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Development of a split-window algorithm for estimating sea 28 

surface temperature from the Chinese Gaofen-5 data 29 

Abstract: Sea surface temperature (SST) is an essential climate 30 

variable that can be used to assess climate change. One kind of method 31 

commonly used to estimate SST based on remote sensing measurements 32 

is the split-window (SW) algorithm. However, the derivation of the 33 

linear SW algorithm does not appear to reflect reality because some 34 

assumptions and approximations were used. Moreover, the quadratic 35 

SW equation cannot be interpreted theoretically although it maintains 36 

the structure of the linear SW equation. The Gaofen-5 (GF-5) satellite 37 

launch is planned for 2017. Focusing on exploring the mechanism of 38 

the SW algorithm using GF-5 data, this study investigated the 39 

assumptions and approximations used to derive the linear SW technique. 40 

Two revised equations of these assumptions and approximations were 41 

developed. Combining the revised equations, a nonlinear SW algorithm 42 

was obtained that could be simplified to the quadratic equation. 43 

Compared with previous research, this study focuses more on the 44 

theoretical interpretation and improves our understanding of the semi-45 

empirical quadratic SW equation. The matchup dataset produced by the 46 

European Organization for the Exploitation of Meteorological Satellites 47 

(EUMETSAT) Ocean and Sea Ice Satellite Application Facility (OSI-48 

SAF) was used to validate the quadratic SW algorithm. A bias of -0.05 49 

K and a RMSE of 0.53 K were obtained.  50 

Keywords: Sea surface temperature; Split-window; Revision; GF-5; 51 

Thermal infrared 52 

1. Introduction 53 

As an important parameter in the exchange of energy between the ocean and 54 

the atmosphere, the sea surface temperature (SST) reflects both oceanic and 55 
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atmospheric variability on multiple temporal and spatial scales (Fisher 1958; 56 

Liu and Minnett 2015). High-quality SST datasets are needed for many 57 

applications, such as numerical weather prediction, ocean forecasting, and 58 

climate change assessment (Pinardi et al. 2003; Barnett et al. 1993; Chelton and 59 

Wentz 2005; Donlon et al. 2007). Knowledge of the distribution of SST is also 60 

useful for locating various species of fish (Simpson 1994). Such investigations 61 

can be satisfied using satellite remote sensing data. However, accurate 62 

determination of SST from satellite data is a difficult task because the at-sensor 63 

measured radiances include the atmospheric absorption and emission (Liu et al. 64 

2013). Thus, removal of the atmospheric effects is a key step in the accurate 65 

retrieval of SST from remotely sensed data.  66 

Despite the problem of atmospheric effects, retrieval of SST 67 

information from space using thermal infrared (TIR) data began in 1970. 68 

Anding and Kauth (1970) first demonstrated that the atmospheric effects can 69 

be almost compensated for by simultaneously using the radiometric 70 

measurements in two properly selected TIR bands. Prabhakara et al. (1974) first 71 

suggested the general method of estimating SST from two TIR channel 72 

measurements. Therefore, the split-window (SW) technique for estimating SST 73 

was derived based on the previous works, with the general idea that the 74 

atmospheric effects are proportional to the difference between the at-sensor 75 

radiances measured simultaneously in two TIR channels (McMillin 1975; 76 

Ulivieri et al. 1994; Coll and Caselles 1997; Rozenstein et al. 2014). For 77 
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nighttime retrieval, the channel near 3.7 μm is often used to improve the 78 

accuracy of SST retrieval because it’s a more transparent band, compared with 79 

the bands centered at 11 and 12 μm (Barton 1983). However, there is significant 80 

solar radiation at this wavelength that restricts the channel to be used for 81 

daytime SST retrieval (McClain, Pichel, and Walton 1985; Petrenko et al. 2014). 82 

