results allowing the specification of ρ∗ in
important cases such as the Gaussian and t-distributions. For both distributions,
Proposition 1 applies and f1 = p. The following result provides the values of f2.
In the sequel, χ2

k denotes the Chi-squared distribution with k degrees of freedom
and Fp,ν denotes the Fisher distribution with dof parameters p and ν.

Proposition 3 (Some values of f2) Let x = µ+RΛU, where R is a positive
random variable with a differentiable pdf, and u(t) = −2g′(t)/g(t).

1. If R2 is distributed as χ2
p, then x follows a Gaussian distribution, u(t) = 1 and

therefore:

E
[
u
(
R2
)2
R4

]
= p(p+ 2). (20)



Title Suppressed Due to Excessive Length 9

2. If R2 is distributed as
(

1
2λχ

2
2q+p−2

s

)1/s
, then x follows a Kotz-type distribution,

u(t) = 2(1− q)/t+ 2sλts−1 and therefore:

E
[
u
(
R2
)2
R4

]
= p(p+ 2s) + 4s(q − 1). (21)

3. If R2 is distributed as pFp,ν , then x follows a t-distribution with ν > 0 degrees
of freedom, u(t) = (p+ ν)/(t+ ν) and therefore :

E
[
u
(
R2
)2
R4

]
=

(ν + p)(p+ 2)p

p+ ν + 2
. (22)

The proof is provided in Appendix 8.5. The above formulas for f2 are consistent
with the fact that when ν goes to +∞, the t-distribution tends to the Gaussian
distribution and expression (22) tends to (20). A similar check can be done using
that the Gaussian distribution is a particular case of Kotz-type distributions with
s = 1, q = 1 and λ = 1/2.

Combining Theorem 1 and Propositions 1 and 3, the optimal shrinkage co-
efficient can be specified for the above distributions. In the following result, we
restrict to the Gaussian and t-distributions.

Corollary 2 (Optimal shrinkage coefficient for multivariate Gaussian
and t-distributions) Assume tr(Σ) = p, the optimal shrinkage coefficient is
given by,

1. For the Gaussian distribution:

ρ∗ =
tr(Σ2) + p2

tr(Σ2)(n+ 1) + p2 − pn. (23)

2. For the t-distribution with ν > 0 degrees of freedom:

ρ∗ =
tr(Σ2)

(
1 + ν

p −
2
p

)
+ p(ν + p)

tr(Σ2)
(

(n+ 1)
(
ν
p + 1

)
+ 2

p (n− 1)
)

+ (p+ ν)(p− n)− 2n
. (24)

We now have an explicit formula for our optimal shrinkage coefficient in the t-
distribution case including (for ν = 0) the Tyler’s coefficient ρ∗T specified in (8).
In practice, it still remains to compute estimations for tr(Σ2) and ν to get values
for ρ∗. This is specified in the next section.

4.1 Estimation of the oracle coefficients

The oracle value ρ∗ cannot be implemented as such because it is a function of
unknown quantities tr(Σ2) and ν. Following [6, 30], a good candidate for plug-in
for Σ is the trace-normalised normalised sample covariance matrix S defined by:

S =
p

n

n∑
i=1

(xi − µ)(xi − µ)>

‖xi − µ‖2
. (25)
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As observed in [6], the only requirement on such an estimator is that it provides
a good approximation to tr(Σ2). It does not have to be well-conditioned nor does
it have to be an accurate estimator of the true Σ. As a matter of fact, tr(S2)
has been shown in [45] to be highly robust for the estimation of tr(Σ2) when
tr(Σ) = p. Regarding the dof parameter ν, for t-distributions, the norm ||x||2 is
regularly varying with tail index 1/ν (see [16]), i.e. :

∀t > 0, lim
z→+∞

P (||x||2 > tz)

P (||x||2 > z)
= t−1/ν . (26)

Different estimators of the tail index are available in the literature, the most pop-
ular and widespread being the Hill estimator, introduced in [17]. By taking the
inverse of the latter, we define an estimator ν̂kn of ν :

ν̂kn =

(
1

kn

kn∑
i=1

ln

( ||x[i]||2
||x[kn+1]||2

))−1

, (27)

where x[i] denoted the ordered observations such that ||x[1]||2 ≥ . . . ≥ ||x[kn+1]||2 ≥
. . . ≥ ||x[n]||2. The Hill estimator, and therefore ν̂kn , are related to a number kn.
On a theoretical point of view, the latter has to fulfill kn → +∞ and kn/n → 0
as n→ +∞, and leads to a compromise between a variable and biased estimation
of ν. Indeed, a small kn leads to a low biased and high variable estimation, while
a large kn increases the bias and reduces the variance (see Section 3.2 in [15] for
details). Therefore, the choice of kn, usually chosen as bnbc, 0 < b < 1, is an im-
portant point, and is discussed in [42] in the t-distribution case. According to [42],
a choice of b around 4/(ν + 4) is suitable.

4.2 Joint covariance matrix and mean estimation

In the previous sections we assumed that the mean vector µ was known. When
the mean vector is unknown one can use the sample mean µ̂ = 1/n

∑n
i=1 xi as

an estimator. However, it is well-known that the sample mean may have a bad
performance in the presence of outliers or simply in high-dimensional case. Thus,
the estimation of the covariance matrix can be severely degraded by an inaccurate
estimation of the mean vector µ. To overcome this difficulty, we focus on the joint
mean - covariance matrix estimation as the solution of a system of equations of
the following form defining Maronna’s M-estimators [26]:

0 =
1

n

n∑
i=1

h
(

(xi − µ)>Σ−1 (xi − µ)
)

(xi − µ), (28)

Σ =
1

n

n∑
i=1

u
(

(xi − µ)>Σ−1 (xi − µ)
)

(xi − µ) (xi − µ)> , (29)

where the functions h and u satisfy a set of general assumptions stated in [26].
We propose to extend this approach to the high-dimensional/small sample size
case by replacing the covariance matrix by its regularized estimator. Moreover, as
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before, the trace normalized covariance matrix is considered. It follows the iterative
algorithm below for µ and Σ. Denoting the tth iteration with index (t):

