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ABSTRACT
Sun-induced chlorophyll fluorescence (SIF) is widely used to monitor

15vegetation physiological conditions. In this paper, SIF derived from the
Global Ozone Monitoring Experiment–2 (GOME-2), and gross primary
productivity (GPP), normalized difference vegetation index (NDVI),
land surface temperature (LST), soil moisture and precipitation are
used to investigate vegetation stress in six areas of Yunnan Province

20in China. The results illustrate that SIF, NDVI, and GPP all decrease in
the condition of water stress and increase when recovering towards a
healthy condition; LST increases under stress conditions and decreases
gradually during recovery conditions. Then, analyses of long time-
series for SIF, GPP, NDVI, and LST from 2010 to 2017 are conducted.

25These performances demonstrate SIF ismuchmore sensitive thanGPP,
the NDVI, and LST during drought conditions. When vegetation is in
the condition of water stress, SIF has earlier responses than other
parameters. Last, the relationships between SIF and soil moisture in
2010–2016 yield significant results, with the correlation coefficient

30r = 0.56, 0.71, 0.75, 0.74, 0.62, 0.52 and 0.47, sequentially. The correla-
tion coefficients are used to measure how strong a relationship is
between two variables. This work demonstrates that SIF is a good
way to monitor water condition change, and may play a great role in
drought monitoring in the future.
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1. Introduction

35For the study of drought, a great deal of work has been performed in China and internation-
ally. Foreign countries started research at the end of the 19th century, and China started
research at the beginning of the 20th century. Droughts in many parts of the world have
greatly impacted socio-economic systems and the environment (IPCC 2001).AQ1 Drought is one of
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the major disturbances to vegetation growth, as it may weaken the ability of vegetation to
40function as a carbon sink (Xu et al. 2011; Wang et al. 2015).

Yunnan Province, which is located in southeast China and historically has a moist
climate, is reported to have had drought events in recent years. A severe and sustained
drought hit Yunnan Province in southwest China, from autumn 2009 until spring 2010,
resulting in $2.5 billion of agricultural damage and a shortage of drinking water for about

459.65 million people (Qiu 2010). It is very important to monitor and predict the droughts
accurately for protecting socio-economic stability and agriculture (Ma et al. 2017).

Drought, which affects plant growth and production, is a significant issue and attracts
the attention of many researchers (Peters et al. 2002; Wang and Qu 2009b). Many
researchers use optical and thermal infrared remote sensing, as well as passive and

50active microwave remote sensing techniques, to monitor drought (Fuchs and Tanner
1966; Jackson et al. 1981; Paloscia and Pampaloni 1984; Hunt and Rock 1989; Gao 1996;
Walker 1999; Peters et al. 2002; Sandholt, Rasmussen, and Andersen 2002; Wang and Qu
2009b; Vereecken et al. 2012); these methods exploit surface reflectance, surface tem-
perature, brightness, temperature and the backscatter coefficient separately to estimate

55soil moisture near the surface. Although these methods are widely used, they have
several limitations, which are mainly exploiting the appeared feature of vegetation
without considering the relationship between these factors or the vegetation physiolo-
gical condition. Chlorophyll fluorescence is induced by solar illumination and is used to
consume absorbed energy through two other processes (i.e. photochemistry and heat

60dissipation) (Lichtenthaler & Miehe 1997; Porcar-Castell et al., 2014). Therefore, sun-
induced chlorophyll fluorescence (SIF) is thought to be a direct probe to monitor
vegetation physiological condition. In recent years, chlorophyll fluorescence is widely
used to understand vegetation photosynthesis, detect drought and estimate gross
primary production, all of which have gradually become a hot research topic.

AQ2

AQ3

65

AQ4

Near the ground, chlorophyll fluorescence is measured to illustrate vegetation water
stress in water-control experiments, and the results show that chlorophyll fluorescence is
sensitive to changes in water content and decreases in water stress (Rosema et al. 1998;
Flexas et al. 2000, 2002; Zarco-Tejada et al., 2002; Marcassa et al. 2006; Meroni et al. 2009;
Dobrowski et al. 2005; Pérez-Priego et al. 2005; Campbell et al. 2007; Zarco-Tejada et al.