Since then, a variety of methods based on the SW technique have been 83 

developed and improved to retrieve SST and LST (land surface temperature) 84 

(McClain, Pichel, and Walton 1985; Becker and Li 1990; Sobrino, Li, and Stoll 85 

1993; Niclòs et al. 2007; Qian et al. 2016).  86 

In the derivation of the SW technique, some assumptions and 87 

approximations were made to obtain the SST. One assumption is the first-order 88 

Taylor approximation of the Planck function (Prabhakara, Dalu, and Kunde 89 

1974; Becker 1987). Another assumption is that the atmospheric equivalent 90 

temperatures in the two adjacent TIR channels were the same (Tai = Taj) 91 

(McMillin 1975; Sobrino, Coll, and Caselles 1991). Notably, there are certain 92 

restrictions for these assumptions. As demonstrated in the literature (Sobrino, 93 

Coll, and Caselles 1991; Becker 1987), the linear approximation of the Planck 94 

function is generally accurate under the condition that T and Ti are close to each 95 

other (T represents the atmospheric equivalent temperature or surface 96 

temperature and Ti is the brightness temperature measured by the satellite). 97 

However, it is difficult to meet this condition due to the strong variability of 98 

global atmospheric conditions. In addition, the hypothesis Tai = Taj does not 99 
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appear to reflect reality. Therefore, these assumptions and approximations must 100 

be re-examined. 101 

The Gaofen-5 (GF-5) satellite is expected to be launched in 2017. An 102 

advantage of the multiple spectral-imager (MSI) onboard GF-5 satellite is the 103 

high spatial resolution (40 meters for TIR channels). As a result, applications 104 

of the TIR data from GF-5 are different from those of other sensors with coarser 105 

spatial resolutions. For example, the high resolution SST data of GF-5 can be 106 

used to monitor the thermal pollution produced by the nuclear power. Thus, 107 

there is an urgent need to develop an algorithm that is suitable for retrieving 108 

SST from GF-5/TIR data. In this paper, the investigation of the following 109 

assumptions and approximations: 1) the linearization of the Planck function and 110 

2) the atmospheric equivalent temperatures in two TIR channels, which were 111 

assumed to be the same was undertaken based on the Chinese GF-5 data. We 112 

aim to explore the mechanism of the SW algorithm further through revising 113 

these assumptions and approximations. The paper is organized as follows: 114 

Section 2 describes the data used in this study. The theoretical revision and 115 

derivation of the SW technique, including revision of the linearization of the 116 

Planck function, revision of the Tai = Taj hypothesis and analysis of the 117 

developed SW algorithm, are documented in Section 3. The effect of instrument 118 

noise on SST retrieval and the algorithm validation are described in Section 4. 119 

The discussion is given in Section 5. Finally, Section 6 presents the conclusions. 120 
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2. Data 121 

2.1 Chinese GF-5 data 122 

With the launch of the China High-resolution Earth Observation System 123 

(CHEOS), China has entered a new era of high resolution operations. GF-5 is 124 

the fifth satellite in a series of CHEOS, scheduled to be launched in 2017. One 125 

of the major sensors onboard the GF-5 satellite is the multiple spectral-imager 126 

(MSI) that includes 13 channels covering the spectral range from visible to TIR 127 

and observes the earth almost at nadir. The channels centered at 10.8 μm and 128 

11.95 μm are two TIR channels (labeled CH10.8 and CH11.95, respectively, 129 

hereafter) suitable for SW method, with a spatial resolution of 40 meters. The 130 

spectral response functions of CH10.8 and CH11.95 are shown in Figure 1. 131 

2.2 Matchup data set 132 

To assess the performance of the developed algorithm, Matchup dataset (MDS) 133 

produced by the European Organization for the Exploitation of Meteorological 134 

Satellites (EUMETSAT) Ocean and Sea-Ice Satellite Application Facility 135 

(OSI-SAF) was collected. MDS was provided in NetCDF format, containing 136 

the fields of latitude, longitude, viewing zenith angle (VZA), acquisition time, 137 

