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Abstract—Most retrieval functions used in remote sensing 

assume that the land surface is homogeneous. When those 

functions are used at coarse spatial resolution for 

heterogeneous surfaces, scale effects might appear. This 

paper tries to develop an improved computational geometry 

method (ICGM) upscaling model that takes into 

consideration the actual distribution of surface 

measurements by using dynamic weights for the upper and 

lower envelopes of a convex hull. By aggregating to a series 

of simulated data at coarse spatial resolution, the weight 

coefficients can be determined via a least square method. To 

evaluate the proposed upscaling model, the leaf area index 

(LAI) is used as an example. The results for three sites with 

different degrees of heterogeneity show that the ICGM 

upscaling model can effectively correct for the scale effects 

of the LAI and in most cases achieve an accuracy that is 

comparable to that of traditional upscaling models. The 

relative error of the estimated LAI for the selected sites 

decreases from 3.35%, 11.01%, and 19.62% to an average 

of 0.28%, 1.48%, and 5.16%, respectively, at kilometer 

scale. A determination of whether retrieval functions are 

continuous or derivable is no longer required. Furthermore, 

there is no need to rely upon synchronous high spatial 

resolution data. Because the weight coefficients vary little at 

different scales, those coefficients are thought to be 

insensitive to different scales and can be taken as constants 

for a given study site. This study indicates that the proposed 

method is promising and feasible even for a heterogeneous 

landscape. 
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I. INTRODUCTION 

Advances in remote sensing technology, which can quickly

retrieve a wide range of real-time land surface spatial 

information, have provided a powerful way to generate regional 

and global products for resource surveys, environmental 

monitoring and disaster prediction. However, most of the 

retrieval functions in remote sensing assume that the land 

surface is homogeneous [1, 2]. If those functions are directly 

applied to generate products at coarse spatial resolution in areas 

where the land surface is heterogeneous, scale effects may be 

produced [1, 3]. Some researchers have indicated that using 

data and models at inappropriate scales without thorough 

consideration could lead to meaningless conclusions [4, 5]. The 

existence of scale effects has hampered improvements in the 

accuracy of retrieval and the development of remote-sensing 

applications [1, 6]. Therefore, the elimination of scale effects 

has become an important issue in quantitative remote sensing. 

Because of the large discrepancies in the scales of different 

data sources, the effects of various land surface parameters 

detected by remote sensing are complex and diverse. Taking the 

leaf area index (LAI) product as an example, scale effects may 

be as high as 50% of the exact LAI value in extreme conditions 

[7]. Thus, LAI retrieval at coarse spatial resolution is unlikely 

to produce high-accuracy products unless those scale effects are 
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successfully corrected. Therefore, the correction of scale effects 

should be carefully addressed [8, 9]. 

Many previous studies have successfully proven that scale 

effects are caused not only by surface spatial heterogeneity but 

also by the nonlinearity of the retrieval function [1, 2, 9, 10]. 

The nonuniformity and nonlinearity of land surface systems 

make it very difficult to solve the problem of scale. Many 

researchers have tried to use mathematical methods to 

quantitatively analyze scale effects and establish a 

semiempirical or physical upscaling method. A series of 

upscaling methods have been proposed, including the 

computational geometry method (CGM), the Taylor series 

expansion method (TSEM) and the contexture-based method 

(CM). Based on the theory of convex hulls in computational 

geometry, the CGM-based upscaling model assumes that 

retrieval values are evenly distributed between the upper and 

lower envelopes of the retrieval function to obtain accurate 

retrieval values at coarse spatial resolutions [2]. Regardless of 

whether retrieval functions are continuous or derivable, this 

upscaling model is widely applicable. However, the retrieval 

values are not always equal to the average values of the upper 

and lower envelopes. The CGM-based upscaling model, which 

does not consider the actual distribution of surface parameters 

and assigns a constant weight coefficient for upper and lower 

envelopes, may be inappropriate and lead to a low accuracy of 

correction [1]. Thus, determining reasonable weight 

coefficients for the upper and lower envelopes is the key to 

improving the accuracy of this upscaling model. Hu and Islam 

proposed a TSEM-based upscaling model that takes the impact 

of density changes into account and uses textural parameters 

(variance and covariance) as inputs to quantitatively 

characterize the scale effects [11]. By extending the TSEM-

based upscaling model, Garrigues et al. effectively corrected 

for the scale effects of the multivariate retrieval function [12]. 