702009; Zarco-Tejada, González-Dugo, and Berni 2012; Bürling et al. 2013, 2013; Ni et al.
2015a). Under water stress conditions, plants close their stomata to decrease their net
photosynthesis rate in order to avoid further water loss; photosynthetic pigment con-
tents also change in response to water stress, which is associated with photosystem II
(Rahbarian, Khavari-Nejad, and Ganjeali et al. 2011). Changes in the proportion of

75photochemical and energy-dependent quenching leads to alterations in fluorescence
kinetics under water stress (Zlatev and Yordanov 2004). The absorbed energy is used to
derive photosynthesis, emit chlorophyll fluorescence, and dissipate heat. These three
processes complete each other, and chlorophyll fluorescence is inversely related to
photosynthesis activity (the ‘Kautsky effect’), which decreases with an increase in photo-

80synthesis, and vice versa (Smorenburg et al. 2002).
AQ5

AQ6

After the first global maps of SIF are produced (Frankenberg et al. 2011b; Guanter et al.
2012; Joiner et al. 2011, 2012), SIF has been used to estimate gross primary productivity (GPP)
(Dammet al. 2014, 2015; Cheng et al. 2013; Guanter et al. 2014; Zhang et al. 2014, 2016; Perez-
Priego et al. 2015; Yang et al. 2015; Guan et al. 2016; Thum et al., 2016) and detect vegetation
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85stress (Lee et al., 2013; Browning et al., 2014; Sun et al., 2015; Yoshida et al., 2015; Wang et al.,
2016). Lee et al. (2013) analysed the variations in Greenhouse gases Observing Satellite
(GOSAT)SIF and GPP in Amazonia and showed that the satellite measurement of fluorescence
is more sensitive to variations in chlorophyll content than vegetation indices and can improve
the GPP estimation accuracy. Sun et al. (2015) illustrated that satellite SIF can be used to detect

90drought through Global Ozone Monitoring Experiment–2 (GOME-2) SIF, fraction of photo-
synthetically active radiation (fPAR), soil water content and climate variables in the case of
droughts in 2011 in Texas and in 2012 over the central Great Plains. Yoshida et al. (2015)
analysed the response of SIF to a Russian drought andheatwave in 2010 using satellite SIF and
simulated SIF and GPP. Wang et al. (2016) examined the relationship between satellite SIF and

95meteorological drought indices and analysed the variations in SIF and other relative para-
meters in a 2012 drought that occurred in the Great Plains.
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In this paper, the objective is to analyse the variation of satellite SIF, Moderate
Resolution Imaging Spectroradiometer (MODIS) vegetation products under different
water condition in Yunnan Province from 2010 until 2017. Satellite SIF is retrieved

100from the GOME-2 by Joiner et al. (2013, 2014). GOME-2 SIF data combined with
MODIS GPP, normalized difference vegetation index (NDVI), land surface temperature
(LST), soil moisture and precipitation from the six research sites in Yunnan Province are
used to show the response of these parameters to soil moisture. Through long time
series analysis of these data, we can demonstrate clearly the change of these parameters

105along with the variation of soil moisture and precipitation. Comparisons between SIF
and NDVI or GPP or LST show that SIF can reflect the vegetation condition change earlier
that other parameters under the condition of water stress. It also demonstrates that SIF
is much more sensitive to water content change than other common vegetation
monitoring ways. Thus, SIF is thought to be effective and direct proxy to monitor the

110vegetation physiological state, and used in many applications.

2. Study areas

The study areas are located in Yunnan Province of southwest China. The northern region
of Yunnan province forms part of the Yun-Gui Plateau and borders the Tibet
Autonomous Region to the northwest. The eastern part of the province is a limestone

115plateau with karst topography and unnavigable rivers that flow through deep mountain
gorges. The western half of Yunnan is characterized by mountain ranges and rivers
running north and south. The mainland region of this study area is composed of
croplands, trees, and grass. Yunnan Province has a generally mild climate with pleasant
and fair weather. Under the Köppen climate classification, most of the study area is

120located in a subtropical highland (Köppen classification of Cwb) or a humid subtropical
zone (Cwa).