AVHRR at-sensor brightness temperatures, in situ SSTs, etc. AVHRR 138 

brightness temperatures are coincident in time and space with the in situ SSTs. 139 

From Figure 1, which also displays the spectral response functions of AVHRR 140 
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SW channels, we can see that the spectral configuration of GF-5/MSI and 141 

AVHRR SW channels is similar. Considering the lack of available GF-5 data 142 

at present, the “true” GF-5 brightness temperature can be got from the AVHRR 143 

measurements based on the relationship built by the simulated data for the 144 

purpose of algorithm validation. The in situ SSTs recorded by drifting buoys 145 

were collected from the Global Telecommunication System (GTS) with an 146 

AVHRR pixel. Figure 2 shows the location distribution of in situ SSTs, 147 

indicating the almost global coverage of in situ measurement.  148 

 149 

Figure 1. Spectral response functions for Gaofen-5 and AVHRR split-window 150 

channels.  151 
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 152 

Figure 2. Distribution of in situ sea surface temperatures on the global ocean. 153 

2.3 Atmospheric profile data 154 

Several sets of real atmospheric profiles, such as the Thermodynamic Initial 155 

Guess Retrieval (TIGR) database has been widely used for the development of 156 

SST and LST retrieval algorithms (Scott and Chédin 1981; Chédin et al. 1985). 157 

In this work, the TIGR database TIGR2002_v1.1 was used as input to the 158 

radiative transfer simulation (see Section 2.4). Due to the large size of the 159 

TIGR2002_v1.1 and concentrations of water vapor content (WVC) less than 1 160 

g/cm2, it is reasonable to select different atmospheric profiles according to well-161 

distributed values of WVC. Figure 3 shows the 104 atmospheric profiles 162 

selected, with the atmospheric temperature in the lowest layer (T0) varying from 163 

232.25 K to 303.41 K and the WVC from 0.09 g/cm2 to 5.69 g/cm2, which 164 

constructed a robust database capable of representing global atmospheric 165 

conditions with a moderate number of samples and a nearly uniform WVC 166 
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distribution. Eighty-one profiles (referred to as TIGR_81) were used for 167 

developing the SST retrieval algorithm and twenty-three profiles (referred to as 168 

TIGR_23) were used for validation. 169 

 170 

Figure 3. Plot of the total water vapor content (WVC) as a function of 171 

atmospheric temperature in the lowest layer (T0) for selected atmospheres. 172 

TIGR_81 was used for algorithm development (black points) and TIGR_23 173 

(red points) for algorithm validation. 174 

2.4 Generation of the simulated database 175 

To obtain an appropriate simulated database for developing a SST retrieval 176 

algorithm for GF-5 TIR data, the atmospheric radiative transfer model 177 

MODTRAN (Berk et al. 1999) was used to simulate the spectral atmospheric 178 

parameters of spectral transmittance τλ, spectral atmospheric upwelling 179 

radiance R
↑ 

atm_λ  and spectral atmospheric downwelling R
↓ 

atm_λ . The channel-180 

effective atmospheric parameters τi, R
↑ 

atm_i  and R
↓ 

atm_i  can be obtained by 181 
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integrating these spectral variables with spectral response functions in CH10.8 182 

and CH11.95. The channel brightness temperature Ti at the top of the atmosphere 183 

(TOA) can then be determined according to the radiative transfer equation 184 

(RTE) (Coll and Caselles 1994; Niclòs et al. 2007) by inverting the Planck 185 

function in combination with a wide range of SSTs, considering the VZA of 0°. 186 

For a more realistic simulation, the SSTs reasonably vary with T0. Specifically, 187 

five SSTs (T0 – 5 K, T0 – 2 K, T0 K, T0 + 2 K and T0 + 5 K) were considered in 188 

this study. All of the data were obtained considering the emissivity to be equal 189 

to one because the ocean surface radiates almost as a blackbody at infrared 190 

wavelengths (McClain, Pichel, and Walton 1985). A flow chart of generation 191 

of the simulated data is presented in Figure 4. 192 
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 193 