Consequently, the TSEM-based upscaling model has been 

applied in several studies to various surface parameters and has 

achieved satisfactory results [13-16]. However, it is rather 

difficult to obtain the textural parameters required by the 

TSEM-based upscaling model. Generally, synchronous high 

spatial resolution data are necessary to estimate textural 

parameters. In addition, the TSEM-based upscaling model can 

be used only under the condition that the retrieval function is 

continuous and derivable. When high spatial resolution data are 

not available or the retrieval function does not meet those 

requirements, the TSEM-based upscaling model is restricted in 

its use. Apart from that, the TSEM-based upscaling model does 

not consider the influence of pixels with different components 

on scale effects, which will reduce the accuracy of upscaling. 

To overcome this limitation of the TSEM-based upscaling 

model, Chen proposed a CM-based upscaling model in which 

the contextural parameters represented by the fractions of the 

components were adopted to quantify the scale effects [7]. 

Simic et al. then used such subpixel information to correct for 

the scale effects of the net primary productivity and obtained 

satisfactory results [17]. However, the physical mechanism of 

this method is not yet clear. Studies have tried to use both 

textural and contextural parameters to successfully remove the 

scale effects of surfaces with contrasting cover types [6, 18]. 

However, these attempts still rely heavily on synchronous high 

spatial resolution data, which will restrict the corresponding 

applications. In addition to the upscaling models mentioned 

above, there are also a few studies on the upscaling of remote 

sensing products based on fractal theory [19-23]. However, the 

upscaling model based on fractal theory is not applicable when 

upscaling is applied beyond the domain of the similarity scale 

[9]. In recent years, some studies have focused on the correction 

of scale effects by applying mathematical tools, such as wavelet 

transforms; these approaches have weakened scale effects to a 

certain degree (For example, the relative error caused by scale 

effects can be reduced by half) but are still limited by the need 

for synchronous high spatial resolution data [24-26]. Although 

the accuracy of LAI products at coarse spatial resolution has 

been improved to a certain extent with these models, the 

upscaling models still need further improvements to expand 

their universality [27]. 

The objective of this paper is to improve the traditional 

CGM-based upscaling model and to use LAI upscaling as an 

example to show how retrieval accuracy at coarse spatial 

resolution can be improved by applying appropriate weight 

coefficients. The next sections will be organized as follows. In 

Section 2, the LAI upscaling problem and aggregation analysis 

using convexity will be described. A solution to the spatial 

upscaling problem of that LAI using convex hulls will be 

proposed. Section 3 describes the data used to evaluate the 

applicability of the improved CGM-based upscaling model. 

The results of the evaluation and the corresponding discussions 

will be provided in Section 4. The scale effects of three 

contrasting sites will be demonstrated, and the proposed method 

will be evaluated with nested multiscale aggregated data. The 

conclusions will be given in Section 5. 

II. METHODOLOGY

A. LAI scale effects in retrieval 

LAI products can be spatially estimated from remotely sensed 

data by using a retrieval function derived either from a radiative 

transfer model or from a calibrated semiempirical relationship 

[12]. The retrieval process of the LAI can be expressed 

abstractly as follows: 

( )LAI f x=          (1) 

where f is the retrieval function and x represents the surface 

reflectance or vegetation index. 

Here, the cause of the scale effects is illustrated in an 

example of a semiempirical retrieval function between the 

normalized difference vegetation index (NDVI) and the LAI. 

The NDVI is derived from the reflectances of red and near 

infrared bands as [28]: 

 NDVI nir red

nir red

−
=

+

 

 
 (2) 

where ρnir and ρred represent the near infrared and red 

reflectances, respectively. The nonlinear relationship between 

the NDVI and the reflectances of the red and near-infrared 

bands also contributes to the scale effects of LAI products [21]. 
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However, for simplicity, only the scale effects associated with 

the nonlinear relationship between the NDVI and the LAI are 

quantified in this paper. The scale effects associated with the 

relationship between the LAI and the reflectances of the red and 

near-infrared bands can be quantified in a similar way. 

As shown in Fig. 1, there are two distinct upscaling 

approaches that are used to obtain the LAI products at coarse 

spatial resolution. One is the spatial aggregation of LAI 

products at high spatial resolution, and the other is direct 

retrieval at coarse spatial resolution. In the first process, the 

exact value of the LAI (
EXALAI ) is obtained by first calculating 

the NDVI value at high spatial resolution and then by 

calculating the average (path I in Fig. 1): 

        ( )EXA

1 1

1 1
LAI LAI NDVI

N N

i i

i i

f
N N= =

= =   (3) 

where N is the number of pixels at high spatial resolution within 

the corresponding coarse spatial resolution pixel; LAIi
 and 

NDVIi
 are the corresponding values for the ith high spatial 

resolution pixel; and f represents the LAI retrieval function at 

high spatial resolution. The pixel at high spatial resolution is 

considered homogenous without scale effects; therefore, this 

LAI value is regarded as the actual LAI value for high spatial 

resolution. Correspondingly, the aggregated LAI value is 

considered to be the exact value of the LAI at coarse spatial 

resolution. 