µ(t+1) =

∑n
i=1 h

((
xi − µ(t)

)>
Σ(t)−1

(
xi − µ(t)

))
xi∑n

i=1 h
((
xi − µ(t)

)>
Σ(t)−1

(
xi − µ(t)

)) , (30)

Σ̃(t+1) = (1− ρ)
1

n

n∑
i=1

u
(

(xi − µ(t+1))>Σ(t)−1(xi − µ(t+1))
)

× (xi − µ(t+1))(xi − µ(t+1))> + ρI, (31)

Σ(t+1) =
Σ̃(t+1)

tr(Σ̃(t+1))/p
. (32)

The optimal coefficient ρ, in the general case for any distribution in the ellip-
tical family, can be found using the obtained result (13). This value is a function
of tr(Σ2) and of the parameters defining the distribution of the radius R. While
the term tr(Σ2) can be estimated using the trace-normalized normalized sample
matrix S, the estimation of the R distribution parameters may not be obvious and
requires additional examination. One possible solution is to set these parameters
to fixed values representing the prior knowledge about the distribution of R. An-
other solution is to choose the parameters values corresponding to the heaviest
tail case within the chosen distribution subclass. For example, for the multivari-
ate t-distribution, the authors in [36] propose to set ν = 1, in other words, to
focus on the Cauchy distribution, which corresponds to a heavy-tail representa-
tive among the subclass of t-distributions. To keep more flexibility on the choice
of these parameters, they could also be estimated using a maximum likelihood
approach, possibly using the EM-algorithm. The EM algorithm is tractable for a
subclass of the elliptical family referred to as Gaussian scale mixtures (GSM) [14].
GSM distributions include the generalized Gaussian distribution, the multivariate
t-distribution, the Pearson type VII distribution, etc.

Hereafter, Algorithm 1 provides a simple algorithm for the joint mean - covari-
ance matrix estimation for the multivariate t-distribution. This algorithm does
not require an additional step for the estimation of the dof ν in contrast to an
EM-algorithm implementation that would iteratively update ν as well as µ and
Σ. Instead, this parameter is evaluated once through the Hill estimator (27) and
employed then for both the estimation of ρ∗ and that of µ and Σ.

5 Results on simulated data

In this section we conduct a simulation study to illustrate the performance of
the proposed shrinkage approach through Algorithm 1. In our experiments, an
autoregressive (AR) covariance structure which satisfies tr(Σ) = p is considered :

(Σ)ij = r|i−j|, r ∈ (0, 1). (35)

When r tends to 0, then Σ is close to an identity matrix; when r tends to 1, then
Σ is close to a singular matrix of rank 1. As pointed out earlier, the choice of b for
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Algorithm 1 Small sample size covariance matrix and mean estimation for a
multivariate t-distribution

1: Initialize Σ to Σ(0) an arbitrary positive definite matrix and µ to µ(0) an arbitrary vector
2: Estimate dof ν̂ using (27) and ρ̂∗ using (24) and (25) with µ set to µ(0):

ρ̂∗ =
tr(S2)

(
1 + ν̂

p
− 2
p

)
+ p(ν̂ + p)

tr(S2)
(

(n+ 1)
(
ν̂
p

+ 1
)

+ 2
p

(n− 1)
)

+ (p+ ν̂)(p− n) − 2n
.

3: Iterate the following steps until convergence. On step (t+ 1):
3.1: Update the mean vector µ as :

µ(t+1) =

∑n
i=1 w̄

(t+1)
i xi∑n

i=1 w̄
(t+1)
i

, where w̄
(t+1)
i =

ν̂ + p

ν̂ + (xi − µ(t))>
(
Σ(t)

)−1
(xi − µ(t))

. (33)

3.2: Compute matrix Σ̃(t+1) :

Σ̃(t+1) = (1 − ρ̂∗)
p+ ν̂

n

n∑
i=1

(xi − µ(t+1))(xi − µ(t+1))>

(xi − µ(t+1))>
(
Σ(t)

)−1
(xi − µ(t+1)) + ν̂

+ ρ̂∗I, (34)

3.3: Update Σ as the trace-normalized Σ̃(t+1) :

Σ(t+1) = p
Σ̃(t+1)

tr(Σ̃(t+1))
.

computing the degrees of freedom parameter ν̂kn in (27) is an important issue. The
optimal theoretical value of this parameter depends on the true ν through formula
b ≈ 4/(ν+4). Here we choose b = 0.25 which corresponds to a suitable value for ν ≤
12. This allows a robust estimation of ν both for heavy-tailed distributions (e.g.
with ν = 1 corresponding to a Cauchy distribution) and light-tailed distributions
(e.g. ν = 12).

In the first experiment, we simulate data from a multivariate t-distribution
in dimension p = 50, with the following different choices of dof parameter ν =
{1, 2, 3, 6, 10} and various AR schemes with r = {0.1, 0.5, 0.9}. The mean µ is set
to the vector with all components equal to 5. For each pair of parameters (ν, r)
and for a sample size n varying from 5 to 50, 100 data sets are generated leading
to estimations µ̂s, Σ̂s for s = 1 to 100. The performance of a method is then
assessed using the normalized mean square-error (NMSE) for both Σ and µ:

NMSE(Σ) =
E
{
‖Σ̂ −Σ‖2F

}
‖Σ‖2F

≈ 1

100

100∑
s=1

‖Σ̂s −Σ‖2F
‖Σ‖2F

, (36)

NMSE(µ) =
E
{
‖µ̂− µ‖2F

}
‖µ‖2F

≈ 1

100

100∑
s=1

‖µ̂s − µ‖2F
‖µ‖2F

. (37)

For each data set, four different algorithms are then used leading to four different
estimators of Σ and three different estimators of µ:

– Algorithm 1 referred to as ”t-dist” where both Σ and µ are computed itera-
tively;
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– Algorithm 1 restricted to steps 3.2 and 3.3, setting µ to the sample mean (sm)
and estimating Σ on the data centered by the sample mean (sm). We denote
this algorithm by ”t-dist sm”;

– Algorithm 1 with the theoretical oracle value ρ∗(Σ, ν) in (24) obtained with
the true values of Σ and ν denoted as ”Oracle”.

