
A New Way for Probing Bond Strength

Johanna Klein,† Hassan Khartabil,† Jean-Charles Boisson,‡ Julia
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Abstract

The covalent chemical bond is intimately linked to electron sharing between atoms.

The recent Independent Gradient Model (IGM) and its δg descriptor provide a way to

quantify locally this electron density interpenetration from wavefunction calculations.

Each bond has its own IGM-δgpair signature. The present work establishes for the first

time a strong link between this bond signature and the physically grounded bond force

constant concept. Analyzing a large set of compounds and bonds, the Intrinsic Bond

Strength Index (IBSI) emerges from the IGM formulation. Our study shows that the

IBSI does not belong to the class of conventional bond orders (like Mulliken, Wiberg,

Mayer, delocalization index or ELF), but is rather a new index complementary thereto,

related to the bond force. A fundamental outcome of this research is a novel index

allowing to range all two-centre chemical bonds by their intrinsic strength in molecular

situation. We believe that the IBSI is a powerful and robust tool for interpretation

accessible to a wide community of chemists (organic, inorganic chemistry, including

transition metal complexes and reaction mechanisms).

Introduction

The chemical bond1 is a model commonly used by chemists to describe molecules as made

of atoms linked to one another. Although lacking a clear physical basis (the bond is not an

observable quantity) it is a quite useful concept frequently employed to help chemists to give

explanations and make predictions about physical and chemical properties of substances. In

theoretical chemistry, the atom connectivity concept is explicitly involved in models such

as force fields used to perform molecular dynamic simulations. In chemical education, the

chemical bond, very useful to represent molecular structures and to illustrate chemical pro-

cesses, has acquired a central place and remains fundamental.2 The physical interactions

that establish cohesion in molecules can be tackled by the use of quantum chemistry.1 The

use of the electron density (ED) topological analysis for the characterization of bonds and
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more generally of interactions in molecular systems has led to a variety of investigative meth-

ods based on local descriptors. Examples of such approaches are: the electron localization

function ELF,3,4 the localized electron detector LED,5 the Density Overlap Region Indi-

cator DORI6 or the Non-Covalent-Interaction approach NCI.7 As complementary tools of

the Atoms In Molecules approach (QTAIM8,9), these methods allow for producing insightful

three-dimensional isosurfaces localizing the interactions within the system from theoreti-

cally derived electron density. Recently, in the continuation of the NCI7 analysis originally

proposed in 2010, we introduced a new local approach for probing strong and weak inter-

actions in molecules. Based on the Independent Gradient Model (IGM10,11) that represents

a non-interacting reference system, the δg descriptor has been defined. It measures locally

the electron sharing between interacting fragments and reveals regions of space where the

ED between fragments clashes. Compared to the original formulation of NCI, which has a

semi-quantitative value, the IGM-δg approach is able to quantify the interaction caused by

electron sharing. It provides us with a molecular δg signature as illustrated in Figure 1 (top

right panel), by plotting δg versus the ED oriented with the sign of the second density hessian

eigenvalue λ2. It covers a large range of interactions, associated or not with bond critical

point (BCP), including covalent bonds, bonding in transition metal compounds, hydrogen-

bonding and van der Waals interactions. It is not dimensionless and good correlations have

been found between peak heights in the IGM-δg signature of intermolecular complexes and

the calculated stabilization energy for different hydrogen bonds.10 A critical and appealing

feature of the IGM-δg computational scheme is its ability to separate and extract the signa-

ture of selected atom pairs from the overall interaction signal.11 Thereby, a bond-by-bond

IGM-δgpair picture can be obtained from a wavefunction as illustrated in Figure 1. Each

chemical bond has its signature. To the best of our knowledge, this possibility is not available

within any other descriptor-based approaches.
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Figure 1: Molecular IGM-δg signature, selected IGM-δgpair bond signatures in prop-1-ene-
2-thiol and δg = 0.3 a.u. isosurfaces colored according to the BGR scheme over the range
−0.2 < sign(λ2)ρ < 0.2 a.u. (the sign of the second density hessian eigenvalue λ2 serves to
distinguish between attractive and repulsive situations).

At this stage, it might be tempting to directly associate the strength of the bond with the

peak height of the IGM-δgpair bond profile. In the example shown in Figure 1 (prop-1-ene-

2-thiol), the C = C double bond results in a larger δgpair peak height (0.68) than a single

bond C −C (0.51). Further, the δgpair peaks for CH2 −H (0.57) and S −H (0.41) fairly

reflect their homolytic bond dissociation enthalpy ordering (given by Y-R. Luo12 around 420

and 350-370 kJ.mol−1, respectively, at 298K). This apparent interrelationship between bond

strength and δgpair peak height makes sense since bonds are achieved by electron sharing1

measured to some extent by δgpair at a point in space. However, each δgpair bond signature

has its own individual profile, which suggests that attempts to correlate the δgpair descriptor

to energetics should not be limited to the use of a local information (at BCP for instance)
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but should consider an integration scheme. Such integration schemes have been explored

in the past few years. In their study of the integration of charges within the NCI region,13

J. Contreras-Garćıa and W. Yang recovered the position of the intermolecular potential

minimum for 4 hydrogen-bond complexes. However, although mimicking relatively well the

shape of the binding energy curve for the water dimer, the correct curvature around the

minimum was not obtained for the other dimers. In a study conducted for a series of 30

weakly bound complexes, Presti14 found a good correlation between the stabilization energy

and the kinetic energy density integrated over the volume enclosed by the NCI isosurface.