In the second process with the coarse spatial resolution 

measurement, the approximated value of the LAI (
APPLAI ) at 

coarse spatial resolution can be estimated as: 

  ( )APPLAI NDVImf=  (4) 

where NDVIm is the NDVI value of the pixel at coarse spatial 

resolution. If the scale effect of the NDVI is ignored, the NDVIm 

of the coarse spatial resolution could be regarded as the average 

value of NDVI at high spatial resolution. 

Fig. 1 Sketch map of the effect of spatial resolution on the nonlinear estimation 

of the LAI. Paths I and II represent two different upscaling processes. Path I 

(left) represents the application of the retrieval function f at high spatial 

resolution, in which the results are aggregated to obtain LAIEXA; Path II (right) 

entails aggregating the value of the NDVI before it is applied in the retrieval 

model f to obtain LAIAPP. 

Since the retrieval function f is established for homogeneous 

pixels, it is suitable for high spatial resolution. When the 

retrieval function f is used at coarse spatial resolution, scale 

effects will occur. The difference (bias) between the exact value 

of LAIEXA and the approximated value of LAIAPP at coarse 

spatial resolution is regarded as the so-called scale effects and 

can be expressed as follows: 

   
EXA APPLAI LAIbias = −                              (5) 

To show the scale effects of the LAI clearly, an example of a 

mixture scenario is demonstrated in Fig. 2. In this scenario, two 

components (A and B) with the same cover type but different 

densities are included. Here, the nonlinear relationship between 

the NDVI and the LAI is represented by the retrieval function f, 

which is generated at high spatial resolution and in which each 

component is assumed to be homogeneous. 

The 
EXALAI  and 

APPLAI  are the values of the LAI at coarse 

spatial resolution; these values are obtained by two different 

upscaling processes that use Eqs. (3) and (4), respectively. 

Fig. 2. Illustration of the scale effects of the LAI caused by function nonlinearity 

and spatial heterogeneity at coarse spatial resolution. f is a semiempirical 

retrieval function at high spatial resolution that relates the LAI and the NDVI. 

NDVIA and NDVIB are the NDVI values of components A and B, while LAIA 

and LAIB are their corresponding LAI values, respectively. NDVIm is the 

corresponding NDVI value of the mixed pixel at coarse spatial resolution and 

is defined as the average of NDVIA and NDVIB. The 
EXALAI  is the exact value 

of the LAI at coarse spatial resolution and is obtained by first applying f at high 

spatial resolution and then averaging the LAIA and LAIB at coarse spatial 

resolution. The 
APPLAI  is the approximated value of the LAI for the pixel at 

coarse spatial resolution and is derived from the retrieval result that directly 

applies the retrieval function f to NDVIm. The difference between EXALAI and 

APPLAI  is regarded as the scale effect at coarse spatial resolution. 

As shown in Fig. 2, the direct application of the retrieval 

function f at coarse spatial resolution will underestimate the 

exact LAI value because of the concave characteristics of the 

retrieval function [2]. The difference between the 
EXALAI  and 

APPLAI  shown in Fig. 2 is considered to be the scale effect. It is 

crucial to minimize the influence of scale effects on the LAI 

product at coarse spatial resolution. 
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B. Aggregation analysis using convexity 

According to the convex hull of computational geometry theory, 

the set of all possible values of LAIEXA will fall into an interval 

when NDVI Dm   [2]: 

 ( ) ( )EXALAI NDVI , NDVIm mf f 


      (6) 

where NDVIm  is the value of the NDVI at coarse spatial 

resolution, and D is the domain of the NDVI. The bounding 

functions f   and f
 are, respectively, the upper and lower 

envelopes of the retrieval function f. The determination of the 

upper and lower envelopes depends on the type of retrieval 

function and the scope of the space domain D. 

To clearly demonstrate the difference between upper and 

lower envelopes in different conditions, three types of 

landcover (bare soil, vegetation A and vegetation B) with 

different retrieval functions are taken as examples. As shown in 

Fig. 3 (a), the retrieval functions of bare soil, vegetation A and 

vegetation B are presented in green, blue and red, respectively. 