Figure 1 shows the location of the study area. In this paper, a region of heavy drought
is selected as the study area and includes the Chuxiong Yi Autonomous Prefecture, Yuxi,
Honghe Hani and the Yi Autonomous Prefecture, Qujing, Wenshan Zhuang and the Miao

125Autonomous Prefecture, and Kunming. From 2009 to 2012, continuous heavy droughts
occurred in the abovementioned regions; during this time, many extreme climate
conditions occurred. In this study, the variations of GOME-SIF, MODIS LST, GPP and
other climate parameter data in these regions are analysed. Figure 1 shows the research
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sites, which are covered by different types of vegetation. The data in the black box is
130counted in the following analysis.

3. Materials and methods

3.1. Methodology

AQ18

Due to the close relationship between SIF and photosynthesis, SIF is regarded as an
important way to investigate vegetation response to drought. NDVI and GPP are widely

135used to reflect the vegetation status. NDVI is calculated from the visible and near-
infrared light reflected by vegetation, and GPP is mostly estimated through light use
efficiency and photosynthetically active radiation (PAR) (Monteith 1972) or vegetation
indices (Wu et al., Wu, Niu, and Gao 2010). Different variations in SIF, the NDVI, GPP and
LST from 2010 to 2017 are analysed to illustrate the advantages of SIF when monitoring

140plant physiological state. In addition, the model analysis is carried out to show vegeta-
tion responses to different stress levels and can provide support for the following

COLOUR
FIGURE

Figure 1. Research sites.
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analysis in Yunnan Province of China. Drought leads to soil moisture deficit, stomatal
closure and reduction in photosynthesis and transpiration, and causes the chlorophyll
fluorescence to decrease. Therefore, the relationship between chlorophyll fluorescence

145and soil moisture is analysed. The structure of this paper as follows:

3.2. Soil canopy observation, photochemistry and energy fluxes (SCOPE) model

The aim of SCOPE model is to simulate the radiative transfer and energy balance from
0.4 to 50µm. A surprised module of SCOPE is that it can simulate canopy fluorescence
through the radiation transfer module and leaf biochemical model. FluorMOD, can also

150simulate the canopy fluorescence radiance (Zarco-Tejada et al. 2004a; Zarco-Tejada
2005; Miller et al. 2005; Ni et al. 2015b), but it is only used under healthy conditions.
In SCOPE model, stress factor (SF) is set to express stress factor that reduces the
maximum carboxylation capacity (Vcmax) in a biochemical module (e.g. soil moisture
and leaf age). Vcmax is an essential parameter for photosynthesis. Through the different

155SF in SCOPE model, the responses of SIF and temperature can be observed. In SCOPE
model, the relative parameters are set using default parameters (Ni et al. 2015a, 2016).

3.3. GOME-2 SIF data

AQ19
AQ20

The SIF products retrieved from the Global Ozone Monitoring Instrument 2 (GOME-2)
onboard the EUMETSAT Meteorological Operational satellite program (MetOp-A) by

160Joiner et al. (2013, 2014) are used in this research. Joiner et al. used a simplified
radiative transfer model with an empirically-based principal component analysis
approach to retrieve global far-red fluorescence information from a broad spectral

COLOUR
FIGURE

Figure 2.AQ37 Flow chart.
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range of 734–758 nm. The monthly global fluorescence data (Level 3), with a spatial
resolution 0.5º× 0.5º, derives from version 27 of the dataset and covers the period

165from 2007 to 2017. Here, global fluorescence data from 2010 to 2017 in Yunnan
Province are used.