Unfortunately, this correlation breaks down for complexes of different nature. Moreover, in

this previous work based upon the NCI approach, the integration domain was defined in

an arbitrary manner (domain below RDG = 0.5 a.u.) and ignored some grid points in the

interaction region. More recently, for a set of 53 systems, Ananyev15 presented a strong

correlation between effective force constants of diatomic molecules and the potential energy

density integrated over the AIM surface between two Bader’s atomic basins. Very recently,

using an integration scheme, the IGM-δg approach has been employed to derive a score

indicating the role played by each atom in the formation of host-guest assemblies.16 The

present study falls in the class of integration schemes that have emerged in the past few

years.

The basic aim of this work is to integrate the IGM-δgpair bond signature to characterize

a bond by a unique score. The result is a global bond descriptor ∆gpair strongly connected

to the physically grounded bond strength concept. In this study, we present results obtained

using a set of 235 molecules spanning a broad range of different chemical bonds. Potential

relationships between ∆gpair and several bond orders as well as with bond stretching force

constants have been sought for. A novel Intrinsic Bond Strength Index (IBSI) stems from

these attempts. Since the IGM-δg approach is a relatively new concept, we will start by

reintroducing it in the Methods section. Also, details on the integration scheme and the

design of the new index IBSI will be sketched out. This will be followed by computational
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details, results and discussion before to conclude.

Methods

IGM-δg approach

The IGM-δg approach has been designed to reveal and quantify molecular interaction from

the ED topology, more precisely from its gradient ∇∇∇ρ. All details can be found in our pre-

vious works.10,11 Its implementation involves the use of a three-dimensional grid built to

encompass the chemical system. A prerequisite to apply this local approach is to express

each molecular ED gradient component ∂ρ
∂x

as a sum of individual terms, one for each in-

teracting component (atom, fragment, molecule), for instance for two fragments A and B:

∂ρ
∂x

=
∣∣∂ρA
∂x

+ ∂ρB
∂x

∣∣. Then, the idea behind the Independent Gradient Model is to define a

non-interacting reference system that cancels the effect of electron delocalization (electron

sharing) occurring between the two fragments upon bringing them closer to each other. This

is achieved by using absolute values upon summing the gradient contributions of ED sources

(fragments) in the expression of the total ED gradient, leading to the non-interacting ref-

erence ∂ρ
∂x

IGM
=
∣∣∂ρA
∂x

∣∣ +
∣∣∂ρB
∂x

∣∣. Thereby, the resulting ED gradient attenuation normally

expected between bonding fragments in the so-called ”interaction corridor” (see Figure 2)

and due to individual terms having opposite signs in the gradient sum ∂ρ
∂x

, vanishes. The

resulting norm
∣∣∇∇∇ρIGM ∣∣ is a virtual upper limit of the real total ED gradient. Hence, the

descriptor δg =
∣∣∇∇∇ρIGM ∣∣−|∇∇∇ρ| measures locally the electron sharing, hereafter also referred

to as ED contragradience. Two very important points must be emphasized for the rest of this

study: (1) only the contragradience between A and B is captured by δg and (2) the same ED

is considered for the non-interacting system (IGM) and the real system. This makes the δg

descriptor intrinsically linked to the AB interaction in molecular situation. In other words,

δg quantifies the AB interaction without resorting to calculations performed on separated

fragments.
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Figure 2: Schematic representation of electron density interpenetration (contragradience)
between two fragment sources.

Once δg computed at any point of the three-dimensional grid, a 2D plot can be con-

structed as illustrated on Figure 1. The first concern in implementing the IGM approach is

to choose a gradient decomposition scheme in which each contribution is associated to an

ED source to be isolated. For ED coming from quantum-mechanical calculations, this can

be done thanks to the Gradient Based Partition (GBP) that we have previously described.11

This partition has been shown to be hardly dependent on the basis set (beyond the small

STO-3G basis set). Within the GBP, the most basic ED gradient source that can be consid-

ered is an atomic orbital. Regrouping them by atom leads to an atomic partition of the ED

gradient. Using this atomic partition yields the δg descriptor extracting the interaction be-

tween all atoms of the system. Further, grouping these atomic gradients into two fragments

allows for extracting just the intermolecular interaction between them (δginter, not used in

this work). Finally, formulating a gradient partition truncated to two atoms leads to the

δgpair bond signature we are interested in, as illustrated in Figure 1. It opens the way to
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probe specific bonds in a molecule by using the ED derived from quantum calculations. The

local δgpair descriptor was computed using a modified version of NCIPlot.17 Such grid com-

putational scheme could leverage the massively parallel GPU technology for the acceleration

of δgpair calculation, as demonstrated with NCI in a previous study.18

Just like in the NCI approach, this δgpair signature can be transposed in the real space

taking the form of isosurfaces colored according to the value of signed ED (sign(λ2)ρ) (see

Figure 1). Clearly, δgpair accounts for the tendency of electrons to be shared between the

two atoms. It measures to some extent (not in a direct manner) the kinetic energy lowering

resulting from electrons being able to roam over a larger area in the interacting system than

in separate fragments. This sharing can take place either in bonding regions or nonbonding

regions. Hence, the δgpair bond signature offers two complementary interpretations: (1) the

δgpair peak height tells us how much the electron delocalization is important from a kinetic

point of view and (2) the ED curvature where the δgpair occurs tells us if we are dealing with

an attractive (λ2 < 0) or repulsive (λ2 > 0) local region from a potential point of view.

