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Abstract: In heterogeneous disordered materials, a straight crack front experi-
ences toughness fluctuations during its propagation that generate geometric fluc-
tuations. Their long time statistical behavior has been studied by Lazarus et al.
(JMPS, 2008) using Bueckner-Rice weight function theory. In particular, the evo-
lution of the auto-correlation function, power spectrum and variance of the front
fluctuations have been derived. The aim here is to compare these results to some
experiments performed on transparent plexiglas blocks with the same apparatus as
in Schmittbuhl and Maloy (PRL, 1997) by measuring the amplitude evolution of
the crack front fluctuations in addition to the self-affinityroughness parameters.

In a perfectly ideal homogeneous material, an initial straight crack front remains
straight during propagation. But in an heterogeneous disordered materials, it be-
comes rough. The aim of the present paper is to derive an analytical description
of the evolution of this roughness and to compare it to experimental results. The
assumption of quasi-static brittle crack propagation willbe done.
Among the experimental works, one may cite on the one hand, the pioneer work
of Daguieret al. [2] in which the crack front is obtained postmortem, the crack
surface being marked by ink and on the other hand, the works ofDelaplace, Maloy
and Schmittbuhl [8, 3] in transparent plexiglas in which thecrack front can be ob-
served in situ during its evolution. They deal mainly with the universal self-affine
character of the crack front. The roughness exponentξ was measured between
0.5 and 0.6. Here, we have again used the experimental framework of [8, 3] to
measure the time evolution of the fluctuations in addition toits roughness.
All the theoretical studies of the statistical properties of the crack front performed
in quasi-static, use Bueckner[1]-Rice[7] weight functiontheory, also called line
elastic models, to evaluate the stress intensity factors along the perturbed crack
front. Among them, one may distinguish two groups dependingon the type of
the advance law used. The first ones [9, 10, 6] deal with crack advance governed

1



by brittle fracture Irwin’s criterion with a slightly heterogeneous toughness. This
criterion is athresholdtype one: the crack propagates only if the stress intensity
factor becomes equal to the local toughness. In particular,by a first order analysis
the roughness exponent was derived and found to beξ = 0.37 or ξ = 0.5 de-
pending on the papers. This apparent discrepancy will be considered further. The
second group deals with crack advance governed by Paris’ law(fatigueor sub-
critical fracture). It is atime dependenttype criterion: the rate of crack advance
is proportional to a power law of the stress intensity factor. Lazarus, Leblond and
coauthors have performed the study of a tensile tunnel-crack [4] and of a tensile
semi-infinite interfacial crack [6]. Contrary to the case ofthreshold advance law,
their first order study in crack advance was not sufficient to obtain the crack front
roughness. However Adda-Bedia and Katzav [5] performed thesecond order study
for a semi-infinite crack and obtainedξ = 0.5.
Here, the work of Pindra, Lazarus and Leblond [6] is applied to experiments made
with the same framework as Delaplace, Maloy and Schmittbuhl[8, 3]. For Irwin’s
advance law, using Bueckner-Rice formulation for a semi-infinite crack subjected
to line loading on its faces, the evolution of the variance and power spectrum, so
as the roughness exponent are derived and compared to previous theoretical results
of Schmittbuhl, Vilotte and coauthors [9, 10]. Then, comparison with experiments
are performed, not solely on the roughness exponent as in previous papers but also
on the evolution of the crack front amplitude.

1 Experiments
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Figure 1: Two PMMA plates sintered together: a thick clampedone (21 cm long,
11 cm wide, and 1 cm thick) and a thin one (23 cm× 9 cm× 0.6 cm) subjected to
a normal displacement.

The experimental framework is the one still used by Delaplace, Maloy and Schmit-
tbuhl [8, 3]. Two PMMA transparent plates are sandblasted and annealed together
by increasing temperature to obtain one block with a weak plane where the crack
will propagate. The larger plate is clamped. A normal displacement is applied to
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the smaller one that creates a stable propagating crack in the weak plane of the
specimens (fig. 1). The crack front is observed with a microscope at several stages
of the propagation.