The NDVI values of the three different coverage types are as 

follows: bare soil (D1: NDVI <0.2), vegetation A (D2: 0.2 < 

NDVI <0.5), and vegetation B (D3: 0.5< NDVI <0.8). The 

corresponding upper and lower envelopes for the different 

conditions are shown in Fig. 3(b)-3(d). These graphs are only 

used to present the corresponding upper and lower envelopes of 

the function of the LAI and the NDVI under certain conditions. 

In fact, the retrieval functions for various land cover types may 

be more complex when the scope of D corresponding to each 

landcover type overlaps, as shown in Fig. 3. 

Fig. 3. The graphs of upper and lower envelopes for three different conditions. The bounding functions f  and f
are the upper and lower envelopes of the 

retrieval function f, respectively. (a) Retrieval functions of three different types of land cover. The green, blue and red curves represent the retrieval functions for 

bare soil, vegetation A and vegetation B, respectively. D1, D2 and D3 are the respective NDVI domains of each landcover type; (b) the upper and lower envelopes 

when the three types of landcover are mixed; (c) the upper and lower envelopes when the land is covered by bare soil and vegetation A; (d) the upper and lower 

envelopes when the land is covered by vegetation A and vegetation B. P1 and P2 are the leftmost and rightmost endpoints of the retrieval curve, respectively. 

As shown in Fig. 3, the space domain  1 2 3D D D D . 

The upper and lower envelopes f   and f
 are usually 

determined from the corresponding retrieval function f with the 

space domain of the distribution of the NDVI. The 

corresponding upper and lower envelopes change with different 

conditions. When NDVI D , the land cover includes the three 

different types; where the retrieval functions are discontinuous, 

the upper envelope can be treated as a straight line connecting 

the leftmost and rightmost endpoints, P1 and P2, of the curve. 

The curves are wrapped by the lower envelope on the bottom. 

When  1 2NDVI D D , the upper envelope can be expressed

as a linear function between P1 and P2. For the curve to be 

continuous under this condition, the lower envelope must 

coincide with the retrieval function. 
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When  2 3NDVI D D , the upper envelope can also be

expressed as a linear function, and the discontinuous curves are 

wrapped by the lower envelope from the bottom. As shown in 

Fig. 3(b)-(d), the corresponding upper and lower envelope 

functions can be established regardless of whether the retrieval 

function is continuous or discontinuous. 

It is worth noting that the described upper and lower 

envelopes are usually determined by the spatial domain. When 

the surface is homogenous and where the NDVI values of all 

pixels are equal, the difference between 
EXALAI  and 

APPLAI  is 

zero. In the case of a linear function, both the upper and lower 

envelopes are coincident with the retrieval function, 

f f f 

  , and the bias between 
EXALAI  and 

APPLAI

will also be zero. Generally, there are no scale effects when the 

surface is homogenous or the retrieval function is linear. The 

difference between the envelopes f   and f
 is an estimate of 

the maximum bias between
EXALAI  and 

APPLAI . Although the 

CGM-based upscaling model cannot quantitatively express 

scale effects as well as the TSEM-based upscaling model can, 

the CGM-based upscaling model can still reflect the combined 

scale effects of surface heterogeneity and the nonlinearity of the 

retrieval function. 

C. Solution to the spatial upscaling problem of the LAI using 

convex hulls 

Without obtaining the spatial distribution of the surface 

reflectance of the pixels, Raffy assumed that the LAI values at 

coarse spatial resolution are evenly distributed between the 

upper and lower envelopes [2]. By taking the average value of 

the upper and lower envelopes, the scale effects were reduced 

to a certain extent. The corresponding traditional CGM-based 

upscaling model can be expressed as follows: 

( ) ( )( )
1

LAI NDVI NDVI
2

CGM

cor m mf f 

= +   (7) 

where LAICGM

cor  is the scale-effect-corrected LAI value that is 

obtained using the traditional CGM-based upscaling model. 

However, the results show that the scale effects correction that 

is obtained with a constant coefficient of 1/2 is not satisfactory; 

this will be demonstrated in detail in the following sections. 

Under certain conditions, the accuracy of the retrieved LAI 

after correction with this upscaling model is not as good as it 

was before. This is likely caused by the assumption of uniform 

distribution, which is not consistent with the actual distribution 

of the NDVI [6]. Consequently, the traditional GCM-based 

upscaling model that uses a constant coefficient should be 

improved. 