– The algorithm proposed in [6] that estimates Σ on the data centered by the
sample mean, referred to as ”Tyler sm”.

To illustrate the impact of the estimation of µ, a comparison of the NMSE(µ)
values is also provided for the three estimators resulting from the above algorithms,
namely :

– the sample mean denoted by ”sm” ;
– the estimation of µ from Algorithm 1 denoted by ”t-dist”;
– the µ estimation from Algorithm 1 with value ρ∗(Σ, ν) obtained with the true
Σ and ν in (24) denoted as ”Oracle”.

The results for the covariance matrix and the mean vector µ are illustrated in
Figure 1 while more complete results are shown in Figures 7 and 8 in Appendix 8.7.
In all scenarios, the proposed ”t-dist” algorithm 1 is consistently the closest to the
”Oracle” procedure, which as expected always provides the best results with the
minimal NMSE(Σ) and NMSE(µ). More specifically, the ”t-dist” performance
is very close to the ideal oracle estimator with increasing n. For both ”Oracle” and
”t-dist” methods, NMSE(Σ) steadily decreases as n increases. In contrast, the
”Tyler sm” and ”t-dist sm” algorithms show in some cases irregular NMSE curves
due to a bad estimation of µ by the sample mean. As illustrated in Figure 1(b)
and Figure 8(a,b,c), this is particularly so for small dof like ν = 1. This confirms
the potential limits of methods that do not estimate µ accurately as pointed out
in [36]. As regards the impact of ν, it is not easy to illustrate separately the effect
of ν from that of µ. To do so we consider the comparison of ”Tyler sm” and ”t-
dist sm” algorithms. In the first step, both procedures employ the sample mean
vector to center the original data. In the second step, the covariance matrix is
computed using the iteration given in (4) for Tyler’s estimator with ρ̂T ∗ defined
in (8) and iteration given in (34) for ”t-dist sm” with ρ̂∗ in (24). Tyler’s procedure
can be viewed as an extreme case of the multivariate t-distribution with ν = 0.
Accordingly, we expect that the difference between the two estimators becomes
more significant for larger values of ν. The better results provided by ”t-dist sm”
over ”Tyler sm” is shown more specifically on Figure 3 for ν = 10 where the
main gains appear for small sample sizes (Figure 3(b)). Algorithm ”t-dist sm”
also outperforms ”Tyler sm” for smaller dof like ν = 1 but with an increasing gain
as n becomes larger (see Figure 3(c,d)). However, for small ν the differences are
somewhat less visible due to larger NMSEs coming mainly from a bad estimation
of µ. When ν is large, the resulting curve for ”t-dist sm” coincides with the one
for ”t-dist”. This is not surprising as the t-distribution tends to the Gaussian
distribution when ν tends to ∞ so that the mean vector in (33) becomes closer to
the sample mean. This result is confirmed by Figure 1(d,f) and Figure 8(j,k,l) for
ν = 6 and Figure 8(m), (n), (o) for ν = 10. Overall estimating the dof parameter ν
in (34) is important, especially in the small sample size regime, and more generally
because it allows a better estimation of the mean vector µ which appears to have
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(a) NMSE(Σ), ν = 1 (b) NMSE(µ), ν = 1

(c) NMSE(Σ), ν = 6 (d) NMSE(µ), ν = 6

(e) NMSE(Σ), ν = 10 (f) NMSE(µ), ν = 10

Fig. 1: Multivariate t-distribution with AR(r) covariance structure (p = 50, r =
0.1, ν ∈ {1, 6, 10} and µ is set to a vector of 5). Normalized mean squared-errors
for Σ (first column) and µ (second column) are computed over 100 simulated
samples of n observations each with n varying from 5 to 50.

a critical impact of the covariance structure estimation. For both aspects, our
proposed procedure improves over the regularized Tyler’s algorithm. Regarding
the impact of the choice of r, it does not seem to lead to significantly different
conclusions (see Figures 7 and 8 in the Appendix).

6 Application to real data.

Robust estimation of covariance matrices is especially needed for real data where
we know that Gaussian hypotheses are generally not true. This is the case for
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(a) r = 0.1, ν = 1, 5 ≤ n ≤ 50 (b) r = 0.1, ν = 1, 5 ≤ n ≤ 15

(c) r = 0.1, ν = 1, 15 ≤ n ≤ 30 (d) r = 0.1, ν = 1, 30 ≤ n ≤ 50

Fig. 2: Multivariate t-distribution with AR(r) covariance structure (p = 50, r =
0.1, ν = 10 and µ is set to a vector of 5): comparison of ”Tyler sm” and ”t-dist
sm” algorithms when the mean is fixed to the sample mean. Normalized mean
squared-errors are computed over 100 simulated samples of n observations each.
Varying values of n from 5 to 50 (a) are also plotted separately for better layout
in (b,c,d).

the inference of brain connectivity. Thanks to noninvasive neuroimaging, brain
recordings are now available to follow the activity of the brain during a task or at
rest. Using functional magnetic resonance imaging (fMRI), one volume of the brain
is acquired every one second or less for several minutes. Usually each volume is
composed of thousands of voxels that are gathered into a set of hundreds of parcels
or brain regions. Each brain region is then associated to a time series. These data
are still too complex to provide an easy visualisation and interpretation. Brain
connectivity graphs or networks are then constructed by defining nodes as brain
regions and edges as connections between time series associated to these brain
regions. This allows a spatio-temporal modeling of the brain while functioning.

