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Abstract—The net surface shortwave radiation (NSSR) at the 

Earth's surface drives evapotranspiration, photosynthesis and 

other physical and biological processes. The primary objective of 

this study is to estimate NSSR in all sky conditions by using 

narrowband data of the Moderate Resolution Imaging 

Spectroradiometer (MODIS) instrument onboard the AQUA 

satellite. The random forest (RF) machine learning method for 

retrieving NSSR was developed with MODerate resolution 

atmospheric TRANsmission model (MODTRAN 5) simulated 

data. The bias, root mean square error (RMSE) and R2 for the 

training dataset of the model are 0.04 W m-2, 2.03 W m-2 and 1.00, 

respectively; for testing data, these values are 0.53 W m-2, 5.50 W 

m-2 and 1.00, respectively. Note that the proposed method is better 

than the traditional method (RMSE 7.29 W m-2) with MODTRAN 

data, and the sky conditions (clear and cloudy) do not need to be 

distinguished in the RF method. Seven in situ measurements of the 

Surface Radiation (SURFRAD) observation network were used to 

validate the estimated NSSR with MODIS/AQUA data using the 

proposed RF method, and the bias, RMSE and R2 of the 

comparison are -8.4 W m-2, 76.8 W m-2 and 0.91, respectively. 

Approximately 70% of the absolute difference of all the samples 

are below 50 W m-2. Considering its concise process and relatively 

improved accuracy, both in regard to model development and 

validation, it can be concluded that retrieval of NSSR with RF will 

be an efficient and feasible method in the future. 

 
Index Terms—Net Surface Shortwave Radiation, Random Forest, 

MODIS/AQUA, MODTRAN, Remote Sensing. 
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I. INTRODUCTION 

ET surface radiation, which controls the energy and water 

exchange between the land and atmosphere, is one of the 

most fundamental parameters in various applications [1]. As a 

main component of net surface radiation, the net surface 

shortwave radiation (NSSR) is calculated as the difference 

between surface downward shortwave radiation flux and 

upward surface shortwave radiation flux in the shortwave 

spectrum (0.3–5.0 μm); it affects regional and global climate 

change [2] and is the main driver of surface energy balance and 

evapotranspiration [3]. Thus, reliable NSSR measurements 

over large areas at high spatial and temporal resolution is 

required in many applications. 

It is widely recognized that remote sensing technology has 

become a highly effective and convenient method for retrieving 

land surface radiation [4-6]. In recent years, numerous methods 

for accurate estimation of NSSR, including a 

statistical/empirical method [7] and a physically based method 

[8-10], have been explored and developed. NSSR can be 

estimated using the relationship between the upward shortwave 

flux at the top of atmosphere (TOA) and the shortwave flux 

absorbed at the surface. This method is applied to various 

sensors including the Landsat Thematic Mapper (TM) [11] and 

the Moderate-Resolution Imaging Spectroradiometer (MODIS) 

onboard Terra satellites [12] as well as the Airborne Visible 

Infrared Imaging Spectrometer (AVIRIS) [13]. However, these 

traditional methods usually apply numerous specific formulas, 

and many coefficients of formulas should be fitted, which are 

always limited by the initial values [14]. In addition, the 

formulas used in physically based methods may not be good 

representations of the real interactions. Consequently, a new 

concise and accurate method for generating NSSR is needed.  

Machine learning algorithms can deal with inherent data 

variability, providing better recognition of data patterns and 

making better predictions of independent variables [15]. 

Machine learning algorithms are excellent at performing 

adaptive nonlinear fitting, which can be used to approximate 

any complex functional relationship without prespecifying the 

type of relationship between dependent and independent 

variables. Today, machine learning algorithms are widely 

applied to estimate land surface radiation [16-18]. However, 

the accuracy of these results is limited, and many machine 

learning methods are prone to the phenomenon of overfitting. 

Random forest (RF) is a new machine learning algorithm that 

evolved from the Bagging algorithm [19], which is good at 

adaptive nonlinear fitting and is able to avoid model overfitting 

[20-21]. Zhou et al. suggested that the RF model may be 
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another feasible way to estimate downward shortwave radiation 

using satellite observations [22]. However, there are few RF 

applications for NSSR retrieval. 