In this paper, we assume that the values of the weight 

coefficients of the upper and lower envelopes will change 

dynamically and might be related to the nonlinearity of the 

retrieval function and the heterogeneity of the land surface. An 

improved computational geometry method (ICGM)-based 

upscaling model with dynamic weights for the upper and lower 

envelopes of the convex hull is proposed as follows: 

( ) ( )LAI NDVI NDVIICGM

cor m ma f b f 

=  +    (8) 

where LAIICGM

cor  is the scale-effect-corrected LAI value using 

the ICGM-based upscaling model; a and b are the weight 

coefficients of the upper and lower envelopes, respectively, 

 , 0,1a b   and 1a b+ = . Therefore, the key issue associated

with the ICGM-based upscaling model is how to determine the 

weight coefficients. As described in the analysis in the 

following section, the weight coefficients are thought to be 

insensitive to changes in scale. Therefore, autocorrelation and 

self-similarity characteristics of the data can be used to 

determine the weight coefficients. These weight coefficients 

can be estimated by applying a least square method to a nested 

multiscale data set, which can be generated either from 

nonsynchronous historical high spatial resolution data or from 

coarse spatial resolution data by using a simple aggregation 

strategy. 

III. STUDY AREAS AND DATA

To evaluate the performance of the ICGM-based upscaling 

model, three sites (Zhangbei, Haouz and Fundulea) with 

different degrees of surface heterogeneity were selected. The 

Zhangbei site, located in northern China (41°16′44′′N, 

114°41′16′′E), is composed of plateaus (1400 m elevation) with 

pastures (for sheep and cows) and a few crops near villages. The 

Haouz site, located in the middle of Morocco (31°39′33′′N, 

7°36′01′′W), is mainly covered by cropland such as wheat, 

fallow, barley and other crops. The Fundulea site is the most 

heterogeneous of the three sites and is located in the south of 

Romania (44°24′21′′N, 26°35′06′′E); it consists mainly of large 

crop fields and some forests. 

The ground sampling data obtained on 8-10 August 2002 for 

Zhangbei, 10-14 March 2003 for Haouz, and 9-10 May 2001 

for Fundulea were all derived from the VALERI (VAlidation of 

Land European Remote sensing Instruments) dataset. 

Accordingly, to establish a retrieval function and further 

evaluate the proposed model, three images of 2000 × 2000 

pixels with high spatial resolution (30 m) obtained close to the 

sampling time (17 August 2002 for Zhangbei, 15 March 2003 

for Haouz, 30 April 2001 for Fundulea) were collected from the 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) satellite. 

Because the image of Fundulea was obscured by clouds, this 

image was only used to estimate the model coefficients of the 

retrieval function. An image of Fundulea on 13 March 2001 was 

selected for further evaluation. 

The acquisition images from the ETM+ were surface 

reflectance products directly downloaded from the website of 

the USGS (http://earthexplorer.usgs.gov/). The images had 

undergone level 2 processing (radiometric correction, 

geometric correction and atmospheric correction) with the 

Universal Transverse Mercator (UTM) projection. The 

distributions of the elementary sampling units (ESUs) around 

the three sites are shown in Fig. 4. 

A regression analysis is used to determine the relationship 

between the NDVI and the LAI from the ground sampling data. 

At the same time, we only consider the influence of the spatial 

heterogeneity of the NDVI and the retrieval function 

nonlinearity on scale effects; we ignore the scale effects of the 
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NDVI itself. To avoid the impact of registration errors and 

ensure the accuracy of regression, the sampling points obscured 

by clouds are removed. Any points with an NDVI standard 

deviation of approximately 3 × 3 pixels greater than 0.05 are 

removed from the sampling data. As shown in Fig. 4, the 

removed sampling points are marked in black and are not 

considered in the regression. 

After comparing the accuracy of multiple types of retrieval 

functions, an exponential empirical function representing the 

relationship between the NDVI and the LAI is chosen, mainly 

because it has a higher fitting accuracy than other types of 

functions. The exponential LAI-NDVI function has been 

adopted in other studies as well [29, 30] and can be expressed 

as follows: 

LAI n NDVIm e =                               (9)

where m and n are coefficients of the retrieval function and 

depend on the characteristics of the sites. 