IGM bond index IBSI

In order to get a global score for the studied bond, we have decided to carry out the in-

tegration of the δgpair signature over the interaction volume V: ∆gpair =
∫
V
δgpairdV . An

outstanding advantage of the IGM-δg descriptor in achieving this integration lies in that

there is no need to delimit the interaction region. Actually, non-zero values of the δg de-

scriptor exclusively correspond to interaction situations. Thus, the numerical integration is

computed as the summation extending over all the grid points lying in the grid volume. No

attempt has been made to integrate the ED ρ as others have done. Actually, the 2D δgpair

signature seems to hold all the ingredients to characterize bonding patterns and it appears

to be a natural candidate for this integration scheme.

The first attempts to compare ∆gpair to other properties like bond indices or force con-

stants have shown the need to divide ∆gpair by the square of the internuclear distance. The
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reason is that ED contragradience only occurs in the space between the two atoms (the

interaction corridor) and hence the corresponding integration volume in itself influences the

resulting sum ∆gpair. For instance, the H2 bond, with a very short bond length (0.74 Å), is

characterized by a narrow interaction corridor. As a result, it is definitely characterized by

a too small value of ∆gpair compared to other bonds with larger separation distance. Our

experience led us to conclude that it is important to make ∆gpair independent of the bond

size in order to compare different bonds. The resulting IGM bond index, which measures the

amount of electron sharing per square unit length, is then: ∆gpair =
∫
V
δgpair

d2
dV . Moreover,

to compare between bond indices, the IBSI (∆gpair) has been normalized to 1 for the H2

molecule:

∆gpair =

∫
V
δgpair

d2
dV∫

V
δgH2

d2H2

dV
(1)

As a consequence, the IBSI is dimensionless. The influence of the level of theory on the

gross value of
∫
V
δgH2dV has been studied and shown to be hardly dependent on both the

basis set and level of theory (see ESI). Although the IBSI value for H2 is rather stable, it

is recommended to employ the same level of theory to compare IBSI values across different

molecules.

Based on case studies (see supporting information), we have shown that the IBSI is

generally not significantly basis set dependent (beyond the STO-3G basis). The extent of

variability of the IBSI measured by the relative standard deviation is generally in the range

2-6% for the studied organometallic compounds, generally more homogenous compared to

Mayer, Wiberg and Mulliken bond orders. We strongly advise not using the STO-3G basis

set, but we recommend the use of 6-31G??,although adding a diffuse function could be more

relevant for weakly bonded systems. For atoms beyond Kr, the Def2-TZVP19,20 basis set

can be used (available for all elements up to Radon) or an effective core potential calculation

can be performed (with LANL2DZ21–23 basis set). In extreme cases, in very polar bonds like

LiH, AlO, AlCl, MgC, a larger dependence has been observed (around 10-20%).
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A comparative case study of ab initio (HF, MP2) and DFT (B3LYP, SVWN, BP86 and

M06-2X) methods indicates that the IBSI hardly depends on the method used (coefficient

of variation of at most 7% in extreme cases, but more generally around 2%). We advise not

using the HF method. We therefore recommend the DFT/6-31G** level of theory for its

performance/price ratio and using the same method for comparative studies.

Molecule test set

This works aims at finding a physically well-founded characterization of the descriptor δgpair

and its integrated form ∆gpair for a given atom pair. To this end, a 235-molecule test set has

been considered, both organic and inorganic, covering typical functional groups (see ESI)

and leading to the study of 677 bonds. It is not limited to known molecules but also includes

uncommon compounds. Neutral, charged and radical species have been studied. This large

set of molecules covers a full range of bonding interactions, including covalent bonding,

metal coordination complexes (with Cr, Fe, Co, Ni, Ru, Re, Pt), weakly hydrogen-bond and

halogen-bond complexes.

Quantum-mechanical calculations

In practice, the electron density (ED) is obtained from a quantum-mechanical calculation.

In this study, the Gaussian16 package24 was employed. If not otherwise stated, full molecu-

lar geometry optimizations were conducted at the DFT(M06-2X/6-31G**)25 level of theory

in the gas phase. Some species with heavy atoms required using the Los Alamos effec-

tive core potential through the LANL2DZ basis set specification in gaussian. The integral

SuperFineGrid option has been employed in numerical differentiations. Preliminary case

studies employed additional levels of theory (HF, MP2) and several other DFT functionals

(B3LYP, SVWN, BP86). The harmonic frequency analysis was systematically performed to

ensure the absence of imaginary frequencies for local minima.
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Bond orders

The Mulliken bond population analysis,26 the Wiberg27 and the Mayer28,29 bond indices were

calculated using the MultiWFN package.30 The delocalization index (DI)31,32 was obtained

using AIMall.33 We have also carried out an electron localization function (ELF) topological

and population analysis,3,4 which is frequently adopted as a descriptor of atomic shells and

covalent bonds using the TopMoD package.34 For simplicity, the ELF approach description

is reported in Supporting Information.

Stretching force constant

The bond stretching force constant k was also calculated as an estimator of the bond strength

in order to be compared with the IBSI. However, it makes no sense to use the standard

vibrational normal-mode analysis to derive a stretching force constant of a particular bond

in a polyatomic molecule. Actually, a normal mode of vibration commonly couples to others,

it is delocalized over more than the two atoms of interest. To derive a force constant k

associated with a local vibrational mode between two given atoms X and Y, a numerical

procedure was used in which the second derivative of the potential energy is numerically

assessed (see ESI). A purely localized bond force constant k is however difficult to determine

because the geometry and the ED distribution in the XY surrounding must be kept frozen as

much as possible during the numerical procedure so that k is only inherent in the XY bond.

