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ABSTRACT 

As critical primary producers and recyclers of organic matter, the diversity of marine protists has been 

extensively explored by high-throughput barcode sequencing. However, classification of short 

metabarcoding sequences into traditional taxonomic units is not trivial, especially for lineages mainly 

known by their genetic fingerprints. This is the case for the widespread Amoebophrya ceratii species 

complex, parasites of their dinoflagellate congeners. We used genetic and phenotypic characters, 

applied to 119 Amoebophrya individuals sampled from the same geographic area, to construct 

practical guidelines for species delineation that could be applied in DNA/RNA based diversity 

analyses. Based on the internal transcribed spacer (ITS) regions, ITS2 compensatory base changes 

(CBC) and genome k-mer comparisons, we unambiguously defined eight cryptic species among 

closely related ribotypes that differed by less than 97% sequence identity in their SSU rDNA. We then 

followed the genetic signatures of these parasitic species during a three-year survey of Alexandrium 

minutum blooms. We showed that these cryptic Amoebophrya species co-occurred and shared the 

same ecological niche. We also observed a maximal ecological fitness for parasites having narrow to 

intermediate host ranges, reflecting a high cost for infecting a broader host range. This study suggests 

that a complete taxonomic revision of these parasitic dinoflagellates is long overdue to understand 

their diversity and ecological role in the marine plankton. 

Keywords: cryptic species, marine alveolates, dinoflagellates, environmental sequences, planktonic 

parasites  
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Introduction  

The accurate estimation of the diversity of protists (i.e., eukaryotic microbes) is crucial for 

gaining a better understanding of their ecological roles in the world oceans (1,2). However, traditional 

morphology-based methods for species delineation are challenging to apply to single-cell organisms 

where morphological features are frequently not discriminative enough, with few alternatives 

explored so far (3,4). The inventory of the planktonic protist diversity in marine systems has recently 

expanded thanks to culture-independent, DNA barcode-based methods directly applied in the field 

over large geographic scales (5,6). While this avalanche of environmental sequences is generally 

classified into manageable operational taxonomical units (OTUs), the correct assessment of the 

quantitative contribution and functional roles of marine pelagic protists is, however, hindered by the 

uncertainty of real species richness. In other words, intraspecific sequence variation within 

morphospecies needs to be differentiated from “true” species diversity (7). So far, there are no 

universal rules linking molecular data to species richness in marine protists, partially due to the low 

incidence of observed sexual recombination, morphological and evolutionary convergence, and 

sometimes high discordance between genetic and phenotypic characters (8).  

Parasitism is an essential ecological process contributing to the resilience of ecosystems while 

acting as an evolutionary pressure for both hosts and parasites (9). Due to the high diversity and 

ubiquity of parasites, understanding the factors that generate, maintain, and constrain host-parasite 

interactions is of primary interest in ecology and evolution. Thus, achieving a reliable delineation of 

cryptic species within parasitic protistan lineages is critical for gaining a better knowledge of their 

ecological niches and host range. The problem of species delineation is pervasive for parasitic 

lineages almost exclusively composed of environmental sequences, such as the Marine ALVeolate 

lineages (MALVs) (10,11). MALV represented one of the most hyperdiverse lineages (> 1,000 OTUs) 

recovered in the metabarcoding dataset collected during the Tara Oceans expedition (5,12). However, 

only a handful of species representatives of the different MALV lineages have been formally 

described, all of them obligatory aplastidial parasites occurring as intracellular biotrophs (i.e., the host 

is maintained alive during the infection but eventually killed) and belonging to the order Syndiniales 

(11). Among them, Amoebophryidae (or MALV-II) were observed to have the highest rate of 



4 
 

cladogenesis (i.e., speciation minus extinction rates) among 65 marine protist lineages (13), making 

their classification even more challenging.  

The Amoebophrya ceratii species complex is a MALV-II clade with a worldwide distribution 

that can be isolated in culture (14,15). All A. ceratii reported to date were observed infecting a broad 

range of marine dinoflagellates (11,16). A single infected host produces within days hundreds of 

dinospores (i.e., free-living, flagellated infective propagules), each with a life span of few days (17). 

Dinospores frequently account for a substantial proportion (>25%) of the nanoplanktonic fraction (2-

20 µm) in coastal waters (18) and can be readily consumed by microzooplankton grazers (20-200 µm) 

(19). Consequently, such parasites potentially constitute key trophic links between different 

compartments of the marine food web in the oceanic carbon cycle (20), notably through population 

control of dinoflagellate blooms (21,22).  