3.4. Modis data

In this paper, GPP data sets, NDVI, and LST products, which all derive from MODIS data,
are used. The products corresponding to these above datasets are MOD17A2H,

170MOD13A3, and MYD11C3, respectively. Global data sets of 8-day composites from
2010 to 2017 are selected for use in this paper. These parameters can reflect the
vegetation ‘green’ information and are widely used to monitor the drought due to the
sensitivity to variations in soil moisture. The GPP, the NDVI and LST are used to illustrate
the response to soil moisture change when combined with fluorescence.

1753.4.1. GPP dataset
The temporal-spatial distribution of terrestrial GPP and its variability have a close
relationship with the Earth’s carbon budget. Terrestrial chlorophyll fluorescence has a
direct relationship with photosynthetic fluorescence and has recently been used to
estimate GPP (Damm et al. 2014, 2015; Cheng et al. 2013; Guanter et al. 2014; Zhang

180et al. 2014, 2016; Perez-Priego et al. 2015; Yang et al. 2015; Guan et al. 2016; Thum et al.
2017). Due to the relationship between fluorescence and GPP, fluorescence can be
regarded as having the potential to monitor the vegetation condition and assess the
terrestrial carbon budget. Recent advances in the remote sensing of SIF has opened up a
new possibility of providing direct global observation constraints for GPP. The GPP

185dataset, MOD17A2H, which is an 8-day composite at a spatial resolution of 1 km
× 1 km from 2010 to 2017, is used in this study to show the relationships among
fluorescence, GPP and soil moisture. According to the data acquired date, the products
in the same month are averaged to represent the monthly GPP value.

3.4.2. LST dataset
190LST is thought of as a useful indicator when monitoring the variations in soil moisture

and is widely used in the application of the drought. In this paper, the LST product
derived from MODIS is used to comprehensively analyse the relationship between LST
and soil moisture. The MOD11L2 dataset is a monthly product with a spatial resolution
of 5 km that is produced from the 8-day MODIS LST products, and the time range is also

195from 2010 to 2017.

3.4.3. NDVI dataset
Vegetation index, NDVI, is one of the most prominent indicators when monitoring the
health and vigour of vegetation. To make a comparison between the drought sensitivity
of SIF and the reflectance-based vegetation indices, NDVI is taken as a reference. A

200coarser spatial resolution of 500 m for NDVI product is retrieved from the MODIS
reflectance dataset, which ranges from 2010 to 2017. It is noted that NDVI dataset is
resampled to 5 km in an attempt to be consistence with the other datasets.

6 Z. NI ET AL.



3.5. Soil moisture data

The active soil moisture product covered from 1978 to 2016 is produced by the Earth
205Observation Data Centre for Water Resources Monitoring GmbH (EODC) and is the output

after merging the scatterometer-based soil moisture data, which derived from the Active
Microwave Instrument Wind Scatterometer (AMI-WS) and Advanced Scatterometer
(ASCAT, Metop-A and Metop-B, respectively) (Liu et al. 2011; Liu and Dorigo et al. 2012;
Wagner et al. 2012); this product has a global coverage and a spatial resolution of 0.25º, a

210temporal resolution of 1 day and a reference time at 0:00 UTC (product specification
document (PSD) Q1.2.1, version 3.3). The soil moisture data for the active product are
expressed by the percent of saturation (%). The soil moisture content field-measured data
are different to obtain; therefore, the satellite-derived dataset is used to illustrate the soil
moisture content from 2010 to 2016 in the Yunnan Province in China.

2153.6. Precipitation data

The precipitation data are produced using a thin plate spline method based on pre-
cipitation data from 2472 weather stations, including the national benchmark climate
station, the national basic weather station and the national general weather station of
China by the National Meteorological Information Center of the China Meteorological

220Administration. The dataset is a monthly grid with a spatial resolution of 0.5º × 0.5º in
China from 1961 to 2017. Here, precipitation data from 2010 to 2017 are selected. The
datasets used in this paper are summarized in Table 1.

4. Results and discussions

4.1. The daily response of SIF to soil moisture from the model analysis

225The SCOPE model is used to simulate the daily variation of fluorescence and tempera-
ture under different stress levels. SF is defined as the stress factor that reduces the
maximum carboxylation capacity (Vcmax) in a biochemical module (e.g. soil moisture and
leaf age). When the plant is under a healthy condition, SF equates to 1.0. When the SF
values increase, the stress deepens. A daily analysis is used to illustrate the response of

Table 1. Products used in this study.