Two different procedures were considered. In the first one, the molecule is divided into two

rigid fragments translating along the XY direction, leading to a force constant hereafter called

k1. It cannot be computed for bonds belonging to a ring. In this first procedure, although

non-bonding interaction initially present between separating fragments will contribute to a

small extent to k1, k1 is more intrinsic to the XY bond strength than the second procedure

k2. In the second version, only X and Y are displaced in the molecular framework, leading

to a force constant called k2. It is highly important to note that, in this second version,

the fixed substituents attached to XY indirectly significantly contribute to the resulting k2
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via steric and electronic effects upon XY displacement. In the following, the k1 and k2

local force constants have been obtained and compared using the set1 of 184 molecules not

containing rings (438 bonds). k2 has also been determined for 51 ring-containing molecules

(239 bonds, see supporting information). Anharmonic computations were performed for a

set of diatomics using the program Gaussian.24 For each diatomic molecule, the X matrix

representing the anharmonicity is made up of only one term given in cm−1 and involved in

the correction of the potential. This term has been employed to compare the anharmonicity

contribution across some diatomics.

Results and discussion

A systematic study has been performed on 235 molecules and 677 different bonds covering

a broad range of chemical bondings (non-covalent bonding, metal coordination and covalent

bonds, see ESI). When we say bond property, we naturally think of bond order. That is

the reason why we have first addressed the possible link between the IBSI and bond orders.

This preliminary study reported in Figure 1 in ESI demonstrates that the IBSI is clearly

not correlated with the examined bond orders: Mayer (R2 = 0.41), Wiberg (R2 = 0.37),

Mulliken (R2 = 0.27), Delocalization Index (R2 = 0.46), ELF (R2 = 0.007).

From a chemical perspective, the inspection of the IBSI computed for H-X bonds across

the periodic table undoubtedly shows a certain degree of consistency: for instance, it grad-

ually increases from left to right along the second period of elements, from a low value for

H-Li (IBSI=0.06) to the largest value for H-F (IBSI=1.63) (see Figure 2 in ESI). Hence, we

subsequently looked into a correlation between the IBSI and the stretching force constant

concept.

IBSI versus stretching force constant

Actually, we may suppose that the more the electron sharing between the two atoms at equi-

librium geometry is pronounced, the bigger the force to stretch the bond. In a preliminary
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examination, we have compared the IBSI with the stretching force constant k1 calculated

for a series of 5 homonuclear diatomic molecules involving the diatomic oxygen.
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Figure 3: Relationship between the stretching force constant (scheme k1) and the IBSI for 5
diatomic oxygen species; fitted linear (full line) and quadratic (dashed line) regression curves
are reported.

As can be seen on Figure 3, the linear correlation between these two properties is very

strong (R2 = 0.99). We know that placing electrons on antibonding orbitals will decrease the

stability of a molecule. This is what happens across the series from O2+
2 to O2−

2 . Accordingly,

the conventional bond order calculated as 1
2
[(number of bonding electrons)−(number of anti-

bonding electrons)] decreases. The lower this bond order, the weaker the bonding. The IBSI

fully reflects this trend over a wide range of chemical bonds in this series, taking values

between 3.95 for O2+
2 down to 0.77 for O2−

2 . Although this set is limited to 5 molecules, the

observed trend is noteworthy.
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This preparatory work has been extended to 438 bonds (set1). The result is reported on

Figure 4 (k1 versus IBSI). The obtained linear correlation is surprisingly high with 93% of the

force constant variance being explained by the IBSI. A close inspection of the plot on Figure

4 (and also on Figure 3) reveals that the straight line is not the best shape to represent

the data. An attempt to fit a quadratic function to the data significantly improves the
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Figure 4: Relationship between the stretching force constant and the IBSI for the set1 of
438 bonds in 184 molecules (with no rings since k1 would not be calculable in that case) for
(a) scheme k1 and (b) scheme k2; fitted linear and quadratic regression curves are reported.
The points are colored using the color scale given in Figure 5.

correlation, with R2 = 0.95 on Figure 4 (left panel). It seems clear from the data presented

here that the IBSI is deeply connected with the stretching bond force constant concept. The

spread of the points about the fitted line is relatively narrow in spite of the very different

chemical bonds explored here: from weak non-covalent interactions (hydrogen and halogen
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bonding) to metal coordination and strong covalent bonds. Based on our work, one observes

that the IBSI values range from 0.02 to 3.95 and that three domains can be distinguished

as illustrated on Figure 5. In this work, covalent bonds are characterized by an IBSI value

larger than 0.15. Transition metal coordination occurs in the IBSI range 0.15-0.6. Ionic pair

interaction as well as hydrogen- and halogen-bonding involve IBSI value lower than 0.15.

This scale and limits are only indicative for the set of 677 examined bonds and has been

proposed to make life simpler for IBSI users.

Figure 5: IBSI scale obtained on the set of 677 studied bonds. Limits are only indicative for
the set of 677 bonds examined here.

In this work, 10 simple ionic compounds with large ionic character (like NaCl, KCl, LiH,

LiF, LiCl, ...) have also been investigated. Such species are stable mainly because of the

electrostatic attraction between atoms and the energy required to break the bond may be

as large as for covalent bonds. However, simple ionic compounds exhibits low stretching

force constant values compared to covalent bonds.35 Here, the corresponding IBSI values are

predicted to be very small (< 0.15), below the IBSI covalent domain (0.15 < IBSI < 4.00).

This fits very well with the low value of the force constant k1 (< 3 mdyn/Å) calculated for

these ionic species. But it does not reflect the strong bond dissociation energy expected for

such very polar molecules with respect to dissociation either into the neutral atoms or into

ions. Clearly, the IBSI is not related to the bond dissociation energy but rather to the local

stretching force constant.