Fig. 4. The distribution of ESUs in three study sites. (a), (c) and (e) are NDVI images corresponding to Zhangbei, Haouz and Fundulea, respectively. (b), (d) and 

(f) are false color images composed of bands 5, 4 and 3 and correspond to Zhangbei, Haouz and Fundulea, respectively. The red and black points represent the 

selected and abandoned sampling points in the regression analysis, respectively. 
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Fig. 5. The retrieval functions of the three selected study sites. (a), (b) and (c) correspond to Zhangbei, Haouz and Fundulea, respectively. The red points represent 

the ground sampling data, and the blue lines represent the curves of the retrieval functions.

The accuracies of the retrieval functions will not be 

considered in this paper because the function is just taken as a 

case study by which to analyze the scale effects of the LAI 

caused by the nonlinearity of the retrieval function and by 

spatial heterogeneity. The NDVI was calculated based on the 

selected ETM+ image. The retrieval functions are generated 

with the ground-measured LAI data and corresponding NDVI 

values for each site. As presented in Fig. 5, the 

root mean square errors (RMSEs) are 0.350, 0.389 and 0.739, 

corresponding to Zhangbei, Haouz and Fundulea, respectively, 

and the determination coefficient (R2) values are 0.654, 0.807 

and 0.801, also corresponding to these three sites. 

As shown in Fig. 5, among the three sites, the nonlinearity of 

the retrieval function in Fundulea is the lowest, and the 

nonlinearity of that at the Haouz site is the highest. 

IV. EXPERIMENT RESULTS AND DISCUSSION

A. Weights for the upper and lower envelopes at different 

scales 

As described in Section 2, a method for obtaining the weight 

coefficients in Eq. (8) is key for the proposed upscaling model. 

Because many curves or surfaces in the world may be 

statistically made up of copies of themselves at a reduced scale 

[1], statistical autocorrelation and self-similar characteristics 

could be used to determine the weights. 

First, the images of the three sites at high spatial resolution 

are aggregated to obtain nested simulated multiscale images at 

different coarse spatial resolutions to study how the weight 

coefficients change with the aggregation scales. The LAI and 

NDVI values at 30 m resolution are aggregated to six different 

scales with 2 × 2, 5 × 5, 10 × 10, 20 × 20, 25 × 25, and 40 × 40 

pixels. The aggregated LAI and NDVI data at 60 m, 150 m, 300 

m, 600 m, 750 m, and 1200 m are then obtained. As shown in 

aggregation Path I in Eq. (3), the aggregated LAI values are 

taken as exact values on the left side of Eq. (8). The aggregated 

NDVI values are used as the inputs. The f   and f
 values on 

the right side of Eq. (8) are determined directly by the retrieval 

function f in Eq. (9). Using a least square method, the optimal 

weight coefficients at different scales are obtained from the 

simulated images. The values of the weight coefficients a and b 

for the six aggregation scales mentioned above are shown in 

Table 1. 

TABLE 1. THE VALUE OF THE WEIGHT COEFFICIENTS OF THE UPSCALING MODEL AT DIFFERENT SCALES 

Study 

Site 

Weight 

Coefficien

ts 

Weight Coefficient Values at Different 

Aggregation Scales 
Mean value 

2×2 5×5 
10×1

0 

20×2

0 

25×2

5 

40×4

0 

Zhangbei 
a 0.24 0.24 0.23 0.21 0.22 0.21 0.23 

b 0.76 0.76 0.77 0.79 0.78 0.79 0.77 

Haouz 
a 0.23 0.21 0.22 0.22 0.22 0.22 0.22 

b 0.77 0.79 0.78 0.78 0.78 0.78 0.78 

Fundulea 
a 0.23 0.19 0.18 0.17 0.18 0.18 0.19 

b 0.77 0.81 0.82 0.83 0.82 0.82 0.81 

As shown in Table 1, the weight coefficients a are all smaller 

than the values of b at the six aggregation scales, indicating that 

the distributions of the exact retrieval values are all closer to the 

lower envelope than they are to the upper envelope, which is in 

accordance with the characteristics of the concave function. As 

shown in Table 1, the values of the weight coefficients obtained 

from each site are not that different from each other, mainly 

because the nonlinearity of the three retrieval functions is 
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almost the same. Spatial heterogeneity increases with the 

aggregation of scale, and the values of the weight coefficients 

change little with increasing aggregation scale. We can 

conclude that the values of the weight coefficients are not 

sensitive to changes of scale but may be closely related to the 

nonlinearity of the retrieval functions and the inherent 

heterogeneity within the study areas. 