Retrieving NSSR using traditional methods is a complex 

process and many parameters should be fitted. Therefore, 

modeling using the traditional method requires professional 

skill in data structure design, which also limits the development 

of its application. For example, Tang’s method [12], which is 

used in NSSR retrieval research [11,13,14,30], has two models: 

the model used to convert narrowband reflectivity to TOA 

broadband albedo and the model for retrieving NSSR from 

TOA broadband albedo using their linear relationship. 

Furthermore, the sky conditions (clear and cloudy) should also 

be distinguished in the traditional method, and the complex 

steps may increase the probability of introducing mistakes. 

However, since the RF method can learn the correct 

relationship between dependent and independent variables 

directly, it is necessary to explore whether estimating NSSR 

with RF can improve retrieval accuracy in the big-data driven 

background. The objective of this study is to apply RF, a 

machine learning method, to the estimation of NSSR from 

MODIS/AQUA remote sensing data under both clear sky and 

cloudy conditions and to evaluate the feasibility and accuracy 

of the proposed method. Moreover, we also compare the 

proposed RF method with Tang’s traditional method for NSSR 

retrieval.  

II.  DATA 

A. Satellite Data 

The Moderate Resolution Imaging Spectroradiometer 

(MODIS), one of the sensors in the National Aeronautics and  

Space Administration (NASA) Earth Observing System (EOS)  

TERRA satellite, which launched in 1999, and the AQUA 

satellite, which launched in 2002 [23], provide frequent and 

comprehensive global imaging in 36 spectral bands with 1-km 

resolution. MODIS/AQUA passes south to north over the 

equator in the afternoon and views the entire surface of the 

Earth every 2 days; these data can improve our understanding 

of global dynamics and processes occurring on the land and in 

the lower atmosphere [24].  

Various data products are provided by the MODIS 

instrument onboard the AQUA satellite for many applications 

in the area of Earth science. Four MODIS products (MYD02, 

MYD03, MYD05, MYD35) were generated from data 

collected throughout 2017 and have a spatial resolution of 

approximately 1 km (https://ladsweb.modaps.eosdis.nasa.gov/). 

The MYD02 product provides TOA spectral radiance of 

MODIS/AQUA bands, which would be considered dependent 

variables in the NSSR retrieval model. Geographic parameters 

from the MYD03 product, including latitude, longitude, 

viewing zenith angle (VZA), solar zenith angle (SZA), viewing 

azimuth angle (VAA), and solar azimuth angle (SAA), were 

also processed. The MYD05 product contains the atmosphere 

precipitable water parameter, which is usually considered a 

dependent variable of the NSSR retrieval model in previous 

research [11-14]. MYD35 is a cloud mask product, which 

assigns a clear-sky confidence level (confident clear, probably 

clear, uncertain clear, cloudy) to each pixel in a remote sensing 

image. Clear and cloudy samples will be determined by this 

cloud mask. Confident clear and probably clear pixels were 

taken as clear, and uncertain clear and cloudy pixels were taken 

as cloudy in the following analyses.  

 

 

 
Figure 1. Distribution of seven SURFRAD observation sites. 
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B. In situ Data  

Seven in situ measurements of the Surface Radiation Budget 

Network (SURFRAD, http://www.srrb.noaa.gov/surfrad) 

operated by National Oceanic and Atmospheric Administration 

(NOAA) acquired throughout 2017 were used to evaluate the 

MODIS/AQUA-derived NSSR. Several variables related to 

surface shortwave fluxes are measured at SURFRAD stations 

every minute using pyrheliometers or pyranometers, including 

net surface shortwave radiation, downwelling global solar 

radiation, and upwelling solar radiation, together with their 

quality information [25]. The locations of SURFRAD sites 

were chosen with the intent of best representing the diverse 

climates of the United States (Figure 1), and special 

consideration was given to places where the landform and 

vegetation are homogeneous over an extended region so that 

the point measurements would be qualitatively representative 

of a large area. The seven sites are Bondville, IL; Fort Peck, 

MT; Goodwin Creek, MS; Table Mountain, CO; Desert Rock, 

NV; Penn State, PA; and Sioux Falls, SD. These sites represent 

a variety of surface types, atmospheric conditions and 

geographic environments [26].  