For the sake of convenience and to save CPU time, the 6-31G?? basis set has been used
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throughout this work for molecules made up of elements in rows 1-3. But the influence

of adding diffuse functions has been addressed. Adding a diffuse function to this basis set

(namely, 6-31+G??) does not change the k1/IBSI correlation. However, in absolute term,

the most important changes are observed for those systems being weakly bonded, like for

instant for Li-F, Mg-Cl in CH3MgCl, and certain non-covalent bondings (see ESI). In that

case however, it is not attributable to the change in geometry. In other respects, it turns

out that adding polarization functions to the LANL2DZ basis set (using either LANL2DZdp

for the main group elements and the hydrogen atom, or LANL2TZf for the metal) does

not change the force constant k1/IBSI correlation. However, it has to be noticed that,

actually, both IBSI and k1 can experience significant variations, in absolute terms. This

is notably observed for metal-ligand bonding (IBSI(Pt-Cl)=0.216-0.278, IBSI(Pt-N)=0.312-

0.360). This is partly because of the geometry change, but not only. As a consequence,

the LANL2DZ or LANL2TZ basis sets augmented with polarization functions, although

significantly more CPU-expensive, are advised.

Differences between IBSI and the force constant k

Undeniably, the IBSI is strongly connected to the physically grounded bond strength concept.

The force constant k being the second derivative of the energy with respect to the internuclear

distance at the equilibrium state, Å−2 appears in the unit of k. In comparison, although the

IBSI is dimensionless (see Equation 1), its value is, by construction, inversely proportional

to the square of the bond length d2, which is consistent with the unit of k. But, despite

the good agreement between the IBSI and the force constant k, the fraction of the variance

unexplained is 5% (quadratic fit). We can try to find reasons for that.

It is highly important to notice that the static IBSI calculation is fully inherent to the

considered atom pair while the force constant k1 accounts for side effects. Actually, the local

force constant may have a significant dependency on the chemical environment surrounding

the given bond XY. For instance, non-bonded interactions between adjacent substituents

on the two neighboring carbon atoms of 1,2-dibromoethane impact to some degree the C-C
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stretching local force constant value. The effect of the bonding environment on the force

constant k can be gauged by comparing the correlations k1/IBSI and k2/IBSI for the same

set of bonds. Indeed, the alternative numerical differentiation scheme k2 is less intrinsic to

the studied bond than force constant k1 (see Computational details section). As expected

(see Figure 4, right panel), this second scheme k2 yields a poorer quadratic correlation with

the IBSI using the same set of molecules without rings (R2 = 0.88 < 0.95 for k1). This is

not surprising since k2 (atoms X and Y moving in the rigid molecular framework) is more

sensitive to the substituents attached to the studied bond than k1 (rigid fragmentation along

the XY bond). This is further evidenced by investigating a second set of bonds XY exclusively

located in rings (see ESI, Figure 4, k2=f(IBSI)). Stretching such bonds substantially disrupts

the ED in the bond surrounding. The resulting determination coefficient dramatically drops

to 0.74. This clearly demonstrates that the presence of ring constraints in the vicinity of

the considered bond significantly affects the deduced force constant k2, but not the IBSI,

hence deteriorating the IBSI-k2 quadratic correlation. Conversely, for diatomic molecules

XY where no environment effect can be invoked, the k1 and k2 schemes are identical and

lead to a good quadratic correlation with the IBSI (R2 = 0.95, See Figure 6).

In fact, the IBSI and force constant k are structurally different. The second derivative of

the potential energy with respect to the geometric displacement corresponds to the curvature

of this function. Hence, k indirectly depends on the total structure ED reorganization upon

stretching the bond embedded in its molecular framework. In comparison, the static IGM-

δgpair approach exclusively focuses on ED between atoms X and Y. More precisely, it captures

the ED gradient reorganization between two states: the real system and a non-interacting

reference (the IGM), which are only different in the middle of the two atoms where the

phenomenon of contragradience takes place (see Figure 2). Therefore, the IGM approach

does not account for any ED reorganization outside the bond region. Moreover, this ED

gradient reorganization (δgpair) is estimated solely based on a single geometry ED, without

considering any ED ”breathing” between the two states, in contrast with the calculation of k.
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Figure 6: Relationship between the stretching force constant and the IBSI for 36 diatomics;
fitted linear and quadratic regression curves are reported. The points are colored using the
color scale given in Figure 5.

This might partly explain why diatomics featuring strong multiple bonding (N2, CO, CN−,

Mo2, W2) lie all above the two fitted lines on Figure 6 showing the correlation between k1

and IBSI. Actually, such multiple bonds undergo strong ED relaxation upon infinitesimal

stretching used to numerically assess the force constant k.

Another way of calculating a stretching force constant associated with just one bond

length is to apply the Konkoli-Cremer adiabatic internal modes (KC-AIM).36,37 This ap-

proach is particularly well suited to obtain a stretching force constant ka not contaminated

by coupling with other modes (in contrast with normal modes). As with the local k1 and

k2 numerical schemes used in our work, the KC-AIM approach probes the bond strength

in a non-destructive manner (it leaves the considered bond undissociated). However, the
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KC-AIM approach has the additional benefit of allowing the rest of the molecule to relax

upon considering a perturbation to the considered bond length. Based on KC-AIM mode

force constants ka taken from reference38 for 39 molecules and 145 bonds, an additional com-

parison has been reported between IBSI and ka (see ESI Figure 6). It shows a significant

correlation between these two properties (R2 = 0.92−0.95), very similar to the one obtained

between IBSI and local force constants k1 and k2 (see Figure 4) previously approximated

numerically by a three-point central difference formula. But again, a small fraction of the

variance remains unexplained. ka, k1 and k2 are dynamic descriptors: a local force constant

reflects the potential energy curvature associated with the vibration within its chemical en-

vironment. For its part, the IBSI provides a means for assessing the intrinsic bond strength

without being affected by adjacent atoms. It measures the strength of the attachment be-

tween two considered atoms through their degree of ED contragradience. It does not rely

on estimating any potential curvature, and then does not depend on how neighboring atoms

would affect the vibration. Rather, it quantifies the ED clash between two given atoms as

compared to the contragradience-free system (virtual) having exactly the ED of the true

system. That is the reason why the IBSI and force constant are conceptually different. The

static bond descriptor IBSI can be utilized in any molecular situation, equilibrium geometry

or even along a reaction path where the force constant is no longer connected to the restoring

force concept.