Products
Spatial

resolution
Temporal
resolution Unit Source

GOME-2 SIF 0.5°× 0.5° monthly mW m−2 sr−1nm−1 https://avdc.gsfc.nasa.gov/pub/data/satellite/
MetOp/GOME_F/v27/MetOp-A/level3/

GPP (MOD17A) 0.005º× 0.005º 8-days kg C m−2 https://search.earthdata.nasa.gov/search?m=7.
59375!15.64453125!4!1!0!0%2C2

LST (MYD11C3) 0.05º× 0.05º monthly K https://search.earthdata.nasa.gov/search?m=7.
59375!15.64453125!4!1!0!0%2C2

NDVI (MOD13A) 0.01º× 0.01º 8-days Relative unit https://search.earthdata.nasa.gov/search?m=7.
59375!15.64453125!4!1!0!0%2C2

Soil moisture 0.25º× 0.25º monthly % ftp.geo.tuwien.ac.at
Precipitation 0.5º× 0.5º monthly mm http://idata.cma/idata/web/data/index?

dataCode=SURF_CLI_CHN_PRE_MON_
GRID_0.5
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230these parameters to different water conditions. When water stress deepens, SIF
decreases (Figure 3a) and LST gradually increases (Figure 3b). In this work, the default
data is used in this model simulation. Based on the theoretical model, the different daily
responses of SIF and temperature are illustrated. Despite the annual variations in SIF and
the other parameters are analysed in the following work, the model analysis still explains

235the response of SIF and temperature to different water contents.

4.2. Annual variations in SIF and other relative parameters from 2010 to 2017

To analyse the variation in SIF, the NDVI, precipitation, LST, GPP and soil moisture from
2010 to 2017, Chuxiong and Qujing are selected as the representative areas.

In Figure 4a, from January to December, the fluorescence first decreases, then
240increases to a peak, and finally decreases. The minimum values occur mostly in May.

The SIF changes intensely in 2010. SIF in the April to August in 2010 is less than same
period in 2011. From 2011 to 2014, fluorescence decreases gradually, and from 2014 to
2017, fluorescence increases. This also shows the dynamic change in SIF in the Chuxiong
district and indirectly illustrates the recovery process of the vegetation condition.

245Figure 4f shows that the soil moisture increases gradually from 2010 to 2016. It clearly
changes from 2010 to 2013 and varies slightly from 2014 to 2016. It also reveals that the
Chuxiong district undergoes a long relief process after a drought. In Figure 4c, the
precipitation conditions are demonstrated. Precipitation is very low in 2010 and
increases gradually. The annual variation in precipitation is sharp at first, then tends to

250become more stable.
It is widely accepted that when vegetation is under a water stress condition, the

photosynthesis function increases slowly and fluorescence declines. Due to low soil
moisture and precipitation in 2010, fluorescence changes rapidly and has a minimum
value in May. From 2010 to 2014, despite the soil moisture and precipitation increase,

255fluorescence still declines. This illustrates that the water stress has not yet been relieved,

Figure 3. Daily changes in SIF and LST from the SCOPE model (the x-axis is in Julian days, where
24 hours are expressed from 0.0 to 1.0).

8 Z. NI ET AL.



and it is still deepening. Since 2014, fluorescence has an increasing trend and shows that
vegetation is recovering towards a healthy condition.

Regarding the annual NDVI (Figure 4b), it decreases to a minimum value in June, then
increases. Its variation reaches a minimum value later than that of SIF; in other words, SIF

260can reflect the vegetation physiological condition change earlier than that from NDVI. In
any case, in 2010, the variation of NDVI is not remarkable, and SIF has a clear and
noticeable change from 2010 to 2017. It is obvious that SIF is more sensitive than NDVI
towards soil moisture change.