 

C. Simulated data for modeling 

The MODerate resolution atmospheric TRANsmission 

model (MODTRAN) was developed and continues to be 

maintained through a longstanding collaboration between 

Spectral Sciences, Inc. (SSI) and the Air Force Research 

Laboratory (AFRL). MODTRAN is expert in solving the 

radiative transfer equation associated with molecular, cloud, 

aerosol and surface components for emission, scattering, and 

reflectance [27]. Consequently, MODTRAN is universally 

used in many sensor data processing systems, particularly for 

spectral radiance and flux radiation estimations and for removal 

of atmospheric effects. Here, MODTRAN 5 was used to 

simulate NSSR at various atmospheric, geometric and surface 

conditions, which would be used to develop the proposed 

model. 

In our simulations, the spectral range of the MODTRAN 

model was set to 300 nm-5000 nm and spectral resolution was 2 

wavenumbers (cm-1). Nine surface reflectance spectra in the 

MODTRAN spectral library were employed, including 

grassland, wetland, sandy loam, broadleaf forest, barren-desert, 

urban, ocean water, fresh snow, and sea ice. Six atmospheric 

profiles (tropical, mid-latitude summer, mid-latitude winter, 

subarctic summer, subarctic winter and US76, with the default 

atmospheric precipitable water values of 4.11, 2.92, 0.85, 2.08, 

0.42, and 1.42 g cm-2, respectively) representing different 

atmospheres and three types of aerosol models (rural, maritime 

and troposphere) with default visibility representing different 

aerosols, were used. Geometric conditions, including six 

viewing zenith angles (VZA: 0°, 33.56°, 44.42°, 51.32° 56.25° 

and 60°) and thirty-six solar zenith angles (SZA: 0°~70°, 

interval 2°), were considered. When VZA was set to these six 

specific angles, the 1/cos(VZA) is 1, 1.2, 1.4, 1.6, 1.8 and 2.0, 

and these values that can help in fitting the coefficients of the 

following equations. In addition to the clear sky condition, 

three types of cloud conditions (cumulus, altostratus, and 

stratus) were also simulated. In total, 139,968 cases were 

considered in our MODTRAN simulations. After running the 

simulations, we can get the NSSR from the subtraction between 

upward flux and downward flux at surface level in the FLUX 

file. Spectral radiance obtained in the MODTRAN output TP7 

file was integrated with MODIS/AQUA narrowband radiances 

by combining the corresponding spectral response functions.  

III. METHODOLOGY  

Random forests are an ensemble learning method for 

regression, which are operated by constructing a multitude of 

regression trees at training time. Every bootstrap sample is 

selected from the training set; then, the features used are 

extracted randomly from all features in a certain proportion 

while training each mode of the tree [28-29]. Given a training 

set X = x1,..., xn with responses Y = y1,..., yn, bagging repeatedly 

(B times) selects a random sample with replacement of the 

training set and fits trees to these samples: 

For b = 1,..., B: 

1. Sample, with replacement, n training examples from X, 

Y; call these 
bX , 

bY . 

2. Train a regression tree 
bf  on 

bX , 
bY . 

After training, predictions for unseen samples x' can be made 

by averaging the predictions from all the individual regression 

trees on x': 

1

1ˆ= (x )
B

b

b

f f
B 

                                  (1) 

RF is also considered a very handy and easy to use algorithm 

because its default parameters often produce a good predictive 

results, and its parameters are straightforward and 

understandable [20-21]. In addition, RF also provides estimates 

of which participant variables are more important in the 

regression to quantify the attribution derived from the 

dependent variables to fit the independent variable.  