Figure 4. The procedure of generating the simulated data. 194 

3. Method of revising the linear SW algorithm 195 

The theoretical basis for the SST retrieval algorithm relies on the RTE. 196 

Assuming that: 1) the first-order Taylor approximation of the Planck function 197 

was used and 2) the atmospheric equivalent temperatures in two TIR channels 198 

were equal (Tai = Taj), a typical linear SW algorithm (Sobrino, Li, and Stoll 199 

1993; McClain, Pichel, and Walton 1985; Barton 1995; Kilpatrick, Podestfi, 200 

and Evans 2001) can be obtained:  201 
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 ( )s i i jT T A T T     (1) 202 

where Ts is the sea surface temperature (i.e., SST; hereafter, SST is used 203 

interchangeably with Ts), Ti and Tj are the brightness temperatures in channels 204 

i and j at the TOA, and A is the coefficient defined by A = (1 - τi) / (τi - τj) in 205 

which τi and τj are the transmittances through the atmosphere from the surface 206 

to the satellite in channels i and j. Eq. (1) indicates that a linear relationship 207 

exists between Ts –Ti and Ti –Tj. However, an empirical quadratic relationship 208 

was found when relating Ts –Ti to Ti –Tj. Coll et al. (1994) proposed a quadratic 209 

SW equation but no physical interpretation. In the next section, we will 210 

investigate the derivation of the quadratic SW equation by re-examining the 211 

two assumptions and approximations mentioned above. 212 

3.1 Revision of the linearization of the Planck function 213 

Based on the RTE, Eq. (2) can be obtained by using Taylor's expansion of the 214 

Planck function,  215 

 ( )i ai i s ai iT T T T T      (2) 216 

where △Ti is the error in Ti caused by linearizing the Planck function. In the 217 

published literature, △Ti is small and always neglected (McClain, Pichel, and 218 

Walton 1985; Walton et al. 1998; Prabhakara, Dalu, and Kunde 1974). Using 219 

the simulated data, the calculated results of △Ti for CH10.8 and CH11.95 by Eq. 220 
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(2) are shown in Figure 5 (a) and (b). It can be observed that a RMSE of 0.10 221 

K and a bias of 0.07 K were obtained for CH10.8, and those of CH11.95 were 0.11 222 

K and 0.08 K, respectively. Writing Eq. (2) for two channels, one can obtain 223 

Eq. (3), 224 

 1 2( )s i i j s sT T A T T T T         (3) 225 

where △Ts1 = - △Ti - A(△Ti - △Tj) with the same A as in Eq. (1), △Ts2 = Aa(Tai 226 

- Taj) with Aa = - (1 - τi) (1 – τj) / (τi - τj). We can see that △Ts1 is the error of Ts 227 

retrieval caused by linearizing the Planck function and △Ts2, which will be 228 

presented in Section 3.2, is the influence of the hypothesis Tai = Taj on Ts 229 

retrieval. Figure 5 (c) displays the results of △Ts1, which is within the range of 230 

-0.4~0.5 K. The negative bias (-0.06 K) of △Ts1 indicates that the surface 231 

temperature was overestimated due to the linearization of the Planck function, 232 

with RMSE = 0.10 K.  233 

 234 

 235 
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 236 

(a)                                                     (b) 237 

 238 

(c) 239 

Figure 5. The error caused by the linearization of the Planck function for 240 

channels with central wavelengths of (a) 10.8 μm, (b) 11.95 μm and (c) for SST. 241 

To revise the error caused by the linearization of the Planck function, 242 

the second-order derivative of Taylor's expansion was considered. Based on the 243 

RTE, △Ti in Eq. (2) can be rewritten as the following expression: 244 

 

2
2 2

2

( )1
( ) [(1 )( ) ( ) ]