In this application, to quantify the links between time series, edges are associ-
ated to partial correlations read on inverse covariance matrices. Inference of brain
connectivity graphs depends then on accurate estimation of covariance or precision
matrices. In order to compare objectively different methods, we use a test-retest
dataset selected from a larger dataset publicly released as part of the Human Con-
nectome Project (HCP), WU-Minn Consortium (https://www.humanconnectome.
org/). More details can be found in [37]. We select 100 subjects who have been
scanned twice in two different sessions of about 15 minutes each. These two ses-
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(a) r = 0.1, ν = 10, 5 ≤ n ≤ 50 (b) r = 0.1, ν = 10, 5 ≤ n ≤ 15

(c) r = 0.1, ν = 10, 15 ≤ n ≤ 30 (d) r = 0.1, ν = 10, 30 ≤ n ≤ 50

Fig. 3: Moderate-tailed t-distribution (ν = 10) with AR(r) covariance structure
(p = 50, r = 0.1 and µ is set to a vector of 5): comparison of ”Tyler sm” and
”t-dist sm” algorithms when the mean is fixed to the sample mean. Normalized
mean squared-errors are computed over 100 simulated samples of n observations
each. Varying values of n from 5 to 50 (a) are also plotted separately in (b,c,d).

sions are divided into two sub-sessions of half duration and denoted respectively by
S11, S12 for session 1 and S21, S22 for session 2. Shorter sessions are more common
in practice and they represent a higher challenge for the tested approaches. Fol-
lowing [37], fMRI time series are analyzed through their wavelets decompositions
providing vectors of wavelets coefficients resulting in datasets of size n = 547. The
number of brain regions is set to p = 90 based on a commonly used parcellation
of the brain into 90 regions [41].

The reliability of each structure learning approach is then evaluated by mea-
suring for each subject, the graph properties differences for the four pairs of sub-
sessions coming from different sessions, namely (S11, S21), (S11, S22), (S12, S21),
(S12, S22). For each datasets, five different approaches are considered: sample par-
tial correlation sample pc, shrinkage using the Ledoit-Wolf’s estimator lw in [22],
Maximum-likelihood for a t-distribution using EM t-dist em [23], graphical Lasso
glasso using [11] (the tuning parameter λ in glasso algorithm for each subject in
each sub-session was obtained by cross-validation with k = 3 folds) and our shrink-
age method for a t-distribution t-dist shrink. In order to produce graphs with a
fixed comparable number of edges, we apply soft-thresholding to each obtained
matrix. For each subject in each sub-session, we then obtain an adjacency matrix
that defines an unweighted graph for which a graph metric called global efficiency
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is computed. This metric is related to the communication efficiency of a node i
with all other nodes (detailed information can be found in [35]). If G = (V,E)
denotes a graph with V as its set of p vertices and E as its edge set, the global
efficiency Eglobi is defined as the inverse of the harmonic mean of the set of the
minimum path lengths Lij between node i ∈ V and all other nodes j ∈ V in the
graph:

Eglobi =
1

p− 1

∑
j∈V

1

Lij
. (38)

Here p is the number of brain regions. Then by averaging these global efficiency
values over all nodes, one value of this parameter is derived for a given graph.
Consequently, for a given pair of sub-sessions, 200 global efficiency values, one per
each subject in each sub-session, are computed for a given pre-set percentage of
edges in the graphs.

6.1 Brain connectivity graphs

As an illustration, Figure 4 displays, for five subjects and sub-sessions S11 and
S22, the global efficiency computed for each region of the brain with either sam-
ple partial correlations or partial correlations using our shrinkage method. The
global efficiency values are on average between 0.35 for the right Precentral region
and 0.53 for the left Putamen region. Regions with high global efficiency greater
than 0.5 include the post Cingulum, Amygdala, Frontal Middle Orbital, Occipi-
tal Inferior and Thalamus regions. Whereas regions with low efficiency less than
0.4 include the Precentral, Postcentral, Parietal Superior and Frontal Superior re-
gions. The qualitative comparison between the two sub-sessions highlights a higher
similarity and reproducibility between sessions with our shrinkage method t-dist
shrink, Figure 4 (b), than with sample partial correlation sample pc, Figure 4 (a).
Similar results are observed for other subjects and other pairs of sub-sessions.

6.2 Test-retest reliability

To quantify more specifically the differences between the five tested methods,
we evaluate their ability to provide similar results between two sessions via the
so-called intraclass correlation coefficient (ICC) between the sessions. Using the
global efficiency values for each subject in each session, we compute their within-
subject (sw) and between-subject (sb) mean square differences, as detailed in the
Appendix of [37]. In our case, with two sessions, the ICC is then given by

ICC =
sb − sw
sb + sw

. (39)

When for each subject, similar global efficiency values are found in the two sessions,
then the ICC is close to 1 and the reliability is high. In contrast, ICC is close to 0
when the reliability is low. The ICC may take negative values when the variance
within subjects is larger than between subjects. This is due to statistical errors
given a particular dataset and should be considered as a non reliable estimation.
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(b) t-dist shrink

Fig. 4: Global efficiency per brain region (node) for brain graphs with 10% of edges.
Five subjects are displayed (columns). Two sessions S11 (first and third rows) and
S22 (second and fourth rows) are compared using (a) sample partial correlations
and (b) our proposed shrinkage approach. A high global efficiency means that the
node/region is well connected to other nodes. Hubs generally show a high global
efficiency. In contrast, a low global efficiency means that the shortest path length
is large, and is typical of less connected nodes.

Figure 5 represents, for sessions S11 and S22, ICC values with respect to the
pre-set percentage of edges in the graphs, referred to as the cost. Shrinkage meth-
ods (lw and t-dist shrink) have the largest range of costs where ICC is above 0.4,
Figure 5(a). This is confirmed by the computation of p-values, Figure 5 (b), where
p-values allow to check whether the ICC is significantly larger than zero. The
ICC computed using empirical partial correlation and EM for a t-distribution are
nearly equal to 0 for any cost showing a poor reliability of global efficiency. Glasso
is also showing poor performance because of the difficulties to choose the regu-
larisation parameters. For additional confirmation that shrinkage schemes provide
better results than sample partial correlation, we further check sb values as an
increase in sb may artificially increase ICC values. Figure 6 displays sb and sw
values obtained with the two shrinkage methods against the sample partial cor-
relation values. Figure 6 (b) shows clearly that sb behaves similarly in all three
methods which allows then a fair comparison between them. In contrast, Figure
6 (a) shows that there is a clear decrease of sw using methods based on shrinkage.
This confirms that shrinkage estimators such as lw and t-dist shrink show very
good similar performances and improve the reliability of global efficiency on this
test-retest dataset.