In the traditional methods, take Tang’s method for example, 

the retrieval of NSSR can be understood from the following 

formula: 

( , , , ) NSSR f radiance VZA SZ precipitable waA ter     (2) 

The function f in Tang’s method consists of two complex 

models, one of which is a model to convert narrowband 

reflectivity to TOA broadband albedo. The other model is to 

retrieve NSSR from TOA broadband albedo using their linear 

relationship. Consequently, NSSR is estimated using the 

nonlinear relationship of the dependent variables (band 

radiance, VZA, SZA, and atmosphere precipitable water). The 

RF method is essentially used to fit this nonlinear relationship. 

Like many other machine learning methods (artificial neural 

network, support vector machine, and so on), the RF method 

works as a ‘black box’. Consequently, it cannot provide the 

specific form of this nonlinear relationship, but it can learn the 

correct relationship between dependent variables and NSSR. 

Unlike other machine learning methods, the RF method is an 

ensemble learning method, constructed by many regression 

trees. Every regression tree can train a nonlinear fitting model 

to estimate NSSR from some of the dependent variables, and 

the final NSSR is an average of the NSSR values of individual 

regression trees. The ensemble learning algorithm in the RF 
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method contributes to the ability to avoid overfitting and to 

make good predictions, which improves the generation of the 

model. 

Figure 2 shows a flowchart of the RF method proposed in our 

study. This flowchart shows that the MODTRAN estimated 

NSSR is regarded as the independent variable in model 

development. The dependent variables used for the model in 

our study are MODIS/AQUA six selected radiance bands (the 

first seven bands except band 6, which is either noisy or 

nonfunctional shortly after its launch), as well as VZA, SZA 

and atmospheric precipitable water, which are also the 

parameters used in the traditional methods in previous research 

[12]. In the training stage of the RF model, these dependent 

variables are estimated from MODTRAN, and the parameters 

in the RF model are set to the default settings. After training, 

the RF model was applied in retrieving NSSR with 

MODIS/AQUA satellite data, which would be validated by 

SURFRAD observing sites.  

 

 
 

Figure 2. Flowchart of the proposed random forest model. 

 

 

IV. RESULTS 

A. Algorithm Accuracy with Simulated Data 

Figure 3 shows a comparison of the estimated NSSR using 

the random forest method with the MODTRAN modeled NSSR. 

Note that the figure includes all of the simulated conditions of 

the different geographic and atmospheric environments. The 

dataset was randomly stratified into two groups, with 80% 

made part of the training dataset (Figure 3a, size: 111,974 cases) 

and 20% made part of the test dataset (Figure 3b, size: 27.994 

cases). The NSSR estimated for the training dataset has an 

overall bias value of 0.04 W m-2, an RMSE value of 2.03 W m-2 

and an R2 value of 1.00. These values are 0.53 W m-2, 5.50 W 

m-2 and 1.00, respectively, for the test dataset. It is found that 

most scatter points are near the 1:1 line and the error statistics 

are reasonable. Compared to previous research [30], the RMSE 

is lower, which illustrates the accuracy and robustness of our 

RF method in model development. 

 

 

 
       (a) 

 
     (b) 

 
Figure 3. Comparison of NSSR values estimated using the random forest 

method with MODTRAN-modeled NSSRs. (a) training dataset, (b) test dataset. 

 

B. Ground Station Validation with In situ Data 

The model produced using the RF machine learning method 

was developed with MODTRAN simulated data, the efficiency 

and universality of which should be validated by applying it to 

MODIS/AQUA data and ground-based measurements. Though 

the quality of SURFRAD station data is controlled by the data 

provider, abnormal measurements were excluded before 

validation. Note that the criterion for the outlier is that the 

standard deviation of the data is greater than the threshold 

within five minutes. Clouds, wind and other complex 

parameters can influence data measurements, leading to 

inaccurate fluctuating data for the corresponding period [31].  