Figure 2: Experimental picture of the crack front for one equilibrium position. In
blue the extracted crack front

By image treatment, one extracts the position of the crack fronts at different time
steps (fig. 2). The front becomes rough because of the toughness fluctuations
introduces by the sandblasting.

2 Theoretical determination of the roughness

2.1 Evolution of the perturbation of the crack fronts

Since [6] is a general paper (an interfacial crack, several type of loadings, fatigue
and fragile fracture are considered), and hence is quiet complicated, we give here
the reasoning in the particular case of an homogeneous medium (ε = 0), the par-
ticular line loading of the experiments, brittle fracture,although most of the results
can be directly (but not painlessly) derived from the paper.
Let us consider a semi-infinite plane crack in an infinite homogeneous linear elastic
medium. Line tractions±P~ey are applied on the crack faces at a distancea of the
crack front (fig. 3). We suppose that for each equilibrium position of the crack
front, Irwin’s criterion is satisfied, that is:

K(M) = Kc(M) (1)

at each pointM of the crack front. HereK(M) is the stress intensity factor (SIF)
andKc(M) the toughness, both at pointM .
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Figure 3: Semi-infinite plane crack with a slightly perturbed crack front and line
tractions at a distancea of the crack front

If the toughness is uniform, the crack front remains straight during propagation.
The SIF along the crack front are then :

K = P

√
2

πa
(2)

so that the loading corresponding to positiona of the front verifies :

P = Kc

√
πa

2
(3)

Notice that the propagation is stable, in the sense that the loading has to be in-
creased for the crack to advance (a increases).
Now introduce some small fluctuations of the toughness :

Kc(z, x) = Kc(1 + κ(z, x)), |κ| ≪ 1 (4)

It produces small fluctuationsδa(z, a) and δK(z, a) of the crack front position
a(z, a) and of the SIFK(z, a) (see fig. 3) so that :

{
a(z, a) ≡ a + δa(z, a), |δa(z, a)| ≪ a

K(z, a) ≡ K(a) + δK(z), |δK(z, a)| ≪ K(a)
(5)

wherea andK(a) denote their mean values.
Expanding Irwin’s criterion (1) to first order and identifying terms of order 0 and
1, one gets : 





K(a) = Kc

δK(z, a)

K(a)
= κ(z, a)

(6)
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Now we use Bueckner [1]-Rice [7] formalism, expanded to linetractions as in [6],
to express the perturbed SIF to first order inδa :

δK(z, a)

K(a)
= −

1

2a
δa(z, a) +

1

2π
PV

∫
∞

−∞

δa(z′, a) − δa(z, a)

(z′ − z)2
dz′ (7)

Inserting equation (7) into (6.2) and taking the Fourier transform of the equation,
one gets:

δâ(k, a) = −
2aκ̂(k, a)

1 + |ka|
(8)

2.2 Statistical study of the deformation of the front

We consider a large number of random possible realizations of the heterogeneous
medium and the crack geometry. Statistical invariance of the functionsκ(z, x) in
the directionz andx, andδa(z, a) in the directionz being assumed, the two point
auto-correlation functions of these functions depend onlyon the relative position
of the points considered:

E [κ(z1, a)κ(z2, a)] = K(z2 − z1) (9)

E [δa(z1, a)δa(z2, a)] = A(z2 − z1, a) (10)

whereE[X] denotes the mathematical expectation of any quantityX. The func-
tionsK(z) andA(z, a) can be identified with the average values ofκ(z′, a)κ(z′ +
z, a) andδa(z′, a)δ(z′ + z, a) over the crack front, provided an ergodic hypothesis
is made. The functionA(z, a) and itsz -Fourier transformÂ(k, a) (the spectral
density of the perturbation) provide statistical information about the geometry of
the crack front.