Similar conclusions hold for the other pairs of sessions. The corresponding ICC
and p-values plots can be found in the Appendix, Figures 9 and 10.
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(a) ICC (b) p-value

Fig. 5: Intraclass correlation coefficient (ICC) between two fMRI sessions (S11

and S22) (a) and associated p-values (b) with respect to the pre-set percentage of
edges in the graphs (cost). The ICC values are shown for the various estimators
considered in this study. The larger the ICC, the higher the consistency between
the two sessions and the higher the estimator reliability.

(a) Within-subject variances (sw) (b) Between-subject variances (sb)

Fig. 6: Within-subject sw (a) and between-subject sb (b) variances, for sessions
S11 and S22, using different estimators. Values of sw and sb for two shrinkage
methods (lw and t-dist shrink) are plotted against values obtained using sample
partial correlation. The black line indicates the line of equal values. Red and grey
dots correspond to varying percentages of edges in the graphs.

7 Conclusion

In this paper, we address the issue of robust covariance matrix estimation in set-
tings where the sample size is small compared to the number of parameters and
the sample mean is not known a priori. Elliptical distributions are considered to
improve the robustness of the approaches. In particular, we focus on Student’s
t-distributions for their ability to model heavy tails and to handle outliers. A reg-
ularisation approach based on shrinkage is then used to face the relative lack of
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data. These two aspects are combined and lead to a penalized maximum likeli-
hood based estimator assuming the observations follow a multivariate Student’s
t-distribution. The proposed approach is showed to fulfill a number of theoretical
results for more general elliptical distributions, and it has the advantage to be
implemented easily in practice.

Among regularized robust estimators, the proposed estimator has several de-
sirable properties: 1) The penalization level or regularizing coefficient is not tuned
manually but estimated via a closed-form formula deriving from a minimum mean
squared-error principle, 2) prior knowledge on the mean and degree-of-freedom
parameter values are not needed and both these parameters can be estimated in
a data driven way, at last 3) the efficient algorithm that is derived shows good
estimation accuracy when compared to the standard Tyler’s estimator on sim-
ulated data and to additional standard methods on real data. In particular our
experiments confirm the importance of a good estimation of the mean and the po-
tential advantage of methods that aim at estimating both the mean and covariance
matrix.
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8 Appendix

8.1 Proof of Theorem 1

Following the notations of [6], we define matrix C̃ as:

C̃ = m (Σ) =
1

n

n∑
i=1

u
(

(xi − µ)>Σ−1(xi − µ)
)

(xi − µ)(xi − µ)>.

Then Σ̃ρ = (1− ρ)C̃ + ρI and deriving (12) w.r.t. ρ leads to:

ρ∗ =
E
[
tr
{(

I− C̃
)(
Σ − C̃

)}]
E
[∥∥∥I− C̃

∥∥∥2
F

]

=
E
[
tr
(
C̃2
)]
− E

[
tr
(
C̃
)]
− E

[
tr
(
C̃Σ

)]
+ tr(Σ)

E
[
tr
(
C̃2
)]
− 2E

[
tr
(
C̃
)]

+ p
. (40)

Since the vectors xi = µ + RiΛUi for 1 ≤ i ≤ n are elliptically distributed and
Σ = ΛΛ>, then (see e.g. [5]):

(xi − µ)(xi − µ)> = R2
iΛUiU

>
i Λ
> and (xi − µ)>Σ−1(xi − µ) = R2

i .

Thus,

C̃ =
1

n

n∑
i=1

u(R2
i )R

2
iΛUiU

>
i Λ
>,

and tr
(
C̃
)

=
1

n

n∑
i=1

u(R2
i )R

2
i tr
(
ΛUiU

>
i Λ
>
)
.

Using that Ri and Ui are independent and that E
[
UiU

>
i

]
= 1

pI, it comes,

E
[
tr
(
C̃
)]

=
1

n

n∑
i=1

E
[
u(R2

i )R
2
i

]
tr
(
ΛE

[
UiU

>
i

]
Λ>
)

= f1tr(Σ)/p. (41)

And similarly, E
[
tr
(
C̃Σ

)]
= f1tr

(
Σ2
)
/p.

Let us now deal with the term E
[
tr
(
C̃2
)]

:

C̃2 =
1

n2

n∑
i=1

n∑
j=1

u(R2
i )R

2
iu(R2

j )R
2
jΛUiU

>
i Λ
>ΛUjU

>
j Λ
>,



22 Karina Ashurbekova et al.

and using the mutual independence of all Ui’s and Ri’s and their common distri-
bution, it comes,

E
[
tr(C̃2)

]
=

1

n2

(∑
i6=j

E
[
u(R2)R2

]2
tr
(

(ΛE
[
U>U

]
Λ>)2

)
+

n∑
i=1

E
[
(u(R2)R2)2

]
E
[
tr
(

(U>Λ>ΛU)2
)])

=
n− 1

n

f2
1 tr(Σ2)

p2
+

1

n
f2 E

[
(U>Λ>ΛU)2

]
.

Using that Λ>Λ = A where A is the diagonal matrix containing the eigenvalues
of Σ denoted by a1, . . . , ap and denoting the elements of U as U = (u1, . . . , up)>,
the last expectation can be computed as,

E
[(

U>AU
)2]

= E

 p∑
k=1

a2ku
4
k +

∑
k 6=m

akamu
2
ku

2
m

 =

p∑
k=1

a2kE
[
u4k

]
+
∑
k 6=m

akamE
[
u2ku

2
m

]
.

At last, it comes from Theorem 5 in [10] that , E
[
u4k
]

= 3
p(p+2) and E

[
u2ku

2
m

]
=

1
p(p+2) for k 6= m. Then,

E
[(

U>AU
)2]

=
1

p(p+ 2)

3

p∑
k=1

a2k +
∑
k 6=m

akam


=

1

p(p+ 2)

(
2tr(A2) + (tr(A))2

)
=

1

p(p+ 2)

(
2tr(Σ2) + tr(Σ)2

)
.