Therefore, the weight coefficients of the ICGM-based 

upscaling model can be estimated with a least square method 

from a nested multiscale dataset that is either aggregated from 

the nonsynchronous historical high spatial resolution data or 

from the coarse spatial resolution data. Access to synchronous 

high spatial resolution data is no longer required in the proposed 

ICGM-based upscaling model, which is its greatest advantage 

over other models. 

B. Correcting the results for scale effects 

To compare the influence of different weight coefficients on 

the accuracy of the proposed upscaling model, different values 

for weight coefficient a are used for the three sites according to 

the maximum values (group A), the minimum values (group B) 

and the mean values (group C) in Table 1. Using Eq. (8), the 

ICGM-based upscaling models with site-dependent weight 

coefficients are established. Meanwhile, to evaluate the 

performances of the upscaling models, we make a 

comprehensive comparison among the ICGM-based, TSEM-

based, and CGM-based upscaling models. LAITSE

cor  and LAICGM

cor

represent the corrected LAI in the TSEM-based and CGM-

based upscaling models, and LAIICGM

cor  represents the corrected 

LAI in the ICGM-based upscaling model, which is also 

subdivided into three classes according to the different groups 

of weight coefficients. ( )LAI AICGM

cor
, ( )LAI BICGM

cor
and

( )LAI CICGM

cor
 represent the ICGM-based upscaling models with 

the maximum, minimum and mean values of coefficient a at six 

different aggregation scales, respectively. 

Here, we use the relative error (RE) and the RMSE to 

evaluate the accuracies of the upscaling models. 

N
COR, EXA,

1 COR,

LAI LAI1
RE

N LAI

k k

k k=

−
=              (10) 

( )
N

2

COR, EXA,

1

LAI LAI

RMSE
N

k k

k =

−

=


    (11) 

where N represents the number of pixels at high spatial 

resolution within the corresponding coarse spatial resolution 

pixel; COR,LAI k  represents the corrected LAI with the 

corresponding upscaling model; and 
EXA,LAI k

represents the 

exact value of LAI at coarse spatial resolution. 

As shown in Fig. 6, with increasing aggregation scale, the RE 

and RMSE of the scale effects increase substantially. 

Comparing the three different sites, the scale effects increase 

with increasing spatial heterogeneity. 

At the Zhangbei and Fundulea sites, the correction accuracy 

of the ICGM-based upscaling model is slightly lower than that 

of the TSEM-based upscaling model, and the results of the 

ICGM-based upscaling model with different coefficients are 

different from each other. At the Zhangbei site, although the 

correction accuracy of the ICGM-based upscaling model is 

lower than that of the TSEM-based upscaling model at six 

aggregation scales, the ICGM-based upscaling model can still 

reduce the original RE of 3.35% to 0.25% at the 40 × 40 

aggregation scale. However, at the Haouz site, the 

performances of the three groups of ICGM upscaling models 

with different coefficients are almost the same as that of the 

TSEM-based upscaling model. At the 20 × 20 aggregation scale 

and above, the corrected RE of the ICGM-based upscaling 

model is lower than that of the TSEM-based upscaling model, 

and the corrected RMSE is equal to or better than that of the 

TSEM-based upscaling model. The traditional CGM-based 

upscaling model with constant weight coefficients yields 

overcorrection results at all three sites. 

To show the correction effect more intuitively, scatter plots 

of the correction results at 5 × 5 and 40 × 40 aggregation scales 

at the Haouz site are used as examples of the correction effect’s 

moderate scale effects. The distribution of scatters at other sites 

and at different scales are very similar; however, these sites 

have different RE and RMSE values and are not shown here. 

The performances of the above upscaling models are compared 

systematically. 
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Fig. 6. Comparisons among the correction effects of upscaling models based on TSEM, CGM and ICGM with different coefficients at six different scales. (a) and 

(b) are RE and RMSE for Zhangbei, respectively; (c) and (d) are RE and RMSE for Haouz, respectively; (e) and (f) are RE and RMSE for Fundulea, respectively. 
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Fig. 7. Scatter plots showing the relationship between the exact LAI values and the estimated LAI values before and after correction at the 5 × 5 aggregation scale 

at the Haouz site. (a): The LAI values before correction; (b): Correction with a TSEM-based model; (c): Correction with a CGM-based model; (d): Correction with 

an ICGM-based model with maximum weight coefficients (A); (e): Correction with an ICGM-based model with minimum weight coefficients (B); (f): Correction 

with an ICGM-based model with mean weight coefficients (C). 