Here, we explored the diversity of the A. ceratii species complex through an extensive 

sequencing effort of 76 strains in culture and 43 environmental single-cells from two close localities 

(the Penzé and Rance Estuaries, western Channel, France). We followed a polyphasic approach to 

provide the first comprehensive species boundaries delineation within the A. ceratii species complex. 

To do so, we combined (i) ribotyping (both of the SSU rDNA and ITS1-5.8S-ITS2 regions), (ii) k-mer 

analysis from whole-genome sequencing, (iii) analysis of the ITS2 compensatory base changes 

(CBCs), (iv) phenotypic characteristics of dinospores by flow cytometry, and (v) assessment of their 

host range through cross-infection culture experiments. Finally, we applied our novel species 

boundaries to answer the following questions: do these Amoebophrya cryptic species share the same 

ecological niches? Can we explain their fitness (maximal abundance and persistence in time) by their 

host range? For that, we explored the population dynamics of the newly-defined cryptic Amoebophrya 

species (considered here as ribotypes until formal descriptions are performed) during a three-year 

survey of the toxic dinoflagellate Alexandrium minutum in the Penzé Estuary, a site and a period of 

the year previously reported to have high diversity of Amoebophrya ribotypes infecting a wide range 

of dinoflagellate species with prevalences as high as 40% of the total host abundance (21). This study 

constitutes the first evaluation of the interannual variability of Amoebophrya species, their ecological 

niches, and population fitness in the field.  
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Materials and Methods 

Origin of Amoebophrya strains and single infected dinoflagellate cells 

We based our analyses either on Amoebophrya strains or directly on infected host cells isolated by 

micromanipulation from environmental samples (hereafter called single-cells). Strains and single-cells 

were isolated during monitoring for the toxic dinoflagellate species Alexandrium minutum. 

Monitoring was performed over five years (2007, 2009, 2010-2012) in the Penzé Estuary 

(48°37’37.57"N, 3°57’13.17"W) and in 2011 in the Rance Estuary (48°31’49.61"N, 1°58’21.81"W), 

both located in the western Channel (France). Sampling started before the A. minutum bloom (late 

May-early June) and stopped at the end of the bloom (end of June, beginning of July), generally after 

5-7 weeks. Planktonic communities were collected every 1-2 days. For biotic parameters, we fixed 

cells (> 10 µm) with Lugol’s solution and used flow cytometry to count bacteria, viruses, 

cyanobacteria, picoeukaryotes and phototrophic cryptophytes (based on their pigment and DNA 

contents). We recorded abiotic parameters including salinity, temperature (air and water), nutrient 

concentrations (NO3, NH4, and PO4), rainfall and light intensity. Detailed information on the sampling 

strategy and data acquisition can be found in previously published data focusing on A. minutum 

blooms (21,23,9).  

For single-cells, host cells in the late stages of infection by Amoebophrya-like parasites were 

detected from freshly collected field samples (less than 3 hours) through their natural green 

autofluorescence using an epifluorescence microscope (BX51, Olympus) equipped with the U-MWB2 

cube (450- to 480-nm excitation, 500-nm emission (24)), then sorted individually by micropipeting, 

and washed three times into filter-sterilized (< 0.22 µm) freshly prepared medium. Hosts were 

identified according to their morphology, and the single cells were transferred into cryovials with a 

minimum of medium (3-5 µl), flash-frozen, and stored at -80°C. DNA extraction and purification 

were performed both on pelleted strains and single-cells using the MasterPure kit (Epicentre).  

To culture Amoebophrya strains, our strategy was to isolate representative phototrophic 

dinoflagellates, as potential hosts, from the Rance and Penzé Estuaries and other estuaries nearby. We 
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initiated infections in the dinoflagellates by Amoebophrya, either using 3-5 µm filtered samples 

(fraction presumably containing dinospores) and single, infected dinoflagellate cells (isolated as 

explained above). Amoebophrya strains were kept in their initial hosts until we reduced the number of 

hosts to facilitate their maintenance (using either Heterocapsa triquetra or Scrippsiella acuminata 

STR1). Additional details regarding the isolation and maintenance of strains are described in the 

supplementary information. 

 

Genome sequencing 

Our strategy to discriminate individuals (i.e., strains and single-cells) was to find fundamental 

units that formed separate branches on rRNA phylogenetic trees (i.e., ribotypes) and then check 

whether these fundamental units (or clades) shared a unique combination of phenotypic characters as 

the backbone for their taxonomy. For that, strains and single-cells were screened by sequencing the 

ITS1-5.8S-ITS2 region of the ribosomal operon, as explained in Blanquart et al. (9). Then, Illumina 

whole-genome sequencing was performed on a selection of 50 cultivated strains (where the flow 

cytometry-estimated bacterial contamination was <10%) and 17 single-cells in order to maximize the 

number of representative Amoebophrya ribotypes. The methodology for cell harvesting for genomic 

analysis is detailed in the protocole.io dx.doi.org/10.17504/protocols.io.vrye57w. Whole-genome 

amplification from single-cells was performed using a multiple displacement amplification (MDA) 

approach with RepliG (QIAGEN, Courtaboeuf, France) according to the manufacturer’s instructions. 