2=
( )

( )

i

i

i
T i ai i i s i

i
i

T

B T
T T T T

TT
B T

T

 


   






  (4) 245 
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where 
( )

( )
i

i
T

B T

T




 and 

2

2

( )
( )

i

i
T

B T

T




 are the first-order and second-order 246 

derivatives of the Planck function at temperature Ti, respectively. Eq. (4) shows 247 

that △Ti is described by a complex expression. Parameterization of Eq. (4) is 248 

necessary. Considering the simplified case of Eq. (2) in which △Ti was 249 

regarded as zero, Eq. (2) can also be rewritten as: 250 

 (1 )( ) ( )i i ai i s iT T T T       (5) 251 

Putting the square on both sides of Eq. (5), one can obtain Eq. (6) by simple 252 

mathematical manipulation, 253 

 
2 2(1 )( ) ( )

1

i
i i ai i s i

i

T T T T


 


   


  (6) 254 

In addition, using the approximation of the Planck function in the work of Price 255 

(1984), 256 

 ( ) in

i i i iB T a T   (7) 257 

where ai and ni are constants in a given channel, Eq. (8) can be obtained: 258 

 

2

2

( ) ( ) 1
( ) / ( )

i i

i i i
T T

i

B T B T n

T T T

  


 
  (8) 259 
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Combining Eqs. (6) and (8), △Ti can be parameterized as 

2( )1
( 1)

2 (1 )

s i i
i

i i

T T
n

T









. 260 

As shown in Figure 6, there is a strong dependence between △Ti and 261 

2( )

(1 )

s i i

i i

T T

T








 , with sufficient accuracy of Ti (RMSE lower than 0.01 K) for both 262 

channels. Based on Figure 6, △Ti is rewritten as: 263 

 

2( )

(1 )

s i i
i i

i i

T T
T

T







 


  (9) 264 

where αi is the regression coefficient, which is 1.40 for CH10.8 and 1.21 for 265 

CH11.95. 266 

 267 

(a)                                                                     (b) 268 

Figure 6. △Ti versus (Ts – Ti)2 τi / (Ti (1 – τi)) for Gaofen-5 TIR channels 269 

centered at (a) 10.8 μm and (b) 11.95 μm. Here, Ts is the surface temperature, 270 

Ti is the simulated brightness temperature, τi is the transmittance and △Ti is the 271 

difference between the simulated and estimated brightness temperatures from 272 

Eq. (2).  273 

3.2 Revision of the Tai = Taj hypothesis 274 
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If the hypothesis of Tai = Taj is used for the Ts retrieval, △Ts2 in Eq. (3) is 0. 275 

However, according to the calculated Ta10.8 and Ta11.95 using the thermal-path 276 

atmospheric upwelling radiance generated from the simulation, △Ts2 ranges 277 

from about -6~2 K, as seen in Figure 7. It can be concluded that use of the Tai 278 

= Taj hypothesis can lead to large error in Ts retrieval, with the RMSE of 1.74 279 

K and bias of -0.88 K. 280 

 281 

Figure 7. The error caused by the hypothesis of Ta10.8 = Ta11.95 for SST retrieval. 282 

Here, Ta10.8 and Ta11.95 are the atmospheric equivalent temperatures in Gaofen-283 

5 SW channels. 284 

Notably, the discrepancy between Tai and Taj must be taken into account 285 

in SST retrieval from satellite observations (Franqois and Ott1é 1996). From 286 

Figure 8, it can be observed that 1) there is a discrepancy between Ta10.8 and 287 

Ta11.95 for GF-5 data, with Ta11.95 > Ta10.8 for low Ta10.8 and Ta11.95 < Ta10.8 for high 288 