We finally get:

E
[
tr(C̃2)

]
=

1

n2

[
n

(
f2

1

p(p+ 2)

(
2tr(Σ2) + tr(Σ)2

))
+(n2 − n)

(
f2
1

1

p2
tr(Σ2)

)]
=tr(Σ2)

(
f2
1
n− 1

np2
+ f2

2

np(p+ 2)

)
+ tr(Σ)2f2

1

np(p+ 2)
.

The shrinkage coefficient ρ∗ thus takes the form:

ρ∗ =
tr(Σ2)

(
f2
1
n−1
np2 + f2

2
np(p+2) − f1

1
p

)
+ +tr(Σ)2f2

1
np(p+2) + tr(Σ)

(
1− 1

pf1
)

tr(Σ2)
(
f2
1
n−1
np2 + f2

2
np(p+2)

)
+ tr(Σ)2f2

1
np(p+2) − 2 1

pf1tr(Σ) + p
,

and the result is proved. Note also that this expression of ρ∗ is by construction
always in [0, 1]. Indeed looking at expression (40) and using that tr(Σ) = p, it
comes that the difference between the numerator and denominator is equal to
f1
p (p− tr(Σ2)), which is always negative because

tr((Σ − I)2) = tr(Σ2)− 2tr(Σ) + tr(I2) = tr(Σ2)− 2p+ p = tr(Σ2)− p ≥ 0.

Similarly, we can check that ρ∗ is always positive. �
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8.2 Generalized regularized estimators

Theorem 1 is generalized to a penalty term equal to ρT where T is a positive
definite matrix. The regularized estimators we consider are generalized to:

Σρ = (1− ρ)m (Σ) + ρT.

As previously, parameter ρ is chosen to minimize the MSE between the ”clairvoyant
estimator” Σρ and Σ:

E

[∥∥∥∥∥1− ρ
n

n∑
i=1

u
(

(xi − µ)>Σ−1 (xi − µ)
)

(xi − µ) (xi − µ)> + ρT−Σ

∥∥∥∥∥
2

F

]
.

(42)

Theorem 2 If x = µ+ RΛU, the oracle coefficient ρ∗ which minimizes (42) is,
under the conditions of Proposition 1 and under tr(Σ) = p,

ρ∗ =
tr(Σ2)

(
f2

2
np(p+2) −

1
n

)
+ f2

p
n(p+2)

tr(Σ2)
(

1− 1
n + f2

2
np(p+2)

)
+ f2

p
n(p+2) − 2tr (ΣT) + tr(T2)

. (43)

Proof With C̃ defined as in (45), deriving w.r.t. ρ in (42) leads to:

ρ∗ =
E
[
tr
{(
Σ − C̃

)(
T− C̃

)}]
E
[∥∥∥T− C̃

∥∥∥2
F

]

=
E
[
tr
(
C̃2
)]
− E

[
tr
(
C̃T

)]
− E

[
tr
(
C̃Σ

)]
+ tr(ΣT)

E
[
tr
(
C̃2
)]
− 2E

[
tr
(
C̃T

)]
+ tr (T2)

.

The only difference with the case T = I of Theorem 1 is that now:

E
[
tr
(
C̃T

)]
= tr

(
E
[
C̃T

])
= tr

(
E
[
C̃
]
T
)

= tr

(
1

p
f1ΣT

)
=

1

p
f1tr (ΣT) .

The other quantities have been already computed in Appendix 8.1. It follows,

ρ∗ =
tr(Σ2)

(
f2
1
n−1
np2 + f2

2
np(p+2) − f1

1
p

)
+ tr(Σ)2f2

1
np(p+2) + tr(ΣT)

(
1− 1

pf1
)

tr(Σ2)
(
f2
1
n−1
np2 + f2

2
np(p+2)

)
+ tr(Σ)2f2

1
np(p+2) − 2 1

pf1tr (ΣT) + tr(T2)
.

Finally, with the condition tr(Σ) = p and f1 = p from Proposition 1, we obtain
(43).



24 Karina Ashurbekova et al.

8.3 Proof of Proposition 1

Let us denote fR the pdf of R. According to Theorem 2.9 in [8], we have:

fR(r) =
2π

p
2

Γ
(
p
2

)rp−1g(r2)⇔ g(r) =
Γ
(
p
2

)
2π

p
2

r(1−p)/2fR(
√
r).

Recalling that u(t) = −2g′(t)/g(t) we can easily rewrite E
[
u(R2)R2

]
as:∫ ∞

0

u(r2)r2fR(r)dr = −4
π
p
2

Γ
(
p
2

) ∫ ∞
0

rp+1g′(r2)dr.

Using the previous equation, it is straightforward to prove:

g′(r2) =
Γ
(
p
2

)
2π

p
2

[(
1− p

2

)
r−1−pfR(r) +

1

2
r−pf ′R(r)

]
,

hence, using an integration by part, we get:

E
[
u(R2)R2

]
= (p− 1)

∫ ∞
0

fR(r)dr −
∫ ∞
0

rf ′R(r)dr

= p− lim
r→+∞

rfR(r) + lim
r→0

rfR(r) = p.� (44)

8.4 Proof of Proposition 2

As before we use the following notation:

C̃ = m (Σ) =
1

n

n∑
i=1

u
(

(xi − µ)>Σ−1(xi − µ)
)

(xi − µ)(xi − µ)>. (45)

Taking the derivative in (19) with respect to α we get

α∗ =
tr(Σ)− β∗E

[
tr(C̃)

]
p

=
tr(Σ)

p

(
1− f1

p
β∗
)

(46)

from (41) and Proposition 1. So that, under tr(Σ) = p

α∗ =

(
1− f1

p
β∗
)
,

and when f1 = p, α∗ = (1− β∗).
Similarly, after derivation of (19), the expression for β∗ takes the form:

β∗ =
E
[
tr(C̃Σ)

]
− α∗E

[
tr(C̃)

]
E
[
tr(C̃2)

] . (47)

�
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8.5 Proof of Proposition 3

We prove each case separately.

1. If R2 is a Chi-squared distribution with p degrees of freedom, then:

g(t) =
Γ
(
p
2

)
2π

p
2

t(1−p)/2fR(
√
t) = (2π)−p/2 exp

(
− t

2

)
.