Paired-end libraries were prepared individually and sequenced on an Illumina HiSeq2000 platform, 

and a draft genome was assembled for each of the strains. More details regarding sequencing and 

genome assembly are described in the supplementary information.  

 

Ribosomal operons analyses 

We estimated the average number of ribosomal operons per Amoebophrya genome by comparing the 

read coverage to that of a list of putatively single-copy genes (initial list of 67 genes) (unpublished 

data). To do so, we first used a BLASTn (e-value < 0.0001) search against the draft genome 

assemblies to capture the ribosomal operon and the genes of interest. A gene was discarded from the 



7 
 

putative single-copy gene list either if i) it was detected in multiple copies using a reciprocal BLAST 

approach, or ii) had no hit. Genomic reads were then mapped to each of the best hits using Bowtie2 

(25). Only the aligned region (i.e., high-scoring pairings as reported by BLASTn) was used for 

calculating the average coverage of the reference genes and then used to estimate the number of 

repeated ribosomal operons per genome. In doing so, we used an average of 21 genes per strain 

(minimum 7; maximum 55).  

 

Compensatory base changes (CBCs) 

Full-length ITS2 sequences were directly annotated using Hidden Markov Models (HMMs) 

(26) as implemented in the ITS2 database (27) or by alignment to annotated sequences. Secondary 

structures were predicted by homology modeling using a relevant template (e.g., (26,27) or by RNA 

structure using energy minimization and constraint folding (28,29). The phylogenetic analysis of the 

ITS2 dataset followed the procedures outlined in (30). Specifically, a global multiple sequence-

structural alignment was automatically generated in 4SALE v1.7 (30,31,32), whereby ITS2 sequences 

and their respective secondary structures were simultaneously aligned using a 12×12 ITS2 sequence-

structure specific scoring-matrix (33). Phylogenetic relationships were reconstructed by neighbor-

joining (NJ) through the use of an ITS2 sequence-structure specific Jukes-Cantor correction (JC) or an 

ITS2 sequence-structure specific general time-reversible (GTR) substitution model, both implemented 

in ProfDistS v0.9.9 (34). Using the ITS2 sequence and secondary structure simultaneously (encoded 

by a 12-letter alphabet, (33)), a maximum parsimony tree (MP) was reconstructed by PAUP (35) 

based on default settings. A sequence-structure maximum likelihood tree (ML) was calculated using 

the “phangorn” package (36) in R (37). Bootstrap support was estimated from 100 replicates. A CBC 

table was transferred from 4SALE (32).  

 

Genome comparison using SIMKA k-mer analysis  

We estimated the k-mer distribution of genomes using SIMKA (k = 21 bp; minimum read size 

≥90 bp, Shannon index < 1.5) (38). Due to inherent differences in the genome coverage obtained from 

cultivated strains and single-cells, we based the cluster analysis upon the presence/absence of k-mers 
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by considering only the distance indexes (based on the formulas given by (38)) that give more weight 

to the double presence of k-mers (i.e., Kulczynski, Ochiai, and Chord/Hellinger distances) (39). 

Bootstrap analysis after 100 permutations were obtained using the clusterboot function from the ‘fpc’ 

R package, directly performed on the distance matrix output by SIMKA with ‘clusterCBI’ as the 

clustering method, considering the above-estimated number of ribotypes as the desired number of 

clusters. 

 

Cell phenotype 

The rationale for not using morphology and ultrastructure for the characterization of these 

strains can be found in the supplementary information. Phenotypic characteristics of the strains were 

deduced from their flow cytometric signatures [i.e., side scatter (SSC), forward scatter (FSC), and 

natural green autofluorescence], by directly loading 500 µl of fresh cultures on a FACsAria flow 

cytometer (Becton Dickinson, New Jersey, USA). We additionally estimated the genome size of each 

strain following the procedure explained in (40), where the ratio between the mean distribution of the 

dinospores and the internal reference Micromonas pusilla RCC299 cells (1C = 20.9 fg) was used for 

the evaluation of the nuclear DNA content. 