Ta10.8. The maximum difference between Ta10.8 and Ta11.95 is almost 4 K; 2) 289 

Ta11.95 and Ta10.8 are approximately equal only in a small range of atmospheric 290 
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conditions, at approximately Ta10.8 between 275-285 K; 3) there is a linear 291 

dependence between Ta10.8 and Ta11.95, 292 

 
11.95 10.8a aT aT b    (10) 293 

where a = 0.9172 and b = 23.00, with RMSE = 0.50 K. Using this linear 294 

relationship, the SST residual calculated by Eq. (3) is shown in Figure 9. 295 

Compared with the result caused by the hypothesis of Tai = Taj, the RMSE is 296 

changed to 0.62 K and the bias is changed to -0.10 K. 297 

 298 

Figure 8. The relationship between atmospheric equivalent temperatures in two 299 

Gaofen-5 TIR channels (labeled Ta10.8 and Ta11.95). 300 
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 301 

Figure 9. The SST residual obtained by Eq. (3) when the linear dependence of 302 

the atmospheric equivalent temperatures in two TIR channels was used. 303 

Combining Eq. (9) and Eq. (10), the SST can be obtained by writing Eq. 304 

(2) for two SW channels, 305 

 
10.8 11.95SST MT NT    (11)  306 

where 4

10.8
1 2

11.95

2( )

A
M

T
A A

T





 , 

2 1 2
4 5 10.8 6 11.95 3

10.8 11.95

11.95
1 2

10.8

4( )( )

2( )

A A
A A T A T A

T T
N

T
A A

T

   





 , 307 

with  308 

10.8 11.95 10.8
1

10.8

(1 )

1

a
A

  







, 11.95 10.8 11.95

2

11.95

(1 )

1
A

  







, 

3 10.8 11.95(1 )(1 )A b     ,  309 

4 1 2 11.95 10.8 10.8 11.952( ) (1 ) (1 )A A A a          , 
5 1 11.95(1 )A A a     , 310 

6 2 10.8(1 )A A        311 

3.3 Analysis of the nonlinear SW algorithm 312 
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Equation (11) is complex, requiring analysis and simplification. According to 313 

the simulated data, M ranged from 0.9620~0.9941 and N from 0.0328~0.0394. 314 

Taking the value of M approximately close to one, Eq. (11) can be rewritten as: 315 

 
10.8 10.8 11.95 11.95( 1)( ) ( 1 )SST T M T T M N T         (12) 316 

Since (M – 1) is close to 0, the first term of Eq. (12) (i.e., (M - 1)(T10.8 – T11.95)) 317 

is small even if multiplied by the maximum of (T10.8 – T11.95) (approximately 4 318 

K). In contrast to the small value of the first term, the second term (i.e., (M – 1 319 

+ N)T11.95) makes the main contribution to Eq. (12) (see Figure 10), because of 320 

the large value of T11.95. Taking the structure of the SW algorithm into 321 

consideration, (M – 1 + N)T11.95 should be the function of (T10.8 – T11.95). 322 

Therefore, the relationship between (M – 1 + N)T11.95 and (T10.8 – T11.95) was 323 

investigated further. As shown in Figure 11, (M – 1 + N)T11.95 can be 324 

parameterized using (T10.8 – T11.95), with RMSE = 0.30 K. 325 

 326 
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Figure 10. Values of (M - 1)(T10.8 – T11.95) and (M – 1 + N)T11.95 in Eq. (12) 327 

versus the atmospheric water vapor content (WVC). 328 

 329 

Figure 11. The relationship between (M – 1 + N)T11.95 in Eq. (12) and the 330 

difference of the brightness temperatures in SW channels (T10.8 – T11.95). 331 

Based on the above analysis, Eq. (12) can be simplified as: 332 

 
2

10.8 10.8 11.95 10.8 11.95( ) ( )SST T A T T B T T C        (13) 333 

where A, B and C are the coefficients. Using the least-square fitting method, the 334 

coefficients A = 0.4253, B = 1.123 and C = 0.28 were obtained using the 335 

simulated data, with RMSE = 0.30 K. Figure 12 shows the histogram of the 336 

difference between the actual SST and that obtained by Eq. (13). 337 
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 338 

