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ABSTRACT
To make knowledge-supported decisions, industrial actors often need
to examine available data for suggestive patterns. As industrial data
are typically unlabeled and involve multiple object types, unsuper-
vised multi-relational (MR) data mining methods are particularly
suitable for the task. Current MR association miners merely produce
singleton-conclusions rules hence might miss multi-way dependen-
cies. Our novel MR miner builds upon a relational extension of
concept analysis to extract general associations. While successfully
dealing with circularity in data, it avoids producing cyclic rules
by limiting the description depth of relational concepts. Our rules’
relevance was validated by an application to aluminum die casting.
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1 INTRODUCTION
Understanding the domain behind the data is a key to business growth
and competitiveness. Knowledge discovery from data (KDD) helps
addresses that concern by distilling trends and patterns that are in-
telligible to human experts[5]. In industry, data objects are typically
unlabeled and often comprise both proper features and object-to-
object links. Such datasets fit the unsupervised multi-relational data
mining (MRDM) mode [4], i.e. clustering and association discovery.
However, existing MRDM association miners [3, 6, 8] restrict their
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output format to singleton-premise rules, hence they fail to capture
more subtle associations.

Formal concept analysis (FCA) [7] has been proven as a versa-
tile framework for KDD [12] in many practical applications [2]. It
extracts knowledge as a compact set of association rules [10]. Re-
lational concept analysis (RCA) [11] is MRDM extension of FCA.
However, straightforwardly-defined relational association rules may
easily contain circular references or references from conclusion to
premise, thus preventing a meaningful interpretation. In this article,
we illustrate an untangling method to avoid definition cycles that
trims concept descriptions in RCA.

As a validation, we applied our method on industrial manufactur-
ing data. The goal was to assist a domain expert who examines the
production process for potential optimizations. At a first step, the ex-
pert searches for causality links between process factors and product
anomalies. Our method supports the task by providing associations
between machine state descriptors and product (qualitative) metrics.
In a concrete experiment, a fair number of the discovered rules were
deemed unexpected yet relevant by the experts involved.

In the remainder of the paper, section 2 motivates our study. Then,
section 3 provides background while sections 4 and 5 describe our
association mining approach and the experimental study, respectively.
Section 6 discusses our results and section 7 concludes.

2 MOTIVATION
In many industrial contexts, the root challenge is finding the best
trade-off between product quality, working time and manufacturing
costs. In looking for a solution, it is crucial to reflect the risk fac-
tor [13], which can be assessed by constantly monitoring the machin-
ing process, e.g. with sensors and data analysis. Our case study cov-
ers an aluminum die casting process whose output is door/window
handles and frames. In the partner workshop, process monitoring
consists in regularly controlling products metrics. For instance, when
a product is discarded for non-compliance to quality standards, the
operator halts the machine, fixes the observed problem, and restarts
the production whereby the product is melted again and reprocessed.
The situation is logged for data analysis purposes. As we show below,
an in-depth analysis of the logs reveals regularities in the form of
associations between variations in product measures, machine state
and production issues. While few associations reflect true causal-
ity, many others still help understanding and, potentially, avoid the
machine failure and reduce the costs.
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K1 sko cst smL tcL
12 × ×
13 × ×
14 × × ×
15 × ×

g P0 P1 P2

12 × ×
13 ×
14 × ×
15 ×

K2 t5 st p qlt mld cost
P0 × × × ×
P1 × × ×
P2 × × ×

Table 1: Relational Context Family of the machine part dataset.

(a) Without scaling. (b) After one step of scaling.
Figure 1: Machined part lattices (K1).

3 BACKGROUND ON FCA AND RCA
Formal concept analysis [7] is an algebraic approach for eliciting
the conceptual structure of a dataset. Input data format is a triple
K = (O,A, I) called a (formal) context, e.g. K1 in Table 1. Here O is
a set of objects (machined parts 12 to 15), A a set of attributes (sko
for inadequate thickness, smL for thickness, tcL for pressure below
threshold, cst for need recasting) and I ⊆ O×A an incidence relation
listing valid pairs (o,a) (object o has the attribute a). FCA reveals all
pairs of sets (X ,Y )∈℘(O)×℘(A) strongly correlated, meaning that
all objects having the attributes in Y are in X and vice-versa. Such
pair is a (formal) concepts with an extent X and intent Y . For instance,
({13,14},{sko,cst}) is a concept, but ({14,15},{sko,cst,smL}) is
not. Concepts are partially ordered w.r.t. extent inclusion (X1,Y1)≤K
(X2,Y2) iff X1 ⊆ X2 whereby the underlying hierarchy is a complete
lattice. Fig. 1a depicts the Hasse diagram of the lattice derived
from Table 1. It uses reduced concept labeling: Extent-wise (resp.
intent-wise), a concept “inherits” the objects located at any sub-
concept (resp. super-concept). For instance, the concept mp5 is
({14,15},{smL,cst}).