 

Host range 

We determined the host range of the Amoebophrya strains through cross-infection 

experiments using a diverse selection of locally-occurring dinoflagellate strains isolated from the 

Rance and Penzé Estuaries and nearby estuarine systems (Table S1, Fig. S2). Freshly produced 

dinospores were collected by filtration through 5-µm pore-sized cellulose acetate filters (Minisart, 

Sartorius, Germany) and 100 µl aliquots of this filtrate were inoculated into 1 ml of exponentially 

growing dinoflagellate strains into 24-well plates. Infections by Amoebophrya strains were detected 

based on their natural green fluorescence after 2-5 days. Hosts were classified either as resistant (no 

trace of infection) or sensitive (at least one infected host cell). All cross-infections were processed 3-5 

times at different dates. 
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Environmental metabarcoding survey 

We obtained environmental rDNA metabarcoding sequences of 48 samples of the >10-μm 

size-fraction collected in the Penzé Estuary during late spring and early summer between 2010 and 

2012. The DNA was extracted using the phenol-chloroform protocol (41), followed by the 

amplification of the SSU rDNA V4 region (~380 bp) using the universal forward TAReuk454FWD1 

primer (5’-CCAGCASCYGCGGTAATTCC-3’), and the modified reverse BioMarKs primer (5’-

ACTTTCGTTCTTGATYRATGA-3’)(42). PCR amplifications were performed in duplicates for each 

sample using 5 μM of each primer, 5 μl of 5x buffer, 37.5 mM of magnesium chloride, 6.25 mM of 

dNTPs, 0.5 unit of GoTaq Flexi (Promega, Wisconsin, USA), approximately 2 ng of DNA (25 μl final 

volume) and the PCR cycles (initial denaturation: 95°C for 3 min, 22 to 25 cycles: 95°C for 45s, 50°C 

for 45s, 68°C for 90s, and final extension: 68°C for 5 min). The GeT-PlaGe platform (Toulouse, 

France) performed the Illumina Miseq library preparation and the paired-end sequencing. Taxonomic 

annotations were performed on unique sequences (100% threshold sequences similarity) observed in 

at least two different libraries using Mothur (43) implemented by the PR2 reference database (44) 

modified to take into account the different ribotypes of Amoebophrya recognized in this study. 

 

Statistical analyses  

All the statistical analyses described below were performed in R software using packages 

freely available on the CRAN repository (http://www.cran-r-project.org). 

Comparison of ribotypes based on flow cytometry features, number of operons and host range. We 

first used Pearson correlations to establish whether the different morphological variables monitored 

here (excluding host range) were related to one another. Then, differences between ribotypes were 

assessed by pairwise Mann-Whitney analysis using the cor.test and wilcox.test functions from the 

basic ‘stats’ package based on [log (x+1)] transformed data. For comparison of Amoebophrya 

ribotypes based on their host range, results from the cross-infections were organized into a 

presence/absence matrix (i.e., infection = 1; no infection = 0) with parasites in the columns and 

dinoflagellate host strains in the rows. This matrix was then used to generate a heatmap using the 

function heatmap.2 of the ‘gplots’ package (45). Finally, we assessed the relative importance of the 
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phenotypic characters and the host range in the differentiation of the strains belonging to the different 

ribotypes through a principal coordinate analysis (PCoA) using the cmdscale function of the ‘stats’ 

package. The PCoA was based on Bray-Curtis distances calculated with the ‘vegan’ package (46) 

from a matrix of descriptors including the standardized values (between 0 and 1) of the phenotypical 

characters (estimated from their minimum and maximum values (47)), as well as the presence and 

absence of infections (1 and 0, respectively) in the different host species. The envfit function of the 

‘vegan’ package was used to fit the descriptors to the two first PCoA axes.  

Niche analysis. The Outlying Mean Index (OMI) analysis (48) was first performed to determine the 

niche position and niche breadth of Amoebophrya ribotypes using the function niche in the ‘ade4’ 

package (49). We included all 1,153 unique sequences detected in the metabarcodes (distributed into 

different phylogenetic lineages) to get a better resolution in the niche position of the Amoebophrya 

ribotypes. Relative read abundances (compared to the total number of reads) and several 

environmental descriptors [i.e., water temperature, salinity, precipitation, tide coefficient, NO3, PO4 

and Si(OH)4] were included in two separate matrixes (N = 48). Before analysis, relative read 

abundances were Hellinger transformed (50) whereas the environmental descriptors were 

standardized to values between 0 and 1 (47). The function envfit was used to fit the environmental 

variables to the first two OMI axes. Sample scores from the first two OMI axes were then used to 

estimate the kernel density weighted by abundance (47,48) of Amoebophrya ribotypes using the kde 

function from the ‘ks’ package (51). The niche overlap was then estimated by the comparison of the 

realized niches (i.e., kernel densities) through the calculation of the D metric (52) for each pair of 

Amoebophrya ribotypes using the ecospat.niche.overlap function from the ‘ecospat’ package (53). 