LST is higher under water stress conditions than that under healthy conditions.
265Similarly, in Figure 4d, LST in 2010 has a sharp change and is not remarkable in other

years. The recovery process for LST is not obvious when compared with SIF. In Figure 4e,
the variation in GPP from 2010 to 2017 is shown. The minimum value of GPP is obtained
in July. The variation in GPP in 2010 is significant; in other years, it is relatively stable.

When examining the variation in soil moisture, SIF, NDVI, LST and GPP have similar
270responses. When vegetation is under water stress conditions, SIF, NDVI and GPP

decrease, and LST increases. These all have remarkable variations in 2010. Yunnan in
2010 suffered the worst drought; vegetation died, and crops failed during the drought.
Low precipitation and a serious soil shortage led to a reduction in SIF, NDVI and GPP and
an increase in LST.

275In Figure 5, the above mentioned parameters from 2010 to 2017 in Qujing district are
shown. The conclusions obtained from Figure 5 are similar to those from Figure 4.
Therefore, the relative analysis is not stated here.

Figure 4. Variations in SIF, NDVI, precipitation, LST, GPP and soil moisture in the Chuxiong district
(Yunnan Province, China).
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4.3. Comparisons between SIF and GPP, NDVI or LST

GPP, NDVI and LST are widely used to monitor vegetation change, and SIF is thought of
280as an effective probe to detect vegetation physiological variations in recent years. To

exhibit the potential of SIF in detecting water stress, comparisons between SIF and GPP,
NDVI or LST are carried out.

In Figure 6, it can be seen that variation in SIF is much more intense than variation in
GPP. This also illustrates that SIF is much more sensitive than GPP to changes in the

285vegetation physiological state. The satellite-based GPP is mostly estimated using a light-
use efficiency (LUE) approach, which refers to the incident of photosynthetically active
radiation, the fraction of PAR absorbed by the vegetation canopy and the light use
efficiency. Compared with SIF, GPP is a complicated parameter that has a relationship
with global meteorology conditions and a set of biome-specific parameters (Xiao et al.

2902004). Therefore, SIF is used to monitor drought much more directly than GPP. It should
be noted that the change in SIF occurs earlier than the change in GPP due to the direct
relationship between SIF and the vegetation physiological state.

NDVI is computed directly using visible and near-infrared sunlight reflected by the
plants to display the ‘green’ information of the plants. Compared with GPP, NDVI reflects

295the vegetation condition more directly. Figure 7 shows that the change in SIF is
consistent with NDVI variation from 2010 to 2017. It can clearly be seen that the
occurrence of the decrease in SIF happens earlier than that of NDVI. This reveals that
SIF can reflect variations in the vegetation physiological condition earlier than the
reflectance.

Figure 5. Variations in SIF, NDVI, precipitation, LST, GPP and soil moisture in the Qujing district
(Yunnan Province, China).
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300Photosynthesis, SIF and heat dissipation are three ways to consume absorbed energy
by the plant. When the plant experiences water stress, fluorescence decreases, and the
leaf temperature increases. Therefore, SIF and LST have opposing variation tendencies.
Figure 8 shows that LST changes intensely from 2010 to 2013. LST is a good indicator
when detecting water stress. It should be noted that the occurrence of the SIF minimum

305value happens earlier than the occurrence of the LST maximum value. It also illustrates
that SIF has the advantage of reflecting changes in the physiological state of the plant.

COLOUR
FIGURE

Figure 6. Annual variations in SIF and GPP from 2010 to 2017.