An association rule is a pair (Y,Z) ∈℘(A)×℘(A) written Y →
Z [1]. It embodies information about co-occurrences of Y and Z in
objects from O. Two classical evaluation metrics for associations
are support (percentage of objects incident to Y ∪Z) and confidence
(percentage of objects with Z among those with Y ). Here, we focus
on 100% confidence rules (a.k.a. implications). Furthermore, our
rules optimized in that they have the form Y → Z −Y where Z is a
concept intent whereas Y is a minimal subset of Z with the same
support (a.k.a. generator) [10].
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Table 2: Extended problem context.
Relational concept analysis [11] assumes datasets are made of

several contexts, one per type of object, and context-to-context re-
lations, i.e. sets of object-level links. Within our production case,
Table 1 depicts such a dataset (called relational context family): Here,
K2 describes production problems via attributes such as “fixing time
less than 5 min” (t5), “machine stopped” (st p), “quality-related”
(qlt), “mould defect” (mld), or “medium financial impact” (cost). A
relation “generates” (g) links machine parts to observed problems.
RCA uses propositionalization [9] to turn links into dedicated sort
of attributes called relational. In doing that, it uses scaling operators
akin to value restrictions in description logics and concepts from the
relation’s range context. The underlying format is q r : (c) where
q ∈ {∃,∀,∀∃, . . .} (with intuitive semantics [11]), r is the relation
and c a concept. Incidence between objects of the domain context
and its new relational attributes depends on the scaling operator used.
Table 2 illustrates the extension of K2 after scaling with ∀∃ upon
“is-generated-by” (inverse of g, denoted g−). Each concept from
K1 yielded a relational attribute incident to specific objects in K2.
For instance, problem P2 is related to parts 12, 14, and 15, whose
common concepts are mp0 and mp3 (see Fig. 1a). Thus, two new
attributes, ∀∃g−1 : (mp0) and ∀∃g−1 : (mp3), are assigned to P2.

After scaling relations with user-provided constructors, their re-
spective domain contexts get extended. This knowingly leads to a set
of new concepts popping up in the lattices of the updated contexts
(see Figs. 1b and 2a). Since they represent additional abstractions,
a scaling step will turn new concepts into yet newer attributes, and
the whole cycle would go on. The overall iterative method of RCA
provably reaches a fixpoint made of a set of inter-related lattices [11].

4 RCA-BASED KNOWLEDGE DISCOVERY
RCA is yet to be provided with a generic notion of association
rule: The difficulty here lies in the references between relational
concepts which might lead to circular dependencies. For instance, a
rule extracted from pb4 would be qlt → ∀∃g−1 : mp3,∀∃g−1 : mp0,
when replacing a reference by the concept intent, mp3 would become
smL,∃g : pb6,∃g : pb0,∃g : mp2,∃g : mp4, the latter attribute would
be replaced by pb4 intent, establishing a circularity.

To prevent this, we modify slightly the original algorithm by
exploiting the iterative nature of RCA which is cycle-free. At cre-
ation time, the intent of a content can only hold static attributes and
relational ones referring to concepts created at previous iterations.
Therefore, when replacing a reference to concept c in a relational
attribute, we use only the “birth” intent. If any relational attributes
exists in the birth intent c, then we recursively use the birth descrip-
tion of the referred concept, which has necessarily been created in
a previous iteration. Finally, any relational intent can be described
with only non relational attributes. Such expansion avoids circular
dependencies, even if one may exist between full intents.



(a) Direct references. (b) Disentangled references.
Figure 2: Problem lattices after one scaling step.

On the same example, the obvious circularity is avoided if mp3 is
replaced by its intent at the end of its creation iteration (see Fig. 1a).
The resulting intent of pb4 is drawn in Fig. 2b.

5 EXPERIMENTAL STUDY
We now focus on an industrial case of aluminum die casting, whose
data have been provided by a company specialized in the manufac-
ture of handles and frames for doors and windows.