Another reason can be given to explain differences between IBSI and the force constant

k. The level of theory used could rise differences in the treatment of both k and the IBSI.

Actually, the IBSI depends on the ED and the geometry (d2) and then, to a certain degree, on

the level of theory chosen. Similarly, the second-order three-point central difference formula

employed to approximate the second derivative k also depends, to a certain extent, on the

level of theory employed. Based on case studies, the IBSI has been proven to be only slightly

dependent on the level of theory (see ESI), and the DFT(M06-2X/6-31G**) level of theory

has been chosen here. This popular functional is recommended for applications involving
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main-group elements and non-covalent interactions.25 Of course, small changes in ED and

geometry might be expected upon using more sophisticated methods.

In other respects, avoided crossing, as observed in C2 between states X1Σ+
g and B′ 1Σ+

g
39

may affect the stretching force constant derived from the ground-state adiabatic potential

energy curve. In the presence of such avoided crossing, the stretching force constant ob-

tained using a single determinant wave function cannot serve as an accurate bond strength

descriptor, in absolute terms. Neither does the IBSI, since such avoided crossing affects in

the same way the electron density used to obtain the IBSI at the equilibrium geometry. Sim-

ilarly, a DFT level of theory based on a single Slater determinant description cannot describe

appropriately diatomics having multireference character. However, in our study, Figures 5

and 8 (diatomic systems) aim at proving that IBSI and force constant, given a same level

of theory (DFT here), are connected. An in-depth description of bonding of diatomics (like

C2,
39 Mo2 or W2

40 or F2
41) would require highly accurate and multi-reference methods, very

CPU-expensive approaches, beyond the scope of this work.

For the set of diatomic molecules, another factor has been investigated to explain the

remaining difference between the IBSI and k1 obtained within the harmonic approximation.

Anharmonic corrections to vibrational frequencies have been computed using the Gaussian

program.24 However, diatomics exhibiting significant anharmonicity could not be associated

to the most important deviations observed on the k1/IBSI graph.

In summary, the force constant k and IBSI, although both strongly correlated to the

bond strength concept, do not rigourously express the same physical content. The IBSI is

intrinsically linked to the atom pair considered and provides a very efficient way of mea-

suring a local bond strength in molecular situation, without any bias due to the bonding

environment, even in cyclic structures. In practice, the IBSI has the advantage of requiring

a single point energy calculation.

IBSI: scope of application and limitations
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The IGM-δg descriptor allows for the proper identification of ED contragradience domains in

the molecule. The IBSI quantifies this contragradience in the region between two atoms and

only considers the orbital contributions of these two atoms. Compared to the local stretch-

ing force constant ka obtained by the Konkoli-Cremer procedure, the IGM-IBSI scheme

additionally provides information through the local distribution of ED contragradience not

necessarily uniform nor located at the center of the atom pair. In most cases, in the space

region in the middle of the considered pair, the ED contragradience dominantly arises from

two atomic sources. Then most often, the ED contragradience domains are well separated

in space, as illustrated in Figure 7 of the manuscript showing a TS structure. But, what if

a third atom brings some ED gradient in the considered atom pair region ? When does this

occur ? To illustrate this point, the interactions in the B2H6 molecule have been identified

and characterized thanks to the full IGM approach with δg =
∣∣∇∇∇ρIGM ∣∣ − |∇∇∇ρ|. As can

be seen in the Figure 8 of ESI, two contragradient domains very slightly overlap around

each Hbridge atom. Then, one may wonder whether the B1-Hbridge bond strength can be

assessed based solely on atom pair contragradience. To which extent B2 is really involved

in the B1-Hbridge contragradience domain (if it is) cannot be assessed within the current

IGM approach. Even though this could be achieved, it would make little sense to keep a

single geometrical parameter (B1-Hbridge distance) in the IBSI definition in that case. The

user must be aware that the IBSI approach relies on atom pairwise interactions. Despite

this, the IBSI faithfully reflects the relative weakness of the B1-Hbridge bond (IBSI=0,47)

compared to the B1-Hterminal bond (IBSI=0.55). To our knowledge, this kind of situation

should be limited to very small ring systems with atoms having electrons more easily spread.

Examining the cyclopropane molecule (see Figure 9 in ESI), in addition to the well separated

2-center contragradience domains (C-C), a 3-center domain appears in the center of the ring.

Despite this, the IBSI correctly describes the C-C bond strength. Actually, the relative C-C

bond strengths estimated with the local KC-AIM force constant in propane (ka = 4.066

mdyn/Å) and cyclopropane (4.137 mdyn/Å) fully support the IBSI rating (0.839 and 0.892,
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respectively; see ESI in section Local KC-AIM force constants versus IBSI).