Pair-wise D metrics were then used to generate a heatmap to detect clustering of the ribotypes related 

to their niche overlap, following the same procedure described previously for the analysis of the 

results of the cross-infections. 

Relationship between the population fitness of the ribotypes and their host range. We first obtained 

a more precise estimate of the quantitative contribution of the different ribotypes by dividing the 

relative abundance of each ribotype in a given metabarcoding sample by their average number of 

operons estimated from the genome analysis of the strain (hereafter called “normalized abundance). 
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We used the normalized abundances to estimate the population fitness of the six Amoebophrya 

ribotypes that could be discriminated in the metabarcodes through their V4 sequences, in each one of 

the three years (N = 18), based on i) their maximal normalized abundances and ii) persistence in the 

system (e.g., the number of consecutive days in which the non-normalized relative contribution of the 

ribotype to the total number of reads was higher than 10%). We then determined if these two 

indicators were different between groups of Amoebophrya ribotypes representing different host ranges 

(based on the maximal number of infected host species in the cross-infection experiments for each 

ribotype). This was assessed by Kruskal-Wallis tests using the kruskal.test function in the ‘stats’ 

package following [log (x+1)] transformation. In the cases where the Kruskal-Wallis test was 

significant, the post-hoc Dunn’s test was performed with the dunnTest function in the ‘FSA’ package.  

 

Results and discussion 

Ribotypes as cryptic species 

We amplified and sequenced part of the ITS1-5.8S-ITS2 region from 119 Amoebophrya-like 

individuals: 76 strains and 43 infected host cells isolated from environmental samples (i.e., single-

cells) (Table S1). The alignment based on the secondary structure of the ITS2 region clustered 

individuals into eight main ribotypes (RIBs 1-8, Fig.1A-C). We successfully isolated at least one 

representative in culture for each ribotype, with the notable exception of RIB8 that was only 

represented by environmental single-cells. Each ribotype displayed low intra-variability regarding the 

ITS1-5.8S-ITS2 region (i.e., <3 single-nucleotide polymorphism or SNPs) and none in the SSU rDNA 

region (except RIB1 contained one SNP in the V1-V2 regions). Following the nomenclature proposed 

by Guillou et al. (11), members of RIB2 belonged to the MALV-II clade 4, whereas the remaining 

ribotypes were members of the MALV-II clade 2 (Fig. S1). Individuals belonging to ribotypes in 

MALV-II clade 2 (RIBs 1 and 3-8) shared 96-100% pairwise sequence identities, but only 93-94% 

with those from the RIB2 clade (Table S3). RIB3 and RIB8 were the most similar ribotypes (four 

SNPs in their SSU rDNA, no SNP in the V4 region and one in the V9 region; Table S3).  
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We investigated whether the observed rDNA sequence variability reflected species-level or 

intraspecific diversity by analyzing compensatory base changes (CBCs) between the ITS2 sequences 

in each ribotype. CBCs are mutations impacting both nucleotides of a paired region in the folded 

RNA transcript that maintains the pairing (e.g., A-U to G-C) and the secondary hairpin structure of 

the ITS2 (54). According to Müller et al. (55), CBCs found in the ITS2 region of the rDNA of two 

seemingly-related specimens correlate (with a probability of 0.93) to the biological species concept 

(interbreeding populations generating fertile offspring and reproductively isolated from others) of 

species (56), whereas the absence of CBC might suggest that the two ITS2 belong to the same species 

with a probability of 0.76. As a consequence, the CBC species concept stands as a valuable and 

practical alternative for indicating the potential for discriminating protistan lineages (e.g., (57,58,59)). 

We observed no CBC within ribotypes, whereas 1-9 CBCs were observed between different ribotypes 

(Fig. 1D). The phylogenetically closest ribotypes RIB3 and RIB8 displayed 2 CBCs, while RIBs 1 

and 6 only diverged by one CBC despite being further apart on the rDNA tree (Fig. 1A-B).  