Given the size of its activities, controlling, cleaning and managing
fixes for the machine are costly operations. Thus, the manufacturer
wishes to minimize these actions. To do so, instead of targetting
the machines, the data focus on the products themselves. When a
machined part fails to reach the required standards, it is put aside
and eventually recast. Whenever the operator assesses the number
of defective parts as being too high, the machine is stopped for a
fix. Such policy allows the number of stops to be kept low. However,
if the causality dependencies for problems could be identified, e.g.
in terms of variations in parts properties, potential failure could be
anticipated or completely avoided, along with the recasting.

To find such causality links, correlations between problems and
part features are measured. Since the relation between machined
parts and problems is many-to-many, a MRDM approach seems a
natural choice, and since data are unlabeled, only descriptive ap-
proaches such as clustering or association mining are possible, hence
our focus on RCA.

5.1 Dataset and experimental setting
Our experimental data cover one month of production, i.e. approx-
imately 58.000 parts. In the present experiments, we focus on the
5.134 parts that relate to at least one problem. The raw data is as
follows. A first table represents defective machined parts together
with their static attributes, i.e. a total of 25 features tracked, among
those, the production period, the mould, the product dimensions,
the piston state at the end of each manufacturing step. A second
table stores the 19 problems categories: Each is described by its
nature (mechanical wear, machine calibration, etc.), the induced
financial and time losses. A third table gathers the relational links
(many-to-many) between the two previous tables: It indicates, given
a machined part, all the related problem.

The two first tables have been scaled to form binary formal con-
texts: Categorical values are divided into all possible categories and

numerical value are divided into five equal intervals. It resulted in
134 attributes for the machined part context and 26 for the problem
one. Attributes are of the form ai_ j_k, where a is the target feature,
i is the manufacturing process step, j is the interval (1 being the
lowest value, 5 the highest). A final element k, optional depending
on a (valued ko, ok or check), is a complementary description for the
interval j. It indicates whether values in j should induce problems
(ko) or not (ok), whereby check provides no systematic information.

The relation “generates” is scaled with ∃: If a concept c has
∃gen : (c̄) in its intent, then every machined part in the extent of c
generates at least one problem that has all the attributes in the intent
of c̄. The inverse relation “is_generated_by” is scaled with the ∀∃
operator. If a concept c has ∀∃gen−1 : (c̄) then every problem of c is
only related to machined parts having the attributes in the intent of c̄.
The operator ∀∃ was chosen to provide a summary of the features
shared by related parts (rather than multiple cases as with ∃).

Next, only association rules of sufficient support (threshold set
to 20) were extracted. Moreover, further filters on rules eliminated
those with no relational attribute. Finally, at this preliminary step,
we only examined 100% confidence rules.

5.2 Analysis outcome
Among the 133.821 rules output by our RCA tool, we selected a
small number that seemed to be the most valuable from an expert
point of view. Table 3 shows some of the selected rules which are
split into groups for which we provide expert interpretation.

Multiple problems related to the same machined parts. RCA
found 3.950 rules reflecting the fact that machined parts may be
related to multiple problems. This is a rather rare situation, hence
it was interesting for the expert to see typical co-occurrences be-
tween problems and their characteristics, as well as those of the
related machined parts. For instance, the first rule in Table 3 has a
7% support. It states that any machined part which reaches the lower
bound (min_sm(< LimLow)) of the lowest interval for the thickness
(sm_1_ko) will have to be recast. Unsurprisingly, it will generate an
alert as the thickness lays below the 14mm threshold (the problem
will be recorded as such). Less trivially, the rule indicates that, in-
variably, a micro-stop will be triggered to deal with thickness issues,
which was judged by the machine operator as being predictable.

Recasting conditions. Another point of interest for the expert were
combinations of machined part attributes that could be an indicator
for future recasting needs. As a first, and rather direct approach,
we selected all rules comprising the pdt_recast attribute. Within
the resulting set of 42.060 rules, we found a number of subsets of
common concept. Lot #2 in Table 3 is an example of such subset
whose support, 14%, speaks in favor of a recurrent phenomenon
that deserves attention. While discussing the complete interpretation
of the situation is beyond the scope here, it might be summarized
as follows. A first remark is that very low temperature (t2_1_ko) is
a constant in the premise. It must be combined with either very
high speed of piston at step one (v1_5_ko) or piston course in the
lowest values at step two (c2_1_ko). The remainder of the premise
brings the recast information. The conclusion invariably presents the
piston course at step one in the highest interval (c1_5_ko). Taking into
account the specific combinations of attributes involved in the rules,
both those present and some of the missing ones, led the expert team



Lot # Premise Conclusion
1 sm_1_ko,min_sm(< LimLow) pdt_recast,∃ gen pbs : (sm ≤ 14),