It thus comes u(t) = 1, and f2 = E
[
χ4
p

]
. The moments of the Chi-squared

distribution lead to f2 = p(p+ 2).
2. Some straightforward calculations lead to:

g(t) =
Γ
(
p
2

)
Γ
(
2q+p−2

2s

) λ 2q+p−2
2s

π
p
2

tq−1 exp (−λts)

and therefore

u(t) = 2
1− q
t

+ 2λsts−1.

By noticing that u(t)2t2 = 4(1 − q)2 + 8λs(1 − q)ts + 4λ2s2t2s, the moment
E
[
u(R2)2R4

]
may thus be rewritten as follows:

4(1− q)2 + 4s(1− q)E
[
χ2

2q+p−2
s

]
+ s2E

[(
χ2

2q+p−2
s

)2]
.

Using the moments of the Chi-squared distribution concludes the proof.
3. If R2/p is a Fisher distribution with p and ν degrees of freedom, it is known

that x follows a p-variate t-distribution with ν degrees of freedom. In this case,
the generator g(t) is given by (νπ)−p/2 (1 + t/ν)−(p+ν)/2, and therefore

u(t) = (p+ ν)/(t+ ν).

. In addition,

E
[
u(R2)2R4

]
=

∫ ∞
0

(
u(r2)

)2
r4fR(r)dr

=

∫ ∞
0

4

(
g′(r2)

)2
(g(r2))2

r4
2π

p
2

Γ
(
p
2

)rp−1g(r2)dr

=

∫ ∞
0

8

(
g′(r2)

)2
g(r2)

π
p
2

Γ
(
p
2

)rp+3dr

=8
π
p
2

Γ
(
p
2

) ∫ ∞
0

(
g′(r2)

)2
g(r2)

rp+3dr.

The ratio (g′(r2))2/g(r2) may be rewritten here:(
g′r2(r2)

)2
g(r2)

=
1

4

Γ
(
p+ν
2

)
Γ
(
ν
2

)
π
p
2

ν−
p
2
−2(ν + p)2

(
1 +

r2

ν

)− ν+p
2
−2

.
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Combining the previous relationships obtained, it comes:

E
[
u(R2)2R4

]
=

Γ
(
p+ν
2

)
Γ
(
ν
2

)
Γ
(
p
2

) (ν+p)2
∫ ∞
0

(
r2

ν

) p
2
+1 (

1 +
r2

ν

)− ν+p
2
−2

d

(
r2

ν

)
.

Using the known moments of the t-distribution leads to:

E
[
u(R2)2R4

]
=

Γ
(
p+ν
2

)
Γ
(
ν
2

)
Γ
(
p
2

) (ν + p)2
Γ
(
p
2 + 2

)
Γ
(
ν
2

)
Γ
(
p+ν
2 + 2

) =
(ν + p)(p+ 2)p

p+ ν + 2
.

�

8.6 Alternative MSE criterion

The authors in [32] propose to estimate the regularization parameter ρ by mini-
mizing the following alternative MSE criterion:

ρ∗ = arg min
ρ

E

[∥∥∥∥Σ−1Σ̃ρ −
1

p
tr
(
Σ−1Σ̃ρ

)
I

∥∥∥∥2
F

]
.

Similarly, we provide below the optimal ρ in this case.

Theorem 3 Under the assumption tr(Σ−1) = p, the oracle estimate ρ∗ is given
by:

ρ∗ =
f2 (p− 2 + ptr(Σ))

f2 (p− 2 + ptr(Σ)) + np2(p+ 2) (p−1tr(Σ−2)− 1)
.

Proof

ρ∗ =arg min
ρ

E

[∥∥∥∥Σ−1Σ̃ρ −
1

p
tr
(
Σ−1Σ̃ρ

)
I

∥∥∥∥2
F

]

=arg min
ρ

[
tr
(
Σ−2E

[
Σ̃2
ρ

])
− 1

p
E

[(
tr
(
Σ−1Σ̃ρ

))2]]
. (48)

We start with term tr
(
Σ−1Σ̃ρ

)
:

tr
(
Σ−1Σ̃ρ

)
=tr

(
Σ−1(1− ρ)C̃ + ρΣ−1

)
=tr

(
(1− ρ)

1

n

n∑
i=1

u
(

(xi − µ)>Σ−1(xi − µ)
)

×Σ−1(xi − µ)(xi − µ)> + ρΣ−1

)

=(1− ρ)
1

n

n∑
i=1

u
(

(xi − µ̂)>Σ−1(xi − µ)
)

× tr
(

(xi − µ)>Σ−1(xi − µ)
)

+ ρ tr(Σ−1)

=(1− ρ)
1

n

n∑
i=1

u(R2
i )R

2
i + ρ tr(Σ−1).
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Thus:

E

[(
tr
(
Σ−1Σ̃ρ

))2]
=(1− ρ)2

1

n2

n∑
i=1

n∑
j=1

u(R2
i )R

2
iu(R2

j )R
2
j

+ 2(1− ρ)ρtr(Σ−1)
1

n

n∑
i=1

u(R2
i )R

2
i + ρ2

(
tr(Σ−1)

)2
=(1− ρ)2

1

n2

(
nf2 + (n2 − n)f2

1

)
+ 2(1− ρ)ρtr(Σ−1)f1 + ρ2 (tr(Σ−1 ))2 .

Then we compute tr
(
Σ−2E

[
Σ̃2
ρ

])
:

E
[
Σ̃2
ρ

]
=(1− ρ)2E

[
C̃2
]

+ 2ρ(1− ρ)E
[
C̃
]

+ ρ2I

tr
(
Σ−2E

[
Σ̃2
ρ

])
=(1− ρ)2tr

(
Σ−2E

[
C̃2
])

+ 2ρ(1− ρ)tr
(
Σ−2E

[
C̃
])

+ ρ2tr
(
Σ−2

)
tr
(
Σ−2E

[
C̃
])

=tr

(
Σ−2 1

p
f1Σ

)
= tr

(
1

p
f1Σ

−1

)
=

1

p
f1tr

(
Σ−1

)
tr
(
Σ−2E

[
C̃2
])

=
1

n2

n∑
i=1

n∑
j=1

E
{
u(R2

i )R
2
iu(R2

j )R
2
j

}
× tr

(
Σ−2E

{
ΛUiU

>
i Λ
>ΛUjU

>
j Λ
>
})

.