COLOUR
FIGURE

Figure 7. Annual variations in SIF and NDVI from 2010 to 2017.
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4.4. Relationship between SIF and soil moisture

The GOME-2 monthly SIF and monthly soil moisture are used to analyse the relationship
between SIF and soil moisture. Six areas, including Chuxiong, Qujing, Wenshan, Honghe,

310Kunming and Yuxi, in Yunnan, China, are combined to analyse the relationships among
them from 2010 to 2016. Soil moisture data are missing in 2017; therefore, the analysis is
performed from 2010 to 2016 (Figure 10). The relationship between SIF and soil
moisture is analysed, with r = 0.56 in 2010 (Figure 9a), r = 0.71 in 2011 (Figure 9b),
r = 0.75 in 2012 (Figure 9c), r = 0.74 in 2013 (Figure 9d), r = 0.62 in 2014 (Figure 9e),

315r = 0.52 in 2015 (Figure 9f), and r = 0.47 in 2016 (Figure 9g). The large correlation
coefficients reveal that SIF has a close relationship with soil moisture. The correlation
coefficient from 2010 to 2016 first increases, then decreases. Figure 10 shows that the
soil moisture has increased gradually year by year since 2010. Figure 6 gives the annual
variation in SIF and shows that SIF first decreases from 2010 to 2014, then gradually

320increases. By combining the variations in SIF and soil moisture from 2010 to 2014, it is
revealed that SIF has a good relationship with soil water content under water stress
conditions.

5. Conclusions

This paper showed the different responses of GOME-SIF, GPP, NDVI and LST in six areas
325of China to external environmental conditions, and illustrated the different performance

of these parameters under the different water conditions. Yunnan Province suffered
from a serious drought in 2010, and plants were under water stress. From 2010 to 2016,
soil moisture varied gradually, and SIF, GPP, NDVI and LST has different responses
correspondently. Six areas in Yunnan Province of China, including Chuxiong, Qujing,

330Honghe, Kunming, Wenshan and Yuxi, were selected as the research areas. SCOPE model

COLOUR
FIGURE

Figure 8. Annual variations in SIF and LST from 2010 to 2017.
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was used to simulate canopy chlorophyll fluorescence and temperature. Through model
simulation and satellite data analysis, it was easy to be accept that SIF is a good indicator
for detecting vegetation physiological state changes.

The SCOPE model can regulate the stress factor to simulate variations in SIF and
335temperature at different stress levels. The stress factor acts on the Vcmax, then affects

photosynthesis. The results show that SIF decreases, and temperature increases when
stress deepens. This describes the daily response of SIF and temperature to stress from
the view of model simulation and provides the theoretical support for drought detection
in the Yunnan Province of China.

Figure 9. Relationship between SIF and soil moisture.

COLOUR
FIGURE

Figure 10. Soil moisture from 2010 to 2016.
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340The annual variations in SIF, GPP, NDVI, LST, precipitation and soil moisture are
analysed in six areas. Due to the serious drought in 2010, the above parameters have
different performances than those in other years. Precipitation and soil moisture from
2010 to 2014 increases gradually then decreases slightly. SIF begins with a decrease
from 2010 to 2014, and is followed by an increase. By combining this with the variation

345in soil moisture, SIF first decreases then increases, which reveals that plants recover to a
healthy condition after 2014. Despite the increase in precipitation and soil moisture, the
plants are still under water stress conditions. Analysis of NDVI, GPP and LST have similar
results, but these three parameters have less sensitivity to soil moisture change than SIF.

Long time-series analyses in 2010–2017 of SIF vs. GPP, SIF vs. NDVI and SIF vs. LST in
350the six areas are carried out. Except for GPP, the variations in NDVI and LST are

consistent with those of SIF. SIF has a subtler change compared with the NDVI and
LST. The most important observation is that SIF has an early response to water stress
compared with the other parameters. When vegetation has the symptoms of water
stress, SIF reflects the change earlier than NDVI or GPP. A correlation analysis between

355SIF and soil moisture is performed, and the results show a high correlation between SIF
and soil moisture. This illustrates that SIF, which has a close relationship with photo-
synthesis, has the potential to detect water stress.

This paper analyses the variations in SIF, GPP, NDVI and LST from 2010 to 2017 in
Yunnan Province of China and discusses the correction between SIF and soil moisture.

360The results show that SIF is a potential and effective indicator when detecting vegeta-
tion water stress. After analysing long time-series of satellite data, this work provides the
support for monitoring drought using SIF. In the future, more relative meteorological
data and drought indices should be considered to fully describe the relationship
between SIF and vegetation stress.
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