Using the property that

Â(k, a) =
1

2π

∫
∞

−∞

E [δâ(k1, a)δâ(−k, a)] dk1 (11)

and equation (8), one obtains the power spectrum of the perturbation of the crack
front :

Â(k, a) =
4a2

(1 + |ka|)2
K̂(k) (12)

Fora ≫ a0 this yields :





Â(k, a) =
4

k2
K̂(k), for k 6= 0

Â(0, a) = 4K̂(0)a2

(13)

Taking the inverse Fourier transform of equation (12), one gets fora ≫ a0:

A(z, a) ∼
4

π
aK̂(0) (14)
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The squared fluctuationσ(z, a) ≡ E [(δa(z, a) − δa(0, a))2]
1/2 can also be de-

rived. Fora ≫ a0 andz ≫ b, b being the correlation length ofκ (b = 0 for white
noise):

σ(z, a)2 ∼ 4K̂(0)z (15)

2.3 Roughness exponent

Suppose that the toughness fluctuation are given by a white noise: K̂(k) = K̂0 =
Cst.. Equations (13) or (15) gives the value of the so-called wandering or rough-
ness exponent :

ξ = 0.5 (16)

However, numerical simulations performed in [10] using also Bueckner-Rice for-
mula (7) yield two different values:ξ = 0.37 as in [9] andξ = 0.5, the first value
being obtained if in their simulationsδamax > b and the second ifδamax < b. The
difference hence is due to the numerical parameters used. May be that forδamax >

b, the results are in fact illicit since Bueckner-Rice formula, that supposes the per-
turbation and all is derivatives small, is then no more validfor ∂δa

∂z
∼ δamax

b
> 1.

Moreover, physically it may be more pertinent to suppose that δamax < b when the
crack front is trapped, as in the experiments by fluctuationsof thoughness (rough-
ness smaller than the typical size of the zones of higher thoughness). Whatever,
further investigations are under study to clarify this point.

3 Comparison experiments and theoretical results

3.1 Power spectrum evolution
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Figure 4: Power spectrum. Marker lines: for several crack fronts witha between
35 mm and 100 mm. Continuous line:̂A(k) ∝ k−1−2ξ, ξ = 0.5.
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In figure 4, the experimental power spectrumk → Â(k, a) evolution is given for
several crack positionsa. Several remarks can be done:

1. For all the fronts considered,̂A(k, a) is independent ofa. This is in agree-
ment with the behavior for largea obtained in eq. (13).

2. The roughness exponent as in previous measures is nearξ = 0.5 in agree-
ment with our theoretical prediction.

3.2 Variance evolution
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Figure 5: Variance. Marker lines: for several crack front with a between 36 mm
and 58 mm. Continuous line: the mean of all these values

In figure 5, the experimental evolution of the variance is given. One notices that:

1. The values for several front oscillates around the mean value during propa-
gation. This corresponds to fluctuations of each position ofthe front around
a steady state situation, due to the heterogeneities.

2. The steady state situation observed is also in agreement with the long time
behavior of the variance found in equation (15).

3. The mean value varies linearly withz as predicted by equation (15). Hence
one retrieves a roughness exponent ofξ = 0.5.

4 Conclusion

We considered a semi-infinite crack embedded in an infinite elastic medium sub-
jected to traction line loading on its faces. Using Bueckner-Rice weight function
theory for this geometry (elastic line model), the power spectrum and the variance
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of the crack fluctuations arising from small toughness fluctuations has been de-
rived analytically. In particular, a roughness exponent ofξ = 0.5 has been found
in contradiction with some previous numerical works but in agreement with the re-
sults found by [10] in the case of small roughness amplitude toward the correlation
length of the thoughness fluctuations.
In spite of the approximations made in the theoretical modelization (finite geome-
try replaced by infinite one, uniform displacement loading along the line replaced
by uniform force loading), one recovers at least qualitatively the experimental be-
havior in particular for the steady state situation and for the value of the roughness
exponent.
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