Considering that CBCs and ribotypes are targeting the same genomic region (i.e., the 

ribosomal operon), we aimed to determine if a comparison at the genome level should be a more 

appropriate approach for determining species, considering that two genomes should be similar enough 

in size and sequence to pair during sexual reproduction. Genome sizes of strains estimated by flow 

cytometry oscillated between 121 and 250 Mb (Fig. 2A). Overall, we observed a somewhat consistent 

genome size range within ribotypes that clustered into two main groups with no significant intra-

variability (Mann-Whitney pairwise tests; p < 0.01): the group made of RIBs 2, 5 and 6 displayed 

larger estimated genome size values than the group composed of RIBs 1, 3, 4, and 7. Such a genome 

size disparity likely prevents any sexual reproduction between these two groups. We additionally 

estimated the number of ribosomal operons per genome ranged between 58 (strain A151 belonging to 

RIB4) and 270 (strain A147 belonging to RIB2), with no correlation between the number of operons 

and the genome size (R = 0.22; p = 0.71) (Fig. 2B). Using the DNA-seq reads acquired for 67 

individuals (17 of which were environmental “single-cells), we observed that strains in a given 

ribotype (Fig. 1A) are also grouped together in the k-mer analysis (>90%; Fig. 1E; Table S2). The 

results of the k-mer analysis suggest a low gene flow, if any, between ribotypes. Results from SSU 
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phylogeny, CBCs, and k-mer analysis are consistent with placing each ribotype into a separate cryptic 

species, awaiting formal description.  

 

Correlation between “molecular” and “phenotypic” species boundaries in Amoebophrya 

We explored whether the eight ribotypes displayed distinguishable phenotypes. Flow cytometer data 

showed a significant correlation between side scatter (SSC) and the forward scatter (FSC) parameters 

(R = 0.81; p < 0.01) as well as green autofluorescence (R = 0.71 and 0.94, for SSC and FSC 

respectively; p < 0.01). We frequently observed different populations of dinospores within a strain 

illustrated by distinct flow cytometry signatures, suggesting that dinospores could still be engaged in 

cell division during sporulation, as previously reported for syndinids (16,60). FSC, SSC, and green 

autofluorescence differentiated strains belonging to the RIB2 from the rest, as their dinospores 

seemed to be brighter and larger when compared to other ribotypes (Mann-Whitney pairwise tests; p < 

0.01) (Fig. 2C-E). We observed no significant differences among the other ribotypes for these three 

parameters. The separation of RIB2 (MALV-II clade 4) from the other ribotypes suggests that flow 

cytometry signatures can be useful for discriminating strains belonging to different higher taxonomic 

levels, such as various MALV-II clades as previously proposed (11).  

To explore the host range of Amoebophrya ribotypes, we made a strong effort to isolate the 

parasites and their hosts that co-occurred in the same or similar environments and were isolated 

during the same period of the year. As a result, representatives of the three most abundant 

phototrophic dinoflagellate genera (53 local strains distributed in 9 species/genetic clades) have been 

isolated and cross-infected in the laboratory with 36 strains representing all Amoebophrya ribotypes 

recognized in this study (excepting RIB 8, for which no strain is available) (Fig. 2F). No 

Amoebophrya strains infected the toxic dinoflagellate Alexandrium minutum, but all could infect all 

strains of Scrippsiella acuminata STR1. Ribotypes 1, 3, 6 and 7 only infected this species, while 

others infected several species in the same Scrippsiella genus (RIB5) or even another genus (RIB2 

and RIB4 infected both Scrippsiella and Heterocapsa; Fig. 2F). We found that the capacity to infect 

more than one host species correlated with ribotype boundaries, where strains belonging to the same 

ribotype displayed similar host ranges (Fig. 2F). The overall consistency in the host spectrum 
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observed within the different ribotypes might suggest a genetic determinism underlying host 

specialization. The host spectrum is often considered as more permissive in culture experiments 

compared to the natural environment (61), while higher genomic diversity exists and potentially 

extends or reduces the host range from that observed in the laboratory. Based on the microscopic 

examination of the environmental single-cells at the time of their isolation, we determined that RIBs 2, 

4, 5 and 8 infected both scrippsielloids and H. triquetra, allowing us to extend the host range 

determined with the cross-infection experiments (Table S1). Interestingly, RIB 3 and 8, which are 

closely related ribotypes based on ribosomal phylogenies but considered as different cryptic species 

based on CBCs and k-mer analysis, also differed by their host range (i.e., RIB3 infected only S. 

acuminata in the cross-infection experiments, whereas RIB8 infected both scrippsielloids and H. 

triquetra based on microscopic analysis of environmental single-cells).  