The IBSI approach is not restricted to well behaved 2-center bonding systems. Delocal-

ized aromatic systems are suitably described. For instance, the C-C intrinsic bond strength

in C6H6 (IBSI = 1.197) is found in between that of a single bond (IBSI = 0.833 in C6H12)

and a double bond (IBSI = 1.396 in C2H4), as supported by the local KC-AIM C-C force

constants ka : 6.600 mdyn/Å in C6H6, in between 3.923 mdyn/Å in cyclohexane and 9.911

mdyn/Å in ethene (see ESI). The ability of the IBSI approach to properly describe the bond

strength in a 3-center 2 π-electron system is also observed with the allyl cation (IBSI C-C

= 1.169). In other respects, bonding having a 3-center 4-electron character as in certain

hypervalent molecules42 or in systems exhibiting hydrogen or halogen bonds43 is also well

described since the contragradience domains are well separated in such cases. For instance,

the F-Cl...NH3 system exhibits IBSI values of 0.691 (F-Cl) and 0.101 (Cl...N), as supported

by the relative local KC-AIM force constants ka: 2.687 mdyn/Å (F-Cl) and 0.311 mdyn/Å

(Cl...N).43

Another kind of bonding deserves attention: when a ligand is bound to a metal via a

conjugated π-system like in metallocenes. For illustration purpose, the interaction between

the cyclopentadienyl anion (Cp) and the dication Zn2+ has been reported in ESI (Figure

10). The IGM approach unambiguously reveals the region of interaction. The Cp...Zn2+

contragradience domain takes the form of a continuous ring for this η5 hapticity mode. The

IBSI value obtained for each C...Zn2+ pair is 0.194, which clearly reveals a bonding weaker

than pure covalent bonds like C-C in Cp (IBSI=1.081). However, in such case, although

the AIM analysis predicts a bond critical point between the carbon atom and Zn2+, the use

of the pairwise IBSI scheme is tricky since there are more than two atoms simultaneously

involved in the coordination to the transition metal.

The agostic interaction is another type of challenging interaction, occuring between an

electron deficient metal and a σ-bond located close to the metal.44 For illustrative purpose,

the complex [Ti(Cl2)C2H5]
+ has been reported in ESI (Figure 11). The IGM approach
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reveals this agostic interaction with the contragradience domain being located between C-

H and titanium. The relative weakness of this interaction is correctly predicted by the

IBSI calculation (IBSI=0.105), compared to the Cl-Ti coordination (IBSI=0.353). However,

this agostic interaction involves three atoms while the IBSI scheme is intended for pairwise

interactions.

To summarize, we are fully confident that the IBSI approach correctly describes the

intrinsic bond strength between atom pairs in the vast majority of molecules, including

transition state structures, non-covalent hydrogen bonds and halogen bonds, as long as

contragradience domains are well separated. However, there are limitations in interpreting

IBSI for interactions with complex bonding scenarios where more than two atoms are involved

in a bonding situation. Metallocenes and even non-covalent stacking interaction, like in the

benzene dimer, belong to this category. It is beyond the scope of this work to explore more

in details such cases. However, whether the IBSI approach can be used is usually obvious

by inspection of the molecular geometry and the shape of the contragradience isosurfaces.

Bridge between local ED descriptor and bond strength

To our knowledge, only one previous study reported such a bridge between a local ED-

based descriptor and a bond stretching force constant. Very recently, considering a set of

53 molecules, a strong linear correlation (R2 = 0.97) was presented between the localized

stretching force constant of a given bond and the potential energy density distribution inte-

grated over the surface between the two Bader’s atomic basins.15 In a similar way as in our

study, the authors divided the resulting integral by the internuclear separation. However,

this approach needs to characterize the ED topology (by determining critical points and

basins, ...) prior to any calculation. In contrast, a compelling feature of the IGM model is

to provide an automatic workflow that delivers the IBSI without any ED topology analysis.

We believe that the IBSI is a powerful and robust tool for interpretation accessible to a wide

community of chemists (organic, inorganic chemistry, including transition metal complexes

and reaction mechanisms).
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A typical application of IBSI

A review of possible applications of the IBSI is beyond the scope of this study. However, in

order to show the possibilities offered by the IBSI compared to the Mayer bond index we have

reported on Figure 7 a transition state structure (TS) taken from a recent study on the re-

activity of thiolates with cisplatin.45 The reactant is the complex [Pt(NH3)2(H2O)(cystein)].

The mechanism proceeds with the intramolecular substitution of the water molecule by the

-CO−2 group of the cystein, which finally acts as a (S,O)-bidentate chelating agent in the

final product.

Figure 7: Bond Strength Index (IBSI) and 0.045 δg isosurfaces for selected bonds in a tran-
sition state involving a platinum complex (M06-2X LANL2DZ level of theory); isosurfaces
colored according to the BGR scheme over the range −0.2 < sign(λ2)ρ < 0.2 a.u.; Mayer
bond order in parentheses.
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According to the Mayer analysis (MBO), the C-S and S-Pt bonds exhibit an identical

bond multiplicity of about 1.0. The IBSI provides an additional information: the covalent

bond C-S is stronger (IBSI=0.507) than the S-Pt coordinate bond (IBSI=0.239). This is

consistent with the strength of metal ligand bonds known to be intermediate between that

of covalent bonds and non-bonded interactions. In other respects, the MBO predicts a

formal half-bond between the nitrogen and platinum atoms (0.507 pair) and a single bond

between the sulfur and platinum atoms (1.023 pair). It may be then naively expected that

the corresponding metal - ligand bond strengths should correlate with these bond orders at

a ratio of 1(N-Pt):2(S-Pt). However, the IBSI predicts an inverse strength ratio with the

N-Pt bond being significantly stronger (IBSI=0.331) than the S-Pt one (0.239).

This TS has one imaginary vibrational frequency with a negative force constant no longer

connected to the restoring force concept. Nevertheless, the IBSI stays attached to this notion,

allowing for internally probing bond strength in TS structures and along reaction pathways.