Figure 4 shows a comparison of the estimated NSSR 

obtained using the RF method with measurements from the 

seven stations. The bias, RMSE and R2 of all the samples are 

-8.4 W m-2, 76.8 W m-2 and 0.91, respectively. Approximately 

70% of the absolute difference of all the samples are below 50 

W m-2. Note that the proposed RF method can estimate NSSR 
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in all sky conditions, i.e., the scatters from clear sky and cloudy 

conditions were obtained from the same model. To further 

avoid the misclassification of cloud and clear in cloud mask 

product of MYD35, samples with extreme low or high NSSR 

values  were checked visually again, which can help guarantee 

the reality of sky condition. The scatters acquired under clear 

skies are distributed evenly around the 1:1 line, with a bias, 

RMSE and R2 of -26.2 W m-2, 65.5 W m-2 and 0.85 (not shown 

in the figure), respectively. The bias, RMSE and R2 of samples 

collected under cloudy skies are 16.3 W m-2, 90.2 W m-2 and 

0.34, respectively, and distribution of these scatters is chaotic. 

Consequently, it can be concluded that the estimation from 

clear skies is better than estimation from cloudy skies, 

especially considering that the NSSR value in clear sky 

conditions is universally larger than cloud condition.  
 

 
Figure 4. Comparison of RF-estimated NSSR with seven SURFRAD in situ 
measurements over the year of 2017. 

 

The error statistics of the NSSR retrieval using the proposed 

method at the seven SURFRAD sites were also evaluated 

(Table 1). The surface types of the seven sites are obtained from 

Geostationary Operational Environmental Satellite (GOES) 

footprints [25]. We found that the grassland stations (Bondville, 

IL; Fort Peck, MT; Goodwin Creek, MS; and Sioux Falls, SD) 

had a better accuracy. However, the error of comparison in the 

Desert Rock, NV site is not very good, probably because the 

surface type (Arid shrubland) of this site is relatively complex. 

Relatively more cloud conditions contribute to the relatively 

large RMSE of station Table Mountain CO. 
 

Table 1. Error statistics of NSSR retrieval using the RF method at seven 

SURFRAD sites. 

Site Name 
BIAS 

(W m-2) 

RMSE 

(W m-2) 
R2 Surface Type 

Bondville, IL 9.1 67.6 0.93 Grassland 

Fort Peck, MT 15.8 78.7 0.90 Grassland 

Goodwin Creek, MS -1.4 64.3 0.93 Grassland 

Table Mountain, CO -20.2 85.7 0.88 Sparse grassland 

Desert Rock, NV -56.6 78.3 0.80 Arid shrubland 

Penn State, PA 23.4 78.4 0.90 Cropland 

Sioux Falls, SD -17.0 79.5 0.90 Grassland 

 

Compared to previous research at the same stations [26], the 

accuracy of the proposed method is better. The error of 

comparison can be explained by the uncertainty of satellite 

radiance, atmospheric precipitable water, station measurement 

noise, and so on. It should also be pointed out that there is a 

spatial scale difference between satellite and ground-based data 

in our study, which also contributes to the error of the 

comparison. In other words, overall good accuracy implies that 

the proposed method is feasible for the estimation of NSSR. 
 

C. Comparison with the Traditional Method 

For comparison, we also built the model using Tang’s 

method according to previous research [12, 30] using the 

following formulas 

 0 0

2 2

s sE E
NSSR r

D D

 
                            (3) 

in which NSSR represents net surface shortwave radiation, 
0E is 

the solar irradiance at the TOA, 
s represents the cosine of the 

solar zenith angle and D is the Earth-Sun distance in 

astronomical units. The intercept  and slope    are variables 

that depend on atmospheric precipitable water, SZA and 

various sky conditions. The r in Eq. (3) represents the TOA 

shortwave broadband albedo, and an algorithm converting the 

narrowband reflectivity to broadband albedo was developed: 

 
6

0

1
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i

r b b 


                                 (4) 
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                                (6) 

where 
v is the cosine of the viewing zenith angle and ci is a 

constant that is mainly dependent on SZA.  represents the 

TOA narrowband reflectivity of the sensor, which can be 

estimated from TOA band radiances (Li) according to the 

assumption that the land surface is Lambertian. iE  in Eq. (6) is 

the mean TOA solar irradiance at band i, which can be 

estimated by combining spectral irradiance and the 

corresponding spectral response. Table 2 presents the iE  and 

detailed information of the six selected MODIS/AQUA 

radiance bands. 