We performed a principal coordinate analysis (PCoA) to assess the relative importance of the 

phenotypic characters and the host range in discriminating RIBs 1-7 (RIB8 was not included because 

no strain is available for this ribotype) (Fig. 2G). The envfit test indicated that the number of hosts and 

the genome size were the main features explaining the phenotypic discrimination of the strains (R2 = 

0.97 and 0.96, respectively; p < 0.001). When used in combination, the phenotypic characters and host 

range allowed for the discrimination of only two ribotypes: strains of RIB4 separated from the other 

ribotypes based upon the highest number of potential hosts and small genome size, whereas strains of 

RIB6 infected only one host and had a larger genome. Overall, our results suggest that the phenotypic 

characters analyzed here are not sufficient to distinguish all of the Amoebophrya ribotypes recognized 

in this study, which should be considered as cryptic species.  

 

Application of the new species boundaries to environmental data 

As a case study, we applied the newly defined Amoebophrya cryptic species boundaries to a 

metabarcoding survey performed during toxic blooms of A. minutum in the Penzé Estuary over three 

consecutive years (2010-2012). Using a 100% threshold SSU rDNA sequence similarity (i.e., unique 

sequences), we identified all ribotypes except for RIBs 3 and 8 that cannot be differentiated using the 

V4 region (referred to as RIB3/8 hereafter). We found that all Amoebophrya ribotypes coexisted in 
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the Penzé Estuary during most of the survey, but with contrasting patterns among the different years 

(Fig. 3A). While the proportion of Amoebophrya-like reads did not exceed 6% of the total reads for 

any given ribotype, ribotypes RIB3/8 and RIB5 were the most ubiquitous during the survey. The 

niche analysis based on the outlying mean index (OMI) pointed out a substantial interannual 

variability (Fig. 3B) mainly correlated to NO3 concentration and temperature levels (envfit test; R2 = 

0.92 and 0.63, respectively; p < 0.05), both showing higher values in 2010 and 2011 than in 2012. 

Kernel density plots on the first two OMI axes (Fig 3C) indicated that most ribotypes showed similar 

realized niches during the entire sampling period. Exceptions to this pattern were, however, observed 

for RIB2 and RIB4, whose occurrences were more restricted to 2010 and 2011 for RIB2 and to 2012 

for RIB4. These differences were highlighted by the heatmap analysis based on the D metric (i.e., 

niche overlap) calculated using the Kernel densities (Fig. 3D), indicating a clear separation of RIBs 2 

and 4 from the other ribotypes. The heatmap that took into consideration the niche overlap between 

Amoebophrya ribotypes and other dinoflagellates detected in the metabarcoding dataset (i.e., potential 

hosts) further indicated that RIBs 2 and 4 co-occurred with different dinoflagellate assemblages when 

compared to the other ribotypes (Fig. 3D). By contrast, RIBs 1 and 3-8 were in sympatry, i.e. shared 

the same environment and potentially the same hosts during the same period of the year. In other 

words, these cryptic species naturally co-occur in the Penzé estuary and potentially compete for the 

same resources, as cross-infection experiments indicate that they can infect the same host species.  

Finally, we investigated whether the host spectrum of each ribotype (based on the maximal 

number of hosts detected in the cross-infection experiments) was related to its population fitness, 

taking into account the normalized relative abundance of reads based on the average number of 

operons in each ribotype. The Kruskal-Wallis test showed significant differences in the maximal 

normalized abundances and persistence in the environment of the Amoebophrya ribotypes with 

respect to the number of hosts that they infect (p < 0.05). The post-hoc Dunn’s test indicated that 

although no difference was observed between ribotypes with 1 and 3 hosts, with respect to the two 

fitness indicators (p > 0.05), they both showed higher maximal normalized abundances when 

compared with ribotypes with 4-5 hosts (p < 0.05; Fig 3E). However, only ribotypes with 3 hosts 

persisted in the system longer when compared with ribotypes with high 4-5 hosts (p < 0.05) (Fig 3F). 
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Although these outcomes need to be interpreted with care due to the low sampling size (N = 18), they 

suggest a putative ecological disadvantage for Amoebophrya infecting an excessive number of hosts.  

 

Conclusions 

Here, we provide molecular evidence for the presence of at least eight Amoebophrya ribotypes in the 

Penzé and Rance Estuaries, with genome k-mer comparisons and CBCs supporting their classification 

into individual cryptic Amoebophrya species. Our results indicate that the ITS2 region of the 

ribosomal operon is a better proxy than phenotypic characters for species delineation in the A. ceratii 

species complex and that nucleotide differences in the V4 SSU rDNA gene sequence might not be 

enough to delineate putative cryptic species. These results advocate for the use of unique sequences 

(i.e., 100% threshold of sequences similarity) rather than grouping them into OTUs during barcoding 

studies when using this genetic marker. Considering the diversity of MALV-II lineage in marine 

waters, a full reassessment of their taxonomy is needed to understand their biogeography and ecology. 