We first compute tr
(
Σ−2E

[
ΛUiU

>
i Λ
>ΛUjU

>
j Λ
>]):

tr
(
Σ−2E

[
ΛUiU

>
i Λ
>ΛUjU

>
j Λ
>
])

= tr
(
E
[
(Λ>)−1Λ−1(Λ>)−1Λ−1ΛUiU

>
i Λ
>ΛUjU

>
j Λ
>
])

= E
[
tr
{

A−1UiU
>
i AUjU

>
j

}]
.

Now for the term E
[
tr
{
A−1UiU

>
i AUjU

>
j

}]
:

E
[
tr
{

A−1UiU
>
i AUjU

>
j

}]
=


2p+tr(Σ)tr(Σ−1)

p(p+2) , i = j;

tr
(
A−1 1

pA 1
p

)
= tr

(
1
p2 I
)

= 1
p , i 6= j.

.

Thus:

tr
(
Σ−2E

[
C̃2
])

=
1

n2

[
nf2

2p+ tr(Σ)tr(Σ−1)

p(p+ 2)
+ (n2 − n)f2

1
1

p

]
.



28 Karina Ashurbekova et al.

So that the term to minimize in (48) is:

tr
(
Σ−2E

[
Σ̃2
ρ

])
− 1

p
E

[(
tr
(
Σ−1Σ̃ρ

))2]
= (1− ρ)2tr

(
Σ−2E

[
C̃2
])

+ 2ρ(1− ρ)tr
(
Σ−2E

[
C̃
])

+ ρ2tr
(
Σ−2

)
− (1− ρ)2

1

n2

1

p

(
nf2 + (n2 − n)f2

1

)
− 2(1− ρ)ρ

1

p
tr(Σ−1)f1 − ρ2

1

p
(tr(Σ−1 ))2

= (1− ρ)2
[
tr
(
Σ−2E

[
C̃2
])
− 1

n2

1

p

(
nf2 + (n2 − n)f2

1

)]
+ 2(1− ρ)ρ

[
tr
(
Σ−2E

[
C̃
])
− 1

p
tr(Σ−1)f1

]
+ ρ2

[
tr
(
Σ−2

)
− 1

p
(tr(Σ−1 ))2

]
. (49)

Let us denote:

m1 = tr
(
Σ−2E

[
C̃2
])
− 1

n2

1

p

(
nf2 + (n2 − n)f2

1

)
,

m2 = tr
(
Σ−2E

[
C̃
])
− 1

p
tr(Σ−1)f1,

m3 = tr
(
Σ−2

)
− 1

p
(tr(Σ−1 ))2 . (50)

Taking the derivative w.r.t. ρ in (49) we get:

ρ∗ =
m1 −m2

m1 − 2m2 +m3
.

With m1 = 1
n

1
pf2

p−2+tr(Σ)tr(Σ−1)
p+2 and m2 = 0, we get the final formula:

ρ∗ =
f2
(
p− 2 + tr(Σ)tr(Σ−1)

)
f2 (p− 2 + tr(Σ)tr(Σ−1)) + np(p+ 2)tr(Σ−2)− n(p+ 2)(tr(Σ−1))2

,

which under the assumption tr(Σ−1) = p gives:

ρ∗ =
f2 (p− 2 + ptr(Σ))

f2 (p− 2 + ptr(Σ)) + np2(p+ 2) (p−1tr(Σ−2)− 1)
.

8.7 Supplementary plots for simulated data

The following Figures show the results of the simulated data study for all pairs of
tested parameters (r, ν).
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(a) r = 0.1, ν = 1 (b) r = 0.7, ν = 1 (c) r = 0.9, ν = 1

(d) r = 0.1, ν = 2 (e) r = 0.7, ν = 2 (f) r = 0.9, ν = 2

(g) r = 0.1, ν = 3 (h) r = 0.7, ν = 3 (i) r = 0.9, ν = 3

(j) r = 0.1, ν = 6 (k) r = 0.7, ν = 6 (l) r = 0.9, ν = 6

(m) r = 0.1, ν = 10 (n) r = 0.7, ν = 10 (o) r = 0.9, ν = 10

Fig. 7: Multivariate t-distribution with AR(r) covariance structure (p = 50, r ∈
{0.1, 0.5, 0.9}, ν ∈ {1, 2, 3, 6, 10} and µ is set to a vector of 5): Normalized mean
squared-errors for Σ computed over 100 simulated samples of n observations each
with n varying from 5 to 50.
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(a) r = 0.1, ν = 1 (b) r = 0.7, ν = 1 (c) r = 0.9, ν = 1

(d) r = 0.1, ν = 2 (e) r = 0.7, ν = 2 (f) r = 0.9, ν = 2

(g) r = 0.1, ν = 3 (h) r = 0.7, ν = 3 (i) r = 0.9, ν = 3

(j) r = 0.1, ν = 6 (k) r = 0.7, ν = 6 (l) r = 0.9, ν = 6

(m) r = 0.1, ν = 10 (n) r = 0.7, ν = 10 (o) r = 0.9, ν = 10

Fig. 8: Multivariate t-distribution with AR(r) covariance structure (p = 50, r ∈
{0.1, 0.5, 0.9}, ν ∈ {1, 2, 3, 6, 10} and µ is set to a vector of 5): Normalized mean
squared-errors for µ computed over 100 simulated samples of n observations each
with n varying from 5 to 50.
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8.8 Supplementary plots for real data

The following Figures 9 and 10 show the ICC values for the tested methods on
different pairs of sessions and their associated p-values.

Fig. 9: Intraclass correlation coefficient (ICC) between pairs of fMRI sessions with
respect to the pre-set percentage of edges in the graphs (cost). The ICC values
are shown for the various estimators considered in this study. Pairs of sessions are
from upper left to bottom right (S11,S21), (S12,S22), (S11,S22) and (S12,S21).
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