 
 Table 2. Spectral range, center spectra and the mean TOA solar irradiance of 

the six selected MODIS/AQUA bands. 

Band 
Spectral  

range (nm) 

Center  

spectra (nm) 
Ei (W m-2 μm) 

1 620-670 645.8 1595.0 

2 841-876 856.9 973.9 

3 459-479 466.1 2063.5 

4 545-565 553.9 1872.6 

5 1230-1250 1241.5 235.6 

7 2105-2155 2114.0 95.3 

 

As seen from the above, retrieval of NSSR using Tang’s 

method contains two models, one of which is a model to 

convert narrowband reflectivity to TOA broadband albedo (Eq. 

(4) - Eq. (6)). The other model is carried out to retrieve NSSR 

from TOA broadband albedo using their linear relationship (Eq. 
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(3)). The bias, RMSE and R2 of the first model are 0, 0.011 and 

1.00, respectively, which can demonstrate the robustness of the 

conversion algorithm. As shown in Figure 5, the bias, RMSE 

and R2 for comparison of estimated NSSR from TOA 

broadband albedo using Eq. (3) with the MODTRAN model are 

0 W m-2, 7.29 W m-2 and 1.00, respectively. These results 

contain both clear day and cloudy (cumulus, altostratus and 

stratus) sky conditions. Note that the relationship between 

broadband albedo and NSSR is dependent on sky condition, 

independent of surface types. The results also show that most 

scatter points, especially clear sky points, are near the 1:1 line 

and that values of cloud points are often below 400 W m-2. The 

complex interaction of the cloud situation contributes to 

uncertainty of simulated radiance and flux, leading to larger 

deviations for cloud. Note that the figures include all the 

simulated conditions of different geographic and atmospheric 

environments. 

 
 
Figure 5. Comparison of the estimated NSSR using the traditional method with 

a MODTRAN-modeled NSSR value. 

 

The number of our simulations is much larger than in 

previous articles, which means that our experiment is more 

universal and can represent complex realities better. The RF 

method can greatly improve the accuracy of MODTRAN 

simulated data (Figure 3) compared to Tang’s method. It must 

be noted that many parameters should be fitted and that sky 

conditions (clear and cloudy) should be distinguished in the 

traditional method. While the random forest machine learning 

method can simplify the procedure greatly, this is also a main 

advantage of the RF model. 

An experimental comparison between NSSR estimated by 

Tang’s method and ground-based data from 2017 was also 

carried out (Figure 6), which had an overall bias value of -5.2 

W m-2, an RMSE value of 71.8 W m-2 and an R2 value of 0.92. 

The bias, RMSE and R2 for the clear sky samples are 11.3 W 

m-2, 61.6 W m-2 and 0.87 and for the cloudy sky samples are 

-28.0 W m-2, 84.0 W m-2 and 0.42 (not shown in the figure). The 

accuracy of the clear sky samples is comparable to that of the 

proposed RF method, but the bias of the cloudy samples is 

much larger than that of the RF method. Figure 5 shows that the 

model of the cloudy samples obtained by the traditional method 

does not perform well, which contributes to the poorer accuracy 

during validation of the station cloudy sky samples. Table 3 

demonstrates the error statistics of NSSR retrieval using the 

traditional method in seven SURFRAD sites. Unlike the RF 

method, the accuracy of the grassland stations is not very good, 

but other surface type stations performed better. The relatively 

higher number of cloudy samples and the worse cloud model in 

traditional method contribute to the worse accuracy of the 

grassland stations. In addition, the underfitting phenomenon of 

other surface types in the RF method may be overcome if 

MODTRAN can better represent these surface types. 
 

 
 
Figure 6. Comparison of NSSR estimated by the traditional method with seven 

SURFRAD in situ measurements throughout the year of 2017.  

 
Table 3. Error statistics of NSSR retrieval using the traditional method at seven 

SURFRAD sites. 