Figure 12. Histogram of the differences between the actual and estimated SSTs 339 

using Eq. (13). 340 

 341 

4. Error analysis and validation 342 

4.1 Error of the instrument noise 343 

The accuracy of the estimated SST will essentially depend on the radiometric 344 

performance of the instrument. The noise equivalent differential temperature 345 

(NEΔT) in infrared channels is designed to be 0.2 K for GF-5 TIR data. To 346 

evaluate the performance of the quadratic algorithm in this study, a simulation 347 

of the effect of satellite noise was performed using a set of randomly generated 348 

signal level perturbations with errors of 0.1 K, 0.2 K and 0.3 K for both channels. 349 

The RMSEs between the true SSTs and those retrieved from the noise-added 350 

brightness temperatures are 0.49 K, 0.82 K and 1.20 K for NEΔT = 0.1 K, 0.2 351 

K and 0.3 K, respectively, in both channels.  352 
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4.2 Validation with simulated data 353 

To assess the general applicability of the quadratic SW equation to different 354 

atmospheric conditions, the accuracy of Eq. (13) was also evaluated using 355 

another set of data, TIGR_23. Figure 13 presents the error distribution between 356 

the true and the estimated SSTs, with RMSE = 0.3 K and bias = 0 K. 357 

 358 

Figure 13. Histogram of the differences between the true and estimated SSTs 359 

based on TIGR_23 data.   360 

4.3 Validation using Matchup dataset 361 

4.3.1 Data processing 362 

The invalid values in MDS were first cleaned out. Considering that MSI 363 

instrument observes the earth almost at nadir, the data within the VZA of 20°, 364 

which contains 24231 pairs of in situ SSTs and AVHRR at-sensor brightness 365 

temperatures matchup data, was used in this study. In order to get the “true” 366 
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GF-5/MSI brightness temperatures, the relationship between GF-5/MSI and 367 

AVHRR brightness temperatures was established using the simulated data for 368 

each SW channel, as presented in Figure 14. It can be seen that there is a strong 369 

linear relationship between GF-5/MSI and AVHRR brightness temperatures 370 

with the RMSE no higher than 0.05 K for both channels. Using this relationship, 371 

the “real” GF-5/MSI at-sensor brightness temperatures can be calculated from 372 

AVHRR brightness temperatures in MDS. 24231 pairs of in situ SSTs and 373 

coincident in time and space GF-5/MSI brightness temperatures were then 374 

established. It should be noted that simulations may be significantly biased with 375 

respected to observations due to modeling errors and not fully accuracy 376 

atmospheric profiles. Observed data is also affected by uncertainties in 377 

calibration, spectral response functions and residual cloud. Therefore, the 378 

algorithm coefficients based on the observed data is needed to retrieve SST 379 

from GF-5 satellite data. Among 24231 pairs of in situ SSTs and GF-5/MSI 380 

brightness temperatures matchup data, 10000 pairs were used to obtain the 381 

algorithm coefficients suitable for GF-5/MSI data, while the remaining 14231 382 

pairs were used for validation purpose. According to the Figure 15, which 383 

presents the quadratic relationship between buoy SSTs and GF-5/MSI 384 

brightness temperatures, the coefficients A = 0.1877, B = 1.845 and C = 1.07 in 385 

the quadratic SW algorithm were obtained for GF-5/MSI data, with the RMSE 386 

= 0.52 K. 387 



25 

 

 388 

Figure 14. Plot of the simulated AVHRR and GF-5/MSI brightness 389 

temperatures for each of split-window channel.  390 

 391 

Figure 15. Plot of (Buoy SST – T10.8) and (T10.8 - T11.95). Here, Buoy SST is the 392 

sea surface temperature measured by drifting buoy, T10.8 and T11.95 are the GF-393 