∃ gen pbs : (microstop− smLimLow, predictable)

2.1 c2_1_ko, t2_1_ko, pdt_recast c1_5_ko,v1_5_ko,∃ gen pbs : (∀∃ gen−1 parts : (pdt_recast))
2.2 c2_1_ko, t2_1_ko,∃ gen pbs : (∀∃ gen−1 parts : (pdt_recast)) c1_5_ko,v1_5_ko, pdt_recast
2.3 v1_5_ko, t2_1_ko, pdt_recast c1_5_ko,c2_1_ko,∃ gen pbs : (∀∃ gen−1 parts : (pdt_recast))
2.4 v1_5_ko, t2_1_ko,∃ gen pbs : (∀∃ gen−1 parts : (pdt_recast)) c1_5_ko,c2_1_ko, pdt_recast
3 ∃gen pbs : (rul_component,down_time_1h+, phm) pdt_con f orm

4 v2_4, f c2_ok, ∃ gen pbs : (∀∃ gen−1 parts: (10A026,c1_5_ko,
c2_1_ko,v1_5_ko, t2_1_ko,cc_2_ok, pm1,sm2_check))

10A026,c1_5_ko,c2_1_ko,v1_5_ko, t2_1_ko,cc_2_ok, pm1,sm2_check,
pdt_con f orm

Table 3: Sample rules from RCA output.
to the following hypothesis: After restarting, it takes some time for
the machine to reach the optimal temperature. During that period,
even if the metal is completely melt, the piston is not dilated enough,
hence friction is low and speed high. This often results in extreme
values for its course, hence the non conform parts that need recast.

Conform parts related to problems. Given that not all rules apply
on products so defective that they need a recast, experts were also ea-
ger to examine the circumstances under which machined parts, albeit
associated to problems, still remained conform to the norms. This
is a valuable question, as answers may help identify indicators for
upcoming issues. Indeed, some produced parts, while still conform,
tend to have some of their feature values ever closer to the conformity
limits. Identifying typical combinations of such values per problem
category would be a significant advancement. We looked at rules
with the pdt_con f orm attribute (53.008 rules). For instance, rule #3
in Table 3 indicates that if a machined part relates to a mechanical
problem (rul_component) which entails an hour or longer downtime
(down_time_1h+) and to a preventive maintenance (phm), then the
product would be necessarily conform. This is coherent because the
machine stop is caused by a mechanical component failure and the
last product manufactured is put in relation to the produced problem.
This gives important information about the state of the machine just
before the mechanical problem showed up.

Problem description precision Finally, while looking for the con-
form parts, we discovered a small percentage of rules which, rather
than bringing new insights, point out to deficiencies in the problem
description. For instance, rule #4 in Table 3 (of support just below
1%) comprises a number of features which seem plausible plus a
reference to a concept of problems. The latter, however, comprises a
single relational attribute pointing to a super-concept of the one the
rule is stemming from (carrying a strict subset of the static attributes).
It is noteworthy that the absence of static attributes in that intent
means at least two problems are in the extent. Now, our experts
found it surprising that these problems, despite the highly similar
profiles of the related parts (eight shared attributes) do not share a
single static feature themselves. This is potential indication for miss-
ing such features in problem description (e.g. outside temperature
that might influence the entire process).

6 DISCUSSION
RCA arguably succeeded in finding correlations of features between
machined parts and problems. From its output, experts could detect
rules discriminating problems that invariably force a recasting of the
related parts from those which do not impede correct manufacturing.

In a different vein, relational attributes naturally cluster machined
parts that relate to the same category of problems, which highlights
non relational attributes connected to a problem category. This nar-
rowing of the search scope facilitates the task of detecting causality
links between events for the experts.

Finally, while our rules yielded non trivial insights on machined
parts and the way they relate to problems, the knowledge about
problems gleaned from them was rather coarse-grained. Given the
granularity of problem descriptions, this came as no surprise. Still,
even such imperfect description was sufficient for RCA to extract
hints for the industrial team, e.g. as to where new sensors, if installed,
could have the biggest impact on analysis scope and depth.

7 CONCLUSION
We define relational association rules in a way that avoids improper
references in rule parts without restricting their size. This unlocked
the entire spectrum of FCA-based association mining mechanisms
to arbitrary MR datasets. Validation study indicates that our method
is capable of detecting non-trivial facts that are beyond the reach
of competing approaches. Still, a larger evaluation effort will be
necessary to solidify these preliminary findings, e.g. focusing on
rules with less than 100% confidence.
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