 

Site Name 
BIAS 

(W m-2) 
RMSE 
(W m-2) 

R2 Surface Type 

Bondville, IL -3.0 62.2 0.94 Grassland 

Fort Peck, MT -8.4 69.1 0.92 Grassland 

Goodwin Creek, MS 21.3 74.3 0.91 Grassland 

Table Mountain, CO -2.8 77.6 0.90 Sparse grassland 

Desert Rock, NV -12.2 65.4 0.86 Arid shrubland 

Penn State, PA 9.7 69.0 0.92 Cropland 

Sioux Falls, SD -28.9 87.4 0.88 Grassland 

 

In a word, the error statistics of the RF machine learning 

method is slightly better than Tang’s method, especially in 

cloudy conditions. If more MODTRAN simulations 

representing various real conditions are carried out, the 

accuracy of the RF method would be improved, considering its 

powerful nonlinear data fitting ability. Considering its simple 

process and relatively good accuracy, it can be concluded that 

retrieval of NSSR with the RF machine method will be an 

effective technique in the future.  

V. CONCLUSION 

Net surface shortwave radiation is one of the most 

fundamental parameters in various applications and is the main 

driver of surface energy balance and evapotranspiration. In this 

study, we developed a concise and accurate method for 

retrieving NSSR using an RF machine learning method with 

MODIS/AQUA satellite data under both clear sky and cloudy 

conditions. NSSR estimated using the RF method was 
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evaluated using SURFRAD in situ measurements. Comparative 

results illustrate the accuracy of the proposed method.  

The MODTRAN 5 model is used to simulate 

MODIS/AQUA band radiation, TOA broadband albedo and 

NSSR in different atmospheric, geometric and surface 

conditions. These simulated data can help build the new 

method. The random forest method can greatly simplify the 

procedure and has the ability to perform adaptive, nonlinear 

data fitting. The bias, RMSE and R2 for the training dataset of 

the model are 0.04 W m-2, 2.03 W m-2 and 1.00, respectively, 

and for the testing data are 0.53 W m-2, 5.50 W m-2 and 1.00. 

The proposed method was also compared to the Tang method. 

Tang’s method contains two models, one of which is a model to 

convert narrowband reflectivity to TOA broadband albedo; the 

bias, RMSE and R2 for all samples in this model are 0, 0.011 

and 1.00, respectively. Another model is carried out to retrieve 

NSSR from TOA broadband albedo using their linear 

relationship, and the bias, RMSE and R2 for comparison of 

estimated NSSR with the MODTRAN-modeled NSSR are 0 W 

m-2, 7.290 W m-2 and 1.00, respectively. Note that sky 

conditions (clear and cloudy) should be distinguished in the 

development of Tang’s method but not in the RF method. 

Consequently, the RF method has a stronger and more effective 

ability to estimate NSSR due to its greater accuracy and concise 

model development. Although 139,968 cases were simulated, 

more complex situations (including bidirectional reflectance 

phenomenon) are required for better, more realistic 

representations, which may reduce errors and improve the 

universality of the built model. 

The proposed RF method of NSSR was also validated by 

applying it to MODIS/AQUA data and ground-based 

measurements. The bias, RMSE and R2 for the seven 

SURFRAD stations are -8.4 W m-2, 76.8 W m-2 and 0.91, 

respectively. The error of the models could be explained by 

satellite channel radiance noise, station measurement noise, 

uncertainty of cloud mask, atmospheric precipitable water, and 

so on. Though the overall accuracy of the RF method is 

comparative with Tang’s method, the accuracy of NSSR in 

cloudy conditions using the RF method is much better than that 

of the traditional method, which suggests that our applied 

method is universal and accurate. It can also be concluded that 

retrieval of NSSR with the RF machine method will be an 

effective technique in the future due to the simple process and 

relatively good accuracy. 

Future studies will focus on estimating NSSR and other 

radiation fluxes by training hundreds of station measurements 

and auxiliary data (including satellite data, meteorological data, 

reanalyzed data, and so on) with different machine learning 

methods instead of MODTRAN simulated data. In addition, the 

spatial and temporal features of global NSSR distribution will 

be analyzed in future research. 
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