In the course of this reaction, the breaking Pt...OH2 and forming -CO−2 ...Pt chemical bonds

undergo electronic structure changes. As expected, the MBO analysis at the TS shows that

very few electron is shared between these reacting atoms (around 0.2 pair), in accordance

with the small degree of orbital overlap achieved between the corresponding atoms at the

TS. This decreased orbital overlap also weakens the two corresponding bonds, in the IBSI

range 0.10-0.12: at the boundary between non-covalent bonding and coordinate covalent

bonds (see Figure 5).

Usually, in hydrogen bonding, little or no electron pair is shared by the valence shells of

the two atoms, making the interpretation of the Mayer bond order generally quite difficult.

Here however, the MBO detects an uncommonly large electron sharing (0.210) for NH...O

compared with OH...O (0.039) in this TS. In a complementary way, the IBSI analysis reveals

that the picture of the hydrogen bond is deceptively simple for NH...O hydrogen. Actually,

its bond strength (0.178) is outside the known H-bonding range (generally ≤ 0.15 on the

IBSI scale, see Figure 5) and more than three times larger than the OH...O one (0.053).
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This is because the former exhibits a short distance (1.6 Å) and a strong acid/base character

between the two charged entities -NH+
3 and -CO−2 . In light of this short example, we see

that the IBSI and MBO analyses provide a complementary information to explore chemical

bonding and electronic effects.

Conclusions

In this work, we present for the first time the Intrinsic Bond Strength Index (IBSI). It is a

post-processing tool very efficient to internally probe the strength of a given chemical bond

in molecular situation. This quantitative tool complements the conventional visual usage

of the IGM approach which provides colored isosurfaces highlighting the spatial localization

of interactions in molecules. The theoretical advantage of the IGM method rests on the

definition of a non-interacting reference system (the so-called Independent Gradient Model).

This feature allows the quantitative determination of bond strength. In this regard, to the

best of our knowledge, the IBSI is distinct from other ED-based approaches like SEDD,

DORI or NCI. Based on the large range of compounds explored in this work (235 species

and 677 atom pairs), we suggest to approximately distinguish between weak interactions:

IBSI . 0.15 , coordinate covalent bond: 0.15 . IBSI . 0.6, and covalent bonding: IBSI

& 0.15 (these limits being only indicative).

The IBSI is defined in a parameter-free manner and its implementation is very easy: it

only requires a wavefunction file as input. It has been shown to be little dependent on the

level of theory and basis set. From the practical point of view, an attractive feature of the

IGM-IBSI approach is to provide an automatic workflow that delivers the bond strength in-

dex without any prior characterization of the ED topology (unlike within the AIM theory).

In other words, it is not an ED basin-based method like ELF or AIM.
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From a theoretical perspective, the current work provides a quantitative bridge between

a local electron density-based descriptor and the physically grounded bond strength concept.

Actually, the IBSI emerges from the IGM formulation of electron sharing between two atoms.

This index results from the integration of the local descriptor IGM-δgpair bond signature.

Through a quadratic relationship, a tight link (R2 = 0.95) has been established between the

IBSI and the localized stretching force constant of a chemical bond. This result underpins

the IGM formalism and its two key-components: the non-interacting reference definition and

the gradient based partition. Future work could also consider to seek a correlation between

the IBSI and ED characteristics at bond critical points. It has however to be noticed that

by construction the δg descriptor is limited to theoretical ED models, which rules out the

use of experimental data.

Differences exist between the IBSI and a local force constant. It is shown that the IBSI

relates to the intrinsic bond strength. It is obtained by focusing only on the atom pair consid-

ered. No expensive calculations of energy second derivatives are needed to obtain the IBSI.

In contrast, a local force constant calculation may depend on the bonding environment and

the electron density reorganization occurring during bond stretching. Furthermore, along

reaction paths, even in regions with imaginary vibrational frequencies where the force con-

stant is no longer connected to the restoring force concept, the IBSI stays attached to this

notion, extending its scope beyond equilibrium geometries.

Clearly, this index covers a broad range of bonding situations and is not limited to

closely related molecules. This makes it suitable for following bond formation and breaking

in chemical reactions. In particular, the IBSI turns out to be a suitable indicator for pre-

dicting a realistic intrinsic strength of a given chemical bond in transition states. Changes

in stretching force constants upon bond polarizing of a reaction partner is a key element

of the unified reaction valley approach37,46,47 used for the detailed mechanistic analysis of
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elementary chemical reactions. Hence, changes in IBSI occurring in the course of a chemi-

cal reaction might contribute to gain insights into reaction phases each of which leads to a

change in chemical bonding. More generally, this index has the advantage of being applicable

to diverse fields in chemistry and future work will be devoted to applications for systems

in organic and inorganic chemistry, transition metal complexes and reaction mechanisms.

The next release of IGMPlot including the calculation of the IBSI will be made available at

http://igmplot.univ-reims.fr.
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Champagne-Ardenne and the ICMR laboratory (Institut de Chimie Moléculaire de Reims).

We thank the MaSCA (Maison de la Simulation de Champagne-Ardenne, France) for various

supports including computing facilities (http://romeo.univ-reims.fr) and the CRIANN com-

putational center (http://www.criann.fr) for additional support. We thank Prof. F. Bohr

for helpful discussions.

Supporting Information Available

Detailed molecule sets used throughout this study and computed properties (IBSI, ka, k1,

k2, bond orders). Investigation of the basis set and method dependence on the IBSI.

This material is available free of charge via the Internet at http://pubs.acs.org/.

References

(1) Frenking, G., Shaik, S., Eds. The Chemical Bond ; Wiley-VCH: Weinheim, Germany,

2014.

28
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