Applying this novel species definition over a three-year monitoring survey in the Penzé Estuary, we 

observed that most of these cryptic species co-occurred during dinoflagellate blooms, likely 

competing for similar ecological niches and host resources. We also reported an inverse pattern 

between population fitness and host range, where the maximal fitness values were observed for the 

Amoebophrya ribotypes having low to intermediate number of hosts, highlighting a higher cost for 

infecting a broader host range.  
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Figure legends 

Figure 1: The eight Amoebophrya ribotypes (RIBs 1-8) defined by the ITS2 secondary structures 

and SIMKA k-mer genome comparison. 

(A) Secondary structure neighbor-joining (NJ) tree rooted with ribotype 2 (RIB2) derived from the 

multiple sequence-structure alignment of the ITS2 region with a 12×12 Jukes-Cantor correction. 

Bootstrap values >50 are mapped to nodes. (B) Secondary structure NJ tree rooted with ribotype 2 

(RIB2) derived from a subset of the multiple sequence-structure alignment of the ITS2 region from (A) 

using a GTR substitution model. Bootstrap values >50 derived from NJ, maximum parsimony (MP), 

and maximum likelihood (ML) analyses are mapped to above, below, and to the right of the nodes, 

respectively. (C) An example of the ITS2 secondary structure from the Amoebophrya RIB2 clade. 

Helices are numbered from I to IV according to Mai and Coleman (62). (D) Matrix of compensatory 

base changes (CBCs) between the eight Amoebophrya ribotypes (RIBs 1-8). (E) SIMKA k-mer 

genome comparison analysis based on the Kulczynski distance. Bootstrap values for terminal nodes 

are shown. 

 

Figure 2: Phenotypic characters of the seven Amoebophrya ribotypes (RIBs 1-7) isolated in 

culture. 

(A-E) Boxplots showing predicted genome sizes (A), the estimated number of ribosomal operons (B), 

and flow cytometry signatures: forward scatter (FSC) (C), side scatter (SSC) (D), and green 

autofluorescence at 405 nm (E). Horizontal lines in the boxplots indicate the median values. (F) 

Heatmap showing the results of the cross-infection experiments where 36 Amoebophrya strains were 

exposed to 54 host strains distributed in 9 dinoflagellate species (see Table S2 and Figure S3 for 

details on the host strains). Note: RIB8 is missing because no representative for this ribotype was 

isolated in culture. (G) Ordination diagram of the principal coordinate analysis (PCoA) assessing the 

relative importance of six phenotypic characters (blue vectors) and host range in the differentiation of 

the strains belonging to the different Amoebophrya ribotypes. The main characters contributing to the 

separation of the strains (establish by the envfit function from the ‘vegan’ package) are indicated with 

asterisks. Operon = number of ribosomal operons; Green = green fluorescence; Genome = genome 
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size; Host = maximal number of infected hosts per strain observed in the cross-infection experiments; 

Slac = S. lachrymosa; STR.1 = S. acuminata STR.1; Sdon = S. donghaienis; Htri = H. triquetra, 

Scri.sp = Scrippsiella sp.  

 

Figure 3: Environmental monitoring of the eight ribotypes in the Penzé estuary during a three-

year survey of Alexandrium minutum blooms. 

(A) Relative abundance (in % of total reads) of Amoebophrya ribotypes in the Penzé Estuary (late 

spring-early summer of 2010, 2011, and 2012) based on the V4 SSU rDNA metabarcoding analysis. 

RIBs 3 and 8 were jointly quantified as they could not be differentiated using this marker. (B) 

Ordination diagram originated from the outlying mean index (OMI) analysis showing the distribution 

of the samples from the three years in the environmental space determined by the abiotic descriptors 

(blue vectors): temperature (Temp), salinity (Sal), precipitation (Prec), tide coefficient (Coef), and 

nutrients (NO3, PO4, SiOH4). (C) Distribution of the Kernel densities of the different ribotypes in the 

OMI multivariate space. The color gradient from yellow to red represents the density (from low to 

high, respectively), whereas the black dots correspond to the environmental samples shown in (B). (D) 

Heatmap showing similarities between ribotypes based on the pairwise D metric (i.e., niche overlap) 

calculated using the Kernel densities showed in C. (E-F) Boxplots showing the relationship between 

the host range (maximal number of hosts infected by each ribotype as detected in the cross-infection 

experiments) and the field population fitness, defined by the normalized maximal abundance of 

ribotypes (E) and their permanence in days in the ecosystem (F). Horizontal lines indicate the median 

for the different descriptors. The red brackets indicate the significant differences between clusters 

pointed out by the post-hoc Dunn’s test (* = p < 0.05). 
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