Fig. 8. Scatter plots showing the relationships between the exact LAI values and the estimated LAI values before and after correction at the 40 × 40 aggregation 

scale at the Haouz site. (a): LAI values before correction; (b): Correction with the TSEM-based model; (c): Correction with the CGM-based model; (d): Correction 

with the ICGM-based model with maximum weight coefficients (A); (e): Correction with the ICGM-based model with minimum weight coefficients (B); (f): 

Correction with the ICGM-based model with mean weight coefficients (C).

Fig. 7 and Fig. 8 show that the concave function of the 

exponential retrieval function will result in a LAI estimate that 

is lower than the exact value, which is consistent with Raffy's 

research [2]. The results of the ICGM-based upscaling model 

with three group weight coefficients indicate that the scale 

(a) (b) (c) 

(d) (e) (f) 

(a) (b) (c) 

(d) (e) (f) 
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effects are significantly reduced. At the 5 × 5 aggregation scale, 

the RE are reduced from 4.11% to 0.4%, 0.46% and 0.43% 

within the three groups of ICGM-based upscaling models, and 

the RMSE are reduced from 0.066 to an average of 0.011, which 

is slightly lower than or equal to that of the TSEM-based 

upscaling model. At the 40 × 40 aggregation scale, all three 

ICGM-based upscaling models perform better than the TSEM-

based upscaling model and yield a RE of approximately 1.5%. 

These comparisons reveal that the effect of the maximum, mean 

or minimum values of the weight coefficients on the accuracy 

of upscaling is not obvious, which implies that determining the 

weight coefficients either from the nonsynchronous historical 

high spatial resolution data or from the coarse spatial resolution 

data themselves is feasible. 

The TSEM-based upscaling model may achieve high 

accuracy with careful mathematical deduction; however, the 

acquisition of correction values would be strictly limited by the 

availability of high spatial resolution data. However, the weight 

coefficients of the ICGM-based upscaling model can be directly 

derived from the aggregated results of coarse spatial resolution 

data. In most cases, the ICGM-based upscaling model can 

achieve almost the same effect as the TSEM-based upscaling 

model. As shown in Fig. 7(d)-(f) and Fig. 8(d)-(f), with the 

ICGM-based upscaling model, the LAI values after correction 

concentrate on both sides of the line 1:1, and both the RE and 

RMSE decrease significantly after correction. In the traditional 

CGM-based upscaling model, which uses a weight coefficient 

of 1/2, the results appear to be excessively corrected at the three 

study sites. 

V. CONCLUSIONS 

In accordance with the convex hull of computational 

geometry theory, this paper proposed an ICGM-based 

upscaling model to correct for the scale effects of the LAI; in 

this model, the actual distribution of the NDVI is used to 

acquire weight coefficients for the proposed upscaling model. 

By using dynamic weight coefficients for the upper and 

lower envelopes instead of constant coefficients, the accuracy 

of the upscaling model improved considerably. Three sites were 

selected for study using in situ observed data from the VELARI 

database. The results were evaluated by comparing the 

corrected value of the LAI to the exact value; good agreement 

was observed between the corrected LAI and the exact LAI with 

the ICGM-based upscaling model. At the Zhangbei, Haouz and 

Fundulea sites, the values of RE can be reduced from 3.35%, 

11.01% and 19.62% to an average of 0.28%, 1.48% and 5.16%, 

respectively, and the value of RMSE can be reduced from 0.09, 

0.11 and 0.11 to 0.024, 0.016 and 0.03, respectively, at the 

kilometer scale (40 × 40 aggregation pixel). In most cases, with 

the ICGM-based upscaling model, LAI products at coarse 

spatial resolution and with accuracies comparable to those of 

the TSEM-based upscaling model can be obtained. 

Compared with the TSEM-based and CGM-based upscaling 

models, the advantages of the proposed ICGM-based upscaling 

model are readily apparent. The ICGM-based model can not 

only yield correction effects with high accuracy, but also be 

applied to all types of retrieval functions, regardless of whether 

the functions are continuous or derivable. Furthermore, 

synchronous high spatial resolution data are not required as they 

are in the TSEM-based upscaling model because the weight 

coefficients of the ICGM-based upscaling model can be 

obtained from the aggregated results of nonsynchronous 

historical high spatial resolution data or the aggregated results 

of coarse spatial resolution data. Because the weight 

coefficients of the ICGM-based upscaling model change little 

at different scales, those coefficients are not sensitive to 

different scales and can be used as constants for a given study 

site. Consequently, this study will enhance the ability to obtain 

accurate values of LAI products at coarse spatial resolutions. 
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