5/MSI brightness temperatures calculated from AVHRR brightness 394 

temperatures in MDS. 395 

4.3.2 Validation results 396 

Using the coefficients given in Section 4.3.1, SSTs were calculated from the 397 

remaining GF-5/MSI data. Analyzing comparisons of GF-5/MSI SSTs with 398 
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buoy SSTs gives a bias of -0.05 K and a RMSE of 0.53 K, as shown in Figure 399 

16. Among the 14231 pairs data, 95.45% of the differences between buoy SSTs 400 

and GF-5/MSI SSTs are within ±1 K. From Figure 16, one may note that, there 401 

is a large error up to about 8 K. This may be related to the contribution of some 402 

materials floating on ocean or the incorrect measurement by accidental. 403 

 404 

Figure 16. Buoy sea surface temperature minus sea surface temperature 405 

obtained by GF-5/MSI.  406 

5. Discussion 407 

Although many studies report the quadratic SW algorithm, this study aims for 408 

a well understanding of the semi-empirical quadratic SW algorithm. The 409 

analyses were based on a comprehension of the derivation procedure of the 410 

linear SW equation. The SST errors resulted from the linearization of the Planck 411 

function were RMSE = 0.10 K and bias = -0.06 K, while the ones from the 412 

hypothesis of Tai = Taj were 1.74 K and -0.88 K. Although the influence of the 413 
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linearization of the Planck function on SST retrieval was not obvious as the 414 

effect of the Tai = Taj hypothesis, in order to interpret the physical derivation of 415 

the quadratic SW algorithm, the second-order derivative of Taylor's expansion 416 

of the Planck function and the linear dependence between atmospheric 417 

equivalent temperatures in two SW channels were considered. The obtained 418 

nonlinear SW algorithm by combining the two revisions of the Planck function 419 

linearization and of the Tai = Taj hypothesis is complex. However, it can be 420 

simplified to the quadratic structure of (Ti - Tj), meaning that the nonlinear SW 421 

algorithm is equivalent to the quadratic SW equation. Compared with the 422 

previous studies, which presented the quadratic relationship between TOA 423 

brightness temperatures and the surface temperature by maintaining the 424 

structure of linear SW algorithm but no physical interpretation, this study 425 

makes the physical interpretation of the semi-empirical quadratic SW algorithm 426 

clear theoretically and improves our understanding of the quadratic SW 427 

algorithm. 428 

6. Conclusions  429 

Some assumptions and approximations were used in the derivation of the linear 430 

SW equation.  Using the simulated data, this work carefully evaluated these 431 

assumptions and approximations based on the RTE. We found that these 432 

assumptions and approximations were not precise for SST retrieval. Therefore, 433 

the revised equations for the Planck function linearization and for the 434 
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relationship between the atmospheric equivalent temperatures in SW channels 435 

of GF-5 data were created. Based on these studies, a nonlinear SW algorithm 436 

was obtained. Further analysis of the nonlinear SW algorithm clarified that it is 437 

equivalent to the quadratic SW equation but highlights the theoretical 438 

interpretation. 439 

The effects of instrument noise on SST retrieval using the developed 440 

quadratic SW algorithm were analyzed. The total errors were 0.49 K, 0.82 K 441 

and 1.20 K for NEΔTs of 0.1 K, 0.2 K and 0.3 K, respectively. The validation 442 

using the MDS produced by EUMETSAT OSI-SAF presented a RMSE of 0.53 443 

K and a bias of -0.05 K. 444 

A GF-5 satellite carrying a MSI instrument with narrow swaths and a 445 

high resolution of 40 meters is scheduled to be launched in 2017. The analysis 446 

of GF-5 satellite data will be performed in future work when the data is 447 

available. Because land surface is much more complicated than sea surface and 448 

the LST differs significantly from the air temperature near the surface, large 449 

errors may be introduced by the assumptions and approximations used in the 450 

derivation of the linear SW method. This hypothesis will be tested in future 451 

work. 452 
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